1
|
Halvorson BD, McGuire JJ, Singh KK, Butcher JT, Lombard JH, Chantler PD, Frisbee JC. Can Myogenic Tone Protect Endothelial Function? Integrating Myogenic Activation and Dilator Reactivity for Cerebral Resistance Arteries in Metabolic Disease. J Vasc Res 2021; 58:286-300. [PMID: 33971663 PMCID: PMC8478702 DOI: 10.1159/000516088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
The obese Zucker rat (OZR) manifests multiple risk factors for impaired cerebrovascular function, including hypertension and insulin resistance although how they combine to produce integrated vascular function is unclear. As studies have suggested that myogenic activation (MA) severity for middle cerebral arteries (MCAs) may be proportional to hypertension severity, we hypothesized that MA will negatively correlate with dilator reactivity in OZR. MA of MCA from OZR was divided into low, medium, and high based on the slope of MA, while MCA reactivity and vascular metabolite bioavailability were assessed in all groups. Endothelium-dependent dilation of MCA in OZR was attenuated and correlated with the MA slope. Treatment of OZR MCA with TEMPOL (antioxidant) improved dilation in low or medium MA groups, but had less impact on high MA. Alternatively, treatment with gadolinium to normalize MA in OZR had reduced impact on dilator reactivity in MCA from low and medium MA groups, but improved responses in the high group. Treatment with both agents resulted in dilator responses that were comparable across all groups. These results suggest that, under conditions with stronger MA, endothelial function may receive some protection despite the environment, potentially from the ability of MCA to reduce wall tension despite increased pressure.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Cerebrovascular Circulation/drug effects
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Male
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/physiopathology
- Middle Cerebral Artery/drug effects
- Middle Cerebral Artery/metabolism
- Middle Cerebral Artery/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Rats, Zucker
- Vascular Resistance/drug effects
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
- Rats
Collapse
Affiliation(s)
- Brayden D. Halvorson
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - John J. McGuire
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Krishna K. Singh
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Joshua T. Butcher
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Julian H. Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Jefferson C. Frisbee
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| |
Collapse
|
2
|
Chronic kidney disease induces a systemic microangiopathy, tissue hypoxia and dysfunctional angiogenesis. Sci Rep 2018; 8:5317. [PMID: 29593228 PMCID: PMC5871820 DOI: 10.1038/s41598-018-23663-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with excessive mortality from cardiovascular disease (CVD). Endothelial dysfunction, an early manifestation of CVD, is consistently observed in CKD patients and might be linked to structural defects of the microcirculation including microvascular rarefaction. However, patterns of microvascular rarefaction in CKD and their relation to functional deficits in perfusion and oxygen delivery are currently unknown. In this in-vivo microscopy study of the cremaster muscle microcirculation in BALB/c mice with moderate to severe uremia, we show in two experimental models (adenine feeding or subtotal nephrectomy), that serum urea levels associate incrementally with a distinct microangiopathy. Structural changes were characterized by a heterogeneous pattern of focal microvascular rarefaction with loss of coherent microvascular networks resulting in large avascular areas. Corresponding microvascular dysfunction was evident by significantly diminished blood flow velocity, vascular tone, and oxygen uptake. Microvascular rarefaction in the cremaster muscle paralleled rarefaction in the myocardium, which was accompanied by a decrease in transcription levels not only of the transcriptional regulator HIF-1α, but also of its target genes Angpt-2, TIE-1 and TIE-2, Flkt-1 and MMP-9, indicating an impaired hypoxia-driven angiogenesis. Thus, experimental uremia in mice associates with systemic microvascular disease with rarefaction, tissue hypoxia and dysfunctional angiogenesis.
Collapse
|
3
|
Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, Jodar M, Moro C, Offermanns S, Feng Y, Demolombe S, Patel A, Honoré E. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling. Cell Rep 2015; 13:1161-1171. [PMID: 26526998 DOI: 10.1016/j.celrep.2015.09.072] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022] Open
Abstract
The mechanically activated non-selective cation channel Piezo1 is a determinant of vascular architecture during early development. Piezo1-deficient embryos die at midgestation with disorganized blood vessels. However, the role of stretch-activated ion channels (SACs) in arterial smooth muscle cells in the adult remains unknown. Here, we show that Piezo1 is highly expressed in myocytes of small-diameter arteries and that smooth-muscle-specific Piezo1 deletion fully impairs SAC activity. While Piezo1 is dispensable for the arterial myogenic tone, it is involved in the structural remodeling of small arteries. Increased Piezo1 opening has a trophic effect on resistance arteries, influencing both diameter and wall thickness in hypertension. Piezo1 mediates a rise in cytosolic calcium and stimulates activity of transglutaminases, cross-linking enzymes required for the remodeling of small arteries. In conclusion, we have established the connection between an early mechanosensitive process, involving Piezo1 in smooth muscle cells, and a clinically relevant arterial remodeling.
