1
|
Saleh MA, Shaaban AA, Talaat IM, Elmougy A, Adra SF, Ahmad F, Qaisar R, Elmoselhi AB, Abu-Gharbieh E, El-Huneidi W, Eladl MA, Shehatou G, Kafl HE. RhoA/ROCK inhibition attenuates endothelin-1-induced glomerulopathy in the rats. Life Sci 2023; 323:121687. [PMID: 37030613 DOI: 10.1016/j.lfs.2023.121687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
Endothelin-1 (ET-1) contributes to the development of kidney diseases. However, the underlying molecular mechanism is largely undefined. Here we sought to investigate the potential role of ET-1 receptors, ETA and ETB in the regulation of increased glomerular permeability and underlying signaling pathways post-ET-1 infusion. Male Sprague-Dawley rats were infused with ET-1 (2 pmol/kg per minute, i.v.) for four weeks, and the effect on glomerular permeability to albumin (Palb) and albuminuria was measured. The selective ROCK-1/2 inhibitor, Y-27632, was administered to a separate group of rats to determine its effect on ET-1-induced Palb and albuminuria. The role of ETA and ETB receptors in regulating RhoA/ROCK activity was determined by incubating isolated glomeruli from normal rats with ET-1 and with selective ETA and ETB receptor antagonists. ET-1 infusion for four weeks significantly elevated Palb and albuminuria. Y-27632 significantly reduced the elevation of Palb and albuminuria. The activities of both RhoA and ROCK-1/2 were increased by ET-1 infusion. Selective ETB receptor antagonism had no effect on the elevated activity of both RhoA and ROCK-1/2 enzymes. Selective ETA receptor and combined ETA/ETB receptors blockade restored the activity of RhoA and ROCK-1/2 to normal levels. In addition, chronic ET-1 infusion increased the levels of glomerular inflammatory and fibrotic markers. These effects were all attenuated in rats following ROCK-1/2 inhibition. These observations suggest that ET-1 contributes to increased albuminuria, inflammation, and fibrosis by modulating the activity of the ETA-RhoA/ROCK-1/2 pathway. Selective ETA receptor blockade may represent a potential therapeutic strategy to limit glomerular injury and albuminuria in kidney disease.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Iman M Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Atef Elmougy
- Pediatric Nephrology Unit, Mansoura University Children's Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Saryia F Adra
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Firdos Ahmad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Rizwan Qaisar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Adel B Elmoselhi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - George Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Hoda E Kafl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Duess JW, Gosemann JH, Kaskova Gheorghescu A, Puri P, Thompson J. Y-27632 Impairs Angiogenesis on Extra-Embryonic Vasculature in Post-Gastrulation Chick Embryos. TOXICS 2023; 11:134. [PMID: 36851009 PMCID: PMC9962381 DOI: 10.3390/toxics11020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Y-27632 inhibits Rho-associated coiled-coil-containing protein kinase (ROCK) signaling, which is involved in various embryonic developmental processes, including angiogenesis, by controlling actin cytoskeleton assembly and cell contractility. Administration of Y-27632 impairs cytoskeletal arrangements in post-gastrulation chick embryos, leading to ventral body wall defects (VBWDs). Impaired angiogenesis has been hypothesized to contribute to VBWDs. ROCK is essential in transmitting signals downstream of vascular endothelial growth factor (VEGF). VEGF-mediated angiogenesis induces gene expressions and alterations of the actin cytoskeleton upon binding to VEGF receptors (VEGFRs). The aim of this study was to investigate effects of Y-27632 on angiogenesis in post-gastrulation chick embryos during early embryogenesis. After 60 h incubation, embryos in shell-less culture were treated with Y-27632 or vehicle for controls. Y-27632-treated embryos showed reduced extra-embryonic blood vessel formation with impaired circulation of the yolk sac, confirmed by fractal analysis. Western blot confirmed impaired ROCK downstream signaling by decreased expression of phosphorylated myosin light chain. Interestingly, RT-PCR demonstrated increased gene expression of VEGF and VEGFR-2 1 h post-treatment. Protein levels of VEGF were higher in Y-27632-treated embryos at 8 h following treatment, whereas no difference was seen in membranes. We hypothesize that administration of Y-27632 impairs vessel formation during angiogenesis, which may contribute to failure of VWB closure, causing VBWDs.
Collapse
Affiliation(s)
- Johannes W. Duess
- Department of Pediatric Surgery, University of Leipzig, 04103 Leipzig, Germany
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Jan-Hendrik Gosemann
- Department of Pediatric Surgery, University of Leipzig, 04103 Leipzig, Germany
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
| | | | - Prem Puri
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Jennifer Thompson
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| |
Collapse
|
3
|
Endothelial mechanosensing: A forgotten target to treat vascular remodeling in hypertension? Biochem Pharmacol 2022; 206:115290. [DOI: 10.1016/j.bcp.2022.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
4
|
Shahin Y, Alabed S, Alkhanfar D, Tschirren J, Rothman AMK, Condliffe R, Wild JM, Kiely DG, Swift AJ. Quantitative CT Evaluation of Small Pulmonary Vessels Has Functional and Prognostic Value in Pulmonary Hypertension. Radiology 2022; 305:431-440. [PMID: 35819325 PMCID: PMC9619204 DOI: 10.1148/radiol.210482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
Background The in vivo relationship between peel pulmonary vessels, small pulmonary vessels, and pulmonary hypertension (PH) is not fully understood. Purpose To quantitatively assess peel pulmonary vessel volumes (PPVVs) and small pulmonary vessel volumes (SPVVs) as estimated from CT pulmonary angiography (CTPA) in different subtypes of PH compared with controls, their relationship to pulmonary function and right heart catheter metrics, and their prognostic value. Materials and Methods In this retrospective single-center study performed from January 2008 to February 2018, quantitative CTPA analysis of total SPVV (TSPVV) (0.4- to 2-mm vessel diameter) and PPVV (within 15, 30, and 45 mm from the lung surface) was performed. Results A total of 1823 patients (mean age, 69 years ± 13 [SD]; 1192 women [65%]) were retrospectively analyzed; 1593 patients with PH (mean pulmonary arterial pressure [mPAP], 43 mmHg ± 13 [SD]) were compared with 230 patient controls (mPAP, 19 mm Hg ± 3). The mean vessel volumes in pulmonary peels at 15-, 30-, and 45-mm depths were higher in pulmonary arterial hypertension (PAH) and PH secondary to lung disease compared with chronic thromboembolic PH (45-mm peel, mean difference: 6.4 mL [95% CI: 1, 11] [P < .001] vs 6.8 mL [95% CI: 1, 12] [P = .01]). Mean small vessel volumes at a diameter of less than 2 mm were lower in PAH and PH associated with left heart disease compared with controls (1.6-mm vessels, mean difference: -4.3 mL [95% CI: -8, -0.1] [P = .03] vs -6.8 mL [95% CI: -11, -2] [P < .001]). In patients with PH, the most significant positive correlation was noted with forced vital capacity percentage predicted (r = 0.30-0.40 [all P < .001] for TSPVVs and r = 0.21-0.25 [all P < .001] for PPVVs). Conclusion The volume of pulmonary small vessels is reduced in pulmonary arterial hypertension and pulmonary hypertension (PH) associated with left heart disease, with similar volume of peel vessels compared with controls. For chronic thromboembolic PH, the volume of peel vessels is reduced. In PH, small pulmonary vessel volume is associated with pulmonary function tests. Clinical trial registration no. NCT02565030 Published under a CC BY 4.0 license Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Yousef Shahin
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Samer Alabed
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Dheyaa Alkhanfar
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Juerg Tschirren
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Alex M. K. Rothman
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Robin Condliffe
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - James M. Wild
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - David G. Kiely
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Andrew J. Swift
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| |
Collapse
|
5
|
Wilson SE. Magic Bullets: The Coming Age of Meaningful Pharmacological Control of the Corneal Responses to Injury and Disease. J Ocul Pharmacol Ther 2022; 38:594-606. [PMID: 36161879 PMCID: PMC9700362 DOI: 10.1089/jop.2022.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Corneal injuries from chemical burns, mechanical trauma, infections, immunological rejections, surgical complications, and some diseases are commonly associated with persistent epithelial defects (PED), neurotrophic epitheliopathy, scarring fibrosis, corneal neovascularization (CNV), and/or corneal endothelial damage that lead to vision loss. Several Food and Drug Administration (FDA) approved medications have recently become available, are currently in clinical trials, or are likely to enter clinical trials in the near future. For example, a 2-week course of topical human recombinant nerve growth factor is frequently an effective treatment for corneal neurotrophic epitheliopathy associated with PEDs. Topical losartan, an angiotensin converting enzyme II receptor antagonist that also inhibits TGF beta signaling, has been shown to effectively decrease myofibroblast generation and scarring fibrosis in alkali burn injury and Descemetorhexis rabbit models. Small molecule topical tyrosine kinase inhibitors, such as sunitinib and axitinib, FDA approved as chemotherapeutic agents to treat specific cancers, have also been found to be effective topical inhibitors of CNV in animal and human trials. Rho-kinase inhibitors, such as ripasudil and netarsudil, that are currently approved agents for the treatment of glaucoma in some countries, have been shown to stimulate corneal endothelial proliferation in animal studies and human trials, and may accelerate the regeneration of Descemet's membrane. These agents, as well as other drugs in development, will be used in targeted combinations to treat corneal pathophysiology associated with epithelial healing disorders, stromal scarring fibrosis, CNV, and corneal endothelial injury during the next decade.
Collapse
|
6
|
Lan C, Liu G, Huang L, Wang X, Tan J, Wang Y, Fan N, Zhu Y, Yu M, Liu X. Forkhead Domain Inhibitor-6 Suppresses Corneal Neovascularization and Subsequent Fibrosis After Alkali Burn in Rats. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 35446346 PMCID: PMC9034725 DOI: 10.1167/iovs.63.4.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effects of Forkhead Domain Inhibitor-6 (FDI-6) on regulating inflammatory corneal angiogenesis and subsequent fibrosis induced by alkali burn. Methods A corneal alkali burn model was established in Sprague Dawley rats using NaOH and the rat eyes were topically treated with FDI-6 (40 µM) or a control vehicle four times daily for 7 days. Corneal neovascularization, inflammation and epithelial defects were observed on days 1, 4, and 7 under a slit lamp microscope after corneal alkali burn. Analysis of angiogenesis-, inflammation-, and fibrosis-related indicators was conducted on day 7. Murine macrophages (RAW264.7 cells) and mouse retinal microvascular endothelial cells (MRMECs) were used to examine the effects of FDI-6 on inflammatory angiogenesis in vitro. Results Topical delivery of FDI-6 significantly attenuated alkali burn-induced corneal inflammation, neovascularization, and fibrosis. FDI-6 suppressed the expression of angiogenic factors (vascular epidermal growth factor, CD31, matrix metalloproteinase-9, and endothelial NO synthase), fibrotic factors (α-smooth muscle actin and fibronectin), and pro-inflammatory factor interleukin-6 in alkali-injured corneas. FDI-6 downregulated the expression of monocyte chemotactic protein-1, pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-alpha), nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3, and vascular endothelial growth factor in RAW264.7 cells and inhibited the proliferation, migration, and tube formation of MRMECs in vitro. Conclusions FDI-6 can attenuate corneal neovascularization, inflammation, and fibrosis in alkali-injured corneas.
