1
|
Dimitriadis K, Iliakis P, Vakka A, Pyrpyris N, Pitsillidi A, Tsioufis P, Fragkoulis C, Hering D, Weil J, Kollias A, Konstantinidis D, Tsioufis K. Effects of Sympathetic Denervation in Metabolism Regulation: A Novel Approach for the Treatment of MASLD? Cardiol Rev 2025:00045415-990000000-00395. [PMID: 39750025 DOI: 10.1097/crd.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Although metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease, has become the most common chronic liver disorder, its complex pathophysiology has not been fully elucidated up to date. A correlation between elevated sympathetic activation and MASLD has been highlighted in recent preclinical and clinical studies. Furthermore, increased sympathetic activity has been associated with the main mechanisms involved in MASLD, such as lipid accumulation in the liver, insulin resistance, and metabolic dysregulation, while it has been also correlated with the progression of MASLD, leading to liver fibrosis. Preclinical studies demonstrated that therapies which ameliorate the activation of the sympathetic nervous system, such as renal and liver sympathetic denervation, reduce hepatic insulin resistance, decrease hepatic glucose production, and reverse hepatic steatosis in high-fat-diet models. However, data from clinical trials regarding the effect of renal denervation on metabolic parameters are conflicting, since several trials reported a favorable effect, while other trials stated no significant difference, with the profound limitation of the lack of originally designed denervation trials in this setting. Thus, a thorough review of the role of the sympathetic nervous system in the pathophysiology of MASLD, as well as the results of recent sympathetic denervation studies and trials regarding metabolic regulation and MASLD treatment would be of great importance.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Panagiotis Iliakis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Angeliki Vakka
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Nikolaos Pyrpyris
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Anna Pitsillidi
- Department of Obstetrics and Gynecology, Rheinlandklinikum Dormagen, Dormagen, Germany
| | - Panagiotis Tsioufis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Christos Fragkoulis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Dagmara Hering
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Lübeck GmbH, Lübeck, Germany
| | - Anastasios Kollias
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| | - Dimitris Konstantinidis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| |
Collapse
|
2
|
Jiang Y, Rezai-Zadeh K, Desmoulins LD, Muenzberg H, Derbenev AV, Zsombok A. GABAergic leptin receptor-expressing neurons in the dorsomedial hypothalamus project to brown adipose tissue-related neurons in the paraventricular nucleus of mice. Auton Neurosci 2023; 245:103058. [PMID: 36538864 PMCID: PMC9899324 DOI: 10.1016/j.autneu.2022.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Brown adipose tissue (BAT) contributes to energy homeostasis via nonshivering thermogenesis. The BAT is densely innervated by the sympathetic nervous system (SNS) and activity of pre-autonomic neurons modulates the sympathetic outflow. Leptin, an adipocyte hormone, alters energy homeostasis and thermogenesis of BAT via several neuronal circuits; however, the cellular effects of leptin on interscapular BAT (iBAT)-related neurons in the hypothalamus remain to be determined. In this study, we used pseudorabies virus (PRV) to identify iBAT-related neurons in the paraventricular nucleus (PVN) of the hypothalamus and test the hypothesis that iBAT-related PVN neurons are modulated by leptin. Inoculation of iBAT with PRV in leptin receptor reporter mice (Lepr:EGFP) demonstrated that a population of iBAT-related PVN neurons expresses Lepr receptors. Our electrophysiological findings revealed that leptin application caused hyperpolarization in some of iBAT-related PVN neurons. Bath application of leptin also modulated excitatory and inhibitory neurotransmission to most of iBAT-related PVN neurons. Using channel rhodopsin assisted circuit mapping we found that GABAergic and glutamatergic Lepr-expressing neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA) project to PVN neurons; however, connected iBAT-related PVN neurons receive exclusively inhibitory signals from Lepr-expressing dDMH/DHA neurons.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America; Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Kavon Rezai-Zadeh
- Central Leptin Signaling, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America
| | - Heike Muenzberg
- Central Leptin Signaling, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America; Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America; Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America.
| |
Collapse
|
3
|
Kim LJ, Shin MK, Pho H, Otvos L, Tufik S, Andersen ML, Pham LV, Polotsky VY. Leptin Receptor Blockade Attenuates Hypertension, but Does Not Affect Ventilatory Response to Hypoxia in a Model of Polygenic Obesity. Front Physiol 2021; 12:688375. [PMID: 34276408 PMCID: PMC8283021 DOI: 10.3389/fphys.2021.688375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Obesity can cause hypertension and exacerbates sleep-disordered breathing (SDB). Leptin is an adipocyte-produced hormone, which increases metabolic rate, suppresses appetite, modulates control of breathing, and increases blood pressure. Obese individuals with high circulating levels of leptin are resistant to metabolic and respiratory effects of leptin, but they appear to be sensitive to hypertensive effects of this hormone. Obesity-induced hypertension has been associated with hyperleptinemia. New Zealand obese (NZO) mice, a model of polygenic obesity, have high levels of circulating leptin and hypertension, and are prone to develop SDB, similarly to human obesity. We hypothesize that systemic leptin receptor blocker Allo-aca will treat hypertension in NZO mice without any effect on body weight, food intake, or breathing. Methods Male NZO mice, 12–13 weeks of age, were treated with Allo-aca (n = 6) or a control peptide Gly11 (n = 12) for 8 consecutive days. Doses of 0.2 mg/kg were administered subcutaneously 2×/day, at 10 AM and 6 PM. Blood pressure was measured by telemetry for 48 h before and during peptide infusion. Ventilation was assessed by whole-body barometric plethysmography, control of breathing was examined by assessing the hypoxic ventilatory response (HVR), and polysomnography was performed during light-phase at baseline and during treatment. Heart rate variability analyses were performed to estimate the cardiac autonomic balance. Results Systemic leptin receptor blockade with Allo-aca did not affect body weight, body temperature, and food intake in NZO mice. Plasma levels of leptin did not change after the treatment with either Allo-aca or the control peptide Gy11. NZO mice were hypertensive at baseline and leptin receptor blocker Allo-aca significantly reduced the mean arterial pressure from 134.9 ± 3.1 to 124.9 ± 5.7 mmHg during the light phase (P < 0.05), whereas the control peptide had no effect. Leptin receptor blockade did not change the heart rate or cardiac autonomic balance. Allo-aca did not affect minute ventilation under normoxic or hypoxic conditions and HVR. Ventilation, apnea index, and oxygen desaturation during NREM and REM sleep did not change with leptin receptor blockade. Conclusion Systemic leptin receptor blockade attenuates hypertension in NZO mice, but does not exacerbate obesity and SDB. Thus, leptin receptor blockade represents a potential pharmacotherapy for obesity-associated hypertension.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.,Arrevus, Inc., Raleigh, NC, United States.,OLPE, LLC, Audubon, PA, United States
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Sympathetic neural abnormalities in type 1 and type 2 diabetes: a systematic review and meta-analysis. J Hypertens 2021; 38:1436-1442. [PMID: 32371764 DOI: 10.1097/hjh.0000000000002431] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Microneurographic recordings of muscle sympathetic nerve activity (MSNA) have shown that sympathetic activation may characterize diabetes mellitus. However, it is recognized that comorbidities and metabolic abnormalities frequently associated with both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) diabetes affect MSNA, generating potential confounding effects and making the association between sympathetic activation and diabetes mellitus still a controversial matter. METHODS The present meta-analysis evaluated 11 microneurographic studies enrolling 314 diabetes mellitus patients and healthy controls, and MSNA was chosen as the main variable of interest. Collection of the data included indirect adrenergic markers such as heart rate and venous plasma noradrenaline, together with hemodynamic, anthropometric and metabolic variables. RESULTS A total of 11 microneurographic studies were evaluated including 314 diabetes mellitus patients and controls. Diabetes mellitus displayed MSNA significantly greater than controls (mean difference amounting to 8.1, 95% confidence interval 1.21-15.08, P < 0.05). This difference was ascribed to T2DM, since T1DM patients displayed MSNA values superimposable to controls. In T2DM MSNA was directly related to age (r = 0.83, β = 0.82, P < 0.04) and plasma insulin (r = 1.00, β = 2.25, P < 0.01) but not to other variables. CONCLUSION T2DM-related sympathetic activation is detectable even when obesity, hypertension and metabolic syndrome are excluded; not found in T1DM; not associated with anthropometric and hemodynamic variables; and related to plasma insulin.
Collapse
|
5
|
Chen B, Somers VK, Tang X, Li Y. Moderating Effect of BMI on the Relationship Between Sympathetic Activation and Blood Pressure in Males with Obstructive Sleep Apnea. Nat Sci Sleep 2021; 13:339-348. [PMID: 33737848 PMCID: PMC7961129 DOI: 10.2147/nss.s297707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/20/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sympathetic activation is a primary mechanism mediating increased blood pressure (BP) in obstructive sleep apnea (OSA). However, the relationships between overweight/obesity, sympathetic activation and BP in OSA are not well understood. We hypothesized that increased sympathetic drive is associated with increased BP in normal weight, but not in overweight/obese males with OSA. We therefore examined the effects of body mass index (BMI) on the association between sympathetic activation and BP in males with OSA. METHODS We studied 115 males with OSA recruited consecutively from clinic. Twenty-four-hour urinary norepinephrine was used to assess sympathetic activation. Blood pressure was measured both in the evening and in the morning. Hypertension was defined based on either BP measurements or an existing diagnosis. Linear and logistic regressions were conducted to examine the associations between sympathetic activation and both BP and risk of hypertension. RESULTS We found 24-hour urinary norepinephrine levels were associated with systolic and diastolic BP (SBP, β=0.157, p=0.082; DBP, β=0.212, p=0.023) and mean arterial pressure (MAP, β=0.198, p=0.032) after adjusting for confounders. Interestingly, these associations were modified by overweight/obesity. After adjusting for confounders, increased 24-hour urinary norepinephrine levels were significantly associated with elevated SBP (β=0.454, p=0.012), DBP (β=0.399, p=0.041), and MAP (β=0.432, p=0.023) in normal weight, but not in overweight/obese patients (all p>0.2). Similar findings were observed in the associations between 24-hour urinary norepinephrine levels and hypertension. CONCLUSION Sympathetic activation is associated with elevated BP in normal weight but not in overweight/obese males with OSA, suggesting that BMI may moderate the association between sympathetic activation and BP in males with OSA.
