1
|
Galyfos G, Chamzin A, Saliaris K, Theodorou P, Konstantinou K, Sigala F, Filis K. The effect of cilostazol on late outcomes after endovascular treatment for occlusive femoropopliteal disease. J Vasc Surg 2024; 80:279-287. [PMID: 38215952 DOI: 10.1016/j.jvs.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
OBJECTIVE Restenosis and late occlusion remain a significant problem for endovascular treatment of peripheral artery disease. This meta-analysis aims to evaluate the effect of cilostazol on late outcomes after endovascular repair of occlusive femoropopliteal disease. METHODS A systematic literature review was conducted conforming to established criteria to identify articles published up to September 2023 evaluating late outcomes after endovascular treatment for atherosclerotic femoropopliteal disease. Eligible studies should compare outcomes between patients treated with cilostazol and patients not treated with cilostazol. Both prospective and retrospective studies were eligible. Late outcomes included primary patency (PP), restenosis, target lesion revascularization (TLR), and major amputation during follow-up. RESULTS Overall, 10 clinical studies were identified for analysis including 4721 patients (1831 with cilostazol vs 2890 without cilostazol) that were treated for 5703 lesions (2235 with cilostazol vs 3468 without cilostazol). All studies were performed in Japan. Mean follow-up was 24.1 ± 12.5 months. Cilostazol was associated with a lower risk for restenosis (pooled odds ratio [OR], 0.503; 95% confidence interval [CI], 0.383-0.660; P < .0001). However, no association was found between cilostazol and TLR (pooled OR, 0.918; 95% CI, 0.300-2.812; P = .881) as well as major amputation (pooled OR, 1.512; 95% CI, 0.734-3.116; P = .263). Regarding primary patency, cilostazol was associated with a higher 12-month PP (OR, 3.047; 95% CI, 1.168-7.946; P = .023), and a higher 36-month PP (OR, 1.616; 95% CI, 1.412-1.850; P < .0001). No association was found between cilostazol and mortality during follow-up (pooled OR, .755; 95% CI, 0.293-1.946; P = .561). CONCLUSIONS Cilostazol seems to have a positive effect on 1- to 3-year PP and restenosis rates among patients treated endovascularly for atherosclerotic femoropopliteal disease. A positive effect on TLR and amputation risk was not verified in this review.
Collapse
Affiliation(s)
- George Galyfos
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece.
| | - Alexandros Chamzin
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Konstantinos Saliaris
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Panagiotis Theodorou
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Kyriaki Konstantinou
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Frangiska Sigala
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Konstantinos Filis
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| |
Collapse
|
2
|
Luo L, Cai Y, Zhang Y, Hsu CG, Korshunov VA, Long X, Knight PA, Berk BC, Yan C. Role of PDE10A in vascular smooth muscle cell hyperplasia and pathological vascular remodelling. Cardiovasc Res 2022; 118:2703-2717. [PMID: 34550322 PMCID: PMC9890476 DOI: 10.1093/cvr/cvab304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS Intimal hyperplasia is a common feature of vascular remodelling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. METHODS AND RESULTS RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodelling of cultured human saphenous vein segments. CONCLUSIONS Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signalling and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease.
Collapse
Affiliation(s)
- Lingfeng Luo
- Department of Biochemistry and Biophysics, University of Rochester School
of Medicine and Dentistry, Rochester, NY,
USA
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yujun Cai
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yishuai Zhang
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chia G Hsu
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Vyacheslav A Korshunov
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Xiaochun Long
- Department of Vascular Biology Center and Medicine, Medical College of
Georgia, Augusta, GA, USA
| | - Peter A Knight
- Department of Surgery, University of Rochester School of Medicine and
Dentistry, Rochester, NY, USA
| | - Bradford C Berk
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chen Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| |
Collapse
|
3
|
Phosphodiesterase 4D contributes to angiotensin II-induced abdominal aortic aneurysm through smooth muscle cell apoptosis. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1201-1213. [PMID: 35999453 PMCID: PMC9440214 DOI: 10.1038/s12276-022-00815-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a permanent expansion of the abdominal aorta that has a high mortality but limited treatment options. Phosphodiesterase (PDE) 4 family members are cAMP-specific hydrolyzing enzymes and have four isoforms (PDE4A-PDE4D). Several pan-PDE4 inhibitors are used clinically. However, the regulation and function of PDE4 in AAA remain largely unknown. Herein, we showed that PDE4D expression is upregulated in human and angiotensin II-induced mouse AAA tissues using RT-PCR, western blotting, and immunohistochemical staining. Furthermore, smooth muscle cell (SMC)-specific Pde4d knockout mice showed significantly reduced vascular destabilization and AAA development in an experimental AAA model. The PDE4 inhibitor rolipram also suppressed vascular pathogenesis and AAA formation in mice. In addition, PDE4D deficiency inhibited caspase 3 cleavage and SMC apoptosis in vivo and in vitro, as shown by bulk RNA-seq, western blotting, flow cytometry and TUNEL staining. Mechanistic studies revealed that PDE4D promotes apoptosis by suppressing the activation of cAMP-activated protein kinase A (PKA) instead of the exchange protein directly activated by cAMP (Epac). Additionally, the phosphorylation of BCL2-antagonist of cell death (Bad) was reversed by PDE4D siRNA in vitro, which indicates that PDE4D regulates SMC apoptosis via the cAMP-PKA-pBad axis. Overall, these findings indicate that PDE4D upregulation in SMCs plays a causative role in AAA development and suggest that pharmacological inhibition of PDE4 may represent a potential therapeutic strategy.
Collapse
|
4
|
Clinical Effect of Revascularization Strategies and Pharmacologic Treatment on Long-Term Results in Patients with Advanced Peripheral Artery Disease with TASC C and D Femoropopliteal Lesions. J Interv Cardiol 2022; 2022:3741967. [PMID: 35317345 PMCID: PMC8916894 DOI: 10.1155/2022/3741967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/25/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background This study was to assess the clinical outcome and associated parameters of endovascular therapy (EVT group) and bypass surgery (bypass group) in patients with long femoropopliteal TransAtlantic Inter-Society Consensus II (TASC II) C and D peripheral artery disease (PAD). Methods 187 patients who underwent successful EVT or bypass surgery were assessed. The endpoints included the events of cardiovascular disease (CVD) and lower-extremity amputation (LEA), 3-year primary patency, and 3-year amputation-free survival (AFS). Results The 3-year primary and secondary patency rates were better in the bypass group (P=0.007 and P=0.039, respectively), while the incidences of LEA, new CVD events, and mortality were comparable between groups. Weighted multivariate Cox analyses showed that cilostazol treatment (hazard ratio (HR): 0.46, 95% confidence interval (CI): 0.3–0.72, P=0.001), statin treatment (HR: 0.54, 95% CI: 0.33–0.9, P=0.014), and direct revascularization (DR) (HR: 0.47, 95% CI: 0.29–0.74, P=0.001) were predictive factors of 3-year primary patency. Kaplan–Meier curve analyses of time-to-primary cumulative AFS showed that nondiabetes mellitus, mild PAD, and cilostazol and statin treatment were correlated with a superior 3-year AFS (log rank test, P=0.001, P < 0.001, P=0.009, and P=0.044, respectively). Conclusions Endovascular stenting based on the angiosome concept and bypass surgery provide comparable benefits for the treatment of long, advanced femoropopliteal lesions after a short follow-up period, whereas cilostazol therapy for more than 3 months, aggressive treatment of dyslipidemia, and surgical revascularization were associated with higher primary patency.
Collapse
|
5
|
de Havenon A, Sheth KN, Madsen TE, Johnston KC, Turan T, Toyoda K, Elm JJ, Wardlaw JM, Johnston SC, Williams OA, Shoamanesh A, Lansberg MG. Cilostazol for Secondary Stroke Prevention: History, Evidence, Limitations, and Possibilities. Stroke 2021; 52:e635-e645. [PMID: 34517768 PMCID: PMC8478840 DOI: 10.1161/strokeaha.121.035002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cilostazol is a PDE3 (phosphodiesterase III) inhibitor with a long track record of safety that is Food and Drug Administration and European Medicines Agency approved for the treatment of claudication in patients with peripheral arterial disease. In addition, cilostazol has been approved for secondary stroke prevention in several Asian countries based on trials that have demonstrated a reduction in stroke recurrence among patients with noncardioembolic stroke. The onset of benefit appears after 60 to 90 days of treatment, which is consistent with cilostazol's pleiotropic effects on platelet aggregation, vascular remodeling, blood flow, and plasma lipids. Cilostazol appears safe and does not increase the risk of major bleeding when given alone or in combination with aspirin or clopidogrel. Adverse effects such as headache, gastrointestinal symptoms, and palpitations, however, contributed to a 6% increase in drug discontinuation among patients randomized to cilostazol in a large secondary stroke prevention trial (CSPS.com [Cilostazol Stroke Prevention Study for Antiplatelet Combination]). Due to limitations of prior trials, such as open-label design, premature trial termination, large loss to follow-up, lack of functional or cognitive outcome data, and exclusive enrollment in Asia, the existing trials have not led to a change in clinical practice or guidelines in Western countries. These limitations could be addressed by a double-blind placebo-controlled randomized trial conducted in a broader population. If positive, it would increase the evidence in support of long-term treatment with cilostazol for secondary prevention in the millions of patients worldwide who have experienced a noncardioembolic ischemic stroke.