Collapse
Affiliation(s)
- Chunlin Lan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Longxiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Shenzhen People's Hospital, the 2nd Clinical Medical College, Jinan University, Shenzhen, China
| |
Collapse
|
7
|
Tolomeu HV, Fraga CAM. The Outcomes of Small-Molecule Kinase Inhibitors and the Role of ROCK2 as a Molecular Target for the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:188-205. [PMID: 34414875 DOI: 10.2174/1871527320666210820092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alzheimer's disease is rapidly becoming a major threat to public health, with an increasing number of individuals affected as the world's population ages. In this sense, studies have been carried out aiming at the identification of new small-molecule kinase inhibitors useful for the treatment of Alzheimer's disease. OBJECTIVE In the present study, we investigated the compounds developed as inhibitors of different protein kinases associated with the pathogenesis of Alzheimer's disease. METHODS The applied methodology was the use of the Clarivate Analytics Integrity and ClinicalTrials. com databases. Moreover, we highlight ROCK2 as a promising target despite being little studied for this purpose. A careful structure-activity relationship analysis of the ROCK2 inhibitors was performed to identify important structural features and fragments for the interaction with the kinase active site, aiming to rationally design novel potent and selective inhibitors. RESULTS We were able to notice some structural characteristics that could serve as the basis to better guide the rational design of new ROCK2 inhibitors as well as some more in-depth characteristics regarding the topology of the active site of both isoforms of these enzymes, thereby identifying differences that could lead to planning more selective compounds. CONCLUSION We hope that this work can be useful to update researchers working in this area, enabling the emergence of new ideas and a greater direction of efforts for designing new ROCK2 inhibitors to identify new therapeutic alternatives for Alzheimer's disease.
Collapse
Affiliation(s)
- Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Xiao R, Luo S, Zhang T, Lv Y, Wang T, Zhang J, Su Y, Ruiz M, Dupuis J, Zhu L, Hu Q. Peptide Blocking Self-Polymerization of Extracellular Calcium-Sensing Receptor Attenuates Hypoxia-Induced Pulmonary Hypertension. Hypertension 2021; 78:1605-1616. [PMID: 34565182 DOI: 10.1161/hypertensionaha.120.16712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rui Xiao
- From the Department of Pathophysiology, School of Basic Medicine (R.X., S.L., T.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (R.X., S.L., T.Z., Y.L., T.W., J.Z., Y.S., L.Z., Q.H.)
| | - Shengquan Luo
- From the Department of Pathophysiology, School of Basic Medicine (R.X., S.L., T.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (R.X., S.L., T.Z., Y.L., T.W., J.Z., Y.S., L.Z., Q.H.)
| | - Ting Zhang
- From the Department of Pathophysiology, School of Basic Medicine (R.X., S.L., T.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (R.X., S.L., T.Z., Y.L., T.W., J.Z., Y.S., L.Z., Q.H.)
| | - Yankai Lv
- Key Laboratory of Pulmonary Diseases of Ministry of Health (R.X., S.L., T.Z., Y.L., T.W., J.Z., Y.S., L.Z., Q.H.).,Department of Pathology (Y.L.), Tongji Hospital
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health (R.X., S.L., T.Z., Y.L., T.W., J.Z., Y.S., L.Z., Q.H.).,Department of Respiratory and Critical Care Medicine (T.W.), Tongji Hospital
| | | | - Yuan Su
- Key Laboratory of Pulmonary Diseases of Ministry of Health (R.X., S.L., T.Z., Y.L., T.W., J.Z., Y.S., L.Z., Q.H.).,Department of Respiratory and Critical Care Medicine, Union Hospital (Y.S.)
| | - Matthieu Ruiz
- Tongji Medical College, Huazhong University of Science and Technology (HUST), China; Department of Nutrition, Université de Montréal, Canada (M.R.).,Montreal Heart Institute, Canada (M.R., J.D.)
| | - Jocelyn Dupuis
- Montreal Heart Institute, Canada (M.R., J.D.).,Department of medicine, Université de Montréal, Canada (J.D.)
| | - Liping Zhu
- From the Department of Pathophysiology, School of Basic Medicine (R.X., S.L., T.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (R.X., S.L., T.Z., Y.L., T.W., J.Z., Y.S., L.Z., Q.H.)
| | - Qinghua Hu
- From the Department of Pathophysiology, School of Basic Medicine (R.X., S.L., T.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health (R.X., S.L., T.Z., Y.L., T.W., J.Z., Y.S., L.Z., Q.H.)
| |
Collapse
|
9
|
Shimoda LA. Cellular Pathways Promoting Pulmonary Vascular Remodeling by Hypoxia. Physiology (Bethesda) 2021; 35:222-233. [PMID: 32490752 DOI: 10.1152/physiol.00039.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to hypoxia increases pulmonary vascular resistance, leading to elevated pulmonary arterial pressure and, potentially, right heart failure. Vascular remodeling is an important contributor to the increased pulmonary vascular resistance. Hyperproliferation of smooth muscle, endothelial cells, and fibroblasts, and deposition of extracellular matrix lead to increased wall thickness, extension of muscle into normally non-muscular arterioles, and vascular stiffening. This review highlights intrinsic and extrinsic modulators contributing to the remodeling process.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041692. [PMID: 33578749 PMCID: PMC7916528 DOI: 10.3390/ijerph18041692] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.
Collapse
|
11
|
Li L, Xu M, Rowan SC, Howell K, Russell-Hallinan A, Donnelly SC, McLoughlin P, Baugh JA. The effects of genetic deletion of Macrophage migration inhibitory factor on the chronically hypoxic pulmonary circulation. Pulm Circ 2021; 10:2045894020941352. [PMID: 33447370 PMCID: PMC7780187 DOI: 10.1177/2045894020941352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/18/2020] [Indexed: 11/17/2022] Open
Abstract
While it is well established that the haemodynamic cause of hypoxic pulmonary hypertension is increased pulmonary vascular resistance, the molecular pathogenesis of the increased resistance remains incompletely understood. Macrophage migration inhibitory factor is a pleiotropic cytokine with endogenous tautomerase enzymatic activity as well as both intracellular and extracellular signalling functions. In several diseases, macrophage migration inhibitory factor has pro-inflammatory roles that are dependent upon signalling through the cell surface receptors CD74, CXCR2 and CXCR4. Macrophage migration inhibitory factor expression is increased in animal models of hypoxic pulmonary hypertension and macrophage migration inhibitory factor tautomerase inhibitors, which block some of the functions of macrophage migration inhibitory factor, and have been shown to attenuate hypoxic pulmonary hypertension in mice and monocrotaline-induced pulmonary hypertension in rats. However, because of the multiple pathways through which it acts, the integrated actions of macrophage migration inhibitory factor during the development of hypoxic pulmonary hypertension were unclear. We report here that isolated lungs from adult macrophage migration inhibitory factor knockout (MIF-/- ) mice maintained in normoxic conditions showed greater acute hypoxic vasoconstriction than the lungs of wild type mice (MIF+/+ ). Following exposure to hypoxia for three weeks, isolated lungs from MIF-/- mice had significantly higher pulmonary vascular resistance than those from MIF+/+ mice. The major mechanism underlying the greater increase in pulmonary vascular resistance in the hypoxic MIF-/- mice was reduction of the pulmonary vascular bed due to an impairment of the normal hypoxia-induced expansion of the alveolar capillary network. Taken together, these results demonstrate that macrophage migration inhibitory factor plays a central role in the development of the pulmonary vascular responses to chronic alveolar hypoxia.
Collapse
Affiliation(s)
- Lili Li
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maojia Xu
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Simon C Rowan
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Katherine Howell
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Adam Russell-Hallinan
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Paul McLoughlin
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John A Baugh
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Hypoxia and its preconditioning on cardiac and vascular remodelling in experimental animals. Respir Physiol Neurobiol 2020; 285:103588. [PMID: 33253893 DOI: 10.1016/j.resp.2020.103588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022]
Abstract
Since oxygen (O2) is indispensable for mammalian life, every cell in the body is endowed with mechanisms to detect and to respond to changes in the O2 levels in the microenvironment. The heart and the brain are the two most vital, life-supporting organs requiring a continuous supply of O2 to sustain their high metabolic rate. On being challenged with hypoxia, maintenance of O2 supply to these organs even at the cost of others becomes a priority. This review describes the cardiovascular, skeletal muscle vascular, pulmonary vascular and cerebrovascular remodelling in face of chronic mild hypoxia exposure and the underlying mechanisms, with special reference to the role of oxidative stress, hypoxia signalling, autonomic nervous mechanisms. The significance of the normalized wall index (NWI) in assessing the remodelling of the vessels particularly of the intramyocardial coronary artery has been underscored. The review also highlights the basic concepts of hypoxic preconditioning and the subsequent protection of the brain against an acute ischemic insult in preclinical studies hinting towards its possible therapeutic potential in the management of ischemic stroke.