Collapse
Affiliation(s)
- Baixin Chen
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, People’s Republic of China
- Sleep Medicine Center, Shantou University Medical College, Shantou, People’s Republic of China
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yun Li
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, People’s Republic of China
- Sleep Medicine Center, Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Yun Li Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, People’s Republic of China Email
| |
Collapse
|
6
|
Safaryan AS, Sargsyan VD. Sympathetic hyperactivity in patients with hypertension: pathogenesis and treatment. Part I. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The article is devoted to the influence of sympathetic nervous system (SNS) on the cardiovascular system. Influence of SNS activity on the blood pressure level and the pathogenesis of hypertension development, as well as the effect of SNS on many biochemical and metabolic parameters playing a key role in the development of metabolic syndrome and hypertension are considered. Possible mechanisms of action of various methods that reduce the SNS activity, restore the function of autonomic nervous system and normalize the cardiovascular system and blood pressure are considered.
Collapse
Affiliation(s)
- A. S. Safaryan
- National Research Center for Therapy and Preventive Medicine
| | - V. D. Sargsyan
- National Research Center for Therapy and Preventive Medicine
| |
Collapse
|
7
|
Role of Hyperinsulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. Can J Cardiol 2020; 36:671-682. [PMID: 32389340 DOI: 10.1016/j.cjca.2020.02.066] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperinsulinemia and insulin resistance were proposed more than 30 years ago to be important contributors to elevated blood pressure (BP) associated with obesity and the metabolic syndrome, also called syndrome X. Support for this concept initially came from clinical and population studies showing correlations among hyperinsulinemia, insulin resistance, and elevated BP in individuals with metabolic syndrome. Short-term studies in experimental animals and in humans provided additional evidence that hyperinsulinemia may evoke increases in sympathetic nervous system (SNS) activity and renal sodium retention that, if sustained, could increase BP. Although insulin infusions may increase SNS activity and modestly raise BP in rodents, chronic insulin administration does not significantly increase BP in lean or obese insulin-resistant rabbits, dogs, horses, or humans. Multiple studies in humans and experimental animals have also shown that severe insulin resistance and hyperinsulinemia may occur in the absence of elevated BP. These observations question whether insulin resistance and hyperinsulinemia are major factors linking obesity/metabolic syndrome with hypertension. Other mechanisms, such as physical compression of the kidneys, activation of the renin-angiotensin-aldosterone system, hyperleptinemia, stimulation of the brain melanocortin system, and SNS activation, appear to play a more critical role in initiating hypertension in obese subjects with metabolic syndrome. However, the metabolic effects of insulin resistance, including hyperglycemia and dyslipidemia, appear to interact synergistically with increased BP to cause vascular and kidney injury that can exacerbate the hypertension and associated injury to the kidneys and cardiovascular system.
Collapse
|
8
|
Liu X, Zheng H. Leptin-Mediated Sympathoexcitation in Obese Rats: Role for Neuron-Astrocyte Crosstalk in the Arcuate Nucleus. Front Neurosci 2019; 13:1217. [PMID: 31803004 PMCID: PMC6877670 DOI: 10.3389/fnins.2019.01217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction Accumulated evidence indicates that obesity is associated with enhanced sympathetic activation. Hypothalamic leptin-mediated signaling may contribute to the exaggerated sympathoexcitation of obesity. The goal of this study was to investigate the "neuron-astrocyte" interaction affecting leptin-mediated sympathoexcitation within the arcuate nucleus (ARCN) of the hypothalamus in obese rats. Methods and Results Obesity was induced by high-fat diet (HFD, 42% of calories from fat) in Sprague Dawley rats. Twelve weeks of HFD produced hyperleptinemia, hyperlipidemia, and insulin resistance. In anesthetized rats, microinjections of leptin into the ARCN induced increases in heart rate (HR), renal sympathetic nerve activity (RSNA), and mean arterial pressure (MAP) in both control and HFD rats. However, microinjections of leptin in HFD rats elicited higher responses of RSNA and arterial pressure than control-fed rats. It also caused the inhibition of astrocytes within the ARCN using an astrocytic metabolic inhibitor, fluorocitrate, and reduced leptin-induced sympathetic activity and blood pressure responses. Moreover, the expression of the leptin receptor in the ARCN of HFD-fed rats was significantly increased compared to rats fed a control diet. Immunohistochemistry analysis revealed leptin receptor localization from both neurons and astrocytes of the ARCN. HFD rats exhibited increased protein expression of glial fibrillary acidic protein (GFAP) in the ARCN. We also found that the expression of astrocyte-specific glutamate transporters and excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2) were decreased within the ARCN of the HFD rats. In cultured astrocytic C6 cells, 24 h of leptin treatment increased the protein expression of GFAP and reduced the expression of EAAT1 and EAAT2. Conclusion The results suggest that central leptin signaling occurs via neuron-astrocyte interactions in the ARCN and contributing to the exaggerated sympathoexcitation observed in obese rats. The effects may be mediated by the action of leptin on regulating astrocytic glutamate transporters within the ARCN of the hypothalamus.
Collapse
Affiliation(s)
- Xuefei Liu
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
9
|
Bruder-Nascimento T, Faulkner JL, Haigh S, Kennard S, Antonova G, Patel VS, Fulton DJR, Chen W, Belin de Chantemèle EJ. Leptin Restores Endothelial Function via Endothelial PPARγ-Nox1-Mediated Mechanisms in a Mouse Model of Congenital Generalized Lipodystrophy. Hypertension 2019; 74:1399-1408. [PMID: 31656096 DOI: 10.1161/hypertensionaha.119.13398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptin is the current treatment for metabolic disorders associated with acquired and congenital generalized lipodystrophy (CGL). Although excess leptin levels have been associated with vascular inflammation and cardiovascular disease in the context of obesity, the effects of chronic leptin treatment on vascular function remain unknown in CGL. Here, we hypothesized that leptin treatment will improve endothelial function via direct vascular mechanisms. We investigated the cardiovascular consequences of leptin deficiency and supplementation in male gBscl2-/- (Berardinelli-Seip 2 gene-deficient) mice-a mouse model of CGL. CGL mice exhibited reduced adipose mass and leptin levels, as well as impaired endothelium-dependent relaxation. Blood vessels from CGL mice had increased NADPH Oxidase 1 (Nox1) expression and reactive oxygen species production, and selective Nox1 inhibition restored endothelial function. Remarkably, chronic and acute leptin supplementation restored endothelial function via a PPARγ-dependent mechanism that decreased Nox1 expression and reactive oxygen species production. Selective ablation of leptin receptors in endothelial cells promoted endothelial dysfunction, which was restored by Nox1 inhibition. Lastly, we confirmed in aortic tissue from older patients undergoing cardiac bypass surgery that acute leptin can promote signaling in human blood vessels. In conclusion, in gBscl2-/- mice, leptin restores endothelial function via peroxisome proliferator activated receptor gamma-dependent decreases in Nox1. Furthermore, we provide the first evidence that vessels from aged patients remain leptin sensitive. These data reveal a new direct role of leptin receptors in the control of vascular homeostasis and present leptin as a potential therapy for the treatment of vascular disease associated with low leptin levels.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University.,Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, PA (T.B.-N.)
| | - Jessica L Faulkner
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Stephen Haigh
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Simone Kennard
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Galina Antonova
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Vijay S Patel
- Section of Cardiothoracic Surgery, Department of Surgery (V.S.P.), Medical College of Georgia, Augusta University
| | - David J R Fulton
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Weiqin Chen
- Department of Physiology (W.C.), Medical College of Georgia, Augusta University
| | - Eric J Belin de Chantemèle
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University.,Department of Medicine, Division of Cardiology (E.J.B.), Medical College of Georgia, Augusta University
| |
Collapse
|
10
|
Schwotzer N, Burnier M, Maillard M, Bovet P, Paccaud F, Bochud M, Wuerzner G. Sex and Body Mass Index Modify the Association Between Leptin and Sodium Excretion: A Cross-sectional Study in an African Population. Am J Hypertens 2019; 32:1101-1108. [PMID: 31257412 DOI: 10.1093/ajh/hpz106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Renal sodium handling could be a potential mediator linking adipokines to hypertension. The aim of the study was to assess the relationship of leptin with urinary sodium excretion and proximal sodium reabsorption in humans. METHODS This cross-sectional study was conducted on participants of hypertensive families from the Seychelles Island. A split urine (daytime and nighttime) collection and plasma leptin were measured. Endogenous lithium clearance was used to assess proximal sodium reabsorption. Mixed multiple linear regression tests adjusted for confounding factors were used. RESULTS Three hundred and sixty-five participants (57% women) were included in this analysis. Leptin and adiponectin were higher in women (P < 0.001). Leptin was associated positively with daytime (coefficient [c]: 0.16, standard deviation (SD): 0.03, P < 0.001), nighttime urinary sodium excretion (c: 0.17, SD: 0.04), P < 0.01), daytime lithium clearance (c: 0.40, SD: 0.08, P < 0.001), and nighttime lithium clearance (c: 0.39, SD: 0.10, P < 0.001) after adjusting for sex. The association was lost or mitigated only when BMI was introduced in the model. When BMI was categorized in normal vs. overweight participant, leptin was associated with daytime and nighttime sodium excretion rates (c: 0.14, SD: 0.05, P = 0.011 and c: 0.22, SD: 0.07, P = 0.002, respectively) only in overweight participants. CONCLUSION Leptin is associated positively with daytime and nighttime sodium excretion and lithium clearance suggesting a natriuretic rather than a sodium retaining effect of leptin. Sex and body mass index (BMI) are major confounders in this association. These results highlight the importance of sex and obesity in our understanding of the relationships between leptin, blood pressure, and renal sodium handling.