Collapse
Affiliation(s)
- Adam de Havenon
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Kevin N. Sheth
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Tracy E. Madsen
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Karen C. Johnston
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Tanya Turan
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Kazunori Toyoda
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Jordan J. Elm
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Joanna M. Wardlaw
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - S. Claiborne Johnston
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Olajide A. Williams
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Ashkan Shoamanesh
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| | - Maarten G. Lansberg
- Department of Neurology, University of Utah (A.D.); Department of Neurology, Yale University (K.N.S.); Department of Emergency Medicine, Brown University (T.M.); Department of Neurology, University of Virginia (K.J.); Department of Neurology, Medical University of South Carolina (T.T., J.E.); Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Japan (K.T.); Center for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh (J.M.W.); Dell Medical School (S.C.J.); Department of Neurology, Columbia University (O.W.); Department of Medicine (Neurology), McMaster University/Population Heath Research Institute (A.S.); Department of Neurology, Stanford University (M.L.)
| |
Collapse
|
6
|
Lee CY, Wu TC, Lin SJ. Effects of Postoperative Percutaneous Coronary Intervention, Pharmacologic Treatment, and Predisposing Factors on Clinical Outcomes in Patients With and Without Type 2 Diabetes Along With Critical Limb Ischemia. Clin Ther 2020; 43:195-210.e2. [PMID: 33358255 DOI: 10.1016/j.clinthera.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/29/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Critical limb ischemia (CLI) has been identified as being connected to rates of cardiovascular mortality and lower extremity amputation (LEA). This prospective study investigated the effects of percutaneous coronary intervention (PCI), pharmacologic treatment, and predisposing factors on clinical outcomes in patients with and without type 2 diabetes mellitus (DM) along with CLI after endovascular intervention. METHODS 249 consecutive patients with CLI (Fontaine stages III-IV) received pharmacologic treatment after successful endovascular intervention. Their primary patency rates of infrapopliteal lesions and cardiovascular and amputation events during a 36-month follow-up period were assessed. FINDINGS Patients with DM were more likely to be younger (P = 0.026); 50% (n = 63), 42.9% (n = 54), 52.4% (n = 66), and 77% (n = 97) of DM patients had arterial calcification, end-stage renal disease, diabetic neuropathy, and Fontaine stage IV (P < 0.001, P < 0.001, P < 0.001, and P = 0.019, respectively). The primary patency rates were 61%, 48.8%, and 42.3% at 12, 24, and 36 months, in the patients without DM (P = 0.034, P = 0.013, and P = 0.005). Patients with DM had higher risks of 36-month coronary artery disease, cerebrovascular accident, mortality, and LEA (P = 0.005, P = 0.042, P = 0.042, and P < 0.001). Patients with CLI receiving long-term cilostazol treatment had a better primary patency and amputation-free survival, and a lower risk of mortality at 36 months (P < 0.001, P < 0.001, and P = 0.001). Statin use was associated with 36-month amputation-free survival but not with primary patency (P = 0.032 and P = 0.088). Subgroup multivariate Cox analyses showed that primary patency was independently associated with long-term cilostazol treatment, PCI in the first postoperative year, and direct revascularization in the DM group, whereas in the control group, long-term cilostazol treatment was the main independent factor. The risk of amputation was independently associated with a high high-sensitivity chronic reactive protein level, diabetic neuropathy, sole use of an oral hypoglycemic agent, and lack of supervised exercise. IMPLICATIONS Long-term cilostazol treatment, aggressive management of dyslipidemia, and meticulous assessment and prevention of postoperative unstable coronary artery disease should be considered in CLI patients with and without DM to maximize clinical outcomes. PCI in the first postoperative year may be a predisposing factor for patency failure in patients with CLI, especially those with DM. A large-scale prospective randomized trial should be conducted to confirm these findings (TVGH IRB No. 2013-08-020B).
Collapse
Affiliation(s)
- Chiu-Yang Lee
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan.
| | - Tao-Cheng Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
EPAC in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21145160. [PMID: 32708284 PMCID: PMC7404248 DOI: 10.3390/ijms21145160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.
Collapse
|
8
|
Zheng H, Yang H, Gong D, Mai L, Qiu X, Chen L, Su X, Wei R, Zeng Z. Progress in the Mechanism and Clinical Application of Cilostazol. Curr Top Med Chem 2020; 19:2919-2936. [PMID: 31763974 DOI: 10.2174/1568026619666191122123855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
Cilostazol is a unique platelet inhibitor that has been used clinically for more than 20 years. As a phosphodiesterase type III inhibitor, cilostazol is capable of reversible inhibition of platelet aggregation and vasodilation, has antiproliferative effects, and is widely used in the treatment of peripheral arterial disease, cerebrovascular disease, percutaneous coronary intervention, etc. This article briefly reviews the pharmacological mechanisms and clinical application of cilostazol.
Collapse
Affiliation(s)
- Huilei Zheng
- Department of Medical Examination & Health Management, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Hua Yang
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Department of Critical Care Medicine, Second People's Hospital of Nanning, Nanning, Guangxi, China
| | - Danping Gong
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Elderly Cardiology Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lanxian Mai
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Disciplinary Construction Office, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoling Qiu
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Lidai Chen
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Xiaozhou Su
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Ruoqi Wei
- Department of Computer Science and Engineering, University of Bridgeport,126 Park Ave, BRIDGEPORT, CT 06604, United States
| | - Zhiyu Zeng
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Elderly Cardiology Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Smith SA, Newby AC, Bond M. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells 2019; 8:cells8111447. [PMID: 31744111 PMCID: PMC6912325 DOI: 10.3390/cells8111447] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3′ 5′ cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.
Collapse
Affiliation(s)
| | | | - Mark Bond
- Correspondence: ; Tel.: +44-117-3423586
| |
Collapse
|
10
|
Su SC, Hung YJ, Huang CL, Shieh YS, Chien CY, Chiang CF, Liu JS, Lu CH, Hsieh CH, Lin CM, Lee CH. Cilostazol inhibits hyperglucose-induced vascular smooth muscle cell dysfunction by modulating the RAGE/ERK/NF-κB signaling pathways. J Biomed Sci 2019; 26:68. [PMID: 31492153 PMCID: PMC6731603 DOI: 10.1186/s12929-019-0550-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Background Increasing evidence suggests that high glucose (HG) causes abnormalities in endothelial and vascular smooth muscle cell function (VSMC) and contributes to atherosclerosis. Receptor for advanced glycation end-products (RAGE) has been linked to the pathogenesis of both the macrovascular and microvascular complications of diabetes. Cilostazol is used to treat diabetic vasculopathy by ameliorating HG-induced vascular dysfunction. Objectives In this study, we investigated whether the cilostazol suppression of HG-induced VSMC dysfunction is through RAGE signaling and its possible regulation mechanism. Method We investigated the effect of HG and cilostazol on RAGE signaling in A7r5 rat VSMCs. Aortic tissues of streptozotocin (STZ) diabetic mice were also collected. Results Aortic tissue samples from the diabetic mice exhibited a significantly decreased RAGE expression after cilostazol treatment. HG increased RAGE, focal adhesion kinase (FAK), matrix metalloproteinase-2 (MMP-2), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions, and was accompanied with increased reactive oxygen species (ROS), cell proliferation, adhesion and migration. Cilostazol significantly reversed HG-induced RAGE, ROS, downstream gene expressions and cell functions. RAGE knockdown significantly reversed the expressions of HG-induced vasculopathy related gene expressions and cell functions. Cilostazol with RAGE knockdown had additive effects on downstream ERK/NF-κB signaling pathways, gene expressions and cell functions of A7r5 rat VSMCs in HG culture. Conclusions Both in vitro and in vivo experimental diabetes models showed novel signal transduction of cilostazol-mediated protection against HG-related VSMC dysfunction, and highlighted the involvement of RAGE signaling and downstream pathways.
Collapse
Affiliation(s)
- Sheng-Chiang Su
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan. .,Division of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| | - Chia-Luen Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan.,Department of Oral Diagnosis and Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Fu Chiang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan. .,Division of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
11
|
Abstract
INTRODUCTION Stroke not only causes critical disability and death but is also a cause of anxiety with the possibility of secondary cardiovascular events including secondary ischemic stroke. Indeed, patients with a history of previous stroke have a high rate of stroke recurrence, indicating the clinical importance of secondary stroke prevention. Area of covered: This review provides an overview of the pooled evidence for cilostazol's use in the management of secondary stroke prevention. Among the various antiplatelet agents that are available, aspirin is the most frequently used agent worldwide for the prevention of secondary stroke. Cilostazol, a selective phosphodiesterase (PDE) 3A inhibitor, is used worldwide for the treatment of patients with intermittent claudication. However, in Asia, cilostazol is recommended and used in practice for secondary stroke prevention. Expert opinion: The authors believe that cilostazol could be used for secondary stroke prevention not only in Asia but worldwide. However, further randomized trials on cilostazol are needed, especially in the US and Europe to better support its case.
Collapse
Affiliation(s)
- Kensuke Noma
- a Department of Cardiovascular Regeneration and Medicine , Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University , Hiroshima , Japan.,b Division of Regeneration and Medicine , Medical Center for Translational and Clinical Research, Hiroshima University Hospital , Hiroshima , Japan
| | - Yukihito Higashi
- a Department of Cardiovascular Regeneration and Medicine , Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University , Hiroshima , Japan.,b Division of Regeneration and Medicine , Medical Center for Translational and Clinical Research, Hiroshima University Hospital , Hiroshima , Japan
| |
Collapse
|
12
|
Vallin B, Legueux-Cajgfinger Y, Clément N, Glorian M, Duca L, Vincent P, Limon I, Blaise R. Novel short isoforms of adenylyl cyclase as negative regulators of cAMP production. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1326-1340. [PMID: 29940197 DOI: 10.1016/j.bbamcr.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
Here, we cloned a new family of four adenylyl cyclase (AC) splice variants from interleukin-1β (IL-1β)-transdifferentiated vascular smooth muscle cells (VSMCs) encoding short forms of AC8 that we have named "AC8E-H". Using biosensor imaging and biochemical approaches, we showed that AC8E-H isoforms have no cyclase activity and act as dominant-negative regulators by forming heterodimers with other full-length ACs, impeding the traffic of functional units towards the plasma membrane. The existence of these dominant-negative isoforms may account for an unsuspected additional degree of cAMP signaling regulation. It also reconciles the induction of an AC in transdifferentiated VSMCs with the vasoprotective influence of cAMP. The generation of alternative splice variants of ACs may constitute a generalized strategy of adaptation to the cell's environment whose scope had so far been ignored in physiological and/or pathological contexts.
Collapse
Affiliation(s)
- Benjamin Vallin
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Yohan Legueux-Cajgfinger
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Nathalie Clément
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Martine Glorian
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Laurent Duca
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne (URCA), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), Campus Moulin de la Housse, 51687 Reims, France
| | - Pierre Vincent
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France.
| | - Isabelle Limon
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France.
| | - Régis Blaise
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| |
Collapse
|
13
|
Galyfos G, Sianou A. Cilostazol for Secondary Prevention of Stroke: Should the Guidelines Perhaps Be Extended? Vasc Specialist Int 2017; 33:89-92. [PMID: 28955697 PMCID: PMC5614376 DOI: 10.5758/vsi.2017.33.3.89] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
Cilostazol belongs to the new generation antiplatelet agents that have been introduced and studied regarding a potential role in cardiovascular disease prevention or treatment. Although data on peripheral artery disease are sufficient, and the drug has been recommended as first line treatment for intermittent claudication, it has not been approved nor recommended as far as cerebrovascular events are concerned. However, a great volume of randomized as well as pooled data has been published during the last years. Therefore, this review aims to describe the basic mechanisms of cilostazol’s action as well as to present all recent clinical data in order to conclude on whether official guidelines should be extended.
