1
|
Tsuruda T, Kato J, Kuwasako K, Kitamura K. Adrenomedullin: Continuing to explore cardioprotection. Peptides 2019; 111:47-54. [PMID: 29577955 DOI: 10.1016/j.peptides.2018.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Adrenomedullin (AM), a peptide isolated from an extract of human pheochromocytoma, comprises 52 amino acids with an intramolecular disulfide bond and amidation at the carboxy-terminus. AM is present in various tissues and organs in rodents and humans, including the heart. The peptide concentration increases with cardiac hypertrophy, acute myocardial infarction, and overt heart failure in the plasma and the myocardium. The principal function of AM in the cardiovascular system is the regulation of the vascular tone by vasodilation and natriuresis via cyclic adenosine monophosphate-dependent or -independent mechanism. In addition, AM may possess unique properties that inhibit aldosterone secretion, oxidative stress, apoptosis, and stimulation of angiogenesis, resulting in the protection of the structure and function of the heart. The AM receptor comprises a complex between calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 2 or 3, and the AM-CLR/RAMP2 system is essential for heart development during embryogenesis. Small-scale clinical trials have proven the efficacy and safety of recombinant AM peptide therapy for heart failure. Gene delivery and a modified AM peptide that prolongs the half-life of the native peptide could be an innovative method to improve the efficacy and benefit of AM in clinical settings. In this review, we focus on the pathophysiological roles of AM and its receptor system in the heart and describe the advances in AM and proAM-derived peptides as diagnostic biomarkers as well as the therapeutic application of AM and modified AM for cardioprotection.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Johji Kato
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Japan
| | - Kenji Kuwasako
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
2
|
Karabowicz P, Schlicker E, Pędzińska-Betiuk A, Kloza M, Malinowska B. The adrenal medulla, not CB1 receptors, mediates the inhibitory effect of acute transverse aortic constriction on the neurogenic vasopressor response. Life Sci 2015; 138:86-93. [PMID: 25498898 DOI: 10.1016/j.lfs.2014.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Piotr Karabowicz
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz str. 2A, 15-222 Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz str. 2A, 15-222 Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz str. 2A, 15-222 Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz str. 2A, 15-222 Białystok, Poland.
| |
Collapse
|
3
|
Pohjolainen V, Rysä J, Näpänkangas J, Kööbi P, Eräranta A, Ilves M, Serpi R, Pörsti I, Ruskoaho H. Left ventricular periostin gene expression is associated with fibrogenesis in experimental renal insufficiency. Nephrol Dial Transplant 2011; 27:115-22. [PMID: 21712488 DOI: 10.1093/ndt/gfr279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cardiovascular diseases are the most important cause of death in patients with impaired kidney function. Left ventricular hypertrophy (LVH), cardiac interstitial fibrosis and cardiovascular calcifications are characteristic of chronic renal insufficiency (CRI). Periostin is a fibrogenesis- and calcification-related matricellular protein re-expressed in adult tissues undergoing remodelling in response to pathological stimuli. The role of periostin in CRI-induced LVH is unknown. METHODS Rats were 5/6-nephrectomized (NX), and after 15 weeks of disease progression high-calcium, high-phosphate or paricalcitol treatment was given for 12 weeks. Cardiac tissue and blood samples were taken to study periostin gene expression and to determine factors contributing to its reactivation, respectively. Left ventricular (LV) periostin expression was also examined in response to angiotensin II or arginine(8)-vasopressin (AVP)-induced pressure overload and in spontaneously hypertensive rats. RESULTS CRI resulted in a 6.5-fold increase in LV periostin messenger RNA (mRNA) levels. Positive extracellular immunostaining for periostin was detected in areas of infiltrated inflammatory cells and fibrotic lesions. There was a significant correlation between LV periostin mRNA levels and plasma biomarkers of impaired kidney function, LVH, fibrogenesis-related proteins osteopontin and osteoactivin, and anti-calcific matrix Gla protein. Moreover, LV periostin gene expression in CRI correlated positively with systolic blood pressure (BP) and was activated rapidly in response to angiotensin II or AVP infusions. CONCLUSIONS Periostin is involved in fibrotic cardiac remodelling in CRI. The re-expression of periostin is localized to the fibrotic and inflammatory lesions and is most likely the consequence of elevated BP.