Collapse
Affiliation(s)
- Nora Schwotzer
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Marc Maillard
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Pascal Bovet
- University Institute of Social and Preventive Medicine, Lausanne, Switzerland
| | - Fred Paccaud
- University Institute of Social and Preventive Medicine, Lausanne, Switzerland
| | - Murielle Bochud
- University Institute of Social and Preventive Medicine, Lausanne, Switzerland
| | - Grégoire Wuerzner
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
11
|
Becerril S, Rodríguez A, Catalán V, Ramírez B, Unamuno X, Portincasa P, Gómez-Ambrosi J, Frühbeck G. Functional Relationship between Leptin and Nitric Oxide in Metabolism. Nutrients 2019; 11:2129. [PMID: 31500090 PMCID: PMC6769456 DOI: 10.3390/nu11092129] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 12/28/2022] Open
Abstract
Leptin, the product of the ob gene, was originally described as a satiety factor, playing a crucial role in the control of body weight. Nevertheless, the wide distribution of leptin receptors in peripheral tissues supports that leptin exerts pleiotropic biological effects, consisting of the modulation of numerous processes including thermogenesis, reproduction, angiogenesis, hematopoiesis, osteogenesis, neuroendocrine, and immune functions as well as arterial pressure control. Nitric oxide (NO) is a free radical synthesized from L-arginine by the action of the NO synthase (NOS) enzyme. Three NOS isoforms have been identified: the neuronal NOS (nNOS) and endothelial NOS (eNOS) constitutive isoforms, and the inducible NOS (iNOS). NO mediates multiple biological effects in a variety of physiological systems such as energy balance, blood pressure, reproduction, immune response, or reproduction. Leptin and NO on their own participate in multiple common physiological processes, with a functional relationship between both factors having been identified. The present review describes the functional relationship between leptin and NO in different physiological processes.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Medical Engineering Laboratory, University of Navarra, 31008 Pamplona, Spain.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Policlinico Hospital, 70124 Bari, Italy.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
12
|
Supriya R, Yung BY, Yu AP, Lee PH, Lai CW, Cheng KK, Yau SY, Chan LWC, Sheridan S, Siu PM. Adipokine Profiling in Adult Women With Central Obesity and Hypertension. Front Physiol 2018; 9:294. [PMID: 29636702 PMCID: PMC5881161 DOI: 10.3389/fphys.2018.00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
Central obesity and hypertension are common risk factors for the metabolic syndrome, cardiovascular and renal diseases. Studies have shown that it is more difficult to control blood pressure and prevent end-organ damage in obese individuals with hypertension compared to their non-obese counterparts, especially among women. Obese females have a 6 times higher risk of developing hypertension than non-obese females while obese males are at a 1.5 times higher risk of developing hypertension, compared to their non-obese counterparts. Indeed, the inter-relationship between obesity and hypertension is unclear. Adipokines have been proposed to play a mediating role in the relationship between obesity and hypertension and are involved in the pathogenesis of metabolic diseases. Therefore, this study sought to determine the role of adipokines (adiponectin, plasminogen activator inhibitor-1, leptin, and tumor necrosis factor-α) in hypertensive Hong Kong Chinese women with central obesity. A total of 387 women aged 58 ± 11 years who were examined with a 2 × 2 factorial design for central obesity (waist circumference ≥ 80 cm) and hypertension (blood pressure ≥ 140/90 mmHg), were recruited from a pool of 1,492 Hong Kong Chinese adults who were previously screened for metabolic syndrome. Subjects with hyperglycemia, hypertriglyceridemia, and dyslipidemia were excluded to eliminate confounding effects. Our findings revealed that hypertensive women with central obesity had a lower anti-inflammatory status (adiponectin) and a higher pro-inflammatory status (TNF-α) than obese alone or hypertensive alone women. Also, women with central obesity had higher circulatory PAI-1 and leptin concentrations than their non-obese counterparts. We conclude that obesity may shift toward a more pro-inflammatory state and may become more severe in the presence of hypertension or vice versa.
Collapse
Affiliation(s)
- Rashmi Supriya
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Benjamin Y Yung
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Angus P Yu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Paul H Lee
- School of Nursing, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Christopher W Lai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kenneth K Cheng
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Suk Y Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sinead Sheridan
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Parco M Siu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
13
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Leptin reverses hyperglycemia and hyperphagia in insulin deficient diabetic rats by pituitary-independent central nervous system actions. PLoS One 2017; 12:e0184805. [PMID: 29190687 PMCID: PMC5708697 DOI: 10.1371/journal.pone.0184805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis has been postulated to play a major role in mediating the antidiabetic effects of leptin. We tested if the pituitary is essential for the chronic central nervous system mediated actions of leptin on metabolic and cardiovascular function in insulin-dependent diabetic and non-diabetic rats. Male 12-week-old hypophysectomized Sprague-Dawley rats (Hypo, n = 5) were instrumented with telemetry probes for determination of mean arterial pressure (MAP) and heart rate (HR) 24-hrs/day and an intracerebroventricular (ICV) cannula was placed into the brain lateral ventricle for continuous leptin infusion. In additional groups of Hypo and control rats (n = 5/group), diabetes was induced by single injection of streptozotocin (50 mg/kg, IP). Hypo rats were lighter, had lower MAP and HR (83±4 and 317±2 vs 105±4 mmHg and 339±4 bpm), with similar caloric intake per kilogram of body weight and fasting plasma glucose levels (84±4 vs 80±4 mg/dl) compared to controls. Chronic ICV leptin infusion (7 days, 0.62 μg/hr) in non-diabetic rats reduced caloric intake and body weight (-10%) in Hypo and control rats and markedly increased HR in control rats (~25 bpm) while causing only modest HR increases in Hypo rats (8 bpm). In diabetic Hypo and control rats, leptin infusion reduced caloric intake, body weight and glucose levels (323±74 to 99±20 and 374±27 to 108±10 mg/dl), respectively; however, the effects of leptin on HR were abolished in Hypo rats. These results indicate that hypophysectomy attenuates leptin’s effect on HR regulation without altering leptin’s ability to suppress appetite or normalize glucose levels in diabetes.
Collapse
|
15
|
Alsuhaymi N, Habeeballah H, Stebbing MJ, Badoer E. High Fat Diet Decreases Neuronal Activation in the Brain Induced by Resistin and Leptin. Front Physiol 2017; 8:867. [PMID: 29234283 PMCID: PMC5712409 DOI: 10.3389/fphys.2017.00867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
Resistin and leptin are adipokines which act in the brain to regulate metabolic and cardiovascular functions which in some instances are similar, suggesting activation of some common brain pathways. High-fat feeding can reduce the number of activated neurons observed following the central administration of leptin in animals, but the effects on resistin are unknown. The present work compared the distribution of neurons in the brain that are activated by centrally administered resistin, or leptin alone, and, in combination, in rats fed a high fat (HFD) compared to a normal chow diet (ND). Immunohistochemistry for the protein, Fos, was used as a marker of activated neurons. The key findings are (i) following resistin or leptin, either alone or combined, in rats fed the HFD, there were no significant increases in the number of activated neurons in the paraventricular and arcuate nuclei, and in the lateral hypothalamic area (LHA). This contrasted with observations in rats fed a normal chow diet; (ii) in the OVLT and MnPO of HFD rats there were significantly less activated neurons compared to ND following the combined administration of resistin and leptin; (iii) In the PAG, RVMM, and NTS of HFD rats there were significantly less activated neurons compared to ND following resistin. The results suggest that the sensitivity to resistin in the brain was reduced in rats fed a HFD. This has similarities with leptin but there were instances where there was reduced sensitivity to resistin with no significant effects following leptin. This suggests diet influences neuronal effects of resistin.
Collapse
Affiliation(s)
- Naif Alsuhaymi
- Neuropharmacology and Neuroinflammation, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hamza Habeeballah
- Neuropharmacology and Neuroinflammation, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Martin J Stebbing
- Neuropharmacology and Neuroinflammation, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Emilio Badoer
- Neuropharmacology and Neuroinflammation, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity. Front Physiol 2017; 8:665. [PMID: 28966594 PMCID: PMC5606212 DOI: 10.3389/fphys.2017.00665] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Obesity is reaching epidemic proportions globally and represents a major cause of comorbidities, mostly related to cardiovascular disease. The autonomic nervous system (ANS) dysfunction has a two-way relationship with obesity. Indeed, alterations of the ANS might be involved in the pathogenesis of obesity, acting on different pathways. On the other hand, the excess weight induces ANS dysfunction, which may be involved in the haemodynamic and metabolic alterations that increase the cardiovascular risk of obese individuals, i.e., hypertension, insulin resistance and dyslipidemia. This article will review current evidence about the role of the ANS in short-term and long-term regulation of energy homeostasis. Furthermore, an increased sympathetic activity has been demonstrated in obese patients, particularly in the muscle vasculature and in the kidneys, possibily contributing to increased cardiovascular risk. Selective leptin resistance, obstructive sleep apnea syndrome, hyperinsulinemia and low ghrelin levels are possible mechanisms underlying sympathetic activation in obesity. Weight loss is able to reverse metabolic and autonomic alterations associated with obesity. Given the crucial role of autonomic dysfunction in the pathophysiology of obesity and its cardiovascular complications, vagal nerve modulation and sympathetic inhibition may serve as therapeutic targets in this condition.