Collapse
Affiliation(s)
- Kevin Retailleau
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Fabrice Duprat
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Malika Arhatte
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Sanjeev Sumant Ranade
- Department of Molecular and Cellular Neuroscience, Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rémi Peyronnet
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Joana Raquel Martins
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Martine Jodar
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Céline Moro
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Yuanyi Feng
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Sophie Demolombe
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Amanda Patel
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France.
| | - Eric Honoré
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France.
| |
Collapse
|
4
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Soni H, Buddington RK, Adebiyi A. Postnatal kidney maturation regulates renal artery myogenic constriction. J Perinat Med 2015; 43:119-22. [PMID: 24897391 DOI: 10.1515/jpm-2013-0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/22/2014] [Indexed: 11/15/2022]
Abstract
AIM Intravascular pressure-induced vasoconstriction (myogenic constriction) is central to renal blood flow autoregulation. At term, kidney maturation is functionally incomplete. Premature neonates are at risk of kidney dysfunction. However, it is unclear whether renal artery myogenic constriction is altered after preterm birth. Here, we compared renal artery myogenic constriction in full-term and preterm pigs during the first week of life. METHODS We investigated myogenic constriction in small interlobular arteries isolated from the kidneys of pigs delivered at term and at 91% of term (with and without 96 h of neonatal intensive care). RESULTS Cross-sectional area, media/lumen ratio, and luminal diameter measured under passive conditions were similar in arteries from full-term and preterm pig kidneys. An acute elevation in intravascular pressure from 20 to 100 mm Hg increased arterial wall tension and induced steady-state constriction of the arteries. However, arteries isolated from newly born preterm pigs (within 24 h) developed greater myogenic tone and lower active wall tension compared with arteries from full-term and 4-day-old preterm neonates. Pressure-induced elevation in intracellular Ca2+ was also larger in arteries from newly born preterm pigs compared with full-term and 4-day-old preterm pigs. CONCLUSION Myogenic constriction is elevated in newly born preterm pigs. Our data also suggests that postnatal kidney maturation may modulate renal blood flow autoregulation.
Collapse
|
6
|
Hara M, Tabata K, Suzuki T, Do MKQ, Mizunoya W, Nakamura M, Nishimura S, Tabata S, Ikeuchi Y, Sunagawa K, Anderson JE, Allen RE, Tatsumi R. Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Cell Physiol 2012; 302:C1741-50. [PMID: 22460715 DOI: 10.1152/ajpcell.00068.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When skeletal muscle is stretched or injured, satellite cells, resident myogenic stem cells positioned beneath the basal lamina of mature muscle fibers, are activated to enter the cell cycle. This signaling pathway is a cascade of events including calcium-calmodulin formation, nitric oxide (NO) radical production by NO synthase, matrix metalloproteinase activation, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the receptor c-met, as demonstrated by assays of primary cultures and in vivo experiments. Here, we add evidence that two ion channels, the mechanosensitive cation channel (MS channel) and the long-lasting-type voltage-gated calcium-ion channel (L-VGC channel), mediate the influx of extracellular calcium ions in response to cyclic stretch in satellite cell cultures. When applied to 1-h stretch cultures with individual inhibitors for MS and L-VGC channels (GsMTx-4 and nifedipine, respectively) or with a less specific inhibitor (gadolinium chloride, Gd), satellite cell activation and upstream HGF release were abolished, as revealed by bromodeoxyuridine-incorporation assays and Western blotting of conditioned media, respectively. The inhibition was dose dependent with a maximum at 0.1 μM (GsMTx-4), 10 μM (nifedipine), or 100 μM (Gd) and canceled by addition of HGF to the culture media; a potent inhibitor for transient-type VGC channels (NNC55-0396, 100 μM) did not show any significant inhibitory effect. The stretch response was also abolished when calcium-chelator EGTA (1.8 mM) was added to the medium, indicating the significance of extracellular free calcium ions in our present activation model. Finally, cation/calcium channel dependencies were further documented by calcium-imaging analyses on stretched cells; results clearly demonstrated that calcium ion influx was abolished by GsMTx-4, nifedipine, and EGTA. Therefore, these results provide an additional insight that calcium ions may flow in through L-VGC channels by possible coupling with adjacent MS channel gating that promotes the local depolarization of cell membranes to initiate the satellite cell activation cascade.