Collapse
|
13
|
Duess JW, Gosemann JH, Puri P, Thompson J. Teratogenesis in the chick embryo following post-gastrulation exposure to Y-27632 -effect of Y-27632 on embryonic development. Toxicol Appl Pharmacol 2020; 409:115277. [PMID: 33049266 DOI: 10.1016/j.taap.2020.115277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023]
Abstract
The pyridine derivative Y-27632 inhibits Rho-associated coiled-coil-containing protein kinase (ROCK) signaling, which is involved in numerous developmental processes during embryogenesis, primarily by controlling actin-cytoskeleton assembly and cell contractility. Somite formation requires rearrangement of the cytoskeleton and assists in major morphological mechanisms, including ventral body wall formation. Administration of Y-27632 impairs cytoskeletal arrangements in post-gastrulation chick embryos leading to ventral body wall defects (VBWD) at later stages of development. The aim of this study was to investigate the effect of Y-27632 on somite development in post-gastrulation chick embryos during early embryogenesis. After 60 h incubation, embryos in shell-less culture were treated with Y-27632 or vehicle for controls. Following administration, abnormality rates were assessed. In treatment groups, embryos showed a kinked longitudinal body axis. Western blot confirmed impaired ROCK downstream signaling by decreased expression of phosphorylated cofilin-2. Histology, Lysotracker studies and RT-PCR demonstrated increased cell death in somites, the neural tube and the ectoderm. RT-PCR and Western blot of factors known to be involved during somitogenesis revealed reduced expression in the treatment group compared to controls. We hypothesize that administration of Y-27632 disrupts somite development causing axial kinking and embryo malformation, which may lead to VBWD.
Collapse
Affiliation(s)
- Johannes W Duess
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jan-Hendrik Gosemann
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jennifer Thompson
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
14
|
Gassmann M, Cowburn A, Gu H, Li J, Rodriguez M, Babicheva A, Jain PP, Xiong M, Gassmann NN, Yuan JXJ, Wilkins MR, Zhao L. Hypoxia-induced pulmonary hypertension-Utilizing experiments of nature. Br J Pharmacol 2020; 178:121-131. [PMID: 32464698 DOI: 10.1111/bph.15144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
An increase in pulmonary artery pressure is a common observation in adult mammals exposed to global alveolar hypoxia. It is considered a maladaptive response that places an increased workload on the right ventricle. The mechanisms initiating and maintaining the elevated pressure are of considerable interest in understanding pulmonary vascular homeostasis. There is an expectation that identifying the key molecules in the integrated vascular response to hypoxia will inform potential drug targets. One strategy is to take advantage of experiments of nature, specifically, to understand the genetic basis for the inter-individual variation in the pulmonary vascular response to acute and chronic hypoxia. To date, detailed phenotyping of highlanders has focused on haematocrit and oxygen saturation rather than cardiovascular phenotypes. This review explores what we can learn from those studies with respect to the pulmonary circulation. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,University Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Andrew Cowburn
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| | - Hong Gu
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jia Li
- Clinical Physiology Laboratory, Institute of Pediatrics, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Norina N Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Martin R Wilkins
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| | - Lan Zhao
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
15
|
Sharma P, Roy K. ROCK-2-selective targeting and its therapeutic outcomes. Drug Discov Today 2020; 25:446-455. [DOI: 10.1016/j.drudis.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/08/2019] [Accepted: 11/30/2019] [Indexed: 01/21/2023]
|
16
|
Association between a Single Nucleotide Polymorphism in the 3'-UTR of ARHGEF18 and the Risk of Nonidiopathic Pulmonary Arterial Hypertension in Chinese Population. DISEASE MARKERS 2018; 2018:2461845. [PMID: 30405854 PMCID: PMC6204199 DOI: 10.1155/2018/2461845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
ARHGEF18 has been identified as upregulated in the lung tissues of rat models of pulmonary artery hypertension introduced by hypoxia or monocrotaline (MCT). We used online SNP function prediction tools to screen the candidate SNPs that might be associated with the regulation of the ARHGEF18 expression. The result suggested that rs3745357 located in the 3'-untranslated region of ARHGEF18 is probably a genetic modifier in the process. In the present study, we aimed to investigate the association between ARHGEF18 rs3745357 polymorphism and nonidiopathic pulmonary arterial hypertension susceptibility (niPAH). A total of 293 participants were included in the case-control study (117 patients and 176 healthy controls). The rs3745357 variant was discriminated by using cleaved amplification polymorphism (CAP) sequence-tagged site technology. Although the overall allele and genotype frequencies of rs3745357 in niPAH patients were close to those of the control group, significant differences have been identified when we further divided the niPAH patients into subgroups with or without coronary heart disease (CHD). Rs3745357 C allele frequency was significantly higher in niPAH patients without CHD history (p = 0.001), while the frequency was significantly lower in niPAH patients with CHD history (p = 0.017) when compared to control subjects. The distribution of genotype frequencies was also quite different. After adjustment by gender and age, significant differences were found between patients with CHD history and controls. The results suggest that the ARHGEF18 rs3745357 variant may be used as a marker for the genetic susceptibility to niPAH.
Collapse
|
17
|
Eldridge L, Wagner EM. Angiogenesis in the lung. J Physiol 2018; 597:1023-1032. [PMID: 30022479 DOI: 10.1113/jp275860] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Both systemic (tracheal and bronchial) and pulmonary circulations perfuse the lung. However, documentation of angiogenesis of either is complicated by the presence of the other. Well-documented angiogenesis of the systemic circulations have been identified in asthma, cystic fibrosis, chronic thromboembolism and primary carcinomas. Angiogenesis of the vasa vasorum, which are branches of bronchial arteries, is seen in the walls of large pulmonary vessels after a period of chronic hypoxia. Documentation of increased pulmonary capillaries has been shown in models of chronic hypoxia, after pneumonectomy and in some carcinomas. Although endothelial cell proliferation may occur as part of the repair process in several pulmonary diseases, it is separate from the unique establishment of new functional perfusing networks defined as angiogenesis. Identification of the mechanisms driving the expansion of new vascular beds in the adult needs further investigation. Yet the growth factors and molecular mechanisms of lung angiogenesis remain difficult to separate from underlying disease sequelae.
Collapse
Affiliation(s)
- Lindsey Eldridge
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M Wagner
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR, Holland EJ. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018; 16:398-414. [PMID: 29908870 DOI: 10.1016/j.jtos.2018.06.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
The cornea is unique because of its complete avascularity. Corneal neovascularization (CNV) can result from a variety of etiologies including contact lens wear; corneal infections; and ocular surface diseases due to inflammation, chemical injury, and limbal stem cell deficiency. Management is focused primarily on the etiology and pathophysiology causing the CNV and involves medical and surgical options. Because inflammation is a key factor in the pathophysiology of CNV, corticosteroids and other anti-inflammatory medications remain the mainstay of treatment. Anti-VEGF therapies are gaining popularity to prevent CNV in a number of etiologies. Surgical options including vessel occlusion and ocular surface reconstruction are other options depending on etiology and response to medical therapy. Future therapies should provide more effective treatment options for the management of CNV.
Collapse
Affiliation(s)
- Danial Roshandel
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Albert Y Cheung
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Khaliq Kurji
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alejandra Maiz
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Setareh Jalali
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Edward J Holland
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA.
| |
Collapse
|
19
|
Tagashira T, Fukuda T, Miyata M, Nakamura K, Fujita H, Takai Y, Hirata KI, Rikitake Y. Afadin Facilitates Vascular Endothelial Growth Factor–Induced Network Formation and Migration of Vascular Endothelial Cells by Inactivating Rho-Associated Kinase Through ArhGAP29. Arterioscler Thromb Vasc Biol 2018; 38:1159-1169. [DOI: 10.1161/atvbaha.118.310991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 03/12/2018] [Indexed: 01/19/2023]
Abstract
Objective—
We previously reported that afadin, an actin filament-binding protein, regulated vascular endothelial growth factor–induced angiogenesis. However, the underlying molecular mechanisms are poorly understood. Here, we investigated the mechanisms of how Rho-associated kinase is activated in afadin-knockdown human umbilical vein endothelial cells (HUVECs) and how its activation is involved in defects of vascular endothelial growth factor–induced network formation and migration of the cells.
Approach and Results—
Knockdown of afadin or ArhGAP29, a GTPase-activating protein for RhoA, increased Rho-associated kinase activity and reduced the vascular endothelial growth factor–induced network formation and migration of cultured HUVECs, accompanied by the defective formation of membrane protrusions, such as lamellipodia and peripheral ruffles. Treatment of the afadin- or ArhGAP29-knockdown HUVECs with Rho-associated kinase inhibitors, Y-27632 or fasudil, partially restored the reduced network formation and migration as well as the defective formation of membrane protrusions. ArhGAP29 bound to afadin and was colocalized with afadin at the leading edge of migrating HUVECs. The defective formation of membrane protrusions in ArhGAP29-knockdown HUVECs was restored by expression of mutant ArhGAP29 that bound to afadin and contained a RhoGAP domain but not mutant ArhGAP29 that could bind to afadin and lacked the RhoGAP domain or mutant ArhGAP29 that could not bind to afadin and contained the RhoGAP domain. This suggested the requirement of both the interaction of afadin with ArhGAP29 and RhoGAP activity of ArhGAP29 for migration of HUVECs.
Conclusions—
Our results highlight a critical role of the afadin–ArhGAP29 axis for the regulation of Rho-associated kinase activity during vascular endothelial growth factor–induced network formation and migration of HUVECs.
Collapse
Affiliation(s)
- Toru Tagashira
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.T., T.F., K.-i.H.)
| | - Terunobu Fukuda
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.T., T.F., K.-i.H.)
| | - Muneaki Miyata
- Division of Signal Transduction, Department of Biochemistry and Molecular Biology (M.M., K.N., Y.R.)
| | - Kazuha Nakamura
- Division of Signal Transduction, Department of Biochemistry and Molecular Biology (M.M., K.N., Y.R.)
| | - Hidenobu Fujita
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Japan (H.F., Y.R.)
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology (Y.T.), Kobe University Graduate School of Medicine, Japan
| | - Ken-ichi Hirata
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.T., T.F., K.-i.H.)
| | - Yoshiyuki Rikitake
- Division of Signal Transduction, Department of Biochemistry and Molecular Biology (M.M., K.N., Y.R.)