Collapse
Affiliation(s)
- Daniela Guarino
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy.,Institute of Clinical Physiology of CNRPisa, Italy.,Scuola Superiore Sant'AnnaPisa, Italy
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | | | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Rosa Maria Bruno
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| |
Collapse
|
17
|
Onger ME, Kaplan S, Geuna S, Türkmen AP, Muratori L, Altun G, Altunkaynak BZ. Possible effects of some agents on the injured nerve in obese rats: A stereological and electron microscopic study. J Craniomaxillofac Surg 2017; 45:1258-1267. [DOI: 10.1016/j.jcms.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 03/30/2017] [Accepted: 05/03/2017] [Indexed: 01/01/2023] Open
|
18
|
Chhabra KH, Morgan DA, Tooke BP, Adams JM, Rahmouni K, Low MJ. Reduced renal sympathetic nerve activity contributes to elevated glycosuria and improved glucose tolerance in hypothalamus-specific Pomc knockout mice. Mol Metab 2017; 6:1274-1285. [PMID: 29031726 PMCID: PMC5641634 DOI: 10.1016/j.molmet.2017.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/02/2017] [Accepted: 07/10/2017] [Indexed: 11/11/2022] Open
Abstract
Objective Hypothalamic arcuate nucleus-specific pro-opiomelanocortin deficient (ArcPomc−/−) mice exhibit improved glucose tolerance despite massive obesity and insulin resistance. We demonstrated previously that their improved glucose tolerance is due to elevated glycosuria. However, the underlying mechanisms that link glucose reabsorption in the kidney with ArcPomc remain unclear. Given the function of the hypothalamic melanocortin system in controlling sympathetic outflow, we hypothesized that reduced renal sympathetic nerve activity (RSNA) in ArcPomc−/− mice could explain their elevated glycosuria and consequent enhanced glucose tolerance. Methods We measured RSNA by multifiber recording directly from the nerves innervating the kidneys in ArcPomc−/− mice. To further validate the function of RSNA in glucose reabsorption, we denervated the kidneys of WT and diabetic db/db mice before measuring their glucose tolerance and urine glucose levels. Moreover, we performed western blot and immunohistochemistry to determine kidney GLUT2 and SGLT2 levels in either ArcPomc−/− mice or the renal-denervated mice. Results Consistent with our hypothesis, we found that basal RSNA was decreased in ArcPomc−/− mice relative to their wild type (WT) littermates. Remarkably, both WT and db/db mice exhibited elevated glycosuria and improved glucose tolerance after renal denervation. The elevated glycosuria in obese ArcPomc−/−, WT and db/db mice was due to reduced renal GLUT2 levels in the proximal tubules. Overall, we show that renal-denervated WT and diabetic mice recapitulate the phenotype of improved glucose tolerance and elevated glycosuria associated with reduced renal GLUT2 levels observed in obese ArcPomc−/− mice. Conclusion Hence, we conclude that ArcPomc is essential in maintaining basal RSNA and that elevated glycosuria is a possible mechanism to explain improved glucose tolerance after renal denervation in drug resistant hypertensive patients. Hypothalamic POMC is essential in maintaining basal renal sympathetic nerve activity. Renal denervation improves glucose tolerance in wild-type and db/db mice by elevating their glycosuria. Decreased renal GLUT2 is responsible for elevated glycosuria in mice with suppressed renal sympathetic nerve activity.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Benjamin P Tooke
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Jessica M Adams
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
da Silva AA, Hall JE, Moak SP, Browning J, Houghton HJ, Micheloni GC, do Carmo JM. Role of autonomic nervous system in chronic CNS-mediated antidiabetic action of leptin. Am J Physiol Endocrinol Metab 2017; 312:E420-E428. [PMID: 27923809 PMCID: PMC5451526 DOI: 10.1152/ajpendo.00301.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023]
Abstract
This study tested whether ganglionic blockade or hepatic vagotomy attenuates the chronic central nervous system (CNS)-mediated antidiabetic and cardiovascular effects of leptin. Male Sprague-Dawley rats were instrumented with telemetry probes and arterial and venous catheters for determination of blood pressure (BP), heart rate (HR), blood sampling, and intravenous (iv) infusions. An intracerebroventricular (ICV) cannula was placed into the brain lateral ventricle for infusion of leptin or vehicle. After control measurements, streptozotocin (STZ) was injected iv (50 mg/kg) to induce diabetes, and 5 days later leptin (n = 6) or saline vehicle (n = 5) was infused ICV for 12 days via osmotic pumps. Beginning on day 6 of leptin treatment, the ganglionic blocker hexamethonium (15 mg·kg-1·day-1 iv) was infused, while leptin infusion was continued, to assess the role of the autonomic nervous system. Induction of diabetes was associated with increases in blood glucose (98 ± 7 to 350 ± 19 mg/dl), food intake (23 ± 3 to 43 ± 3 g/day), decreases in HR (-70 ± 11 beats/min), polyuria, and increased water consumption, which were all completely normalized by ICV leptin infusion. Although hexamethonium attenuated leptin's effect on HR, it failed to impair leptin's ability to restore euglycemia or to prevent the polyuria or increased water intake in STZ-diabetic rats. We also found that after pretreatment with hexamethonium (n = 8), ICV leptin infusion, during continued ganglionic blockade, completely normalized blood glucose in diabetic rats. In addition, selective hepatic vagotomy did not attenuate leptin's ability to restore euglycemia in diabetic rats. These results suggest that leptin's powerful chronic CNS antidiabetic actions are mediated primarily via nonautonomic mechanisms.
Collapse
Affiliation(s)
- Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
- Barão de Mauá University Center, Ribeirão Preto, São Paulo, Brazil
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Sydney P Moak
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jackson Browning
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Haley J Houghton
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| | | | - Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
20
|
Pandit R, Beerens S, Adan RAH. Role of leptin in energy expenditure: the hypothalamic perspective. Am J Physiol Regul Integr Comp Physiol 2017; 312:R938-R947. [PMID: 28356295 DOI: 10.1152/ajpregu.00045.2016] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023]
Abstract
The adipocyte-derived hormone leptin is a peripheral signal that informs the brain about the metabolic status of an organism. Although traditionally viewed as an appetite-suppressing hormone, studies in the past decade have highlighted the role of leptin in energy expenditure. Leptin has been shown to increase energy expenditure in particular through its effects on the cardiovascular system and brown adipose tissue (BAT) thermogenesis via the hypothalamus. The current review summarizes the role of leptin signaling in various hypothalamic nuclei and its effects on the sympathetic nervous system to influence blood pressure, heart rate, and BAT thermogenesis. Specifically, the role of leptin signaling on three different hypothalamic nuclei, the dorsomedial hypothalamus, the ventromedial hypothalamus, and the arcuate nucleus, is reviewed. It is known that all of these brain regions influence the sympathetic nervous system activity and thereby regulate BAT thermogenesis and the cardiovascular system. Thus the current work focuses on how leptin signaling in specific neuronal populations within these hypothalamic nuclei influences certain aspects of energy expenditure.
Collapse
Affiliation(s)
- R Pandit
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Beerens
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R A H Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Possible promoting effects of melatonin, leptin and alcar on regeneration of the sciatic nerve. J Chem Neuroanat 2017; 81:34-41. [PMID: 28163216 DOI: 10.1016/j.jchemneu.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 11/20/2022]
Abstract
Peripheral nerve injury is a widespread and disabling condition that can impair the individual's daily life. Studies involving medications that may positively affect peripheral nerve regeneration are rare. The aim of this study was to investigate new treatments after peripheral nerve injury using various neuroprotectants, melatonin, alcar and leptin, in the regenerative process in an experimental rat model. Wistar albino rats were randomly divided into eight groups containing equal number of animals. Intraperitoneal injection of melatonin (50mg/kg, for 21days), leptin (1mg/kg, for 21days) and acetyl-l-carnitine (50mg/kg, for six weeks) was performed postoperatively. Histological and electromyographical assessments of the regenerated nerves were performed 12 weeks after surgery. Stereological analysis was performed to estimate myelinated and unmyelinated axon numbers, surface area, myelin thickness and the myelin thickness/axon diameter ratio for each group. The results showed that only alcar has a beneficial effect on the regeneration of unmyelinated axons. Neither melatonin and leptin nor alcar were observed to have any therapeutic effect on the regeneration of myelinated axons. Alcar therapy has a positive effect on the regeneration of unmyelinated fiber in the sciatic nerve. However, the same effect was not observed in myelinated nerve fibers after intraperitoneal application of melatonin and leptin.
Collapse
|
22
|
Habeeballah H, Alsuhaymi N, Stebbing MJ, Jenkins TA, Badoer E. Central Administration of Insulin and Leptin Together Enhance Renal Sympathetic Nerve Activity and Fos Production in the Arcuate Nucleus. Front Physiol 2017; 7:672. [PMID: 28119622 PMCID: PMC5220017 DOI: 10.3389/fphys.2016.00672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
There is considerable interest in the central actions of insulin and leptin. Both induce sympatho-excitation. This study (i) investigated whether centrally administered leptin and insulin together elicits greater increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) than when given alone, and (ii) quantified the number of activated neurons in brain regions influencing SNA, to identify potential central sites of interaction. In anesthetised (urethane 1.4–1.6 g/kg iv) male Sprague-Dawley rats, RSNA, MAP, and HR were recorded following intracerebroventricular (ICV) saline (control; n = 5), leptin (7 μg; n = 5), insulin (500 mU; n = 4) and the combination of leptin and insulin; (n = 4). Following leptin or insulin alone, RSNA was significantly increased (74 and 62% respectively). MAP responses were not significantly different between the groups. Insulin alone significantly increased HR. Leptin alone also increased HR but it was significantly less than following insulin alone (P < 0.005). When leptin and insulin were combined, the RSNA increase (124%) was significantly greater than the response to either alone. There were no differences between the groups in MAP responses, however, the increase in HR induced by insulin was attenuated by leptin. Of the brain regions examined, only in the arcuate nucleus did leptin and insulin together increase the number of Fos-positive cell nuclei significantly more than leptin or insulin alone. In the lamina terminalis and rostroventrolateral medulla, leptin and insulin together increased Fos, but the effect was not greater than leptin alone. The results suggest that when central leptin and insulin levels are elevated, the sympatho-excitatory response in RSNA will be greater. The arcuate nucleus may be a common site of cardiovascular integration.
Collapse
Affiliation(s)
- Hamza Habeeballah
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| | - Naif Alsuhaymi
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| | - Martin J Stebbing
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| | - Trisha A Jenkins
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| | - Emilio Badoer
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| |
Collapse
|
23
|
Belin de Chantemèle EJ. Sex Differences in Leptin Control of Cardiovascular Function in Health and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:87-111. [DOI: 10.1007/978-3-319-70178-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Montagnana M, Fava C, Targher G, Franchini M, Danese E, Bonafini S, De Cata A, Salvagno GL, Ruzzenente O, Guidi GC, Lippi G. Plasma Leptin in Patients at Intermediate to High Cardiovascular Risk With and Without Type 2 Diabetes Mellitus. J Clin Lab Anal 2016; 31. [PMID: 27470535 DOI: 10.1002/jcla.22031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/01/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND A number of clinical studies have demonstrated that leptin concentrations are related to the metabolic disturbances that constitute the metabolic syndrome (MetS) and to diabetes mellitus (DM). AIM To investigate possible determinants of leptin concentrations in a sample of patients at high cardiovascular (CV) risk carrying two or more features of the MetS and to investigate if any difference exist between at risk patients with or without DM. METHODS Serum leptin concentrations were measured in 60 consecutive male patients affected by at least two CV risk factors which belong to the National Cholesterol Education Program/Adult Treatment Panel III (NCEP/ATP III) definition of MetS: 30 patients affected by type 2 DM (T2DM) and 30 nondiabetic patients (non-T2DM). Nineteen healthy subjects were included in the study as a control group (HC). RESULTS Leptin was significantly higher in patients carrying two or more features of the MetS compared with HC (P = 0.02). Stratifying MetS patients for DM, we found that leptin level was higher in non-T2DM patients (7.8 ng/ml), intermediate in T2DM (6.2 ng/ml), and lower in HC (4.6 ng/ml). In MetS patients, a positive correlation was found between leptin and waist, triglycerides, and number of MetS criteria. After stratification for T2DM, the correlations were still significant in the non-T2DM but not in the T2DM group. CONCLUSIONS In our sample of moderate-to-high-risk patients, leptin level is positively associated with waist circumference and triglycerides but only in non-T2DM patients. Our data suggest that diabetic subjects could modulate leptin production in a different way compared with patients carrying other MetS-related anomalies.