Collapse
Affiliation(s)
- Virva Pohjolainen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Biocentre Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Luosujärvi H, Aro J, Tokola H, Leskinen H, Tenhunen O, Skoumal R, Szokodi I, Ruskoaho H, Rysä J. A novel p38 MAPK target dyxin is rapidly induced by mechanical load in the heart. Blood Press 2010; 19:54-63. [PMID: 20175653 DOI: 10.3109/08037050903464519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dyxin is a novel LIM domain protein acting as a transcriptional cofactor with GATA transcription factors. Here, we characterized dyxin as a p38 mitogen-activated protein kinase (MAPK) regulated gene, since combined upstream MAPK kinase 3b and wild-type p38 alpha MAPK gene transfer increased left ventricular dyxin mRNA and protein levels in vivo. We also studied cardiac dyxin expression in experimental models of pressure overload and myocardial infarction (MI) in vivo. Angiotensin II infusion increased left ventricular dyxin mRNA levels (9.4-fold, p<0.001) rapidly at 6 h followed by induction of protein levels. Furthermore, simultaneous administration of p38 MAPK inhibitor SB203580 abolished angiotensin II-induced activation of dyxin gene expression. During the post-infarction remodeling process, increased dyxin mRNA levels (7.7-fold, p<0.01) were noted at day 1 followed by the increase in proteins levels at 2 weeks after MI (1.5-fold, p<0.05). Moreover, direct wall stretch by using isolated rat heart preparation as well as direct mechanical stretch of cardiomyocytes in vitro activated dyxin gene expression within 1 h. Our results indicate that dyxin expression is rapidly upregulated in response to mechanical load, this increase being at least partly mediated by p38 MAPK. These results suggest that dyxin may play an important role in regulating hypertrophic process.
Collapse
Affiliation(s)
- Hanne Luosujärvi
- Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rysä J, Aro J, Ruskoaho H. Early left ventricular gene expression profile in response to increase in blood pressure. Blood Press 2009; 15:375-83. [PMID: 17472029 DOI: 10.1080/08037050601037851] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The heart adapts to increased pressure overload by hypertrophic growth of terminally differentiated cardiomyocytes. At the genetic level, the hypertrophic response is characterized by the reprogramming of gene expression, i.e. upregulation of immediate early genes, natriuretic peptide genes and genes encoding structural proteins. In the present study, we characterized the early changes in gene expression with cDNA expression arrays in response to increase in blood pressure produced by arginine8-vasopressin infusion (0.05 microg/kg/min, i.v.) for 30 min and 4 h in conscious normotensive rats. Expression profiling revealed differential expression of 14 genes in the left ventricle, and several novel factors of immediate early genetic response to pressure overload were identified, such as growth arrest and DNA damage inducible protein 45 (GADD45alpha), epidermal fatty acid-binding protein (E-FABP) and Bcl-X. Administration of angiotensin II (Ang II) for 6 h by osmotic minipumps also increased left ventricular GADD45alpha, E-FABP and Bcl-X gene expression. Furthermore, the induction of GADD45alpha and Bcl-X gene expression by Ang II was blocked by angiotensin II type 1 receptor antagonist losartan. In summary, our analysis provided new insights into the pathogenesis of pressure overload-induced hypertrophy by suggesting the existence of novel regulators of the immediate early gene expression program.