Collapse
Affiliation(s)
- George Galyfos
- Division of Vascular Surgery, Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Argyri Sianou
- Department of Microbiology, University of Athens Medical School, Areteion Hospital, Athens, Greece
| |
Collapse
|
14
|
Outcome of Triple Antiplatelet Therapy Including Cilostazol in Elderly Patients with ST-Elevation Myocardial Infarction who Underwent Primary Percutaneous Coronary Intervention: Results from the INTERSTELLAR Registry. Drugs Aging 2017; 34:467-477. [PMID: 28456945 DOI: 10.1007/s40266-017-0463-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Compared with dual antiplatelet therapy including aspirin and clopidogrel, triple antiplatelet therapy including cilostazol has a mortality benefit in patients with ST-segment elevation myocardial infarction. However, whether the mortality benefit persists in elderly patients is not clear. METHODS From 2007 to 2014, 1278 patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention were retrospectively analyzed. The patients were divided into four groups by age (<75 or ≥75 years; young and elderly, respectively) and antiplatelet strategy (triple or dual antiplatelet therapy). We compared the mortality rates between the triple and dual antiplatelet therapy groups. RESULTS There were 1052 (male, 85%; mean age, 56.3 ± 10.4 years) patients in the young group and 241 (male, 52.7%; mean age, 80.3 ± 4.5 years) patients in the elderly group. In the young and elderly groups, 220 (20.9%) and 28 (12.3%) patients were treated with triple antiplatelet therapy. During a 1-year follow-up period, 80 patients died (4.2% in the young group vs. 15.5% in the elderly group). Kaplan-Meier survival analysis revealed that triple antiplatelet therapy was associated with a lower mortality rate in the young group (log-rank, p = 0.005). Although there were more angiographic high-risk patients in the elderly group, similar mortality rates were reported (log-rank, p = 0.803) without increased bleeding rates (1 vs. 3.6% in the elderly group, p = 0.217). CONCLUSIONS Triple antiplatelet therapy might be a better antiplatelet regimen than dual antiplatelet therapy for patients with ST-segment elevation myocardial infarction. Although this benefit was strong in patients aged <75 years, no definite increase in major bleeding was seen for elderly patients (aged ≥75 years).
Collapse
|
15
|
Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice. Atherosclerosis 2017; 261:44-51. [PMID: 28445811 DOI: 10.1016/j.atherosclerosis.2017.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Several studies have demonstrated that both native glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonists suppress the progression of atherosclerosis in animal models. METHODS We investigated whether liraglutide, a GLP-1 analogue, could prevent the development of atherosclerosis in apolipoprotein E knockout mice (ApoE-/-) on a high-fat diet. We also examined the influence of liraglutide on angiotensin II-induced proliferation of rat vascular smooth muscle cells (VSMCs) via enhancement of AMP-activated protein kinase (AMPK) signaling and regulation of cell cycle progression. RESULTS Treatment of ApoE-/- mice with liraglutide (400 μg/day for 4 weeks) suppressed atherosclerotic lesions and increased AMPK phosphorylation in the aortic wall. Liraglutide also improved the endothelial function of thoracic aortas harvested from ApoE-/- mice in an ex vivo study. Furthermore, liraglutide increased AMPK phosphorylation in rat VSMCs, while liraglutide-induced activation of AMPK was abolished by exendin 9-39, a GLP-1 antagonist. Moreover, angiotensin (Ang) II-induced proliferation of VSMCs was suppressed by liraglutide in a dose-dependent manner, and flow cytometry of Ang II-stimulated VSMCs showed that liraglutide reduced the percentage of cells in G2/M phase (by arrest in G0/G1 phase). CONCLUSIONS These findings suggest that liraglutide may inhibit Ang II-induced VSMC proliferation by activating AMPK signaling and inducing cell cycle arrest, thus delaying the progression of atherosclerosis independently of its glucose-lowering effect.
Collapse
|
16
|
Lee CH, Hung YJ, Shieh YS, Chien CY, Hsu YJ, Lin CY, Chiang CF, Huang CL, Hsieh CH. Cilostazol inhibits uremic toxin–induced vascular smooth muscle cell dysfunction: role of Axl signaling. Am J Physiol Renal Physiol 2017; 312:F398-F406. [DOI: 10.1152/ajprenal.00258.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with increased cardiovascular mortality, and vascular smooth muscle cell (VSMC) dysfunction plays a pivotal role in uremic atherosclerosis. Axl signaling is involved in vascular injury and is highly expressed in VSMCs. Recent reports have shown that cilostazol, a phosphodiesterase type 3 inhibitor (PDE3), can regulate various stages of the atherosclerotic process. However, the role of cilostazol in uremic vasculopathy remains unclear. This study aimed to identify the effect of cilostazol in VSMCs in the experimental CKD and to investigate whether the regulatory mechanism occurs through Axl signaling. We investigated the effect of P-cresol and cilostazol on Axl signaling in A7r5 rat VSMCs and the rat and human CKD models. From the in vivo CKD rats and patients, aortic tissue exhibited significantly decreased Axl expression after cilostazol treatment. P-cresol increased Axl, proliferating of cell nuclear antigen (PCNA), focal adhesion kinase (FAK), and matrix metalloproteinase-2 (MMP-2) expressions, decreased caspase-3 expression, and was accompanied by increased cell viability and migration. Cilostazol significantly reversed P-cresol-induced Axl, downstream gene expressions, and cell functions. Along with the increased Axl expression, P-cresol activated PLCγ, Akt, and ERK phosphorylation and cilostazol significantly suppressed the effect of P-cresol. Axl knockdown significantly reversed the expressions of P-cresol-induced Axl-related gene expression and cell functions. Cilostazol with Axl knockdown have additive changes in downstream gene expression and cell functions in P-cresol culture. Both in vitro and in vivo experimental CKD models elucidate a new signal transduction of cilostazol-mediated protection against uremic toxin-related VSMCs dysfunction and highlight the involvement of the Axl signaling and downstream pathways.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
- Department of Oral Diagnosis and Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; and
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Fu Chiang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Luen Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
17
|
Fan ZG, Ding GB, Li XB, Gao XF, Gao YL, Tian NL. The clinical outcomes of triple antiplatelet therapy versus dual antiplatelet therapy for high-risk patients after coronary stent implantation: a meta-analysis of 11 clinical trials and 9,553 patients. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3435-3448. [PMID: 27799743 PMCID: PMC5076804 DOI: 10.2147/dddt.s119616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The optimal antiplatelet regimen after in-coronary intervention among patients presenting with complex coronary artery lesions or acute coronary syndrome (ACS) has remained unclear. This study sought to evaluate the clinical outcomes of triple antiplatelet treatment (TAPT) (cilostazol added to aspirin plus clopidogrel) in these patients. Methods The PubMed, EMBASE, MEDLINE, and other Internet sources were searched for relevant articles. The primary end point was major adverse cardiac events (MACE), including all-cause mortality, myocardial infarction, and target vessel revascularization. The incidence of definite/probable stent thrombosis and bleeding were analyzed as the safety end points. Results Eleven clinical trials involving 9,553 patients were analyzed. The risk of MACE was significantly decreased following TAPT after stent implantation in the ACS subgroup (odds ratio [OR]: 0.72; 95% confidence interval [CI]: 0.61–0.85; P<0.001), which might mainly result from the lower risk of all-cause mortality in this subset (OR: 0.62; 95% CI: 0.48–0.80; P<0.001). The risk of bleeding was not increased with respect to TAPT. Conclusion TAPT after stent implantation was associated with feasible benefits on reducing the risk of MACE, especially on reducing the incidence of all-cause mortality among patients suffering from ACS, without higher incidence of bleeding. Larger and more powerful randomized trials are still warranted to prove the superiority of TAPT for such patients.
Collapse
Affiliation(s)
- Zhong-Guo Fan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing
| | - Guo-Bin Ding
- Department of Cardiology, Taixing People's Hospital, Yangzhou University, Taizhou
| | - Xiao-Bo Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing; Department of Cardiology, Nanjing Heart Center, Nanjing, People's Republic of China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing; Department of Cardiology, Nanjing Heart Center, Nanjing, People's Republic of China
| | - Ya-Li Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing
| | - Nai-Liang Tian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing; Department of Cardiology, Nanjing Heart Center, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Slim RM, Song Y, Albassam M, Dethloff LA. Apoptosis and Nitrative Stress Associated with Phosphodiesterase Inhibitor-Induced Mesenteric Vasculitis in Rats. Toxicol Pathol 2016; 31:638-45. [PMID: 14585732 DOI: 10.1080/01926230390241972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nitric oxide may play a role in phosphodiesterase (PDE) inhibitor-induced rat mesenteric vasculitis. The present study was conducted to identify cellular sources of iNOS, determine the distribution of nitrotyrosine (NT) residues as a footprint of peroxynitrite (ONOO-) production, and evaluate their association with vascular apoptosis. To dissociate primary events from secondary changes associated with the inflammatory response, rats were given the PDE IV inhibitor CI-1018 orally at 750 mg/kg alone or concurrently with dexamethasone (DEX) intraperitoneally at 1 mg/kg for 4—5 days. Neutrophil (PMN) involvement in apoptosis was investigated in CI-1018 treated rats dosed with rabbit anti-rat PMN serum (APS). iNOS expression, NT residues, and caspase-3 were detected by immuno-histochemistry. Apoptosis was evaluated by TUNEL assay. CI-1018 induced vascular lesions were associated with iNOS expression in endothelial cells and inflammatory infiltrates; NT was evident only in the latter. Caspase-3 and TUNEL-positive staining were prominent only in medial smooth muscle cells (SMC) from CI-1018-treated rats and only when associated with active inflammation. iNOS- and NT-positive inflammatory cells were present in close proximity to SMC with caspase-3 staining. Inflammatory infiltrates were absent in rats given DEX with minimal SMC necrosis and hemorrhage remained. DEX eliminated apoptosis and immunoreactivity associated with caspase-3, iNOS, and NT. APS depletion of PMNs decreased the incidence and severity of vasculitis but failed to abolish completely caspase-3 immunoreactivity. Expression patterns for caspase-3, iNOS, and NT demonstrated that nitrative stress is a prominent feature of PDE inhibitor-induced vasculitis, with a possible role in medial SMC apoptosis. Further, medial SMC apoptosis may not be a primary event, but instead may be secondary to the inflammatory response.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antilymphocyte Serum/immunology
- Antilymphocyte Serum/pharmacology
- Apoptosis/drug effects
- Caspase 3
- Caspases/metabolism
- Dexamethasone/administration & dosage
- Dexamethasone/pharmacology
- Drug Therapy, Combination
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Female
- Immunoenzyme Techniques
- In Situ Nick-End Labeling
- Injections, Intraperitoneal
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/pathology
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Oxidative Stress/drug effects
- Peroxynitrous Acid/metabolism
- Phosphodiesterase Inhibitors/administration & dosage
- Phosphodiesterase Inhibitors/toxicity
- Rats
- Rats, Wistar
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
- Vasculitis/chemically induced
- Vasculitis/metabolism
- Vasculitis/pathology
Collapse
Affiliation(s)
- Rabih M Slim
- Departments of Drug Safety Evaluation, Pfizer Global Research and Development, Ann Arbor Laboratories, Ann Arbor, Michigan 48105, USA
| | | | | | | |
Collapse
|
19
|
Lin CF, Huang HL, Peng CY, Lee YC, Wang HP, Teng CM, Pan SL. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis. Toxicol Appl Pharmacol 2016; 305:194-202. [PMID: 27312871 DOI: 10.1016/j.taap.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/17/2016] [Accepted: 06/08/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. METHODS Cell proliferation was determined using [(3)H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. RESULTS TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. CONCLUSION The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Chao-Feng Lin
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Han-Li Huang
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chieh-Yu Peng
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Biotechnology in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Po Wang
- College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Che-Ming Teng
- College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shiow-Lin Pan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 10031, Taiwan.