Collapse
Affiliation(s)
- Martina Montagnana
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| | - Cristiano Fava
- Internal Medicine Section C, University Hospital of Verona, Verona, Italy
| | - Giovanni Targher
- Endocrinology and Metabolism Section, University Hospital of Verona, Verona, Italy
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantova, Italy
| | - Elisa Danese
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| | - Sara Bonafini
- Internal Medicine Section C, University Hospital of Verona, Verona, Italy
| | - Angela De Cata
- Endocrinology and Metabolism Section, University Hospital of Verona, Verona, Italy
| | - Gian Luca Salvagno
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| | - Orazio Ruzzenente
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| | - Gian Cesare Guidi
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| | - Giuseppe Lippi
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| |
Collapse
|
25
|
Habeeballah H, Alsuhaymi N, Stebbing MJ, Jenkins TA, Badoer E. Central leptin and resistin combined elicit enhanced central effects on renal sympathetic nerve activity. Exp Physiol 2016; 101:791-800. [PMID: 27151838 DOI: 10.1113/ep085723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/03/2016] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Leptin and resistin act centrally to increase renal sympathetic nerve activity (RSNA). We investigated whether a combination of resistin and leptin could induce a greater response than either alone. We also used Fos protein to quantify the number of activated neurons in the brain. What is the main finding and its importance? A combination of leptin and resistin induced a greater increase in RSNA than either hormone alone. This was correlated with a greater number of activated neurons in the arcuate nucleus than with either hormone alone. Leptin and resistin act centrally to increase renal sympathetic nerve activity (RSNA). We investigated whether a combination of resistin and leptin could induce a greater response than either alone. Mean arterial pressure, heart rate and RSNA were recorded before and for 3 h after intracerebroventricular saline (control; n = 5), leptin (7 μg; n = 5), resistin (7 μg; n = 4) and leptin administered 15 min after resistin (n = 6). Leptin alone and resistin alone significantly increased RSNA (74 ± 17 and 50 ± 14%, respectively; P < 0.0001 compared with saline). When leptin and resistin were combined, there was a significantly greater increase in RSNA (163 ± 23%) compared with either hormone alone (P < 0.0001). Maximal responses of mean arterial pressure and heart rate were not significantly different between groups. We also used Fos protein to quantify the number of activated neurons in the brain. Compared with controls, there were significant increases in numbers of Fos-positive neurons in the arcuate and hypothalamic paraventricular nuclei when leptin or resistin was administered alone or when they were combined, and in the lamina terminalis when leptin and resistin were combined. Only in the arcuate nucleus was the increase significantly greater compared with either hormone alone. The findings show that a combination of leptin and resistin induces a greater RSNA increase and a greater number of activated neurons in the arcuate nucleus than with either hormone alone. Given that leptin makes an important contribution to the elevated RSNA observed in obese and overweight conditions, the increased concentrations of leptin and resistin may mean that the contribution of leptin to the elevated RSNA in those conditions is enhanced.
Collapse
Affiliation(s)
- Hamza Habeeballah
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Naif Alsuhaymi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Martin J Stebbing
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Trisha A Jenkins
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Emilio Badoer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Lin YC, Huang J, Hileman S, Martin KH, Hull R, Davis M, Yu HG. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor. Am J Physiol Heart Circ Physiol 2015; 309:H1731-9. [PMID: 26408544 DOI: 10.1152/ajpheart.00623.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022]
Abstract
Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias.
Collapse
Affiliation(s)
- Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Jianying Huang
- Center for Cardiovascular and Respiratory Sciences, Department of Physiology and Pharmacology, and
| | | | - Karen H Martin
- Mary Babb Randolph Cancer Center and Department of Neurobiology and Anatomy, Department of Cardiology and Heart Institute of Health Sciences Center, and
| | - Robert Hull
- Heart Institute, West Virginia University, Morgantown, West Virginia
| | - Mary Davis
- Department of Physiology and Pharmacology, and
| | - Han-Gang Yu
- Center for Cardiovascular and Respiratory Sciences, Department of Physiology and Pharmacology, and
| |
Collapse
|
27
|
da Silva AA, Spradley FT, Granger JP, Hall JE, do Carmo JM. Brain-mediated antidiabetic, anorexic, and cardiovascular actions of leptin require melanocortin-4 receptor signaling. J Neurophysiol 2015; 113:2786-91. [PMID: 25717164 DOI: 10.1152/jn.00911.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/18/2015] [Indexed: 01/19/2023] Open
Abstract
We previously demonstrated that leptin has powerful central nervous system (CNS)-mediated antidiabetic actions. In this study we tested the importance of melanocortin-4 receptors (MC4Rs) for leptin's ability to suppress food intake, increase blood pressure (BP) and heart rate (HR), and normalize glucose levels in insulin-dependent diabetes. MC4R knockout (MC4R-KO) and control wild-type (WT) rats were implanted with intracerebroventricular (ICV) cannula and BP and HR were measured 24 h/day by telemetry. After 5-day control period, an injection of streptozotocin (50 mg/kg, ip) was used to induce diabetes. Eight days after injection, an osmotic pump was implanted subcutaneously and connected to the ICV cannula to deliver leptin (15 μg/day) for 7 days. At baseline, MC4R-KO rats were hyperphagic and 40% heavier than WT rats. Despite obesity, BP was similar (112 ± 2 vs. 111 ± 2 mmHg) and HR was lower in MC4R-KO rats (320 ± 6 vs. 347 ± 5 beats/min). Induction of diabetes increased food intake (30%) and reduced BP (∼17 mmHg) and HR (∼61 beats/min) in WT rats, while food intake, BP, and HR were reduced by ∼10%, 7 mmHg, and 33 beats/min, respectively, in MC4R-KO rats. Leptin treatment normalized blood glucose (437 ± 10 to 136 ± 18 mg/dl), reduced food intake (40%), and increased HR (+60 beats/min) and BP (+9 mmHg) in WT rats. Only modest changes in blood glucose (367 ± 16 to 326 ± 23 mg/dl), food intake (5%), HR (+16 beats/min) and BP (+4 mmHg) were observed in MC4R-KO rats. These results indicate that intact CNS MC4R signaling is necessary for leptin to exert its chronic antidiabetic, anorexic, and cardiovascular actions.
Collapse
Affiliation(s)
- Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Frank T Spradley
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
28
|
Kathyayani T, Reddy AH, Sri Lakshmi B, Venkatappa B. Neuro-endocrine immune networks leading to HIV-associated cardiovascular abnormalities: Role of leptin. HIV & AIDS REVIEW 2015. [DOI: 10.1016/j.hivar.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
29
|
Oosterlinck W, Herijgers P. Cardiomyocyte changes in the metabolic syndrome and implications for endogeneous protective strategies. Expert Rev Cardiovasc Ther 2014; 12:331-43. [DOI: 10.1586/14779072.2014.893825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Pellegrino MJ, McCully BH, Habecker BA. Leptin stimulates sympathetic axon outgrowth. Neurosci Lett 2014; 566:1-5. [PMID: 24561183 DOI: 10.1016/j.neulet.2014.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/27/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022]
Abstract
The neurohormone leptin regulates energy homeostasis. Circulating levels of leptin secreted by adipose tissue act on hypothalamic neurons in the brain leading to decreased appetite and increased energy expenditure. Although leptin signaling in the central nervous system (CNS) is fundamental to its ability to regulate the body's metabolic balance, leptin also has a variety of effects in many peripheral tissues including the heart, the liver, and the sympathetic nervous system. Leptin stimulation of the hypothalamus can stimulate glucose uptake via the sympathetic nervous system in heart, muscle, and brown adipose tissue. Leptin receptors (Ob-Rb) are also expressed by peripheral sympathetic neurons, but their functional role is not clear. In this study, we found that leptin stimulates axonal growth of both adult and neonatal sympathetic neurons in vitro. Leptin stimulates acute activation of the transcription factor STAT3 via phosphorylation of tyrosine 705. STAT3 phosphorylation is required for leptin-stimulated sympathetic axon outgrowth. Thus, circulating levels of leptin may enhance sympathetic nerve innervation of peripheral tissues.
Collapse
Affiliation(s)
- Michael J Pellegrino
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Belinda H McCully
- Trauma Research Institute of Oregon, Division of Trauma, Critical Care & Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
31
|
Abstract
There is growing recognition that obesity is reaching epidemic proportions throughout the world. In adults, obesity is associated with increased cardiovascular morbidity and mortality. A series of endocrine, metabolic and hemodynamic mechanisms have been responsible for the development of obesity-hypertension. These mechanisms include: a suppressed biologic activity and availability of natriuretic peptide, increased sympathetic adrenergic activity, release of angiotensin ll from adipocytes and activation of the renin-angiotensin-aldosterone system, leptin resistance, chronic hyperleptinemia and hyperinsulinemia. The systemic hemodynamic profile of obesity includes high intravascular volume, increased cardiac output and inappropriately normal peripheral resistance. The cardiovascular adaptations to these changes include changes in vascular responsiveness and concentric-eccentric left ventricular hypertrophy, and may be responsible for increased risk of congestive heart failure, arrhythmia and sudden death.
Collapse
Affiliation(s)
- Stephen A Morse
- Louisiana State University Health Sciences Center, Section of Nephrology, Department of Medicine, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
32
|
Alvarez-Aguilar C, Alvarez-Paredes AR, Lindholm B, Stenvinkel P, García-López E, Mejía-Rodríguez O, López-Meza JE, Amato D, Paniagua R. Effects of dopamine on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients. Int J Nephrol Renovasc Dis 2013; 6:259-68. [PMID: 24348062 PMCID: PMC3849084 DOI: 10.2147/ijnrd.s50664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A reduction of dopaminergic (DAergic) activity with increased prolactin levels has been found in obese and hypertensive patients, suggesting its involvement as a pathophysiological mechanism promoting hypertension. Similarly, leptin action increasing sympathetic activity has been proposed to be involved in mechanisms of hypertension. The aim of this study was to analyze the effects of DA, norepinephrine (NE), and prolactin on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients. METHODS Leptin release and OB gene expression were analyzed in cultured adipocytes from 16 obese and hypertensive patients treated with DA (0.001, 0.01, 0.1, and 1.0 μmol/L), NE (1.0 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L), and from five nonobese and normotensive controls treated with DA (1 μmol/L), NE (1 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L). RESULTS A dose-related reduction of leptin release and OB gene messenger ribonucleic acid expression under different doses of DA was observed in adipocytes from obese hypertensive patients. Whereas prolactin treatment elicited a significant increase of both leptin release and OB gene expression, NE reduced these parameters. Although similar effects of DA and NE were observed in adipocytes from controls, baseline values in controls were reduced to 20% of the value in adipocytes from obese hypertensive patients. CONCLUSION These results suggest that DAergic deficiency contributes to metabolic disorders linked to hyperleptinemia in obese and hypertensive patients.