Collapse
Affiliation(s)
- Minako Hara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ito S. Cardiorenal connection in chronic kidney disease. Clin Exp Nephrol 2011; 16:8-16. [DOI: 10.1007/s10157-011-0493-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 01/13/2011] [Indexed: 01/13/2023]
|
8
|
Chilton L, Smirnov SV, Loutzenhiser K, Wang X, Loutzenhiser R. Segment-specific differences in the inward rectifier K+ current along the renal interlobular artery. Cardiovasc Res 2011; 92:169-77. [DOI: 10.1093/cvr/cvr179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Lisa Chilton
- School of Veterinary and Biomedical Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Sergey V. Smirnov
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kathy Loutzenhiser
- Smooth Muscle Research Group, University of Calgary Faculty of Medicine, 3330 Hospital Drive, N.W. Calgary, Alberta, CanadaT2N 4N1
| | - Xuemei Wang
- Smooth Muscle Research Group, University of Calgary Faculty of Medicine, 3330 Hospital Drive, N.W. Calgary, Alberta, CanadaT2N 4N1
| | - Rodger Loutzenhiser
- Smooth Muscle Research Group, University of Calgary Faculty of Medicine, 3330 Hospital Drive, N.W. Calgary, Alberta, CanadaT2N 4N1
| |
Collapse
|
9
|
Patel A, Sharif-Naeini R, Folgering JRH, Bichet D, Duprat F, Honoré E. Canonical TRP channels and mechanotransduction: from physiology to disease states. Pflugers Arch 2010; 460:571-81. [PMID: 20490539 DOI: 10.1007/s00424-010-0847-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 01/03/2023]
Abstract
Mechano-gated ion channels play a key physiological role in cardiac, arterial, and skeletal myocytes. For instance, opening of the non-selective stretch-activated cation channels in smooth muscle cells is involved in the pressure-dependent myogenic constriction of resistance arteries. These channels are also implicated in major pathologies, including cardiac hypertrophy or Duchenne muscular dystrophy. Seminal work in prokaryotes and invertebrates highlighted the role of transient receptor potential (TRP) channels in mechanosensory transduction. In mammals, recent findings have shown that the canonical TRPC1 and TRPC6 channels are key players in muscle mechanotransduction. In the present review, we will focus on the functional properties of TRPC1 and TRPC6 channels, on their mechano-gating, regulation by interacting cytoskeletal and scaffolding proteins, physiological role and implication in associated diseases.
Collapse
Affiliation(s)
- Amanda Patel
- IPMC-CNRS, Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | | | | | | | | | | |
Collapse
|
10
|
Ito S, Nagasawa T, Abe M, Mori T. Strain vessel hypothesis: a viewpoint for linkage of albuminuria and cerebro-cardiovascular risk. Hypertens Res 2009; 32:115-21. [PMID: 19262469 DOI: 10.1038/hr.2008.27] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Albuminuria is closely associated with stroke and cardiovascular diseases (CVDs) as well as the salt sensitivity of blood pressure (BP). Although albuminuria may reflect generalized endothelial dysfunction, there may be more specific hemodynamic mechanisms underlying these associations. Cerebral hemorrhage and infarction occur most frequently in the area of small perforating arteries that are exposed to high pressure and that have to maintain strong vascular tone in order to provide large pressure gradients from the parent vessels to the capillaries. Analogous to the perforating arteries are the glomerular afferent arterioles of the juxtamedullary nephrons. Hypertensive vascular damage occurs first and more severely in the juxtamedullary glomeruli. Therefore, albuminuria may be an early sign of vascular damages imposed on 'strain vessels' such as perforating arteries and juxtamedullary afferent arterioles. Coronary circulation also occurs under unique hemodynamic conditions, in which the entire epicardial segments are exposed to very high pressure with little flow during systolic phases. From the evolutionary point of view, we speculate that such circulatory systems in the vital organs are mandatory for survival under the danger of hypoperfusion due to difficult access to salt and water as well as high risks of wound injuries. In addition, albuminuria would indicate an impairment of renal medullary circulation, downstream from the juxtamedullary glomeruli, and therefore an impaired pressure natriuresis, which would lead to salt sensitivity of BP. Our 'strain vessel hypothesis' may explain why hypertension and diabetes, unforeseen in the concept of evolution, preferentially affect vital organs such as the brain, heart and kidney.