| |
Collapse
|
20
|
Benza RL, Gomberg-Maitland M, Demarco T, Frost AE, Torbicki A, Langleben D, Pulido T, Correa-Jaque P, Passineau MJ, Wiener HW, Tamari M, Hirota T, Kubo M, Tiwari HK. Endothelin-1 Pathway Polymorphisms and Outcomes in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2016; 192:1345-54. [PMID: 26252367 DOI: 10.1164/rccm.201501-0196oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a progressive fatal disease. Variable response and tolerability to PAH therapeutics suggests that genetic differences may influence outcomes. The endothelin pathway is central to pulmonary vascular function, and several polymorphisms and/or mutations in the genes coding for endothelin (ET)-1 and its receptors correlate with the clinical manifestations of other diseases. OBJECTIVES To examine the interaction of ET-1 pathway polymorphisms and treatment responses of patients with PAH treated with ET receptor antagonists (ERAs). METHODS A total of 1,198 patients with PAH were prospectively enrolled from 45 U.S. and Canadian pulmonary hypertension centers or retrospectively from global sites participating in the STRIDE (Sitaxsentan To Relieve Impaired Exercise) trials. Comprehensive objective measures including a 6-minute-walk test, Borg dyspnea score, functional class, and laboratory studies were completed at baseline, before the initiation of ERAs, and repeated serially. Single-nucleotide polymorphisms from ET-1 pathway candidate genes were selected from a completed genome-wide association study performed on the study cohort. MEASUREMENTS AND MAIN RESULTS Patient efficacy outcomes were analyzed for a relationship between ET-1 pathway polymorphisms and clinical efficacy using predefined, composite positive and negative outcome measures in 715 European descent samples. A single-nucleotide polymorphism (rs11157866) in the G-protein alpha and gamma subunits gene was significantly associated, accounting for multiple testing, with a combined improvement in functional class and 6-minute-walk distance at 12 and 18 months and marginally significant at 24 months. CONCLUSIONS ET-1 pathway associated polymorphisms may influence the clinical efficacy of ERA therapy for PAH. Further prospective studies are needed.
Collapse
Affiliation(s)
- Raymond L Benza
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Mardi Gomberg-Maitland
- 2 Division of Cardiovascular Disease, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Teresa Demarco
- 3 Division of Cardiovascular Disease, Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Adam Torbicki
- 5 Department of Pulmonary Circulation and Thromboembolic Diseases, Centre of Postgraduate Medical Education, ECZ, Otwock, Poland
| | - David Langleben
- 6 Department of Medicine, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Canada
| | - Tomas Pulido
- 7 Cardiopulmonary Department, National Heart Institute, Mexico City, Mexico
| | - Priscilla Correa-Jaque
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Michael J Passineau
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | | | - Mayumi Tamari
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomomitsu Hirota
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hemant K Tiwari
- 10 Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
21
|
Sanada F, Kanbara Y, Taniyama Y, Otsu R, Carracedo M, Ikeda-Iwabu Y, Muratsu J, Sugimoto K, Yamamoto K, Rakugi H, Morishita R. Induction of Angiogenesis by a Type III Phosphodiesterase Inhibitor, Cilostazol, Through Activation of Peroxisome Proliferator-Activated Receptor-γ and cAMP Pathways in Vascular Cells. Arterioscler Thromb Vasc Biol 2016; 36:545-52. [PMID: 26769045 DOI: 10.1161/atvbaha.115.307011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/28/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Peripheral arterial disease is highly prevalent in the elderly and in the subjects with cardiovascular risk factors such as diabetes. Approximately 2% to 4% of those affected with peripheral arterial disease commonly complain of intermittent claudication. Cilostazol, a type III phosphodiesterase inhibitor, is the only Food and Drug Administration-approved drug for the treatment of intermittent claudication. Cilostazol has been shown to be beneficial for the improvement of pain-free walking distance in patients with intermittent claudication in a series of randomized clinical trials. However, the underlying mechanism how cilostazol improved intermittent claudication symptoms is still unclear. APPROACH AND RESULTS In this study, the effect of cilostazol on ischemic leg was investigated in mouse ischemic hindlimb model. Administration of cilostazol significantly increased the expression of hepatocyte growth factor (HGF), vascular endothelial growth factor, angiopoietin-1, and peroxisome proliferator-activated receptor-γ in vasculature. The capillary density in ischemic leg was also significantly increased in cilostazol treatment group when compared with control and aspirin treatment group. However, an increase in capillary density and the expression of growth factors was almost completely abolished by coadministration of HGF-neutralizing antibody, suggesting that cilostazol enhanced angiogenesis mainly through HGF. In vitro experiment revealed that cilostazol treatment increased HGF production in vascular smooth muscle cells via 2 major pathways: peroxisome proliferator-activated receptor-γ and cAMP pathways. CONCLUSIONS Our data suggest that the favorable effects of cilostazol on ischemic leg might be through the angiogenesis through the induction of HGF via peroxisome proliferator-activated receptor-γ and cAMP pathways.
Collapse
Affiliation(s)
- Fumihiro Sanada
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuhiro Kanbara
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiaki Taniyama
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Rei Otsu
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miguel Carracedo
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuka Ikeda-Iwabu
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Muratsu
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ken Sugimoto
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koichi Yamamoto
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromi Rakugi
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuichi Morishita
- From the Departments of Clinical Gene Therapy (F.S., Y.K., Y.T., R.O., M.C., Y.I.-I., J.M., R.M.) and Geriatric and General Medicine (Y.T., J.M., K.S., K.Y., H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
22
|
Rogers KC, Oliphant CS, Finks SW. Clinical efficacy and safety of cilostazol: a critical review of the literature. Drugs 2016; 75:377-95. [PMID: 25758742 DOI: 10.1007/s40265-015-0364-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cilostazol is a unique antiplatelet agent that has been commercially available for over two decades. As a phosphodiesterase III inhibitor, it reversibly inhibits platelet aggregation yet also possesses vasodilatory and antiproliferative properties. It has been widely studied in a variety of disease states, including peripheral arterial disease, cerebrovascular disease, and coronary artery disease with percutaneous coronary intervention. Overall, cilostazol appears to be a promising agent in the management of these disease states with a bleeding profile comparable to placebo; even when combined with other antiplatelet agents, cilostazol does not appear to increase the rate of bleeding. Despite the possible benefit of cilostazol, its use is limited by tolerability as some patients often report drug discontinuation due to headache, diarrhea, dizziness, or increased heart rate. To date, it has been predominantly studied in the Asian population, making it difficult to extrapolate these results to a more diverse patient population. This paper discusses the evolving role of cilostazol in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Kelly C Rogers
- Department of Clinical Pharmacy, University of Tennessee College of Pharmacy, 881 Madison Ave, Rm 457, Memphis, TN, 38163, USA,
| | | | | |
Collapse
|
23
|
Galyfos G, Geropapas G, Sigala F, Aggeli K, Sianou A, Filis K. Meta-Analysis of Studies Evaluating the Effect of Cilostazol on Major Outcomes After Carotid Stenting. J Endovasc Ther 2015; 23:186-95. [PMID: 26620397 DOI: 10.1177/1526602815619409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the effect of cilostazol on major outcomes after carotid artery stenting (CAS). METHODS A systematic literature review was conducted conforming to established criteria in order to identify articles published prior to May 2015 evaluating major post-CAS outcomes in patients treated with cilostazol vs patients not treated with cilostazol. Major outcomes included in-stent restenosis (ISR) within the observation period, the revascularization rate, major/minor bleeding, and the myocardial infarction/stroke/death rate (MI/stroke/death) at 30 days and within the observation period. Data were pooled for all studies containing adequate data for each outcome investigated; effect estimates are presented as the odds ratios (ORs) and 95 confidence intervals (CI). RESULTS Overall, 7 studies pertaining to 1297 patients were eligible. Heterogeneity was low among studies so a fixed-effect analysis was conducted. Six studies (n=1233) were compared for the ISR endpoint, showing a significantly lower ISR rate with cilostazol treatment after a mean follow-up of 20 months (OR 0.158, 95% CI 0.072 to 0.349, p<0.001). Five studies (n=649) were compared regarding 30-day MI/stroke/death (OR 0.724, 95% CI 0.293 to 1.789, p=0.484) and 3 studies (n=1076) were analyzed regarding MI/stroke/death within the entire follow-up period (OR 0.768, 95% CI 0.477 to 1.236, p=0.276); no significant difference was found between the groups. Data on bleeding rates and revascularization rates post ISR were inadequate to conduct further analysis. CONCLUSION Cilostazol seems to decrease total ISR rates in patients undergoing CAS without affecting MI/stroke/death events, both in the early and late settings.
Collapse
Affiliation(s)
- George Galyfos
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece Department of Vascular Surgery, KAT General Hospital, Athens, Greece
| | | | - Fragiska Sigala
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Konstantina Aggeli
- First Department of Cardiology, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Argiri Sianou
- Department of Microbiology, University of Athens Medical School, Areteion Hospital, Athens, Greece
| | - Konstantinos Filis
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| |
Collapse
|
24
|
Saddouk FZ, Sun LY, Liu YF, Jiang M, Singer DV, Backs J, Van Riper D, Ginnan R, Schwarz JJ, Singer HA. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling. FASEB J 2015; 30:1051-64. [PMID: 26567004 DOI: 10.1096/fj.15-279158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions.