Collapse
Affiliation(s)
- Jaana Rysä
- Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, Finland
| | | | | |
Collapse
|
6
|
Mustonen E, Pohjolainen V, Aro J, Pikkarainen S, Leskinen H, Ruskoaho H, Rysä J. Upregulation of cardiac matrix Gla protein expression in response to hypertrophic stimuli. Blood Press 2009; 18:286-93. [PMID: 19919401 DOI: 10.3109/08037050903244643] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Matrix Gla protein (MGP) expression is increased in cardiac hypertrophy, but the precise mechanisms regulating its expression are unknown. Here we characterized the effect of pressure overload and myocardial infarction in vivo as well as mechanical stretch and hypertrophic agonists in vitro on MGP expression. When angiotensin II (Ang II) was administered by osmotic minipumps, left ventricular (LV) MGP mRNA levels increased significantly from 6 h to 2 weeks, whereas intravenous arginine(8)-vasopressin increased LV MGP mRNA levels within 4 h. During post-infarction remodeling process, MGP mRNA levels were elevated at 24 h (1.3-fold, p<0.05) and the maximal increase was observed at 4 weeks (2.8-fold, p<0.01). Ang II increased MGP mRNA levels 20% (p<0.05) in neonatal rat cardiac myocytes and 40% (p<0.05) in cardiac fibroblasts, whereas endothelin-1 decreased MGP mRNA levels 30% (p<0.01) in myocytes and had no effect in fibroblasts. Cyclic mechanical stretch resulted in reduction of MGP gene expression in both cardiac myocytes and fibroblasts. These results demonstrate that MGP is rapidly upregulated in response to cardiac overload well before the development of LV hypertrophy and post-infarction remodeling process. Our results also suggest that Ang II may be involved in mediating load-induced activation of MGP expression.
Collapse
Affiliation(s)
- Erja Mustonen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
7
|
Mustonen E, Aro J, Puhakka J, Ilves M, Soini Y, Leskinen H, Ruskoaho H, Rysä J. Thrombospondin-4 expression is rapidly upregulated by cardiac overload. Biochem Biophys Res Commun 2008; 373:186-91. [PMID: 18541142 DOI: 10.1016/j.bbrc.2008.05.164] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
Abstract
The precise mechanisms regulating gene expression of thrombospondins (TSPs) in the heart remain incompletely understood. Here we characterized cardiac TSP-4 expression in response to pressure overload and myocardial infarction in vivo. Arginine(8)-vasopressin (AVP) infusion increased left ventricular (LV) TSP-4 mRNA levels within 30 min. Also angiotensin II infusion rapidly activated LV TSP-4 expression, TSP-4 mRNA levels being highest at 6h and protein at 72 h and 2 weeks. During remodeling process following myocardial infarction, LV TSP-4 mRNA levels increased at day one, as studied by quantitative RT-PCR. TSP-4 immunostaining was localized to endothelial cells in hypertrophied hearts of spontaneously hypertensive rats. AVP-infusion increased LV TSP-1 mRNA levels similarly to TSP-4 within 30 min showing that rapid induction of gene expression, well before the development of cardiac hypertrophy, is typical for the thrombospondin family. These results further suggest that TSP-4 may be an endothelial specific marker of cardiac overload.
Collapse
Affiliation(s)
- Erja Mustonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, P.O. Box 5000, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jiang W, Yang JH, Wang SH, Pan CS, Qi YF, Zhao J, Tang CS. Effects of adrenomedullin on aldosterone-induced cell proliferation in rat cardiac fibroblasts. Biochim Biophys Acta Mol Basis Dis 2004; 1690:265-75. [PMID: 15511634 DOI: 10.1016/j.bbadis.2004.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 08/03/2004] [Indexed: 11/19/2022]
Abstract
Aldosterone induces cardiac remodeling in cardiovascular diseases by stimulating the proliferation, production and secretion of collagen in fibroblasts. It also stimulates vascular smooth muscle cells to produce and secrete adrenomedullin (ADM), which has a cytoprotective effect against cardiovascular damage. We examined the effect of aldosterone on ADM production and secretion in rat cardiac fibroblasts, and the effect of ADM on aldosterone-stimulated fibroblast proliferation to observe the interaction between endogenous ADM and aldosterone. We detected ADM produced and secreted from cultured cardiac fibroblasts and the intracellular cAMP level by radioimmunoassay; evaluated cell proliferation by the level of [3H]-thymine incorporation; measured preproADM gene expression by reverse transcriptase polymerase chain reaction (RT-PCR); and monitored extracellular signal related kinase (ERK) activity by the phosphorylation of myelin basic protein in the presence of [gamma-32P] ATP. Our results showed that aldosterone-stimulated secretion of ADM and its mRNA expression were concentration-dependent, which could be inhibited by the specific antagonist of mineralocorticoid receptor, spironolactone. In contrast, ADM inhibited aldosterone-induced fibroblast proliferation and ERK activity. Treatment with ADM24-50 (a new antagonist of specific ADM receptors) and calcitonin gene-related peptide (CGRP)8-37 (the antagonist of CGRP receptor type 1), to attenuate the action of endogenous ADM, reinforced the aldosterone-induced proliferation and inhibited the intracellular cAMP production stimulated by aldosterone. Thiorphan, an inhibitor of ADM degradation, inhibited the [3H]-thymine incorporation and reinforced the intracellular cAMP level induced by aldosterone. We reach the conclusion that aldosterone stimulates rat cardiac fibroblasts to produce and secrete ADM, which in turn regulates the proliferation-induced effects of aldosterone in these cells.