Collapse
Affiliation(s)
- Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | |
Collapse
|
11
|
Kleinstreuer N, David T, Plank MJ, Endre Z. Dynamic myogenic autoregulation in the rat kidney: a whole-organ model. Am J Physiol Renal Physiol 2008; 294:F1453-64. [DOI: 10.1152/ajprenal.00426.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A transient 1D mathematical model of whole-organ renal autoregulation in the rat is presented, examining the myogenic response on multiple levels of the renal vasculature. Morphological data derived from micro-CT imaging were employed to divide the vasculature via a Strahler ordering scheme. A previously published model of the myogenic response based on wall tension is expanded and adapted to fit the response of each level, corresponding to a distally dominant resistance distribution with the highest contributions localized to the afferent arterioles and interlobular arteries. The mathematical model was further developed to include the effects of in vivo viscosity variation and flow-induced dilation via endothelial nitric oxide production. Computer simulations of the autoregulatory response to pressure perturbations were examined and compared with experimental data. The model supports the hypothesis that change in circumferential wall tension is the catalyst for the myogenic response. The model provides a basis for examining the steady state and transient characteristics of the whole-organ renal myogenic response in the rat, as well as the modulatory influences of metabolic and hemodynamic factors.
Collapse
|
12
|
Folgering JHA, Sharif-Naeini R, Dedman A, Patel A, Delmas P, Honoré E. Molecular basis of the mammalian pressure-sensitive ion channels: focus on vascular mechanotransduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:180-95. [PMID: 18343483 DOI: 10.1016/j.pbiomolbio.2008.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechano-gated ion channels are implicated in a variety of neurosensory functions ranging from touch sensitivity to hearing. In the heart, rhythm disturbance subsequent to mechanical effects is also associated with the activation of stretch-sensitive ion channels. Arterial autoregulation in response to hemodynamic stimuli, a vital process required for protection against hypertension-induced injury, is similarly dependent on the activity of force-sensitive ion channels. Seminal work in prokaryotes and invertebrates, including the nematode Caenorhabditis elegans and the fruit fly drosophila, greatly helped to identify the molecular basis of volume regulation, hearing and touch sensitivity. In mammals, more recent findings have indicated that members of several structural family of ion channels, namely the transient receptor potential (TRP) channels, the amiloride-sensitive ENaC/ASIC channels and the potassium channels K2P and Kir are involved in cellular mechanotransduction. In the present review, we will focus on the molecular and functional properties of these channel subunits and will emphasize on their role in the pressure-dependent arterial myogenic constriction and the flow-mediated vasodilation.
Collapse
Affiliation(s)
- Joost H A Folgering
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
13
|
TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch 2008; 456:529-40. [PMID: 18183414 DOI: 10.1007/s00424-007-0432-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/04/2007] [Accepted: 12/10/2007] [Indexed: 12/19/2022]
Abstract
Mechano-gated ion channels are implicated in a variety of key physiological functions ranging from touch sensitivity to arterial pressure regulation. Seminal work in prokaryotes and invertebrates provided strong evidence for the role of specific ion channels in volume regulation, touch sensitivity, or hearing, specifically the mechanosensitive channel subunits of large and small conductances (MscL and MscS), the mechanosensory channel subunits (MEC) and the transient receptor potential channel subunits (TRP). In mammals, recent studies further indicate that members of the TRP channel family may also be considered as possible candidate mechanosensors responding to either tension, flow, or changes in cell volume. However, contradictory results have challenged whether these TRP channels, including TRPC1 and TRPC6, are directly activated by mechanical stimulation. In the present review, we will focus on the mechanosensory function of TRP channels, discuss whether a direct or indirect mechanism is at play, and focus on the proposed role for these channels in the arterial myogenic response to changes in intraluminal pressure.