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Japan (H.F., Y.R.)
| |
Collapse
|
20
|
Weise-Cross L, Sands MA, Sheak JR, Broughton BRS, Snow JB, Gonzalez Bosc LV, Jernigan NL, Walker BR, Resta TC. Actin polymerization contributes to enhanced pulmonary vasoconstrictor reactivity after chronic hypoxia. Am J Physiol Heart Circ Physiol 2018; 314:H1011-H1021. [PMID: 29373038 DOI: 10.1152/ajpheart.00664.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic hypoxia (CH) augments basal and endothelin-1 (ET-1)-induced pulmonary vasoconstrictor reactivity through reactive oxygen species (ROS) generation and RhoA/Rho kinase (ROCK)-dependent myofilament Ca2+ sensitization. Because ROCK promotes actin polymerization and the actin cytoskeleton regulates smooth muscle tension, we hypothesized that actin polymerization is required for enhanced basal and ET-1-dependent vasoconstriction after CH. To test this hypothesis, both end points were monitored in pressurized, endothelium-disrupted pulmonary arteries (fourth-fifth order) from control and CH (4 wk at 0.5 atm) rats. The actin polymerization inhibitors cytochalasin and latrunculin attenuated both basal and ET-1-induced vasoconstriction only in CH vessels. To test whether CH directly alters the arterial actin profile, we measured filamentous actin (F-actin)-to-globular actin (G-actin) ratios by fluorescent labeling of F-actin and G-actin in fixed pulmonary arteries and actin sedimentation assays using homogenized pulmonary artery lysates. We observed no difference in actin polymerization between groups under baseline conditions, but ET-1 enhanced actin polymerization in pulmonary arteries from CH rats. This response was blunted by the ROS scavenger tiron, the ROCK inhibitor fasudil, and the mDia (RhoA effector) inhibitor small-molecule inhibitor of formin homology domain 2. Immunoblot analysis revealed an effect of CH to increase both phosphorylated (inactive) and total levels of the actin disassembly factor cofilin but not phosphorylated cofilin-to-total cofilin ratios. We conclude that actin polymerization contributes to increased basal pulmonary arterial constriction and ET-1-induced vasoconstrictor reactivity after CH in a ROS- and ROCK-dependent manner. Our results further suggest that enhanced ET-1-mediated actin polymerization after CH is dependent on mDia but independent of changes in the phosphorylated cofilin-to-total cofilin ratio. NEW & NOTEWORTHY This research is the first to demonstrate a role for actin polymerization in chronic hypoxia-induced basal pulmonary arterial constriction and enhanced agonist-induced vasoconstrictor activity. These results suggest that a reactive oxygen species-Rho kinase-actin polymerization signaling pathway mediates this response and may provide a mechanistic basis for the vasoconstrictor component of pulmonary hypertension.
Collapse
Affiliation(s)
- Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Michelle A Sands
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Joshua R Sheak
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Brad R S Broughton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Jessica B Snow
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|
21
|
Zhang C, Ma C, Yao H, Zhang L, Yu X, Liu Y, Shen T, Zhang L, Zhang F, Chen X, Zhu D. 12-Lipoxygenase and 12-hydroxyeicosatetraenoic acid regulate hypoxic angiogenesis and survival of pulmonary artery endothelial cells via PI3K/Akt pathway. Am J Physiol Lung Cell Mol Physiol 2017; 314:L606-L616. [PMID: 29074487 DOI: 10.1152/ajplung.00049.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dysfunction and injury of endothelial cells play critical roles in pulmonary arterial hypertension, including aberrant proliferation, suppressed apoptosis, and excessive angiogenesis. The 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid pathway, which has been considered as a crucial mediator, elevates pulmonary vascular resistance and pulmonary arterial pressure. However, the mechanisms underlying the bioactivity of 12-hydroxyeicosatetraenoic acid in pulmonary vasculature, especially in endothelial cells, are still elusive. Thus we aim to determine the key role of 12-lipoxygenase/12-hydroxyeicosatetraenoic acid in angiogenesis and survival of pulmonary artery endothelial cells and ascertain the signaling pathways participating in the pathological process. Here we establish that hypoxia increases the formation of endogenous 12-hydroxyeicosatetraenoic acid through stimulation of 12-lipoxygenase. Furthermore, we put forward new information that 12-hydroxyeicosatetraenoic acid promotes endothelial cell migration and tube formation, whereas it inhibits the serum deprivation-induced apoptotic responses under hypoxia. Particularly, the regulatory effects of 12-lipoxygenase/12-hydroxyeicosatetraenoic acid on pulmonary artery endothelial cells, at least in part, depend on phosphatidylinositol 3-kinase (PI3K)/Akt signaling activation. Taken together, these results may have significant implications for understanding of pulmonary hypertension and offer a potential therapeutic concept focusing on the 12-lipoxygenase/12-hydroxyeicosatetraenoic acid signaling system.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University , Harbin , China
| | - Cui Ma
- Central Laboratory, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Hongmin Yao
- Petit Science Center, Department of Biology, College of Arts and Sciences, Georgia State University , Atlanta, Georgia
| | - Lixin Zhang
- Central Laboratory, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Xiufeng Yu
- Central Laboratory, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Yumei Liu
- Central Laboratory, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Tingting Shen
- Department of Pharmacology, Dalian Medical University , Dalian , China
| | - Linlin Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University , Harbin , China
| | - Fengying Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University , Harbin , China
| | - Xinxin Chen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University , Harbin , China
| | - Daling Zhu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University , Harbin , China.,Central Laboratory, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University , Harbin , China
| |
Collapse
|
22
|
Herbert LM, Resta TC, Jernigan NL. RhoA increases ASIC1a plasma membrane localization and calcium influx in pulmonary arterial smooth muscle cells following chronic hypoxia. Am J Physiol Cell Physiol 2017; 314:C166-C176. [PMID: 29070491 DOI: 10.1152/ajpcell.00159.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Increases in pulmonary arterial smooth muscle cell (PASMC) intracellular Ca2+ levels and enhanced RhoA/Rho kinase-dependent Ca2+ sensitization are key determinants of PASMC contraction, migration, and proliferation accompanying the development of hypoxic pulmonary hypertension. We previously showed that acid-sensing ion channel 1a (ASIC1a)-mediated Ca2+ entry in PASMC is an important constituent of the active vasoconstriction, vascular remodeling, and right ventricular hypertrophy associated with hypoxic pulmonary hypertension. However, the enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMC from pulmonary hypertensive animals is not dependent on an increase in ASIC1a protein expression, suggesting that chronic hypoxia (CH) stimulates ASIC1a function through other regulatory mechanism(s). RhoA is involved in ion channel trafficking, and levels of activated RhoA are increased following CH. Therefore, we hypothesize that activation of RhoA following CH increases ASIC1a-mediated Ca2+ entry by promoting ASIC1a plasma membrane localization. Consistent with our hypothesis, we found greater plasma membrane localization of ASIC1a following CH. Inhibition of RhoA decreased ASIC1a plasma membrane expression and largely diminished ASIC1a-mediated Ca2+ influx, whereas activation of RhoA had the opposite effect. A proximity ligation assay revealed that ASIC1a and RhoA colocalize in PASMC and that the activation state of RhoA modulates this interaction. Together, our findings show a novel interaction between RhoA and ASIC1a, such that activation of RhoA in PASMC, both pharmacologically and via CH, promotes ASIC1a plasma membrane localization and Ca2+ entry. In addition to enhanced RhoA-mediated Ca2+ sensitization following CH, RhoA can also activate a Ca2+ signal by facilitating ASIC1a plasma membrane localization and Ca2+ influx in pulmonary hypertension.
Collapse
Affiliation(s)
- Lindsay M Herbert
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|
23
|
Zhang Y, Wu S. Effects of fasudil on pulmonary hypertension in clinical practice. Pulm Pharmacol Ther 2017; 46:54-63. [PMID: 28782712 DOI: 10.1016/j.pupt.2017.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/02/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
Pulmonary hypertension (PH) is a pathophysiologic disorder that may involve multiple clinical conditions and can complicate the majority of cardiovascular and respiratory diseases. The presence of PH is associated with worse outcomes, but the efficacy of current therapy is still unsatisfactory. Because Rho-kinase (ROCK) plays an important role in the pathogenesis of PH, the ROCK inhibitor fasudil is expected to contribute to PH treatment. In animal models of PH, fasudil reduced pulmonary artery pressure (PAP) and improved survival. Furthermore, the short-term efficacy and safety of fasudil in the treatment of PH are demonstrated in clinical trials. Both PAP and pulmonary vascular resistance in patients with PH are significantly decreased by intravenous or inhaled fasudil without apparent side effect. However, no clinical trial has assessed the long-term efficacy of fasudil in the treatment of PH. Limited data suggest that the mid-term use of fasudil could improve exercise capacity and reduce in-hospital mortality. We also discuss the combined use of fasudil and other drugs for PH treatment. However, these combinations have not yet been evaluated in a clinical trial. According to animal studies, the combination of fasudil with beraprost or sildenafil shows synergistic effects, whereas the combination of fasudil with bosentan has no additional ameliorating effects on PH development.
Collapse
Affiliation(s)
- Yiqing Zhang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
24
|
Jernigan NL, Naik JS, Weise-Cross L, Detweiler ND, Herbert LM, Yellowhair TR, Resta TC. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension. PLoS One 2017; 12:e0180455. [PMID: 28666030 PMCID: PMC5493402 DOI: 10.1371/journal.pone.0180455] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/15/2017] [Indexed: 11/19/2022] Open
Abstract
Pulmonary arterial hypertension is associated with a decreased antioxidant capacity. However, neither the contribution of reactive oxygen species to pulmonary vasoconstrictor sensitivity, nor the therapeutic efficacy of antioxidant strategies in this setting are known. We hypothesized that reactive oxygen species play a central role in mediating both vasoconstrictor and arterial remodeling components of severe pulmonary arterial hypertension. We examined the effect of the chemical antioxidant, TEMPOL, on right ventricular systolic pressure, vascular remodeling, and enhanced vasoconstrictor reactivity in both chronic hypoxia and hypoxia/SU5416 rat models of pulmonary hypertension. SU5416 is a vascular endothelial growth factor receptor antagonist and the combination of chronic hypoxia/SU5416 produces a model of severe pulmonary arterial hypertension with vascular plexiform lesions/fibrosis that is not present with chronic hypoxia alone. The major findings from this study are: 1) compared to hypoxia alone, hypoxia/SU5416 exposure caused more severe pulmonary hypertension, right ventricular hypertrophy, adventitial lesion formation, and greater vasoconstrictor sensitivity through a superoxide and Rho kinase-dependent Ca2+ sensitization mechanism. 2) Chronic hypoxia increased medial muscularization and superoxide levels, however there was no effect of SU5416 to augment these responses. 3) Treatment with TEMPOL decreased right ventricular systolic pressure in both hypoxia and hypoxia/SU5416 groups. 4) This effect of TEMPOL was associated with normalization of vasoconstrictor responses, but not arterial remodeling. Rather, medial hypertrophy and adventitial fibrotic lesion formation were more pronounced following chronic TEMPOL treatment in hypoxia/SU5416 rats. Our findings support a major role for reactive oxygen species in mediating enhanced vasoconstrictor reactivity and pulmonary hypertension in both chronic hypoxia and hypoxia/SU5416 rat models, despite a paradoxical effect of antioxidant therapy to exacerbate arterial remodeling in animals with severe pulmonary arterial hypertension in the hypoxia/SU5416 model.