Collapse
Affiliation(s)
- Wei Jiang
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | | | |
Collapse
|
9
|
López J, Martínez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:1-92. [PMID: 12455746 DOI: 10.1016/s0074-7696(02)21010-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenomedullin (AM) is a recently discovered regulatory peptide involved in many functions including vasodilatation, electrolyte balance, neurotransmission, growth, and hormone secretion regulation, among others. This 52-amino acid peptide is expressed by specific cell types in many organs throughout the body. A complex receptor system has been described for AM; it requires at least the presence of a seven-transmembrane-domain G-protein-coupled receptor, a single-transmembrane-domain receptor activity modifying protein, and a receptor component protein needed to establish the connection with the downstream signal transduction pathway, which usually involves cyclicAMP. In addition, a serum-binding protein regulates the biological actions of AM, frequently by increasing AM functional attributes. Changes in levels of circulating AM correlate with several critical diseases, including cardiovascular and renal disorders, sepsis, cancer, and diabetes. Whether AM is a causal agent, a protective reaction, or just a marker for these diseases is currently under investigation. New technologies seeking to elevate and/or reduce AM levels are being investigated as potential therapeutic avenues.
Collapse
Affiliation(s)
- José López
- Cell Biology Unit, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
10
|
Luodonpää M, Rysä J, Pikkarainen S, Tenhunen O, Tokola H, Puhakka J, Marttila M, Vuolteenaho O, Ruskoaho H. Mechanisms regulating adrenomedullin gene expression in the left ventricle: role of mechanical load. REGULATORY PEPTIDES 2003; 112:153-9. [PMID: 12667637 DOI: 10.1016/s0167-0115(03)00034-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adrenomedullin (AM) may function as an autocrine and/or paracrine factor in the heart, but the exact mechanisms regulating cardiac AM gene expression are unknown. The aim of the present study was to characterize the role of mechanical load in regulating gene expression of AM by using two hypertensive rat strains as experimental models. Acute pressure overload was produced by arginine(8)-vasopressin (AVP, 0.05 microg/kg/min, i.v.) infusion in conscious spontaneously hypertensive rats (SHR) and double transgenic rats (dTGR) harboring both the human renin and angiotensinogen genes and in their respective normotensive strains. A significant increase in left ventricular AM mRNA levels was seen in the left ventricles of all rat strains, the increase being augmented in hypertensive strains. Direct left ventricular wall stretch in isolated, perfused rat heart preparation also activated AM gene expression. However, stretching of cultured neonatal ventricular myocytes resulted in inhibition of AM gene expression, and stretch also blocked hypoxia-induced increase in AM gene expression. The present study shows that cardiac AM gene expression is upregulated in response to pressure overload and that this upregulation may be mediated via cell types other than cardiac myocytes.
Collapse
Affiliation(s)
- Marja Luodonpää
- Department of Pharmacology and Toxicology, Faculty of Medicine, Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Eto T, Kato J, Kitamura K. Regulation of production and secretion of adrenomedullin in the cardiovascular system. REGULATORY PEPTIDES 2003; 112:61-9. [PMID: 12667626 DOI: 10.1016/s0167-0115(03)00023-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adrenomedullin (AM) has multi-functional properties, of which the vasodilatory hypotensive effect is the most characteristic. AM and its gene are ubiquitous in a variety of tissues and organs, in the cardiovascular system, as well as the adrenal medulla. AM secretion, especially in cardiovascular tissues, is regulated mainly by mechanical stressors such as shear stress, inflammatory cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF), and lipopolysaccharide (LPS), hormones such as angiotensin (Ang) II and endothelin (ET)-1, and metabolic factors such as hypoxia, ischemia, or hyperglycemia. Elevation of plasma AM due to overproduction in response to one or more of these stimuli in pathological conditions may explain the raised plasma AM levels present in cardiovascular and renal diseases such as congestive heart failure, myocardial infarction, hypertension, chronic renal failure, stroke, diabetes mellitus, and septic shock. In addition to shear stress, stretching of cardiomyocytes may be another mechanical stimulus for AM synthesis and secretion. Our recent studies have shown the importance of aldosterone and additional hormonal factor on AM secretion in vascular wall.