Collapse
Affiliation(s)
- Fatima Z Saddouk
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Li-Yan Sun
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Yong Feng Liu
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Miao Jiang
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Diane V Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Johannes Backs
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Dee Van Riper
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Roman Ginnan
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - John J Schwarz
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Harold A Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Tara S, Kurobe H, de Dios Ruiz Rosado J, Best CA, Shoji T, Mahler N, Yi T, Lee YU, Sugiura T, Hibino N, Partida-Sanchez S, Breuer CK, Shinoka T. Cilostazol, Not Aspirin, Prevents Stenosis of Bioresorbable Vascular Grafts in a Venous Model. Arterioscler Thromb Vasc Biol 2015; 35:2003-10. [PMID: 26183618 PMCID: PMC4548543 DOI: 10.1161/atvbaha.115.306027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 07/08/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Despite successful translation of bioresorbable vascular grafts for the repair of congenital heart disease, stenosis remains the primary cause of graft failure. In this study, we investigated the efficacy of long-term treatment with the antiplatelet drugs, aspirin and cilostazol, in preventing stenosis and evaluated the effect of these drugs on the acute phase of inflammation and tissue remodeling. APPROACH AND RESULTS C57BL/6 mice were fed a drug-mixed diet of aspirin, cilostazol, or normal chow during the course of follow-up. Bioresorbable vascular grafts, composed of poly(glycolic acid) mesh sealed with poly(l-lactide-co-ε-caprolactone), were implanted as inferior vena cava interposition conduits and followed up for 2 weeks (n=10 per group) or 24 weeks (n=15 per group). Both aspirin and cilostazol suppressed platelet activation and attachment onto the grafts. On explant at 24 weeks, well-organized neotissue had developed, and cilostazol treatment resulted in 100% graft patency followed by the aspirin (67%) and no-treatment (60%) groups (P<0.05). Wall thickness and smooth muscle cell proliferation in the neotissue of the cilostazol group were decreased when compared with that of the no-treatment group at 24 weeks. In addition, cilostazol was shown to have an anti-inflammatory effect on neotissue at 2 weeks by regulating the recruitment and activation of monocytes. CONCLUSIONS Cilostazol prevents stenosis of bioresorbable vascular graft in a mouse inferior vena cava implantation model up to 24 weeks and is accompanied by reduction of smooth muscle cell proliferation and acute inflammation.
Collapse
Affiliation(s)
- Shuhei Tara
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Hirotsugu Kurobe
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Juan de Dios Ruiz Rosado
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Cameron A Best
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Toshihiro Shoji
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Nathan Mahler
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Tai Yi
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Yong-Ung Lee
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Tadahisa Sugiura
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Narutoshi Hibino
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Santiago Partida-Sanchez
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Christopher K Breuer
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH
| | - Toshiharu Shinoka
- From the Tissue Engineering Program (S.T., H.K., C.A.B., T.S., N.M., T.Y., Y.-U.L., T.S., N.H., C.K.B., T.S.), Department of Cardiothoracic Surgery, The Heart Center (S.T., H.K., T.S., N.H., T.S.), and Center for Microbial Pathogenesis (J.d.D.R.R., S.P.-S.), Nationwide Children's Hospital, Columbus, OH.
| |
Collapse
|
26
|
Althoff TF, Offermanns S. G-protein-mediated signaling in vascular smooth muscle cells — implications for vascular disease. J Mol Med (Berl) 2015; 93:973-81. [DOI: 10.1007/s00109-015-1305-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 06/02/2015] [Indexed: 10/24/2022]
|
27
|
Transcription factor cAMP response element modulator (Crem) restrains Pdgf-dependent proliferation of vascular smooth muscle cells in mice. Pflugers Arch 2014; 467:2165-77. [PMID: 25425331 PMCID: PMC4564437 DOI: 10.1007/s00424-014-1652-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/26/2022]
Abstract
Transcription factors of the cAMP response element-binding protein (Creb)/cAMP response element modulator (Crem) family were linked to the switch from a contractile to a proliferating phenotype in vascular smooth muscle cells (VSMCs). Here, we analyzed the vascular function of Crem in mice with a global inactivation of Crem (Crem(-/-)). CRE-mediated transcriptional activity was enhanced in primary Crem(-/-) VSMCs under nonstimulated conditions and under stimulation with Forskolin and platelet-derived growth factor (Pdgf) whereas stimulation with nitric oxide or cGMP showed no effect. This elevated CRE-mediated transcriptional activity as a result of Crem inactivation did not alter aortic contractility or fractions of proliferating or apoptotic aortic VSMCs in situ, and no impact of Crem inactivation on the development of atherosclerotic plaques was observed. Crem(-/-) mice exhibited an increased neointima formation after carotid ligation associated with an increased proliferation of VSMCs in the carotid media. Pdgf-stimulated proliferation of primary aortic Crem(-/-) VSMCs was increased along with an upregulation of messenger RNA (mRNA) levels of Pdgf receptor, alpha polypeptide (Pdgfra), cyclophilin A (Ppia), the regulator of G-protein signaling 5 (Rgs5), and Rho GTPase-activating protein 12 (Arhgap12). Taken together, our data reveal the inhibition of Pdgf-stimulated proliferation of VSMCs by repressing the Pdgf-stimulated CRE-mediated transcriptional activation as the predominant function of Crem in mouse vasculature suggesting an important role of Crem in vasculoproliferative diseases.
Collapse
|
28
|
Zhang S, Nie S, Huang D, Huang J, Feng Y, Xie M. A polysaccharide from Ganoderma atrum inhibits tumor growth by induction of apoptosis and activation of immune response in CT26-bearing mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9296-9304. [PMID: 25179589 DOI: 10.1021/jf503250d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ganoderma atrum is one species of edible and pharmaceutical mushroom with various biological activities. Recently, a novel polysaccharide, PSG-1, was purified from G. atrum. The antitumor activity and its mechanism of action were studied. In vitro, PSG-1 has little effect on inhibiting proliferation of CT26 tumor cells. However, the tumor size was significantly decreased in PSG-1-treated mice. The results showed that PSG-1 induced apoptosis in CT26 cells. Moreover, the intracellular cyclic AMP (cAMP) level and protein kinase A (PKA) activity were markedly increased in PSG-1-treated mice. In contrast, the contents of cyclic GMP and DAG and the PKC activity were decreased. Similarly, the expression of PKA protein was upregulated, while PKC protein expression in PSG-1-treated group was lowered. Additionally, PSG-1 increased the immune organ index and serum biochemistry parameter. In general, PSG-1 enhances the antitumor immune response, induces apoptosis in CT26-bearing mice, and could be a safe and effective adjuvant for tumor therapy or functional food.
Collapse
Affiliation(s)
- Shenshen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | | | | | | | | | | |
Collapse
|
29
|
CREB is activated in smooth muscle cells isolated from atherosclerotic plaques and reduces smooth muscle cell proliferation via p21-dependent mechanism. Int J Cardiol 2014; 174:764-7. [DOI: 10.1016/j.ijcard.2014.04.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 11/22/2022]
|
30
|
Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling. Cell Death Dis 2014; 5:e1251. [PMID: 24853429 PMCID: PMC4047873 DOI: 10.1038/cddis.2014.229] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/27/2023]
Abstract
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling.
Collapse
|
31
|
Saito S, Hata K, Iwaisako K, Yanagida A, Takeiri M, Tanaka H, Kageyama S, Hirao H, Ikeda K, Asagiri M, Uemoto S. Cilostazol attenuates hepatic stellate cell activation and protects mice against carbon tetrachloride-induced liver fibrosis. Hepatol Res 2014; 44:460-73. [PMID: 23607402 DOI: 10.1111/hepr.12140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 01/28/2023]
Abstract
AIM Liver fibrosis is a common pathway leading to cirrhosis. Cilostazol, a clinically available oral phosphodiesterase-3 inhibitor, has been shown to have antifibrotic potential in experimental non-alcoholic fatty liver disease. However, the detailed mechanisms of the antifibrotic effect and its efficacy in a different experimental model remain elusive. METHODS Male C57BL/6J mice were assigned to five groups: mice fed a normal diet (groups 1 and 2); 0.1% or 0.3% cilostazol-containing diet (groups 3 and 4, respectively); and 0.125% clopidogrel-containing diet (group 5). Two weeks after feeding, groups 2-5 were intraperitoneally administered carbon tetrachloride (CCl4 ) twice a week for 6 weeks, while group 1 was treated with the vehicle alone. To investigate the effects of cilostazol on hepatic cells, in vitro studies were conducted using primary hepatic stellate cells (HSC), Kupffer cells and hepatocytes with cilostazol supplementation. RESULTS Sirius red staining revealed that groups 3 and 4 exhibited a lesser fibrotic area (2.49 ± 0.43% and 2.31 ± 0.30%, respectively) than group 2 (3.17 ± 0.67%, P < 0.05 and P < 0.001, respectively). In vitro studies showed cilostazol dose-dependently suppressed HSC activation (assessed by morphological change, cell proliferation, and the expression of HSC activation markers), suggesting the therapeutic effect of cilostazol is mediated by its direct action on HSC. CONCLUSION Cilostazol could alleviate CCl4 -induced hepatic fibrogenesis in vivo, presumably due, at least partly, to its direct effect to suppress HSC activation. Given its clinical availability and safety, it may be a novel therapeutic intervention for chronic liver diseases.
Collapse
Affiliation(s)
- Shunichi Saito
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Hata
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsuko Yanagida
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Takeiri
- Innovation Center for Immunoregulation and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirokazu Tanaka
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoichi Kageyama
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirofumi Hirao
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masataka Asagiri
- Innovation Center for Immunoregulation and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Chen Y, Zhang Y, Tang Y, Huang X, Xie Y. Long-term clinical efficacy and safety of adding cilostazol to dual antiplatelet therapy for patients undergoing PCI: a meta-analysis of randomized trials with adjusted indirect comparisons. Curr Med Res Opin 2014; 30:37-49. [PMID: 24083626 DOI: 10.1185/03007995.2013.850067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To assess the long-term clinical efficacy and safety of adding cilostazol to aspirin plus clopidogrel (triple antiplatelet therapy, TAT) in patients undergoing percutaneous coronary intervention (PCI) and explore its role in the era of new generation adenosine diphosphate (ADP)-receptor antagonists. METHODS PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials were searched for randomized controlled trials (RCTs) comparing TAT versus dual antiplatelet therapy (DAT), followed by a manual search. Then, a meta-analysis of RCTs comparing TAT versus standard DAT in patients undergoing PCI was performed. Furthermore, indirect comparisons of TAT versus new generation ADP-receptor antagonist based DAT (prasugrel or ticagrelor based DAT) were undertaken, with standard DAT as a common comparator. The included end-points were major adverse cardiovascular event (MACE), target lesion revascularization (TLR), target vessel revascularization (TVR), death, myocardial infarction (MI), stent thrombosis, bleeding and other drug adverse events. RESULTS Twelve RCTs with a total of 31,789 patients were included. Compared with standard DAT (n = 2551), TAT (n = 2545) significantly reduced the incidence of MACE (OR: 0.56, 95% CI: 0.47-0.68, P < 0.00001), TLR (OR: 0.51, 95% CI: 0.34-0.75, P = 0.0006) and TVR (OR: 0.59, 95% CI: 0.46-0.75, P < 0.0001), and did not change significantly in death (OR: 0.68, 95% CI: 0.44-1.05, P = 0.08), MI (OR: 0.80, 95% CI: 0.45-1.44, P = 0.46), stent thrombosis (OR: 0.61, 95% CI: 0.27-1.36, P = 0.23), major bleeding (OR: 1.42, 95% CI: 0.52-3.85, P = 0.49) and overall bleeding (OR: 1.16, 95% CI: 0.79-1.69, P = 0.45). Compared with prasugrel (n = 6813) or ticagrelor based DAT (n = 6732), TAT (n = 2545) further reduced the incidence of MACE (OR: 0.80, 95% CI: 0.72-0.90, P = 0.0012; OR: 0.83, 95% CI: 0.75-0.92, P = 0.0003, respectively). CONCLUSIONS Compared with standard DAT, the long-term use of TAT in patients with PCI gives more benefits in reducing the incidence of MACE, TLR and TVR without increasing bleeding. Furthermore, it might be superior to prasugrel or ticagrelor based DAT in term of MACE, which needs to be confirmed by future studies with direct comparisons.