Collapse
|
14
|
Takenaka T, Inoue T, Kanno Y, Okada H, Hill CE, Suzuki H. Connexins 37 and 40 transduce purinergic signals mediating renal autoregulation. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1-11. [PMID: 17928514 DOI: 10.1152/ajpregu.00269.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous data indicated that various subtypes of connexin (Cx) were expressed in the juxtaglomerular apparatus. Experiments were performed to characterize the effects on renal autoregulation of specific mimetic peptides that inhibit these Cx subtypes in Wistar-Kyoto rats. Intrarenal infusion of (Cx37,43)GAP27 increased autoregulatory index of renal plasma flow (0.06 +/- 0.05 to 0.47 +/- 0.06, n = 6, P < 0.05) and glomerular filtration rate (GFR; 0.01 +/- 0.07 to 0.49 +/- 0.07, P < 0.05). The additional administration of 8-cyclopentyl- 1,3-dipropylxanthine (CPX) produced a further elevation of autoregulatory index of RPF (0.86 +/- 0.07, P < 0.05) and GFR (0.88 +/- 0.09, P < 0.05), compared with (Cx37,43)GAP27 alone. However, the addition of pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid (PPADS) to (Cx37,43)GAP27 did not. Combined treatment with CPX and PPADS markedly worsened autoregulatory index of RPF (0.04 +/- 0.10 to 0.81 +/- 0.06, n = 6 P < 0.01) and GFR (0.05 +/- 0.08 to 0.79 +/- 0.05, P < 0.01). (Cx40)GAP27 induced similar changes to (Cx37,43)GAP27. Renal autoregulation was preserved in the presence of (Cx43)GAP26. Our results indicate that the inhibition of gap junction impaired renal autoregulation. Furthermore, the present data provide evidence that both adenosine and purinergic receptors contribute to glomerular autoregulation. Finally, our findings suggest that gap junctions, at least in part, transduce purinergic signals mediating renal autoregulation.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Nephrology, Saitama Medical College, Iruma Saitama, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Takenaka T, Okada H, Kanno Y, Inoue T, Ryuzaki M, Nakamoto H, Kawachi H, Shimizu F, Suzuki H. Exogenous 5'-nucleotidase improves glomerular autoregulation in Thy-1 nephritic rats. Am J Physiol Renal Physiol 2005; 290:F844-53. [PMID: 16189293 DOI: 10.1152/ajprenal.00112.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Experiments were performed to characterize renal hemodynamics in Thy-1 nephritic rats. A monoclonal antibody against Thy-1 was intravenously injected to induce mesangiolysis in rats, and 2 days later renal hemodynamic responses to variations in blood pressure were determined. In the first series of experiments, autoregulation of renal plasma flow (RPF) or glomerular filtration rate (GFR) was impaired in nephritic rats. In response to a reduction in blood pressure (98 +/- 2 to 80 +/- 1 mmHg), both RPF (4.17 +/- 0.63 to 3.20 +/- 0.45 ml x min(-1) x g kidney wt(-1), P < 0.05, n = 6) and GFR (0.88 +/- 0.05 to 0.75 +/- 0.06 ml x min(-1).g kidney wt(-1), P < 0.05) were decreased in nephritic rats. Intravenous administration of furosemide and 30% albumin, both of which inhibit tubuloglomerular feedback, diminished renal autoregulation in control but not nephritic rats. In the second studies, the infusion of 5'-nucleotidase, an enzyme expressed on mesangial cells, into a renal artery ameliorated the magnitude of autoregulatory decrements in GFR in nephritic rats (-16 +/- 5 to -6 +/- 2%, P < 0.05, n = 6), but this enzyme failed to alter renal autoregulation in control rats. In the third studies, the effects of indomethacin were examined in nephritic rats. Inhibition of prostaglandin synthesis reduced RPF (4.07 +/- 0.30 to 1.54 +/- 0.22 ml x min(-1) x g kidney wt(-1), P < 0.05, n = 5) and GFR (1.03 +/- 0.18 to 0.69 +/- 0.13 ml x min(-1) x g kidney wt(-1), P < 0.05) in nephritic rats. However, cyclooxygenase inhibition failed to restore renal autoregulation in nephritic rats. Our results indicate that renal autoregulation is impaired in Thy-1 nephritis. Furthermore, the present data provide evidence that prostanoids contribute to maintain renal circulation in nephritic rats. Finally, our findings suggest that mesangial cells and/or 5'-nucleotidase plays an important role in mediating renal autoregulation.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Nephrology, Saitama Medical College, Iruma Saitama 350-0495, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|