Collapse
Affiliation(s)
- Cleto Alvarez-Aguilar
- Hospital General Regional N°1, Instituto Mexicano del Seguro Social (IMSS), Morelia, México ; Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez" Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México ; División de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), México DF, México
| | - Alfonso Rafael Alvarez-Paredes
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez" Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Bengt Lindholm
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Elvia García-López
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Joel Edmundo López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB), UMSNH, Morelia, Michoacán, México
| | - Dante Amato
- Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, México
| | - Ramon Paniagua
- Unidad de Investigación en Enfermedades Nefrológicas, Hospital de Especialidades, CMN Siglo XXI, IMSS, México DF, México
| |
Collapse
|
33
|
Abstract
The inexorable increase in the prevalence of obesity is a global health concern, which will result in a concomitant escalation in health-care costs. Obesity-related metabolic syndrome affects approximately 25% of adults and is associated with cardiovascular and renal disease. The heart and kidneys are physiologically interdependent, and the pathological effects of obesity can lead to cardiorenal syndrome and, ultimately, kidney and heart failure. Weight loss can prevent or ameliorate obesity-related cardiorenal syndrome, but long-term maintenance of a healthy weight has been difficult to achieve through lifestyle changes or pharmacotherapy. Bariatric surgery offers both sustained weight loss and favourable metabolic changes, including dramatic improvements in glycaemic control and symptoms of type 2 diabetes mellitus. Procedures such as Roux-en-Y gastric bypass offer immediate multisystemic benefits, including bile flow alteration, reduced gastric size, anatomical gut rearrangement and altered flow of nutrients, vagal manipulation and enteric hormone modulation. In patients with cardiorenal syndrome, bariatric surgery also offers renoprotection and cardioprotection, and attenuates both kidney and heart failure by improving organ perfusion and reversing metabolic dysfunction. However, further research is required to understand how bariatric surgery acts on the cardiorenal axis, and its pioneering role in novel treatments and interventions for cardiorenal disease.
Collapse
|
34
|
Morita Y, Maeda K, Kondo T, Ishii H, Matsudaira K, Okumura N, Mitsuhashi H, Shibata R, Murohara T. Impact of adiponectin and leptin on long-term adverse events in Japanese patients with acute myocardial infarction. Results from the Nagoya Acute Myocardial Infarction Study (NAMIS). Circ J 2013; 77:2778-85. [PMID: 23924849 DOI: 10.1253/circj.cj-13-0251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Low adiponectin levels and high leptin levels are associated with a high incidence of developing cardiovascular disease. However, the relationship between the levels of these adipokines and the development of adverse events after acute myocardial infarction (AMI) remains unclear. METHODS AND RESULTS This study enrolled 724 Japanese subjects with AMI who underwent successful emergency percutaneous coronary intervention (PCI). Their serum adiponectin and leptin levels were measured 7 days after AMI onset. There were 63 adverse events during the 3-year follow-up. The levels of adiponectin and leptin and the leptin to adiponectin ratio, were significantly associated with adverse events [hazard ratio 2.08 (95% confidence interval (CI) 1.33-3.24), P=0.001; hazard ratio 0.62 (95% CI 0.43-0.90), P=0.012; hazard ratio 0.59 (95% CI 0.45-0.76), P<0.001, respectively]. The leptin to adiponectin ratio remained a significant independent predictor of adverse events during long-term follow-up in a multivariable analysis [adjusted hazard ratio 0.60 (95% CI 0.43-0.83), P=0.002]. CONCLUSIONS Higher adiponectin and lower leptin levels are associated with a high incidence of adverse events in Japanese patients after AMI, and the leptin to adiponectin ratio independently predicts prognosis after AMI.
Collapse
Affiliation(s)
- Yasuhiro Morita
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Prolonged postsurgical recovery period and adverse effects of a leptin application in endotoxemic obese rodents. Life Sci 2013; 93:247-56. [DOI: 10.1016/j.lfs.2013.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023]
|
36
|
Campagnaro BP, Tonini CL, Doche LM, Nogueira BV, Vasquez EC, Meyrelles SS. Renovascular hypertension leads to DNA damage and apoptosis in bone marrow cells. DNA Cell Biol 2013; 32:458-66. [PMID: 23786322 DOI: 10.1089/dna.2013.2065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Angiotensin II (Ang II), which plays a pivotal role in the pathophysiology of the two-kidney, one-clip (2K1C) Goldblatt hypertension, has been associated with augmented generation of reactive oxygen species (ROS) in some cells and tissues. In the present study, we evaluated the influence of 2K1C hypertension on oxidative stress, DNA fragmentation, and apoptosis of bone marrow (BM) cells. Two weeks after the renal artery clipping or Sham operation, flow cytometry analysis showed a higher production of superoxide anions (approximately sixfold) and hydrogen peroxide (approximately twofold) in 2K1C hypertensive than in Sham normotensive mice. 2K1C mice also showed an augmented DNA fragmentation (54%) and apoptotic cells (21%). Our data show that the 2K1C renovascular hypertension is characterized by an increased production of ROS, DNA damage, and apoptosis of BM, which is a fundamental source of the cells involved in tissue repair.
Collapse
Affiliation(s)
- Bianca P Campagnaro
- Laboratory of Transgenes, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Arch JRS, Trayhurn P. Detection of thermogenesis in rodents in response to anti-obesity drugs and genetic modification. Front Physiol 2013; 4:64. [PMID: 23580228 PMCID: PMC3619105 DOI: 10.3389/fphys.2013.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/16/2013] [Indexed: 11/22/2022] Open
Abstract
Many compounds and genetic manipulations are claimed to confer resistance to obesity in rodents by raising energy expenditure. Examples taken from recent and older literature, demonstrate that such claims are often based on measurements of energy expenditure after body composition has changed, and depend on comparisons of energy expenditure divided by body weight. This is misleading because white adipose tissue has less influence than lean tissue on energy expenditure. Application of this approach to human data would suggest that human obesity is usually due to a low metabolic rate, which is not an accepted view. Increased energy expenditure per animal is a surer way of demonstrating thermogenesis, but even then it is important to know whether this is due to altered body composition (repartitioning), or increased locomotor activity rather than thermogenesis per se. Regression analysis offers other approaches. The thermogenic response to some compounds has a rapid onset and so cannot be due to altered body composition. These compounds usually mimic or activate the sympathetic nervous system. Thermogenesis occurs in, but may not be confined to, brown adipose tissue. It should not be assumed that weight loss in response to these treatments is due to thermogenesis unless there is a sustained increase in 24-h energy expenditure. Thyroid hormones and fibroblast growth factor 21 also raise energy expenditure before they affect body composition. Some treatments and genetic modifications alter the diurnal rhythm of energy expenditure. It is important to establish whether this is due to altered locomotor activity or efficiency of locomotion. There are no good examples of compounds that do not affect short-term energy expenditure but have a delayed effect. How and under what conditions a genetic modification or compound increases energy expenditure influences the decision on whether to seek drugs for the target or take a candidate drug into clinical studies.
Collapse
|
38
|
Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis. Clin Sci (Lond) 2012; 123:669-80. [PMID: 22734967 DOI: 10.1042/cs20110572] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cirrhotic portal hypertension is characterized by increased hepatic oxidative stress, AA (arachidonic acid)-derived TXA(2) (thromboxane A(2)) release and exaggerated hepatic response to the α-adrenergic agonist MTX (methoxamine). Besides promoting hepatic fibrosis, the role of hyperleptinaemia in the modulation of vascular response in NASH (non-alcoholic steatohepatitis) rat livers remains unknown. The aim of the present study was to explore the possible links between hyperleptinaemia and the disarrangement in the hepatic microcirculation. NASH-cirrhosis with hyperleptinaemia was induced in lean rats by feeding with an HF/MCD (high-fat/methionine-choline-deficient) diet. Portal haemodynamics, various substances, protein and mRNA expression and PUFA (polyunsaturated fatty acid) composition were measured. Finally, the effects of leptin pre-infusion on TXA(2) release and concentration-PPP (portal perfusion pressure) curves in response to MTX were evaluated by simultaneously pre-treatment with the Kupffer cell inactivators GdCl(3) (gadolinium chloride) or EC (encapsulated clodronate), the TXS (TXA(2) synthase) inhibitor furegrelate, the TP receptor (TXA(2) receptor) antagonist SQ29548 and the dual TXS/TP receptor antagonist BM567. In HF/MCD+leptin-lean rats, cirrhosis-induced PPP and MTX hyper-responsiveness were associated with increased hepatic TXA(2) production, TBARS (thiobarbituric acid-reacting substances) levels and the AA (arachidonic acid)/n-3 PUFA ratio, and up-regulation of hepatic leptin, FAS (fatty acid synthase), NADPH oxidase subunits, TXS, TP receptor, TGFβ(1) (transforming growth factor β(1)) proteins and mRNAs. Pre-infusion of leptin significantly enhanced MTX-stimulated PPP elevation and TXA(2) release, which were attenuated by GdCl(3) and EC pre-treatment. Concomitantly pre-incubation with BM567, but not furegrelate or SQ29548, significantly abolished the leptin-enhanced MTX-stimulated increase in PPP in NASH-cirrhotic rats. Hyperleptinaemia plays an important role in hyper-responsiveness to MTX in NASH-cirrhotic rat livers with portal hypertension. The leptin-enhanced MTX-stimulated increase in PPP is mediated by increased oxidative stress and Kupffer-cell-activated AA-derived TXA(2) release in NASH-cirrhotic rats.