Collapse
Affiliation(s)
- Yu Chen
- Division of Cardiology, Xinhua Hospital School of Medicine, Shanghai Jiaotong University , Shanghai , China
| | | | | | | | | |
Collapse
|
33
|
Lipskaia L, Bobe R, Chen J, Turnbull IC, Lopez JJ, Merlet E, Jeong D, Karakikes I, Ross AS, Liang L, Mougenot N, Atassi F, Lompré AM, Tarzami ST, Kovacic JC, Kranias E, Hajjar RJ, Hadri L. Synergistic role of protein phosphatase inhibitor 1 and sarco/endoplasmic reticulum Ca2+ -ATPase in the acquisition of the contractile phenotype of arterial smooth muscle cells. Circulation 2013; 129:773-85. [PMID: 24249716 DOI: 10.1161/circulationaha.113.002565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Phenotypic modulation or switching of vascular smooth muscle cells from a contractile/quiescent to a proliferative/synthetic phenotype plays a key role in vascular proliferative disorders such as atherosclerosis and restenosis. Although several calcium handling proteins that control differentiation of smooth muscle cells have been identified, the role of protein phosphatase inhibitor 1 (I-1) in the acquisition or maintenance of the contractile phenotype modulation remains unknown. METHODS AND RESULTS In human coronary arteries, I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase expression is specific to contractile vascular smooth muscle cells. In synthetic cultured human coronary artery smooth muscle cells, protein phosphatase inhibitor 1 (I-1 target) is highly expressed, leading to a decrease in phospholamban phosphorylation, sarco/endoplasmic reticulum Ca2+ -ATPase, and cAMP-responsive element binding activity. I-1 knockout mice lack phospholamban phosphorylation and exhibit vascular smooth muscle cell arrest in the synthetic state with excessive neointimal proliferation after carotid injury, as well as significant modifications of contractile properties and relaxant response to acetylcholine of femoral artery in vivo. Constitutively active I-1 gene transfer decreased neointimal formation in an angioplasty rat model by preventing vascular smooth muscle cell contractile to synthetic phenotype change. CONCLUSIONS I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase synergistically induce the vascular smooth muscle cell contractile phenotype. Gene transfer of constitutively active I-1 is a promising therapeutic strategy for preventing vascular proliferative disorders.
Collapse
Affiliation(s)
- Larissa Lipskaia
- Cardiovascular Research Center. Mount Sinai School of Medicine, New York, NY (L. Lipskaia, J.C., I.C.T., D.J., I.K., A.S.R., L. Liang, S.T.T., J.C.K., R.J.H.., L.H.); INSERM UMRS 956, Université Pierre et Marie Curie-Paris 6, Paris, France (L. Lipskaia, E.M., F.A., A.-M.L.); LIA/Transatlantic Cardiovascular Research Center, Université Pierre et Marie Curie/Mount Sinai School of Medicine, New York, NY (L. Lipskaia, J.C., I.C.T., E.M., D.J., I.K., L. Liang, F.A., A.-M.L., S.T.T., J.C.K., R.J.H., L.H.); INSERM U770, University Paris Sud, Le Kremlin-Bicêtre, France (R.B., J.J.L.); PECMV-Université Pierre et Marie Curie-Paris, Paris, France (N.M.); and University of Cincinnati, Cincinnati, OH (E.K.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Natriuretic peptide receptor-C agonist attenuates the expression of cell cycle proteins and proliferation of vascular smooth muscle cells from spontaneously hypertensive rats: role of Gi proteins and MAPkinase/PI3kinase signaling. PLoS One 2013; 8:e76183. [PMID: 24155894 PMCID: PMC3796523 DOI: 10.1371/journal.pone.0076183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit hyperproliferation and overexpression of cell cycle proteins. We earlier showed that small peptide fragments of cytoplasmic domain of natriuretic receptor-C (NPR-C) attenuate vasoactive peptide-induced hyperproliferation of VSMC. The present study investigated if C-ANP4–23, a specific agonist of NPR-C, could attanuate the hyperproliferation of VSMC from SHR by inhibiting the overexpression of cell cycle proteins and examine the underlying signaling pathways contributing to this inhibition. The proliferation of VSMC was determined by [3H] thymidine incorporation and the expression of proteins was determined by Western blotting. The hyperproliferation of VSMC from SHR and overexpression of cyclin D1,cyclin A, cyclin E, cyclin-dependent kinase 2 (cdk2), phosphorylated retinoblastoma protein (pRb), Giα proteins and enhanced phosphorylation of ERK1/2 and AKT exhibited by VSMC from SHR were attenuated by C-ANP4–23 to control levels. In addition, in vivo treatment of SHR with C-ANP4–23 also attenuated the enhanced proliferation of VSMC. Furthemore, PD98059, wortmannin and pertussis toxin, the inhibitors of MAP kinase, PI3kinase and Giα proteins respectively, also attenuated the hyperproliferation of VSMC from SHR and overexpression of cell cycle proteins to control levels. These results indicate that NPR-C activation by C-ANP4–23 attenuates the enhanced levels of cell cycle proteins through the inhibition of enhanced expression of Giα proteins and enhanced activation of MAPkinase/PI3kinase and results in the attenuation of hyperproliferation of VSMC from SHR. It may be suggested that C-ANP4–23 could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension, atherosclerosis and restenosis.
Collapse
|
35
|
Niazi AK, DiNicolantonio JJ, Lavie CJ, O'Keefe JH, Meier P, Bangalore S. Triple versus Dual Antiplatelet Therapy in Acute Coronary Syndromes: Adding Cilostazol to Aspirin and Clopidogrel. Cardiology 2013; 126:233-43. [DOI: 10.1159/000353674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022]
|
36
|
TSUTSUMI M, AIKAWA H, NII K, ETOU H, SAKAMOTO K, KURESHIMA M, INOUE R, YOSHIDA H, MATSUMOTO Y, NARITA S, KAZEKAWA K. Cilostazol Reduces Periprocedural Hemodynamic Depression in Carotid Artery Stenting. Neurol Med Chir (Tokyo) 2013; 53:163-70. [DOI: 10.2176/nmc.53.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Masanori TSUTSUMI
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Hiroshi AIKAWA
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Kouhei NII
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Housei ETOU
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Kimiya SAKAMOTO
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Makoto KURESHIMA
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Ritsurou INOUE
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Hidenori YOSHIDA
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Yoshihisa MATSUMOTO
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Sumito NARITA
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| | - Kiyoshi KAZEKAWA
- Department of Neurosurgery and Neuroradiology, Fukuoka University Chikushi Hospital
| |
Collapse
|
37
|
Kim JH, Karnovsky A, Mahavisno V, Weymouth T, Pande M, Dolinoy DC, Rozek LS, Sartor MA. LRpath analysis reveals common pathways dysregulated via DNA methylation across cancer types. BMC Genomics 2012; 13:526. [PMID: 23033966 PMCID: PMC3505188 DOI: 10.1186/1471-2164-13-526] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/27/2012] [Indexed: 12/31/2022] Open
Abstract
Background The relative contribution of epigenetic mechanisms to carcinogenesis is not well understood, including the extent to which epigenetic dysregulation and somatic mutations target similar genes and pathways. We hypothesize that during carcinogenesis, certain pathways or biological gene sets are commonly dysregulated via DNA methylation across cancer types. The ability of our logistic regression-based gene set enrichment method to implicate important biological pathways in high-throughput data is well established. Results We developed a web-based gene set enrichment application called LRpath with clustering functionality that allows for identification and comparison of pathway signatures across multiple studies. Here, we employed LRpath analysis to unravel the commonly altered pathways and other gene sets across ten cancer studies employing DNA methylation data profiled with the Illumina HumanMethylation27 BeadChip. We observed a surprising level of concordance in differential methylation across multiple cancer types. For example, among commonly hypomethylated groups, we identified immune-related functions, peptidase activity, and epidermis/keratinocyte development and differentiation. Commonly hypermethylated groups included homeobox and other DNA-binding genes, nervous system and embryonic development, and voltage-gated potassium channels. For many gene sets, we observed significant overlap in the specific subset of differentially methylated genes. Interestingly, fewer DNA repair genes were differentially methylated than expected by chance. Conclusions Clustering analysis performed with LRpath revealed tightly clustered concepts enriched for differential methylation. Several well-known cancer-related pathways were significantly affected, while others were depleted in differential methylation. We conclude that DNA methylation changes in cancer tend to target a subset of the known cancer pathways affected by genetic aberrations.
Collapse
Affiliation(s)
- Jung H Kim
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sakurai R, Koo BK, Kaneda H, Bonneau HN, Nagai R. Cilostazol added to aspirin and clopidogrel reduces revascularization without increases in major adverse events in patients with drug-eluting stents: a meta-analysis of randomized controlled trials. Int J Cardiol 2012; 167:2250-8. [PMID: 22727963 DOI: 10.1016/j.ijcard.2012.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/31/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND The effects of cilostazol added to aspirin and clopidogrel (triple antiplatelet therapy: TAT) on clinical outcomes after drug-eluting stent (DES) implantation are unknown. METHODS We conducted a meta-analysis of randomized controlled trials (RCTs) comparing TAT with aspirin and clopidogrel (dual antiplatelet therapy: DAT) in DES patients. Clinical end points were target lesion (TLR) and/or vessel (TVR) revascularization, death, myocardial infarction (MI), stent thrombosis (ST), bleeding, rash, gastrointestinal (GI) side effects, and drug discontinuation. We calculated the pooled estimate based on a fixed-effects model using Peto odds ratio (OR) for rare events. If heterogeneity was observed across an individual RCT, an analysis based on a random-effects model was performed. RESULTS Eight RCTs were included in this meta-analysis, involving 3590 patients (TAT:DAT=1800:1790). Up to 24 months, TAT showed a significant reduction in TLR (OR: 0.58, 95% confidence interval (CI): 0.43 to 0.78, p<0.001) and TVR (OR: 0.58, 95% CI: 0.40 to 0.83, p=0.003) compared with DAT. The incidence of death, MI, ST, or overall or major bleeding was comparable between the 2 groups, whereas the proportion of rash (OR: 2.50, 95% CI: 1.52 to 4.10, p<0.001), GI side effects (OR: 3.14, 95% CI: 1.79 to 5.50, p<0.001), or drug discontinuation (OR: 6.81, 95% CI: 2.12 to 21.86, p<0.001) was higher in TAT than DAT. CONCLUSIONS In this meta-analysis, TAT was associated with significantly effective outcomes for TLR and TVR without any increase in major adverse events but was associated with tolerance issues compared with DAT after DES implantation.