Collapse
Affiliation(s)
- Nikki L. Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
- * E-mail:
| | - Jay S. Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Neil D. Detweiler
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Lindsay M. Herbert
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Tracylyn R. Yellowhair
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Thomas C. Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| |
Collapse
|
25
|
Pandey P, Kumari S, Ali Z, Pasha MQ. Acute hypobaric hypoxia augments ROCK2 protein level and activity. Exp Lung Res 2017; 43:181-186. [DOI: 10.1080/01902148.2017.1333174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Priyanka Pandey
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India
- Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sangeeta Kumari
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Zahara Ali
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India
| | - Ma Qadar Pasha
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India
| |
Collapse
|
26
|
Rodrigues MP, Vissoci CM, Rosa SP, Negreiros SBC. 24-Hour Hypoxia and Pulmonary Hypertension in Patients with Idiopathic Pulmonary Fibrosis. Open Respir Med J 2017; 11:10-16. [PMID: 28659997 PMCID: PMC5470069 DOI: 10.2174/1874306401711010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
Background: The quantification of hypoxia based on resting partial pressure of arterial oxygen (PaO2) may underestimate hypoxia related to activities of daily living or sleep and thus not accurately reflect pulmonary hypertension (PH). The aim of the present study was to investigate the association of resting PaO2 with percent time of SpO2 below 90% (T90) and 88% (T88) in 24 hours. We also evaluated the capacity of hypoxia measures to predict PH in patients with idiopathic pulmonary fibrosis (IPF). Method: This cross-sectional study included 27 patients with IPF presenting PaO2 ≥ 55 mmHg and not receiving home oxygen therapy. All were submitted to blood gas measurement, 24-h oximetry, and transthoracic Doppler echocardiography to estimate systolic pulmonary artery pressure (SPAP). Patients were divided into three groups according to resting PaO2: 55-55.9 mmHg (A); 60-60.9 mmHg (B); ≥ 70 mmHg (C). PH was defined as “likely” if SPAP > 50 mmHg, and as possible for SPAP between 37 and 50 mmHg. Results: T90 and T88 in Groups A, B, and C were as follows: 59.9±29% and 44.1±34%; 49.3±34% and 29.9±31%; 17.1±25% and 8.8±18% respectively, with significant differences between the groups for both T90 (p ≤ 0.01) and T88 (p = 0.02). PaO2 was inversely correlated with T90 (r = -0.398; p = 0.04) and T88 (r = -0.351; p = 0.07). Hypoxia variables did not correlate with SPAP, and were not able to predict PH. Conclusion: Percent time of SpO2 below 90% and 88% in 24 hours revealed periods of severe hypoxia even in patients with borderline-normal resting PaO2. However, none of the present hypoxia variables was capable of predicting PH.
Collapse
Affiliation(s)
- Marcelo P Rodrigues
- Department of Pulmonology, School of Medicine, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | | | - Samuel P Rosa
- Department of Cardiology, Hospital de Base, Brasília, DF, Brazil
| | - Sandra B C Negreiros
- Department of Pulmonology, School of Medicine, Universidade de Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
27
|
Schreiber C, Eilenberg MS, Panzenboeck A, Winter MP, Bergmeister H, Herzog R, Mascherbauer J, Lang IM, Bonderman D. Combined oral administration of L-arginine and tetrahydrobiopterin in a rat model of pulmonary arterial hypertension. Pulm Circ 2017; 7:89-97. [PMID: 28680568 PMCID: PMC5448548 DOI: 10.1086/689289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022] Open
Abstract
Alterations in the nitric oxide (NO) pathway play a major role in pulmonary arterial hypertension (PAH). L-arginine (LA) and tetrahydrobiopterin (BH4) are main substrates in the production of NO, which mediates pulmonary vasodilation. Administration of either LA or BH4 decrease pulmonary artery pressure (PAP). A combined administration of both may have synergistic effects in the therapy of PAH. In a telemetrically monitored model of unilateral pneumonectomy and monocrotaline-induced PAH, male Sprague-Dawley rats received either LA (300 mg/kg; n = 15), BH4 (20 mg/kg; n = 15), the combination of LA and BH4 (300 mg/kg, 20 mg/kg; n = 15), or vehicle (control group; n = 10) from day 28 after monocrotaline induction. Therapy was orally administered once daily over consecutive 14 days. LA, BH4, or both equally lowered PAP, increased pulmonary vascular elasticity, restored spontaneous locomotoric activity, prevented body weight loss and palliated small vessel disease of severely pulmonary hypertensive rats. BH4 substitution lowered asymmetric dimethylarginine levels sustainably at 60 min after administration and downregulated endothelial NO synthase mRNA expression. No significant survival, macro- and histomorphologic or hemodynamic differences were found between therapy groups at the end of the study period. Administration of LA and BH4 both mediated a decrease of mean PAP, attenuated right ventricular hypertrophy and small vessel disease in monocrotaline-induced pulmonary hypertensive rats, though a combined administration of both substances did not reveal any synergistic therapy effects in our animal model.
Collapse
Affiliation(s)
- C Schreiber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M S Eilenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - A Panzenboeck
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M P Winter
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - H Bergmeister
- Institute of Biomedical Research, Medical University of Vienna, Austria
| | - R Herzog
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - J Mascherbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - I M Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - D Bonderman
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| |
Collapse
|
28
|
Schreiber C, Eilenberg M, Panzenboeck A, Winter M, Bergmeister H, Herzog R, Mascherbauer J, Lang I, Bonderman D. Combined oral administration of L-arginine and tetrahydrobiopterin in a rat model of pulmonary arterial hypertension. Pulm Circ 2017. [DOI: 10.1177/2045893216677519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- C. Schreiber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M.S. Eilenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - A. Panzenboeck
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M.P. Winter
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - H. Bergmeister
- Institute of Biomedical Research, Medical University of Vienna, Austria
| | - R. Herzog
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - J. Mascherbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - I.M. Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - D. Bonderman
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| |
Collapse
|
29
|
Gao Y, Cornfield DN, Stenmark KR, Thébaud B, Abman SH, Raj JU. Unique aspects of the developing lung circulation: structural development and regulation of vasomotor tone. Pulm Circ 2017; 6:407-425. [PMID: 27942377 DOI: 10.1086/688890] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review summarizes our current knowledge on lung vasculogenesis and angiogenesis during normal lung development and the regulation of fetal and postnatal pulmonary vascular tone. In comparison to that of the adult, the pulmonary circulation of the fetus and newborn displays many unique characteristics. Moreover, altered development of pulmonary vasculature plays a more prominent role in compromised pulmonary vasoreactivity than in the adult. Clinically, a better understanding of the developmental changes in pulmonary vasculature and vasomotor tone and the mechanisms that are disrupted in disease states can lead to the development of new therapies for lung diseases characterized by impaired alveolar structure and pulmonary hypertension.
Collapse
Affiliation(s)
- Yuangsheng Gao
- Department of Pediatrics, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - David N Cornfield
- Section of Pulmonary and Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Kurt R Stenmark
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute; and Children's Hospital of Eastern Ontario Research Institute; University of Ottawa, Ottawa, Ontario, Canada
| | - Steven H Abman
- Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - J Usha Raj
- Department of Pediatrics, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
Maron BA, Machado RF, Shimoda L. Pulmonary vascular and ventricular dysfunction in the susceptible patient (2015 Grover Conference series). Pulm Circ 2016; 6:426-438. [PMID: 28090285 PMCID: PMC5210067 DOI: 10.1086/688315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Pulmonary blood vessel structure and tone are maintained by a complex interplay between endogenous vasoactive factors and oxygen-sensing intermediaries. Under physiological conditions, these signaling networks function as an adaptive interface between the pulmonary circulation and environmental or acquired perturbations to preserve oxygenation and maintain systemic delivery of oxygen-rich hemoglobin. Chronic exposure to hypoxia, however, triggers a range of pathogenetic mechanisms that include hypoxia-inducible factor 1α (HIF-1α)-dependent upregulation of the vasoconstrictor peptide endothelin 1 in pulmonary endothelial cells. In pulmonary arterial smooth muscle cells, chronic hypoxia induces HIF-1α-mediated upregulation of canonical transient receptor potential proteins, as well as increased Rho kinase-Ca2+ signaling and pulmonary arteriole synthesis of the profibrotic hormone aldosterone. Collectively, these mechanisms contribute to a contractile or hypertrophic pulmonary vascular phenotype. Genetically inherited disorders in hemoglobin structure are also an important etiology of abnormal pulmonary vasoreactivity. In sickle cell anemia, for example, consumption of the vasodilator and antimitogenic molecule nitric oxide by cell-free hemoglobin is an important mechanism underpinning pulmonary hypertension. Contemporary genomic and transcriptomic analytic methods have also allowed for the discovery of novel risk factors relevant to sickle cell disease, including GALNT13 gene variants. In this report, we review cutting-edge observations characterizing these and other pathobiological mechanisms that contribute to pulmonary vascular and right ventricular vulnerability.
Collapse
Affiliation(s)
- Bradley A. Maron
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA; and Department of Cardiology, Boston Veterans Affairs Healthcare System, Boston, Massachusetts, USA
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Larissa Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Moreno C, de la Cruz A, Valenzuela C. In-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K + Channels; Interaction and New Targets. Front Physiol 2016; 7:578. [PMID: 27933000 PMCID: PMC5121229 DOI: 10.3389/fphys.2016.00578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023] Open
Abstract
Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the KV channel modulation by PUFAs: (i) the exact residues involved in PUFAs-KV channels interaction; (ii) the structural PUFAs determinants important for their effects on KV channels; (iii) the mechanism of the gating modulation of KV channels and, finally, (iv) the PUFAs modulation of a few new targets present in smooth muscle cells (SMC), KCa1.1, K2P, and KATP channels, involved in vascular relaxation.