Collapse
Affiliation(s)
- Tanenao Eto
- The First Department of Internal Medicine, Miyazaki Medical School, 5200 Kihara, Kiyotake, 889-1692, Miyazaki, Japan.
| | | | | |
Collapse
|
12
|
Kato J, Tsuruda T, Kitamura K, Eto T. Adrenomedullin: a possible autocrine or paracrine hormone in the cardiac ventricles. Hypertens Res 2003; 26 Suppl:S113-9. [PMID: 12630821 DOI: 10.1291/hypres.26.s113] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adrenomedullin (AM), a potent vasodilator peptide originally isolated from pheochromocytoma, is expressed in cardiovascular tissues such as those of the cardiac atria and ventricles. Cell culture experiments have shown that AM peptide is synthesized and secreted from cardiac myocytes and fibroblasts of neonatal rats. Humoral factors, such as angiotensin II (Ang II) and endothelin-1 (ET-1), and mechanical stress due to pressure and volume overload to the heart have been shown to be involved in AM expression of the myocardium in both in vitro and in vivo studies. The effects of AM on cardiomyocytes and cardiac fibroblasts have been examined in in vitro studies, with the result that AM was shown to exert inhibitory actions on myocyte hypertrophy and on proliferation and collagen production of cardiac fibroblasts in an autocrine or paracrine manner. In rats, experimental therapeutic intervention consisting of transfer of the AM gene or of recombinant AM appears to partly inhibit the progression of cardiac hypertrophy and remodeling. It has been shown that the calcitonin receptor-like receptor (CRLR) and receptor-activity-modifying protein (RAMP) act together to function as AM receptors, although in this regard there are a number of issues, including the cellular mechanism of AM actions, that remain to be addressed. In addition, the role of proadrenomedullin N-terminal 20 peptide (PAMP), which is derived from preproAM, is another topic for future experiments. Collectively, the research data accumulating in this area suggest that AM plays a role as an autocrine or paracrine hormone in the cardiac ventricles, and that AM might be utilized as a therapeutic tool in the treatment of hypertensive or ischemic heart disease.
Collapse
Affiliation(s)
- Johji Kato
- First Department of Internal Medicine, Miyazaki Medical College, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | |
Collapse
|
13
|
Eto T. A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides 2001; 22:1693-711. [PMID: 11754955 DOI: 10.1016/s0196-9781(01)00513-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adrenomedullin (AM), identified from pheochromocytoma and having 52 amino acids, elicits a long-lasting vasodilatation and diuresis. AM is mainly mediated by the intracellular adenylate cyclase coupled with cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) -cyclic guanosine monophosphate (cGMP) pathway through its specific receptor. The calcitonin receptor-like receptor (CLCR) and receptor-activity modifying protein (RAMP) 2 or RAMP3 models have been proposed as the candidate receptor. AM is produced mainly in cardiovascular tissues in response to stimuli such as shear stress and stretch, hormonal factors and cytokines. Recently established AM knockout mice lines revealed that AM is essential for development of vitelline vessels of embryo. Plasma AM levels elevate in cardiovascular diseases such as heart failure, hypertension and septic shock, where AM may play protective roles through its characteristic biological activities. Human AM gene delivery improves hypertension, renal function, cardiac hypertrophy and nephrosclerosis in the hypertensive rats. AM decreases cardiac preload and afterload and improves cardiac contractility and diuresis in patients with heart failure and hypertension. Advances in gene engineering and receptor studies may contribute to further understandings of biological implication and therapeutic availability of AM.
Collapse
Affiliation(s)
- T Eto
- The First Department of Internal Medicine, Miyazaki Medical College, 5200 Kihara, Kiyotake, 889-1692, Miyazaki, Japan.
| |
Collapse
|