Collapse
Affiliation(s)
- Ryota Sakurai
- Department of Planning, Information and Management, The University of Tokyo Hospital, Tokyo, Japan
| | | | | | | | | |
Collapse
|
39
|
Clopidogrel use before renal artery angioplasty with/without stent placement resulted in tertiary procedure risk reduction. J Vasc Surg 2012; 56:416-23. [PMID: 22560231 DOI: 10.1016/j.jvs.2012.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/12/2011] [Accepted: 01/06/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Contrary to coronary artery literature, the effect of preprocedural clopidogrel on renal artery restenosis (RAR) has not been characterized. This study was designed to evaluate the effect of preprocedural clopidogrel on target vessel revascularization (TVR), reintervention, and restenosis for patients who underwent recurrent renal artery angioplasty. METHODS A retrospective analysis of patients treated for RAR in a single tertiary center from January 1999 to December 2009 was conducted. Patients were divided into preadmission use of (1) clopidogrel or (2) aspirin only (acetylsalicylic acid [ASA]) for the initial procedure. TVR was defined as occurrence of a tertiary procedure for symptomatic RAR. Rate of freedom from event (ie, tertiary restenosis and TVR) was analyzed using Kaplan-Meier method. RESULTS Eighty-eight interventions were performed on 77 patients with RAR; 66% were females with average (mean ± SEM) age and body mass index of 68.8 ± 1.1 and 28.6 ± 0.8, respectively. Comorbidities included 96% chronic hypertension, 33% diabetes, 76% hyperlipidemia, 20% renal insufficiency, 39% tobacco use, 58% coronary artery disease, and 51% peripheral vascular disease. Clopidogrel use increased significantly during the index procedure from admission 35.2% to discharge 97.7% (P < .001, McNemar test). There was a trend toward risk reduction of a tertiary intervention (23%) for patients admitted on clopidogrel compared with ASA (P = .052). Likewise, there was a trend (P = .051) toward increased freedom from a tertiary intervention, with cumulative freedom at 8 years 93.5% for clopidogrel vs 61% for ASA. No differences were found for restenosis. CONCLUSIONS The use of preprocedural clopidogrel was associated with a possible risk reduction of TVR reintervention, but this finding needs to be validated in randomized clinical trial.
Collapse
|
40
|
Mbong N, Anand-Srivastava MB. Hydrogen peroxide enhances the expression of Giα proteins in aortic vascular smooth cells: role of growth factor receptor transactivation. Am J Physiol Heart Circ Physiol 2012; 302:H1591-602. [PMID: 22268112 DOI: 10.1152/ajpheart.00627.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress has been shown to increase the expression of G(i)α proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats. The present study was undertaken to examine if H(2)O(2), which induces oxidative stress, could also enhance the expression of G(i)α proteins in VSMC and to further explore the underlying signaling pathways responsible for this response. Treatment of VSMC with H(2)O(2) increased the expression of G(i)α proteins and not of G(s)α protein in a concentration- and time-dependent manner. A maximal increase of ∼40-50% was observed at 100 μM and 1 h and was restored to control levels by AG1295 and AG1478, inhibitors of epidermal growth factor receptor (EGF-R) and platelet-derived growth factor receptor (PDGF-R), respectively, and PD98059 and U126, inhibitors of extracellular signal-regulated kinase (ERK1/2), and wortmannin and AKT inhibitor VIII, inhibitors of PKB/AKT, respectively. In addition, H(2)O(2) also increased the phosphorylation of EGF-R, PDGF-R, ERK1/2, and AKT, which was attenuated by the respective inhibitors, whereas the inhibitors of EGF-R and PDGE-R also inhibited the enhanced phosphorylation of ERK1/2 and AKT. Furthermore, transfection of cells with short interfering RNA of EGF-R and PDGF-R restored the H(2)O(2)-induced enhanced expression of G(i)α proteins to control levels. The increased expression of G(i)α proteins was reflected in enhanced G(i) functions as demonstrated by enhanced inhibition of adenylyl cyclase by inhibitory hormones and forskolin-stimulated adenylyl cyclase activity by a low concentration of GTPγS, whereas G(s)α-mediated stimulations of AC were significantly decreased. Furthermore, H(2)O(2)-induced enhanced proliferation of VSMC was attenuated by dibutyryl-cAMP. These results suggest that H(2)O(2) increases the expression of G(i)α proteins in VSMC through the transactivation of EGF-R/PDGF-R and ERK1/2 and phosphatidylinositol-3 kinase signaling pathways.
Collapse
Affiliation(s)
- Nathan Mbong
- Département of Physiology, Université de Montréal, Quebec, Canada
| | | |
Collapse
|
41
|
Jackson AJ, Coats P, Kingsmore DB. Pharmacotherapy to improve outcomes in vascular access surgery: a review of current treatment strategies. Nephrol Dial Transplant 2012; 27:2005-16. [PMID: 22247232 DOI: 10.1093/ndt/gfr552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Renal failure is a major cause of morbidity in western Europe, with rising prevalence. Vascular access complications are the leading cause of morbidity among patients on haemodialysis. Considering the health care burden of vascular access failure, there is limited research dedicated to the topic. METHODS Randomised control trials of medications aimed at improving vascular access patency were identified using a medline search between January 1950 and January 2011. RESULTS Thirteen randomised trials were identified, investigating antiplatelets, anticoagulants and fish oil in preserving vascular access patency. Outcomes are presented and reviewed in conjunction with the underlying pathophysiological mechanisms of failure of vascular access. DISCUSSION Vascular access failure is a complex process. Most clinical trials so far have involved medications primarily aimed at preventing thrombosis. Other contributing pathways such as neointimal hyperplasia have not been investigated clinically. Improved outcomes may be seen by linking future therapies to these pathways.
Collapse
Affiliation(s)
- Andrew J Jackson
- Department of Transplant Surgery, Western Infirmary, Glasgow, UK.
| | | | | |
Collapse
|
42
|
Role of PDE3A in regulation of cell cycle progression in mouse vascular smooth muscle cells and oocytes: implications in cardiovascular diseases and infertility. Curr Opin Pharmacol 2011; 11:725-9. [PMID: 22051884 DOI: 10.1016/j.coph.2011.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/06/2011] [Indexed: 12/15/2022]
Abstract
Phosphodiesterase-3 (PDE3) is a major cAMP-hydrolyzing PDE in vascular smooth muscle cells (VSMCs) and oocytes. The exact role and contribution of the two PDE3 isoforms, PDE3A and PDE3B, in VSMC growth regulation and oocyte maturation was examined using PDE3A (3A) and PDE3B (3B) knockout (KO) mouse models. PDE3A-deficient VSMCs exhibit marked reduction in mitogen-induced cell growth due to cell cycle arrest at G₀-G₁ phase, which resulted from dysregulation of cAMP/protein kinase A (PKA)-activated and mitogen-activated protein kinase (MAPK)-signaling pathways, as well as from alterations in key cell cycle regulatory proteins. Similarly, PDE3A-deficient oocytes exhibit cell cycle arrest at G₂/M phase because increased cAMP/PKA signaling in KO oocytes most likely inhibits Cdc25B-catalyzed dephosphorylation/activation of Cdc2 (maturation promoting factor (MPF)), a key regulator of G₂/M transition.
Collapse
|
43
|
Cilostazol inhibits matrix invasion and modulates the gene expressions of MMP-9 and TIMP-1 in PMA-differentiated THP-1 cells. Eur J Pharmacol 2011; 670:419-26. [PMID: 21925496 DOI: 10.1016/j.ejphar.2011.08.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/08/2011] [Accepted: 08/27/2011] [Indexed: 11/22/2022]
Abstract
The invasion of monocytes into the subendothelium space plays an important role in the early stage of atherosclerosis. Cilostazol, a specific phosphodiesterase type III (PDE3) inhibitor, has been shown to exhibit anti-atherosclerotic effect. The present study aimed to investigate the modulating effects of cilostazol on monocyte invasion and the gene expressions of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1. We found that PMA significantly increased the invasive ability and the MMP-9 activity of THP-1 cells, as analyzed by matrix invasion assay and gelatin zymography, respectively. The increased expression of MMP-9 was demonstrated at both the RNA and protein levels by RT/real-time PCR and western blot analysis. These changes were markedly inhibited by cilostazol in a dose-dependent manner, which also could be observed when cAMP analog was used. On the contrary, the expression of TIMP-1, an inhibitor of MMP-9, was significantly upregulated by cilostazol dose dependently at both the RNA and protein levels. Reverse zymography further confirmed the increase of TIMP-1 activity after cilostazol treatment. The increase of TIMP-1 by cilostazol, however, was not cAMP-dependent. Cilostazol reduced the MMP-9 promoter activity and suppressed the nuclear translocation of NF-κB, indicating that the inhibitory effect of cilostazol is at the transcriptional level. In conclusion, the present study provides an additional mechanism underlying the anti-atherosclerotic effect of cilostazol by inhibiting the monocyte invasion and modulating the gene expressions of MMP-9 and TIMP-1 in monocytes upon differentiating to macrophages.