Collapse
Affiliation(s)
- Cristina Moreno
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre Maastricht, Netherlands
| | - Alicia de la Cruz
- Departamento de Modelos Experimentales de Enfermedades Humanas, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC - Universidad Autónoma de Madrid Madrid, Spain
| | - Carmen Valenzuela
- Departamento de Modelos Experimentales de Enfermedades Humanas, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC - Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
32
|
Absence of the Adenosine A2A Receptor Confers Pulmonary Arterial Hypertension Through RhoA/ROCK Signaling Pathway in Mice. J Cardiovasc Pharmacol 2016; 66:569-75. [PMID: 26647014 DOI: 10.1097/fjc.0000000000000305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous evidence suggests that RhoA/Rho kinase (ROCK) signaling pathway plays an important role in the pathogenesis of pulmonary arterial hypertension (PAH), but little is known about its effects on the development of PAH in mice with absence of the adenosine A2A receptor (A2AR). Eight A2AR knockout (KO) and 8 wild-type mice were used. Morphometric analysis of pulmonary arterioles included right ventricle/left ventricle plus ventricular septum (Fulton index), vessel wall thickness/total vascular diameter (WT%), and vessel wall area/total vascular area (WA%). The expression of RhoA and ROCK1 mRNA was determined by real-time polymerase chain reaction. The expression of RhoA, ROCK1, and phosphorylation of myosin phosphatase target subunit 1 proteins in pulmonary tissue was tested by Western blot. The position of ROCK1 protein was evaluated by immunohistochemistry. Compared with wild-type mice, A2AR KO mice displayed (1) increased Fulton index, WT%, and WA% (P < 0.01); (2) increased mRNA expression of RhoA and ROCK1 (each P < 0.05); (3) increased protein expression of RhoA, ROCK1, and phosphorylation of myosin phosphatase target subunit 1 (each P < 0.01); (4) increased location of ROCK1 protein in endothelial and smooth muscle cells of pulmonary artery, bronchial, and alveolar epithelial cells. Activation of RhoA/ROCK signaling pathway may cause pulmonary vascular constriction, pulmonary artery remodeling, and PAH in adenosine A2A receptor KO mice.
Collapse
|
33
|
Darby IA, Hewitson TD. Hypoxia in tissue repair and fibrosis. Cell Tissue Res 2016; 365:553-62. [PMID: 27423661 DOI: 10.1007/s00441-016-2461-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
|
34
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Lopez NC, Ebensperger G, Herrera EA, Reyes RV, Calaf G, Cabello G, Moraga FA, Beñaldo FA, Diaz M, Parer JT, Llanos AJ. Role of the RhoA/ROCK pathway in high-altitude associated neonatal pulmonary hypertension in lambs. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1053-63. [PMID: 26911462 DOI: 10.1152/ajpregu.00177.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 02/17/2016] [Indexed: 11/22/2022]
Abstract
Exposure to high-altitude chronic hypoxia during pregnancy may cause pulmonary hypertension in neonates, as a result of vasoconstriction and vascular remodeling. We hypothesized that susceptibility to pulmonary hypertension, due to an augmented expression and activity of the RhoA/Rho-kinase (ROCK) pathway in these neonates, can be reduced by daily administration of fasudil, a ROCK inhibitor. We studied 10 highland newborn lambs with conception, gestation, and birth at 3,600 m in Putre, Chile. Five highland controls (HLC) were compared with 5 highland lambs treated with fasudil (HL-FAS; 3 mg·kg(-1)·day(-1) iv for 10 days). Ten lowland controls were studied in Lluta (50 m; LLC). During the 10 days of fasudil daily administration, the drug decreased pulmonary arterial pressure (PAP) and resistance (PVR), basally and during a superimposed episode of acute hypoxia. HL-FAS small pulmonary arteries showed diminished muscular area and a reduced contractile response to the thromboxane analog U46619 compared with HLC. Hypoxia, but not fasudil, changed the protein expression pattern of the RhoA/ROCKII pathway. Moreover, HL-FAS lungs expressed less pMYPT1(T850) and pMYPT1T(696) than HLC, with a potential increase of the myosin light chain phosphatase activity. Finally, hypoxia induced RhoA, ROCKII, and PKG mRNA expression in PASMCs of HLC, but fasudil reduced them (HL-FAS) similarly to LLC. We conclude that fasudil decreases the function of the RhoA/ROCK pathway, reducing the PAP and PVR in chronically hypoxic highland neonatal lambs. The inhibition of ROCKs by fasudil may offer a possible therapeutic tool for the pulmonary hypertension of the neonates.
Collapse
Affiliation(s)
- Nandy C Lopez
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - German Ebensperger
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Gloria Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Gertrudis Cabello
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Fernando A Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Felipe A Beñaldo
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcela Diaz
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Julian T Parer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Anibal J Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile;
| |
Collapse
|
36
|
Rowan SC, Keane MP, Gaine S, McLoughlin P. Hypoxic pulmonary hypertension in chronic lung diseases: novel vasoconstrictor pathways. THE LANCET RESPIRATORY MEDICINE 2016; 4:225-36. [PMID: 26895650 DOI: 10.1016/s2213-2600(15)00517-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022]
Abstract
Pulmonary hypertension is a well recognised complication of chronic hypoxic lung diseases, which are among the most common causes of death and disability worldwide. Development of pulmonary hypertension independently predicts reduced life expectancy. In chronic obstructive pulmonary disease, long-term oxygen therapy ameliorates pulmonary hypertension and greatly improves survival, although the correction of alveolar hypoxia and pulmonary hypertension is only partial. Advances in understanding of the regulation of vascular smooth muscle tone show that chronic vasoconstriction plays a more important part in the pathogenesis of hypoxic pulmonary hypertension than previously thought, and that structural vascular changes contribute less. Trials of existing vasodilators show that pulmonary hypertension can be ameliorated and systemic oxygen delivery improved in carefully selected patients, although systemic hypotensive effects limit the doses used. Vasoconstrictor pathways that are selective for the pulmonary circulation can be blocked to reduce hypoxic pulmonary hypertension without causing systemic hypotension, and thus provide potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Simon C Rowan
- UCD School of Medicine, Conway Institute, Dublin, Ireland
| | - Michael P Keane
- UCD School of Medicine, Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland
| | - Seán Gaine
- National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | | |
Collapse
|
37
|
Mirzaei Bavil F, Alipour MR, Keyhanmanesh R, Alihemmati A, Ghiyasi R, Mohaddes G. Ghrelin Decreases Angiogenesis, HIF-1α and VEGF Protein Levels in Chronic Hypoxia in Lung Tissue of Male Rats. Adv Pharm Bull 2015; 5:315-20. [PMID: 26504752 DOI: 10.15171/apb.2015.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Hypoxia is a condition of decreased availability of oxygen. When cells are exposed to a low oxygen environment, they impel the hypoxia responses to adapt to new situation. The hypoxia response leads to the activation of various cellular signaling pathways. The aim of this study was to evaluate the effect of ghrelin on angiogenesis, Hypoxia-Inducible-Factor-1α (HIF-1) and Vascular endothelial growth factor (VEGF) levels in normobaric hypoxia situation. METHODS Twenty four animals were divided into 4 groups (n=6): control (C), ghrelin (Gh), hypoxia (H), and hypoxic animals that received ghrelin (H+Gh). Hypoxia (11%) was induced by an Environmental Chamber System GO2 Altitude. Animals in ghrelin groups received a subcutaneous injection of ghrelin (150 μg/kg/day) for 14 days. RESULTS Our results showed that hypoxia significantly (p<0.05) increased angiogenesis without any significant changes on HIF-1 and VEGF levels, whereas ghrelin significantly (p<0.05) decreased angiogenesis, expression of HIF-1 and VEGF in this condition. Ghrelin administration did not show any significant changes in normal conditions. CONCLUSION Ghrelin had no effect on angiogenesis, expression of HIF-1 and VEGF in normal oxygen conditions but it reduced angiogenesis process in lung tissue with reducing the level of HIF and VEGF in hypoxic condition. Therefore, effect of ghrelin on angiogenesis could be related to blood oxygen level.
Collapse
Affiliation(s)
- Fariba Mirzaei Bavil
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafigheh Ghiyasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Ejtehadifar M, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Dehdilani N, Abbasi P, Molaeipour Z, Saleh M. The Effect of Hypoxia on Mesenchymal Stem Cell Biology. Adv Pharm Bull 2015; 5:141-9. [PMID: 26236651 DOI: 10.15171/apb.2015.021] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022] Open
Abstract
Although physiological and pathological role of hypoxia have been appreciated in mammalians for decades however the cellular biology of hypoxia more clarified in the past 20 years. Discovery of the transcription factor hypoxia-inducible factor (HIF)-1, in the 1990s opened a new window to investigate the mechanisms behind hypoxia. In different cellular contexts HIF-1 activation show variable results by impacting various aspects of cell biology such as cell cycle, apoptosis, differentiation and etc. Mesenchymal stem cells (MSC) are unique cells which take important role in tissue regeneration. They are characterized by self-renewal capacity, multilineage potential, and immunosuppressive property. Like so many kind of cells, hypoxia induces different responses in MSCs by HIF- 1 activation. The activation of this molecule changes the growth, multiplication, differentiation and gene expression profile of MSCs in their niche by a complex of signals. This article briefly discusses the most important effects of hypoxia in growth kinetics, signalling pathways, cytokine secretion profile and expression of chemokine receptors in different conditions.
Collapse
Affiliation(s)
- Mostafa Ejtehadifar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Drug Applied Research Center and Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Dehdilani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvaneh Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Molaeipour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Saleh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Xia Y, Cai XY, Fan JQ, Zhang LL, Ren JH, Chen J, Li ZY, Zhang RG, Zhu F, Wu G. Rho Kinase Inhibitor Fasudil Suppresses the Vasculogenic Mimicry of B16 Mouse Melanoma Cells Both In Vitro and In Vivo. Mol Cancer Ther 2015; 14:1582-90. [PMID: 25934709 DOI: 10.1158/1535-7163.mct-14-0523] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 04/24/2015] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the biologic role of the Rho kinase inhibitor fasudil in the vasculogenic mimicry (VM) of B16 mouse melanoma cells. It was previously reported that RhoA plays a critical role in angiogenesis by coordinating endothelial cell cytoskeleton remodeling and promoting endothelial cell motility. Although RhoA has been implicated in the regulation of angiogenesis, little has been described regarding its control of these tumor cell-lined channels. In this study, we established an in vitro model of VM using 3-dimensional cell culturing of mouse B16 melanoma cells and studied VM in vivo by transplanting B16 cells into C57/BL mice. Next, we explored the effect of RhoA and Rho-associated, coiled-coil containing protein kinase (ROCK) on VM formation using the Rho kinase inhibitor fasudil. We provide direct evidence that fasudil leads to reduced vascular-like channels in Matrigel. Additional experiments suggested that fasudil prevents both initial cellular architecture changes and cell migration in vitro. Finally, we provide in-depth evidence for the underlying mechanisms of fasudil-induced VM destruction using the Rho-GTPase agonist lysophosphatidic acid. In vivo studies revealed that fasudil reduced B16 melanoma cell xenograft tumor growth without causing significant toxicity in mice. Fasudil-treated tumors also displayed fewer VM channels. These results suggest that fasudil may be an emerging therapeutic option for targeting cancer VM.