Collapse
|
39
|
Berenson GS, Patel DA, Wang H, Srinivasan SR, Chen W. Pressure-heart rate product changes from childhood to adulthood in a biracial population - a crossover phenomenon: the Bogalusa Heart Study. ACTA ACUST UNITED AC 2012; 2:80-7. [PMID: 20409889 DOI: 10.1016/j.jash.2007.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 08/16/2007] [Accepted: 08/26/2007] [Indexed: 11/25/2022]
Abstract
Cardiovascular (CV) hemodynamic characteristics are major risk factors for heart disease. Cross-sectional surveys of 5,976 individuals (47% males; 63% Whites), aged 4 to 44 years, and a subset of 1,365 individuals examined both in childhood and in adulthood were examined for blood pressure and heart rate along with cardiovascular risk factors. In early childhood, Whites showed significantly faster heart rate than Blacks; at adolescence, blood pressure levels became greater in Blacks. The systolic blood pressure times heart rate, the double product, in childhood (Whites > Blacks) is reversed in adulthood (Blacks > Whites). A "crossover" at the young adult age occurs. The crossover was observed at around 20 years in females and 25 years in males. Multivariate analyses indicated age, race, and homeostasis model of insulin resistance were independently related to the double product. Further, there was a significant interaction between age and race. These hemodynamic parameters change with increasing age with a crossover pattern of the pressure-rate product between the different races in young adults. Changes in the double product suggest a greater sympathetic nervous system activation occurring in Blacks reaching adulthood. Although not measured, central vs. peripheral sympathetic-parasympathetic balance, which determine hemodynamic characteristics, is influenced by increasing obesity and carbohydrate-insulin metabolic changes in adulthood. Further, hemodynamic parameters create a cardiovascular burden over time producing subtle, subclinical disease of the cardiovascular system. Control of obesity in the population remains critical.
Collapse
Affiliation(s)
- Gerald S Berenson
- Tulane Center for Cardiovascular Health, Tulane University Health Science Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Evidence suggests that leptin is involved in relevant processes in the cardiovascular system. Low serum leptin levels have been associated with increased cardiovascular events and mortality in patients with coronary artery, diabetes, or chronic kidney disease. We hypothesized that leptin is increased in pulmonary arterial hypertension (PAH) and provides prognostic information. We correlated leptin levels with clinical data and assessed its association with survival. Sixty-seven patients with PAH and 29 healthy controls were studied. Plasma leptin levels were nonlinearly associated with BMI. Leptin level <15 μg/l was associated with higher mortality in PAH patients, with an adjusted (age, gender, BMI, and smoking status) hazard ratio of 3.8 (95% CI: 1.3-11.2), P=0.016. Similarly, PAH patients with leptin/BMI ratio <0.5 μg * m2/kg * l had worse survival than those with a level >0.5 μg * m2/ kg * l (P=0.046 by log-rank test). Two-year mortality in PAH patients was 24%. A receiver operating characteristic curve using leptin/BMI ratio as the test variable and 2-year mortality as the state variable showed an area under the curve of 0.74 (95% CI: 0.62–0.86). A leptin/BMI ratio cut-off of 0.6 had a high sensitivity (94%) and negative predictive value (96%) for predicting death of any cause at 2 years. In PAH, plasma leptin levels are directly associated with BMI. Lower leptin levels, when adjusted by BMI, are associated with an increased overall mortality and leptin/BMI ratio has high negative predictive value for mortality at 2 years.
Collapse
Affiliation(s)
- Adriano R Tonelli
- Department of Pulmonary, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
41
|
El-Gindy EM, Ali-Eldin FA, Meguid MA. Serum leptin level and its association with fatigue in patients with chronic hepatitis C virus infection. Arab J Gastroenterol 2012; 13:54-7. [PMID: 22980592 DOI: 10.1016/j.ajg.2012.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 09/13/2011] [Accepted: 03/09/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND STUDY AIM Fatigue is one of the most common presenting symptoms of chronic hepatitis C virus (HCV) infection. Its pathogenesis has been poorly investigated. Serum leptin levels are increased in cirrhosis and are suggested to have a role in the mediation of fatigue. This study was designed to assess possible association of serum leptin levels with fatigue and severity of liver disease in Egyptian patients with chronic hepatitis C infection. PATIENTS AND METHODS Seventy patients and 20 control subjects participated in the study. They were subjected to clinical and laboratory assessment, the determination of serum leptin level by ELISA and the assessment of fatigue using the multidimensional assessment of fatigue (MAF) scale. Respondents are asked to reflect on fatigue patterns for the past week. The MAF is a revision of the Piper Fatigue Scale. RESULTS Fatigue was present in all patients (100%) and 13 subjects of the control group (65%). There was a highly significant statistical difference between cases and controls regarding the presence and severity of fatigue. Serum leptin level was significantly higher in cases (24.9±28) in comparison to the control subjects (14.8±8). Serum leptin was not related to severity of liver disease as assessed by the Child Pugh classification. Serum leptin levels were directly correlated to the severity of fatigue (p<0.01) in patients but not in the control subjects. CONCLUSION Fatigue is highly prevalent in Egyptian patients with chronic HCV infection. Leptin might play a role in the mediation of fatigue in those patients drawing attention to biological basis of one of the most common symptoms facing clinician dealing with this problem.
Collapse
Affiliation(s)
- Eman M El-Gindy
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Abbasseya Square, Cairo, Egypt
| | | | | |
Collapse
|
42
|
Jochem J, Kalarus Z, Spaccapelo L, Canalini F, Ottani A, Giuliani D, Guarini S. Centrally acting leptin induces a resuscitating effect in haemorrhagic shock in rats. ACTA ACUST UNITED AC 2012; 176:45-50. [PMID: 22465165 DOI: 10.1016/j.regpep.2012.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 02/07/2012] [Accepted: 03/20/2012] [Indexed: 02/06/2023]
Abstract
Centrally acting leptin induces the activation of the sympathetic nervous system with a pressor effect in normotensive rats. The purpose of the study was to examine central leptin-evoked action in critical haemorrhagic hypotension. In anaesthetized male Wistar rats subjected for irreversible haemorrhagic shock with mean arterial pressure (MAP) 20-25 mmHg haemodynamic parameters and plasma concentrations of adrenaline and noradrenaline were measured. Leptin given intracerebroventricularly (20 μg) evoked long-lasting rises in MAP and heart rate (HR), with a subsequent increase in renal, mesenteric and hindquarters blood flows and a 100% survival at 2 h. MAP and peripheral blood flow changes were inhibited by a pre-treatment with α(1)- and α(2)-adrenoceptor antagonists prazosin (0.5 mg/kg) and yohimbine (1 mg/kg), while β-adrenoceptor antagonist propranolol (1 mg/kg) blocked leptin-induced HR changes, without influence on MAP, peripheral blood flows and survival. Twenty min after leptin treatment, there were higher plasma concentrations of noradrenaline, but not adrenaline, in comparison with the saline-treated control group. In conclusion, centrally acting leptin induces a long-lasting pressor effect with an improvement in the survival rate in haemorrhage-shocked rats. The effect may be associated with the activation of the sympathetic nervous system.
Collapse
Affiliation(s)
- Jerzy Jochem
- Department of Basic Medical Sciences, Medical University of Silesia, Piekarska 18, 41-902 Bytom, Poland.
| | | | | | | | | | | | | |
Collapse
|
43
|
Smith PM, Ferguson AV. Cardiovascular actions of leptin in the subfornical organ are abolished by diet-induced obesity. J Neuroendocrinol 2012; 24:504-10. [PMID: 22103447 DOI: 10.1111/j.1365-2826.2011.02257.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The subfornical organ (SFO), a sensory circumventricular organ lacking the normal blood-brain barrier with well documented roles in cardiovascular regulation, has recently been identified as a potential site at which the adipokine, leptin, may act to influence central autonomic pathways. Systemic and central leptin administration has been shown to increase blood pressure and it has been suggested that selective leptin resistance contributes to obesity-related hypertension. Given the relationship between obesity and hypertension, the present study aimed to investigate the cardiovascular consequences of the direct administration of leptin into the SFO of young lean rats and in the diet-induced obesity (DIO) rat model, which has been shown to be leptin-resistant. Leptin administration (500 fmol) directly into the SFO of young rats resulted in rapid decreases in blood pressure (BP) [mean area under the curve (AUC) = -677.8 ± 167.1 mmHg*s; n = 9], without an effect on heart rate (mean AUC = -21.2 ± 13.4 beats; n = 9), and these effects were found to be dose-related as microinjection of 5 pmol of leptin into the SFO had a larger effect on BP (mean AUC = -972.3 ± 280.1 mmHg*s; n = 4). These BP effects were also shown to be site-specific as microinjection of leptin into non-SFO regions or into the ventricle was without effect on BP (non-SFO: mean AUC = -22.4 ± 55.3 mmHg*s; n = 4; ventricle: mean AUC = 194.0 ± 173.0 mmHg*s; n = 6). By contrast, microinjection of leptin into leptin-resistant DIO rats was without effect on BP (mean AUC = 205.2 ± 75.1 mmHg*s; n = 4). These observations suggest that the SFO may be an important relay centre through which leptin, in normal weight, leptin responsive rats, acts to maintain BP within normal physiological limits through descending autonomic pathways involved in cardiovascular control and that, in obese, leptin-resistant, rats leptin no longer influences SFO neurones, resulting in an elevated BP, thus contributing to obesity-related hypertension.
Collapse
Affiliation(s)
- P M Smith
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
44
|
Alcazar MAA, Boehler E, Rother E, Amann K, Vohlen C, von Hörsten S, Plank C, Dötsch J. Early postnatal hyperalimentation impairs renal function via SOCS-3 mediated renal postreceptor leptin resistance. Endocrinology 2012; 153:1397-410. [PMID: 22253420 DOI: 10.1210/en.2011-1670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Early postnatal hyperalimentation has long-term implications for obesity and developing renal disease. Suppressor of cytokine signaling (SOCS) 3 inhibits phosphorylation of signal transducer and activator of transcription (STAT) 3 and ERK1/2 and thereby plays a pivotal role in mediating leptin resistance. In addition, SOCS-3 is induced by both leptin and inflammatory cytokines. However, little is known about the intrinsic-renal leptin synthesis and function. Therefore, this study aimed to elucidate the implications of early postnatal hyperalimentation on renal function and on the intrinsic-renal leptin signaling. Early postnatal hyperalimentation in Wistar rats during lactation was induced by litter size reduction at birth (LSR) either to LSR10 or LSR6, compared with home cage control male rats. Assessment of renal function at postnatal day 70 revealed decreased glomerular filtration rate and proteinuria after LSR6. In line with this impairment of renal function, renal inflammation and expression as well as deposition of extracellular matrix molecules, such as collagen I, were increased. Furthermore, renal expression of leptin and IL-6 was up-regulated subsequent to LSR6. Interestingly, the phosphorylation of Stat3 and ERK1/2 in the kidney, however, was decreased after LSR6, indicating postreceptor leptin resistance. In accordance, neuropeptide Y (NPY) gene expression was down-regulated; moreover, SOCS-3 protein expression, a mediator of postreceptor leptin resistance, was strongly elevated and colocalized with NPY. Thus, our findings not only demonstrate impaired renal function and profibrotic processes but also provide compelling evidence of a SOCS-3-mediated intrinsic renal leptin resistance and concomitant up-regulated NPY expression as an underlying mechanism.