Collapse
|
44
|
Shiohira S, Yoshida T, Sugiura H, Yoshida S, Mitobe M, Shimada K, Ohba T, Tsuchiya K, Kabaya T, Nitta K. Effect of the antiplatelet agent cilostazol on endovascular inflammatory biochemical parameters and the clinical symptoms of peripheral artery disease and restless legs syndrome in hemodialysis patients. Clin Exp Nephrol 2011; 15:893-9. [DOI: 10.1007/s10157-011-0485-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/28/2011] [Indexed: 11/30/2022]
|
45
|
Chuang SY, Yang SH, Pang JHS. Cilostazol reduces MCP-1-induced chemotaxis and adhesion of THP-1 monocytes by inhibiting CCR2 gene expression. Biochem Biophys Res Commun 2011; 411:402-8. [PMID: 21756880 DOI: 10.1016/j.bbrc.2011.06.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
Abstract
The chemotaxis and adhesion of monocytes to the injured endothelium in the early atherosclerosis is important. Cilostazol, a specific phosphodiesterase type III inhibitor, is known to exhibit anti-atherosclerotic effects mediated by different mechanisms. This study aimed to investigate the modulating effect of cilostazol on the MCP-1-induced chemotaxis and adhesion of monocytes. The gene expression of CCR2, the major receptor of MCP-1 in THP-1 monocytes, was also analyzed. The chemotaxis of monocytes toward MCP-1 was investigated using the transwell filter assay. Cilostazol dose-dependently inhibited the MCP-1-induced chemotaxis of monocytes which was shown to be cAMP-dependent. Using western blot analysis and flow cytometry method, we demonstrated the decrease of CCR2 protein at the cell membrane of monocytes by cilostazol treatment. Results from RT/real-time PCR confirmed the decrease of CCR2 mRNA expression by cilostazol which was also mediated by cAMP. Similar inhibition was also noted in human peripheral monocytes. The post-CCR2 signaling pathways including p44/42 and p38 MAPK were examined by western blot analysis. Result confirmed the inhibitory effect of cilostazol on the phosphorylation of p44/42 and p38 MAPK after MCP-1 stimulation. The activation of monocytes after MCP-1 treatment exhibited enhanced adhesion to vascular endothelial cells which was dose-dependently suppressed by cilostazol. Together, cilostazol was demonstrated, for the first time, to inhibit the CCR2 gene expression and MCP-1-induced chemotaxis and adhesion of monocytes which might therefore reduce the infiltration of monocytes during the early atherosclerosis. The present study provides an additional molecular mechanism underlying the anti-atherosclerotic effects of cilostazol.
Collapse
Affiliation(s)
- Shih-Yi Chuang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | | | | |
Collapse
|
46
|
Begum N, Hockman S, Manganiello VC. Phosphodiesterase 3A (PDE3A) deletion suppresses proliferation of cultured murine vascular smooth muscle cells (VSMCs) via inhibition of mitogen-activated protein kinase (MAPK) signaling and alterations in critical cell cycle regulatory proteins. J Biol Chem 2011; 286:26238-49. [PMID: 21632535 DOI: 10.1074/jbc.m110.214155] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1(Ser-²⁵⁹) by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G₀/G₁ cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G₁ to S cell cycle progression.
Collapse
Affiliation(s)
- Najma Begum
- Cardiovascular-Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
47
|
Kanlop N, Chattipakorn S, Chattipakorn N. Effects of cilostazol in the heart. J Cardiovasc Med (Hagerstown) 2011; 12:88-95. [PMID: 21200326 DOI: 10.2459/jcm.0b013e3283439746] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cilostazol is a selective phosphodiesterase 3 (PDE3) inhibitor approved by the Food and Drug Administration for treatment of intermittent claudication. It has also been used in bradyarrhythmic patients to increase heart rates. Recently, cilostazol has been shown to prevent ventricular fibrillation in patients with Brugada syndrome. Cilostazol is hypothesized to suppress transient outward potassium (Ito) current and increase inward calcium current, thus, maintaining the dome (phase 2) of action potential, decreasing transmural dispersion of repolarization and preventing ventricular fibrillation. Although many PDE3 inhibitors have been shown to increase cardiac arrhythmia in heart failure, cilostazol has presented effects that are different from other PDE3 inhibitors, especially adenosine uptake inhibition. Owing to this effect, cilostazol could be an effective cardioprotective drug, with its beneficial effects in preventing arrhythmia. In this review, the cardiac electrophysiological effects of cilostazol are presented and its possible cardioprotective effects, particularly in preventing ventricular fibrillation, are discussed, with emphasis on the need to further verify its clinical benefits.
Collapse
Affiliation(s)
- Natnicha Kanlop
- Cardiac Electrophysiology Unit, Department of Physiology, Thailand
| | | | | |
Collapse
|
48
|
Tian X, Vroom C, Ghofrani HA, Weissmann N, Bieniek E, Grimminger F, Seeger W, Schermuly RT, Pullamsetti SS. Phosphodiesterase 10A upregulation contributes to pulmonary vascular remodeling. PLoS One 2011; 6:e18136. [PMID: 21494592 PMCID: PMC3073929 DOI: 10.1371/journal.pone.0018136] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/26/2011] [Indexed: 11/19/2022] Open
Abstract
Phosphodiesterases (PDEs) modulate the cellular proliferation involved in the pathophysiology of pulmonary hypertension (PH) by hydrolyzing cAMP and cGMP. The present study was designed to determine whether any of the recently identified PDEs (PDE7-PDE11) contribute to progressive pulmonary vascular remodeling in PH. All in vitro experiments were performed with lung tissue or pulmonary arterial smooth muscle cells (PASMCs) obtained from control rats or monocrotaline (MCT)-induced pulmonary hypertensive (MCT-PH) rats, and we examined the effects of the PDE10 inhibitor papaverine (Pap) and specific small interfering RNA (siRNA). In addition, papaverine was administrated to MCT-induced PH rats from day 21 to day 35 by continuous intravenous infusion to examine the in vivo effects of PDE10A inhibition. We found that PDE10A was predominantly present in the lung vasculature, and the mRNA, protein, and activity levels of PDE10A were all significantly increased in MCT PASMCs compared with control PASMCs. Papaverine and PDE10A siRNA induced an accumulation of intracellular cAMP, activated cAMP response element binding protein and attenuated PASMC proliferation. Intravenous infusion of papaverine in MCT-PH rats resulted in a 40%-50% attenuation of the effects on pulmonary hypertensive hemodynamic parameters and pulmonary vascular remodeling. The present study is the first to demonstrate a central role of PDE10A in progressive pulmonary vascular remodeling, and the results suggest a novel therapeutic approach for the treatment of PH.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 7/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Knockdown Techniques
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Intracellular Space/drug effects
- Intracellular Space/metabolism
- Lung/blood supply
- Lung/enzymology
- Lung/physiopathology
- Male
- Monocrotaline
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Papaverine/pharmacology
- Papaverine/therapeutic use
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Tissue Donors
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Xia Tian
- Medical Clinic II/V, University Hospital, Giessen, Germany
| | | | | | | | - Ewa Bieniek
- Medical Clinic II/V, University Hospital, Giessen, Germany
| | | | - Werner Seeger
- Medical Clinic II/V, University Hospital, Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph Theo Schermuly
- Medical Clinic II/V, University Hospital, Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Medical Clinic II/V, University Hospital, Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
49
|
Hewer RC, Sala-Newby GB, Wu YJ, Newby AC, Bond M. PKA and Epac synergistically inhibit smooth muscle cell proliferation. J Mol Cell Cardiol 2010; 50:87-98. [PMID: 20971121 PMCID: PMC3093616 DOI: 10.1016/j.yjmcc.2010.10.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 12/14/2022]
Abstract
Cyclic AMP signalling promotes VSMC quiescence in healthy vessels and during vascular healing following injury. Cyclic AMP inhibits VSMC proliferation via mechanisms that are not fully understood. We investigated the role of PKA and Epac signalling on cAMP-induced inhibition of VSMC proliferation. cAMP-mediated growth arrest was PKA-dependent. However, selective PKA activation with 6-Benzoyl-cAMP did not inhibit VSMC proliferation, indicating a requirement for additional pathways. Epac activation using the selective cAMP analogue 8-CPT-2′-O-Me-cAMP, did not affect levels of hyperphosphorylated Retinoblastoma (Rb) protein, a marker of G1-S phase transition, or BrdU incorporation, despite activation of the Epac-effector Rap1. However, 6-Benzoyl-cAMP and 8-CPT-2′-O-Me-cAMP acted synergistically to inhibit Rb-hyperphosphorylation and BrdU incorporation, indicating that both pathways are required for growth inhibition. Consistent with this, constitutively active Epac increased Rap1 activity and synergised with 6-Benzoyl-cAMP to inhibit VSMC proliferation. PKA and Epac synergised to inhibit phosphorylation of ERK and JNK. Induction of stellate morphology, previously associated with cAMP-mediated growth arrest, was also dependent on activation of both PKA and Epac. Rap1 inhibition with Rap1GAP or siRNA silencing did not negate forskolin-induced inhibition of Rb-hyperphosphorylation, BrdU incorporation or stellate morphology. This data demonstrates for the first time that Epac synergises with PKA via a Rap1-independent mechanism to mediate cAMP-induced growth arrest in VSMC. This work highlights the role of Epac as a major player in cAMP-dependent growth arrest in VSMC.
Collapse
|
50
|
Thiazolidinediones prevent PDGF-BB-induced CREB depletion in pulmonary artery smooth muscle cells by preventing upregulation of casein kinase 2 alpha' catalytic subunit. J Cardiovasc Pharmacol 2010; 55:469-80. [PMID: 20147842 DOI: 10.1097/fjc.0b013e3181d64dbe] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The transcription factor CREB is diminished in smooth muscle cells (SMCs) in remodeled, hypertensive pulmonary arteries (PAs) in animals exposed to chronic hypoxia. Forced depletion of cyclic adenosine monophosphate response element binding protein (CREB) in PA SMCs stimulates their proliferation and migration in vitro. Platelet-derived growth factor (PDGF) produced in the hypoxic PA wall promotes CREB proteasomal degradation in SMCs via phosphatidylinositol-3-kinase/Akt signaling, which promotes phosphorylation of CREB at 2 casein kinase 2 (CK2) sites. Here we tested whether thiazolidinediones, agents that inhibit hypoxia-induced PA remodeling, attenuate SMC CREB loss. METHODS Depletion of CREB and changes in casein kinase 2 catalytic subunit expression and activity were measured in PA SMC treated with PDGF. PA remodeling and changes in medial PA CREB and casein kinase 2 levels were evaluated in lung sections from rats exposed to hypoxia for 21 days. RESULTS We found that the thiazolidinedione rosiglitazone prevented PA remodeling and SMC CREB loss in rats exposed to chronic hypoxia. Likewise, the thiazolidinedione troglitazone blocked PA SMC proliferation and CREB depletion induced by PDGF in vitro. Thiazolidinediones did not repress Akt activation by hypoxia in vivo or by PDGF in vitro. However, PDGF-induced CK2 alpha' catalytic subunit expression and activity in PA SMCs, and depletion of CK2 alpha' subunit prevented PDGF-stimulated CREB loss. Troglitazone inhibited PDGF-induced CK2 alpha' subunit expression in vitro and rosiglitazone blocked induction of CK2 catalytic subunit expression by hypoxia in PA SMCs in vivo. CONCLUSION We conclude that thiazolidinediones prevent PA remodeling in part by suppressing upregulation of CK2 and loss of CREB in PA SMCs.
Collapse
|