Collapse
Affiliation(s)
- Yun Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Yi Cai
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Quan Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Hua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui-Guang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Nishimura R, Nishiwaki T, Kawasaki T, Sekine A, Suda R, Urushibara T, Suzuki T, Takayanagi S, Terada J, Sakao S, Tatsumi K. Hypoxia-induced proliferation of tissue-resident endothelial progenitor cells in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 308:L746-58. [PMID: 25502500 DOI: 10.1152/ajplung.00243.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022] Open
Abstract
Exposure to hypoxia induces changes in the structure and functional phenotypes of the cells composing the pulmonary vascular wall from larger to most peripheral vessels. Endothelial progenitor cells (EPCs) may be involved in vascular endothelial repair. Resident EPCs with a high proliferative potential are found in the pulmonary microcirculation. However, their potential location, identification, and functional role have not been clearly established. We investigated whether resident EPCs or bone marrow (BM)-derived EPCs play a major role in hypoxic response of pulmonary vascular endothelial cells (PVECs). Mice were exposed to hypoxia. The number of PVECs transiently decreased followed by an increase in hypoxic animals. Under hypoxic conditions for 1 wk, prominent bromodeoxyuridine incorporation was detected in PVECs. Some Ki67-positive cells were detected among PVECs after 1 wk under hypoxic conditions, especially in the capillaries. To clarify the origin of proliferating endothelial cells, we used BM chimeric mice expressing green fluorescent protein (GFP). The percentage of GFP-positive PVECs was low and constant during hypoxia in BM-transplanted mice, suggesting little engraftment of BM-derived cells in lungs under hypoxia. Proliferating PVECs in hypoxic animals showed increased expression of CD34, suggesting hypoxia-induced gene expression and cell surface antigen of EPC or stem/progenitor cells markers. Isolated PVECs from hypoxic mice showed colony- and tube-forming capacity. The present study indicated that hypoxia could induce proliferation of PVECs, and the origin of these cells might be tissue-resident EPCs.
Collapse
Affiliation(s)
- Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsu Nishiwaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayumi Sekine
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rika Suda
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Urushibara
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shin Takayanagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
41
|
Yilmaz C, Ravikumar P, Gyawali D, Iyer R, Unger RH, Hsia CCW. Alveolar-capillary adaptation to chronic hypoxia in the fatty lung. Acta Physiol (Oxf) 2015; 213:933-46. [PMID: 25363080 DOI: 10.1111/apha.12419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/17/2014] [Accepted: 10/26/2014] [Indexed: 12/18/2022]
Abstract
AIM Obese diabetic (ZDF fa/fa) rats with genetic leptin resistance suffer chronic lipotoxicity associated with age-related lung restriction and abnormal alveolar ultrastructure. We hypothesized that these abnormalities impair adaptation to ambient hypoxia. METHODS Male fa/fa and lean (+/+) ZDF rats (4-months old) were exposed to 21 or 13% O2 for 3 weeks. Lung function was measured under anaesthesia. Lung tissue was assayed for DNA damage and ultrastructure measured by morphometry. RESULTS In normoxia, lung volume, compliance and diffusing capacity were lower, while blood flow was higher in fa/fa than +/+ rats. In hypoxia, fa/fa animals lost more weight, circulating hematocrit rose higher, and lung volume failed to increase compared to +/+. In fa/fa, the hypoxia-induced increase in post-mortem lung volume was attenuated (19%) vs. +/+ (39%). Alveolar ducts were 35% smaller in normoxia but enlarged twofold more in hypoxia compared to +/+. Hypoxia induced broad increases (90-100%) in the volumes and surface areas of alveolar septal components in +/+ lungs; these increases were moderately attenuated in fa/fa lungs (58-75%), especially that of type II epithelium volume (16 vs. 61% in +/+). In fa/fa compared to +/+ lungs, oxidative DNA damage was greater with increased hypoxia induced efflux of alveolar macrophages. Harmonic mean thickness of the diffusion barrier was higher, indicating higher structural resistance to gas transfer. CONCLUSION Chronic lipotoxicity impaired hypoxia-induced lung expansion and compensatory alveolar growth with disproportionate effect on resident alveolar progenitor cells. The moderate structural impairment was offset by physiological adaptation primarily via a higher hematocrit.
Collapse
Affiliation(s)
- C. Yilmaz
- Pulmonary and Critical Care Medicine; Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas TX USA
| | - P. Ravikumar
- Pulmonary and Critical Care Medicine; Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas TX USA
| | - D. Gyawali
- Pulmonary and Critical Care Medicine; Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas TX USA
| | - R. Iyer
- Pulmonary and Critical Care Medicine; Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas TX USA
| | - R. H. Unger
- Touchstone Diabetes Center; Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas TX USA
| | - C. C. W. Hsia
- Pulmonary and Critical Care Medicine; Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas TX USA
| |
Collapse
|
42
|
Wu JR, Kao LP, Wu BN, Dai ZK, Wang YY, Chai CY, Chen IJ. Buffered l-ascorbic acid, alone or bound to KMUP-1 or sildenafil, reduces vascular endothelium growth factor and restores endothelium nitric oxide synthase in hypoxic pulmonary artery. Kaohsiung J Med Sci 2015; 31:241-54. [PMID: 25910559 DOI: 10.1016/j.kjms.2015.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/26/2022] Open
Abstract
Ascorbic acid bound to KMUP-1 and sildenafil were examined for their antioxidant effects on vascular endothelium growth factor (VEGF) and endothelium nitric oxide synthase (eNOS) in hypoxic pulmonary artery (PA). Inhaled KMUP-1 and oral sildenafil released NO from eNOS. The effect of buffered l-ascorbic acid, alone and bound to KMUP-1 or sildenafil, for treating pulmonary arterial hypertension (PAH) is unclear. In this study, the antioxidant capacity of ascorbic acid increased the beneficial effects of KMUP-1 on PAH. KMUP-1A and sildenafil-A (5 mg/kg/d) were administered to hypoxic PAH rats. Pulmonary artery blood pressure, and VEGF, Rho kinase II (ROCK II), eNOS, soluble guanylate cyclase (sGC-α), and protein kinase G expression in lung tissues were measured to link PAH and right ventricular hypertrophy. Hypoxic rats had higher pulmonary artery blood pressure, greater PA medial wall thickness and cardiac weight, and a higher right ventricle/left ventricle + septum [RV/(LV+S)] ratio than normoxic rats. Oral KMUP-1A or sildenafil-A for 21 days in hypoxia prevented the rarefaction of eNOS in immunohistochemistry (IHC), reduced the IHC of VEGF in PAs, restored eNOS/protein kinase G/phosphodiesterase 5A; unaffected sGC-α and inactivated ROCK II expression were also found in lung tissues. In normoxic PA, KMUP-1A/Y27632 (10μM) increased eNOS and reduced ROCK II. ROCK II/reactive oxidative species was increased and eNOS was reduced after long-term hypoxia for 21 days. KMUP-1A or Y27632 blunted ROCK II in short-term hypoxic PA at 24 hours. l-Ascorbic acid + l-sodium ascorbate (40, 80μM) buffer alone directly inhibited the IHC of VEGF in hypoxic PA. Finally, KMUP-1A or sildenafil-A reduced PAH and associated right ventricular hypertrophy.
Collapse
Affiliation(s)
- Jiunn-Ren Wu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Pin Kao
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ya Wang
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
43
|
Jiang R, Ai ZS, Jiang X, Yuan P, Liu D, Zhao QH, He J, Wang L, Gomberg-Maitland M, Jing ZC. Intravenous fasudil improves in-hospital mortality of patients with right heart failure in severe pulmonary hypertension. Hypertens Res 2015; 38:539-44. [PMID: 25787034 DOI: 10.1038/hr.2015.33] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/07/2014] [Accepted: 11/24/2014] [Indexed: 01/12/2023]
Abstract
The in-hospital mortality of severe pulmonary hypertension (PH) with right heart failure (RHF) is high despite the use of vasoactive and PH-specific therapies. We conducted a prospective analysis evaluating the safety and outcomes of fasudil hydrochloride (Chuan Wei) therapy in acute RHF. PH patients hospitalized between April 2009 and November 2010 were treated with 30 mg of i.v. fasudil three times daily over 30 min, until they experienced relief of RHF symptoms. Adverse and serious adverse events were recorded. Odds ratios (ORs) and 95% confidence intervals were calculated for both in-hospital mortality and re-hospitalization. Multivariate adjustments were made for age, gender and World Health Organization functional class. There were no significant differences between the fasudil group and the control group in demographics, hemodynamics, and PH-specific and vasoactive therapies. Of the 209 study patients, 3 of the 74 patients (4.1%) in the fasudil arm died, and 19 of the 135 patients (14.1%) in the control arm died (P=0.005). Fasudil decreased both in-hospital mortality (OR=0.258 (0.074-0.903); P=0.034) and 30-day re-hospitalization (OR=0.200 (0.059-0.681); P=0.010). Fasudil was well tolerated; one patient discontinued treatment. Intravenous fasudil may be given safely in patients with PH and acute RHF, and may reduce the rates of both in-hospital mortality and 30-day re-hospitalization.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zi-Sheng Ai
- Department of Preventive Medicine, College of Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xin Jiang
- State Key Lab of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mardi Gomberg-Maitland
- Section of Cardiology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Zhi-Cheng Jing
- 1] Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China [2] State Key Lab of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Blunted activation of Rho-kinase in yak pulmonary circulation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:720250. [PMID: 25654121 PMCID: PMC4310305 DOI: 10.1155/2015/720250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 01/07/2023]
Abstract
Yaks have adapted to high altitude and they do not develop hypoxic pulmonary hypertension. Although we previously identified the important role of augmented nitric oxide synthase activity in the yak pulmonary circulatory system, evidence of the direct involvement of Rho-kinase as a basal vascular tone regulator is lacking. Four domesticated male pure-bred yaks and four bulls that were born and raised at an altitude of 3000 m in the Tien-Shan mountains were studied at an altitude of 3,100 m. Mean pulmonary artery pressure (mPAP) was measured before and after fasudil (60 mg in 20 mL of saline) was intravenously administered using a Swan-Ganz catheter at a rate of 3.3 mL/min for 30 min. Fasudil decreased mPAP in bulls from 67.8±14.9 to 32.3±5.3 mmHg (P < 0.05) after 15 min and the level was maintained for 30 min, but it merely blunted mPAP in yaks from 28.2±4.5 to 25.1±11.1 and 23.2±2.7 mmHg after 5 and 30 min, respectively. These findings comprise the first evidence of a modest role of Rho-kinase in the maintenance of pulmonary artery pressure in the yak.