Collapse
|
45
|
Zibadi S, Cordova F, Slack EH, Watson RR, Larson DF. Leptin's regulation of obesity-induced cardiac extracellular matrix remodeling. Cardiovasc Toxicol 2012; 11:325-33. [PMID: 21744298 DOI: 10.1007/s12012-011-9124-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Obesity-induced remodeling of cardiac extracellular matrix (ECM) leads to myocardial fibrosis and ultimately diastolic dysfunction. Leptin, an adipocyte hormone, is emerging as a novel mechanistic link between obesity and heart diseases. Despite the known essential role of leptin in hepatic and renal fibrosis, the in vivo effects of leptin on cardiac ECM remodeling remain unclear. Our objective was to define the role of leptin as a key mediator of pro-fibrogenic responses in the heart. In vitro administration of leptin to primary cardiofibroblasts resulted in significant stimulation of pro-collagen Iα ( 1 ) and a decrease in pro-matrix metalloproteinase (MMP)-8, -9 and -13 gene expressions at 24 h. To study the in vivo pro-fibrotic effect, leptin was administrated to C57BL/6 and leptin-deficient ob/ob mice for 8 weeks. With exogenous leptin ob/ob mice displayed passive diastolic filling dysfunction, coincided with significant increase in myocardial collagen compared with ob/ob controls. We also observed a marked stimulation of pro-collagen IIIα ( 1 ) and suppression of pro-MMP-8, TIMP-1 and -3 gene expressions in leptin-treated ob/ob mice. Our findings suggest pro-fibrotic effects of leptin in the heart, primarily through the predominance of collagen synthesis over degradation.
Collapse
Affiliation(s)
- Sherma Zibadi
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Excess body weight is a major risk factor for cardiovascular disease, increasing the risk of hypertension, hyperglycaemia and dyslipidaemia, recognized as the metabolic syndrome. Adipose tissue acts as an endocrine organ by producing various signalling cytokines called adipokines (including leptin, free fatty acids, tumour necrosis factor-α, interleukin-6, C-reactive protein, angiotensinogen and adiponectin). A chronic dysregulation of certain adipokines can have deleterious effects on insulin signalling. Chronic sympathetic overactivity is also known to be present in central obesity, and recent findings demonstrate the consequence of an elevated sympathetic outflow to organs such as the heart, kidneys and blood vessels. Chronic sympathetic nervous system overactivity can also contribute to a further decline of insulin sensitivity, creating a vicious cycle that may contribute to the development of the metabolic syndrome and hypertension. The cause of this overactivity is not clear, but may be driven by certain adipokines. The purpose of this review is to summarize how obesity, notably central or visceral as observed in the metabolic syndrome, leads to adipokine expression contributing to changes in insulin sensitivity and overactivity of the sympathetic nervous system.
Collapse
Affiliation(s)
- Michael M Smith
- Department of Human Physiology, University of Oregon, Eugene, OR 97403-1240, USA
| | | |
Collapse
|
47
|
Engineer DR, Garcia JM. Leptin in anorexia and cachexia syndrome. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:287457. [PMID: 22518191 PMCID: PMC3303568 DOI: 10.1155/2012/287457] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 12/31/2022]
Abstract
Leptin is a product of the obese (OB) gene secreted by adipocytes in proportion to fat mass. It decreases food intake and increases energy expenditure by affecting the balance between orexigenic and anorexigenic hypothalamic pathways. Low leptin levels are responsible for the compensatory increase in appetite and body weight and decreased energy expenditure (EE) following caloric deprivation. The anorexia-cachexia syndrome is a complication of many chronic conditions including cancer, chronic obstructive pulmonary disease, congestive heart failure, chronic kidney disease, and aging, where the decrease in body weight and food intake is not followed by a compensatory increase in appetite or decreased EE. Crosstalk between leptin and inflammatory signaling known to be activated in these conditions may be responsible for this paradox. This manuscript will review the evidence and potential mechanisms mediating changes in the leptin pathway in the setting of anorexia and cachexia associated with chronic diseases.
Collapse
Affiliation(s)
- Diana R. Engineer
- Division of Diabetes, Endocrinology and Metabolism, Michael E DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- Baylor College of Medicine, 2002 Holcombe Boulevored, Building 109, Room 210, Houston, TX 77030, USA
- Division of Diabetes, Department of Medicine, Endocrinology and Metabolism, St Luke's Episcopal Hospital, Houston, TX 77030, USA
| | - Jose M. Garcia
- Division of Diabetes, Endocrinology and Metabolism, Michael E DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- Baylor College of Medicine, 2002 Holcombe Boulevored, Building 109, Room 210, Houston, TX 77030, USA
- Huffington Center of Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
48
|
Rao F, Chiron S, Wei Z, Fung MM, Chen Y, Wen G, Khandrika S, Ziegler MG, Benyamin B, Montgomery G, Whitfield JB, Martin NG, Waalen J, Hamilton BA, Mahata SK, O'Connor DT. Genetic variation within a metabolic motif in the chromogranin a promoter: pleiotropic influence on cardiometabolic risk traits in twins. Am J Hypertens 2012; 25:29-40. [PMID: 21918574 DOI: 10.1038/ajh.2011.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The cardiometabolic syndrome comprised of multiple correlated traits, but its origin is incompletely understood. Chromogranin A (CHGA) is required for formation of the catecholamine secretory pathway in sympathochromaffin cells. In twin pair studies, we found that CHGA traits aggregated with body mass index (BMI), as well as its biochemical determinant leptin. METHODS Here we used the twin method to probe the role of heredity in generating such risk traits, and then investigated the role of risk-trait-associated CHGA promoter genetic variation in transfected chromaffin cells. Trait heritability (h(2)) and shared genetic determination among traits (pleiotropy, genetic covariance, ρ(G)) were estimated by variance components in twin pairs. RESULTS CHGA, BMI, and leptin each displayed substantial h(2), and the traits also aggregated with several features of the metabolic syndrome (e.g., insulin resistance, blood pressure (BP), hypertension, catecholamines, and C-reactive protein (CRP)). Twin studies demonstrated genetic covariance (pleiotropy, ρ(G)) for CHGA, BMI, and leptin with other metabolic traits (insulin resistance, BP, and CRP). We therefore investigated the CHGA locus for mechanisms of codetermination with such metabolic traits. A common functional variant in the human CHGA promoter (G-462A, rs9658634, minor allele frequency ~21%) was associated with leptin and CRP secretion, as well as BMI, especially in women; marker-on-trait effects on BMI were replicated across twin populations on two continents. In CHGA promoter/luciferase reporter plasmids transfected into chromaffin cells, G-462A alleles differed markedly in reporter expression. The G-462A variant disrupted predicted transcriptional control by a PPARγ/RXRα motif and costimulation by PPARγ/RXRα and their cognate ligands, differentially activated the two alleles. During chromatin immunoprecipitation, endogenous PPARγ bound the motif. CONCLUSIONS Multiple features of the metabolic syndrome are thus under joint (pleiotropic) genetic determination, with CHGA as one such contributory locus: a common polymorphism in the promoter (G-462A) of CHGA predicts such heritable metabolic traits as BMI and leptin. CHGA promoter variant G-462A was not only associated with such metabolic traits but also disrupted a PPARγ/RXRα motif and responded differentially to characteristic trans-activators of that motif. The results suggest novel links between the catecholaminergic system and risk for the metabolic syndrome as well as systemic hypertension.
Collapse
|
49
|
do Carmo JM, da Silva AA, Rushing JS, Hall JE. Activation of the central melanocortin system contributes to the increased arterial pressure in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2011; 302:R561-7. [PMID: 22204957 DOI: 10.1152/ajpregu.00392.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that leptin-mediated activation of the central nervous system (CNS) melanocortin system reduces appetite and increases sympathetic activity and blood pressure (BP). In the present study we examined whether endogenous melanocortin system activation, independent of leptin's actions, contributes to the regulation of BP and metabolic functions in obese Zucker rats, which have mutated leptin receptors. The long-term cardiovascular and metabolic effects of central melanocortin-3/4 receptor (MC3/4R) antagonism with SHU-9119 were assessed in lean (n = 6) and obese (n = 8) Zucker rats. BP and heart rate (HR) were measured 24-h/day by telemetry and an intracerebroventricular cannula was placed in the brain lateral ventricle. After stable control measurements, SHU-9119 was infused intracerebroventricularlly (1 nmol/h) for 10 days followed by a 10-day recovery period. Chronic CNS MC3/4R antagonism significantly increased food intake and body weight in lean (20 ± 1 to 45 ± 2 g and 373 ± 11 to 432 ± 14 g) and obese (25 ± 2 to 35 ± 2 g and 547 ± 10 to 604 ± 11 g) rats. No significant changes were observed in plasma glucose levels in lean or obese rats, whereas plasma leptin and insulin levels markedly increased in lean Zucker rats during CNS MC3/4R antagonism. Chronic SHU-9119 infusion in obese Zucker rats reduced mean arterial pressure (MAP) and HR by 6 ± 1 mmHg and 24 ± 5 beats/min, whereas in lean rats SHU-9119 infusion reduced HR by 31 ± 9 beats/min while causing only a transient decrease in MAP. These results suggest that in obese Zucker rats the CNS melanocortin system contributes to elevated BP independent of leptin receptor activation.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | | | |
Collapse
|
50
|
PI3Kγ within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance. Proc Natl Acad Sci U S A 2011; 108:E854-63. [PMID: 21949398 DOI: 10.1073/pnas.1106698108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.
Collapse
|