Collapse
|
45
|
Persistent structural adaptation in the lungs of guinea pigs raised at high altitude. Respir Physiol Neurobiol 2014; 208:37-44. [PMID: 25534146 DOI: 10.1016/j.resp.2014.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/18/2014] [Accepted: 12/15/2014] [Indexed: 11/20/2022]
Abstract
Laboratory guinea pigs raised at high altitude (HA, 3800 m) for up to 6 mo exhibit enhanced alveolar growth and remodeling (Hsia et al., 2005. Resp. Physiol. Neurobiol. 147, 105-115). To determine whether initial HA-induced structural enhancement persists following return to intermediate altitude (IA), we raised weanling guinea pigs at (a) HA for 11-12 mo, (b) IA (1200 m) for 11-12 mo, and (c) HA for 4 mo followed by IA for 7-8 mo (HA-to-IA). Morphometric analysis was performed under light and electron microscopy. Body weight and lung volume were similar among groups. Prolonged HA residence increased alveolar epithelium and interstitium volumes while reducing alveolar-capillary blood volume. The HA-induced gains in type-1 epithelium volume and alveolar surface area were no longer present following return to IA whereas volume increases in type-2 epithelium and interstitium and the reduction in alveolar duct volume persisted. Results demonstrate persistent augmentation of some but not all aspects of lung structure throughout prolonged HA residence, with partial reversibility following re-acclimatization to IA.
Collapse
|
46
|
Kolluru GK, Majumder S, Chatterjee S. Rho-kinase as a therapeutic target in vascular diseases: striking nitric oxide signaling. Nitric Oxide 2014; 43:45-54. [PMID: 25196952 DOI: 10.1016/j.niox.2014.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/27/2022]
Abstract
Rho GTPases are a globular, monomeric group of small signaling G-protein molecules. Rho-associated protein kinase/Rho-kinase (ROCK) is a downstream effector protein of the Rho GTPase. Rho-kinases are the potential therapeutic targets in the treatment of cardiovascular diseases. Here, we have primarily discussed the intriguing roles of ROCK in cardiovascular health in relation to nitric oxide signaling. Further, we highlighted the biphasic effects of Y-27632, a ROCK inhibitor under shear stress, which acts as an agonist of nitric oxide production in endothelial cells. The biphasic effects of this inhibitor raised the question of safety of the drug usage in treating cardiovascular diseases.
Collapse
Affiliation(s)
| | - Syamantak Majumder
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Suvro Chatterjee
- Department of Biotechnology, Anna University, Chennai, India; Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India.
| |
Collapse
|
47
|
Abman SH, Baker C, Gien J, Mourani P, Galambos C. The Robyn Barst Memorial Lecture: Differences between the fetal, newborn, and adult pulmonary circulations: relevance for age-specific therapies (2013 Grover Conference series). Pulm Circ 2014; 4:424-40. [PMID: 25621156 PMCID: PMC4278602 DOI: 10.1086/677371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/30/2014] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) contributes to poor outcomes in diverse diseases in newborns, infants, and children. Many aspects of pediatric PAH parallel the pathophysiology and disease courses observed in adult patients; however, critical maturational differences exist that contribute to distinct outcomes and therapeutic responses in children. In comparison with adult PAH, disruption of lung vascular growth and development, or angiogenesis, plays an especially prominent role in the pathobiology of pediatric PAH. In children, abnormalities of lung vascular development have consequences well beyond the adverse hemodynamic effects of PAH alone. The developing endothelium also plays critical roles in development of the distal airspace, establishing lung surface area for gas exchange and maintenance of lung structure throughout postnatal life through angiocrine signaling. Impaired functional and structural adaptations of the pulmonary circulation during the transition from fetal to postnatal life contribute significantly to poor outcomes in such disorders as persistent pulmonary hypertension of the newborn, congenital diaphragmatic hernia, bronchopulmonary dysplasia, Down syndrome, and forms of congenital heart disease. In addition, several studies support the hypothesis that early perinatal events that alter lung vascular growth or function may set the stage for increased susceptibility to PAH in adult patients ("fetal programming"). Thus, insights into basic mechanisms underlying unique features of the developing pulmonary circulation, especially as related to preservation of endothelial survival and function, may provide unique therapeutic windows and distinct strategies to improve short- and long-term outcomes of children with PAH.
Collapse
Affiliation(s)
- Steven H. Abman
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Christopher Baker
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Jason Gien
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Peter Mourani
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Csaba Galambos
- Department of Pathology, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
48
|
Abstract
Acute respiratory distress syndrome (ARDS) is characterised by diffuse alveolar damage and is frequently complicated by pulmonary hypertension (PH). Multiple factors may contribute to the development of PH in this setting. In this review, we report the results of a systematic search of the available peer-reviewed literature for papers that measured indices of pulmonary haemodynamics in patients with ARDS and reported on mortality in the period 1977 to 2010. There were marked differences between studies, with some reporting strong associations between elevated pulmonary arterial pressure or elevated pulmonary vascular resistance and mortality, whereas others found no such association. In order to discuss the potential reasons for these discrepancies, we review the physiological concepts underlying the measurement of pulmonary haemodynamics and highlight key differences between the concepts of resistance in the pulmonary and systemic circulations. We consider the factors that influence pulmonary arterial pressure, both in normal lungs and in the presence of ARDS, including the important effects of mechanical ventilation. Pulmonary arterial pressure, pulmonary vascular resistance and transpulmonary gradient (TPG) depend not alone on the intrinsic properties of the pulmonary vascular bed but are also strongly influenced by cardiac output, airway pressures and lung volumes. The great variability in management strategies within and between studies means that no unified analysis of these papers was possible. Uniquely, Bull et al. (Am J Respir Crit Care Med 182:1123-1128, 2010) have recently reported that elevated pulmonary vascular resistance (PVR) and TPG were independently associated with increased mortality in ARDS, in a large trial with protocol-defined management strategies and using lung-protective ventilation. We then considered the existing literature to determine whether the relationship between PVR/TPG and outcome might be causal. Although we could identify potential mechanisms for such a link, the existing evidence does not allow firm conclusions to be drawn. Nonetheless, abnormally elevated PVR/TPG may provide a useful index of disease severity and progression. Further studies are required to understand the role and importance of pulmonary vascular dysfunction in ARDS in the era of lung-protective ventilation.
Collapse
|
49
|
Grant JS, Morecroft I, Dempsie Y, van Rooij E, MacLean MR, Baker AH. Transient but not genetic loss of miR-451 is protective in the development of pulmonary arterial hypertension. Pulm Circ 2014; 3:840-50. [PMID: 25006399 DOI: 10.1086/674751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/28/2013] [Indexed: 11/03/2022] Open
Abstract
MicroRNAs are small noncoding RNAs involved in the regulation of gene expression and have recently been implicated in the development of pulmonary arterial hypertension (PAH). Previous work has established that miR-451 is upregulated in rodent models of PAH. The role of miR-451 in the pulmonary circulation is unknown. We therefore sought to assess the involvement of miR-451 in the development of PAH. Silencing of miR-451 was performed in vivo using miR-451 knockout mice and an anti-miR targeting mature miR-451 in rats. Coupled with exposure to hypoxia, indices of PAH were assessed. The effect of modulating miR-451 on human pulmonary artery smooth muscle cell proliferation and migration was analyzed. We observed a reduction in systolic right ventricular pressure in hypoxic rats pretreated with anti-miR-451 compared with hypoxia alone ([Formula: see text] mmHg and [Formula: see text] mmHg, respectively; [Formula: see text]). In miR-451 knockout mice, compared with wild-type hypoxic mice, no significant differences were observed following exposure to chronic hypoxia. In vitro analysis demonstrated that overexpression of miR-451 in human pulmonary artery smooth muscle cells promoted migration under serum-free conditions. No effect on cellular proliferation was observed. In conclusion, transient inhibition of miR-451 attenuated the development of PAH in hypoxia-exposed rats. Genetic deletion of miR-451 had no beneficial effect on indices of PAH, potentially because of pathway redundancy compensating for the loss of miR-451.
Collapse
Affiliation(s)
- Jennifer S Grant
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian Morecroft
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Yvonne Dempsie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Margaret R MacLean
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew H Baker
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
50
|
Zeng Z, Li YC, Jiao ZH, Yao J, Xue Y. The cross talk between cGMP signal pathway and PKC in pulmonary endothelial cell angiogenesis. Int J Mol Sci 2014; 15:10185-98. [PMID: 24914766 PMCID: PMC4100147 DOI: 10.3390/ijms150610185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/04/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022] Open
Abstract
Angiogenic proliferation of vascular endothelial cells is believed to play an important role in pulmonary vascular remodeling in pulmonary arterial hypertension. In the present study, we found that c-GMP (cyclic guanosine monophosphate) inhibited the proliferation and tube formation of pulmonary vascular endothelial cells induced by TGF-β1, and that this process was reversed by PKG (protein kinase G) inhibitor and PKC (protein kinase C) inhibitor. In addition, small interfering RNA (siRNA) targeting ERK also reduced cellular proliferation. Furthermore, western blotting showed that cGMP down-regulated the phosphorylation level of ERK1/2, which was reversed not only by PKG inhibitor but also by PKC inhibitor. Silencing different PKC isoforms showed that PKCΔ, PKCγ and PKCα were involved in ERK phosphorylation, suggesting that PKC kinases have a permissive action. Three subtypes, PKCΔ, PKCγ and PKCα are likely to be involved the phosphorylation suppression of ERK included cGMP. Taken together, these data suggest that ERK phosphorylation mediates the proliferation of pulmonary vascular endothelial cells, and PKC kinases have a permissive action in this process.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ying-Chuan Li
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Zhi-Hua Jiao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jun Yao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ying Xue
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|