1
|
Liu W, Liu J, Wang G, Cheng W, Gong H, Song Y, Song M, Zhuge Y, Li Y, Liu J. Down-regulation of histone deacetylase 2 attenuates ventricular arrhythmias in a mouse model of cardiac hypertrophy through up-regulation of Kv channel-interacting protein 2 expression. Cardiovasc Res 2025; 121:424-439. [PMID: 39870585 DOI: 10.1093/cvr/cvaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 01/29/2025] Open
Abstract
AIMS Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and Class I HDAC inhibition has been found to attenuate pathological remodelling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS An in vivo cardiac hypertrophic model was produced by performing transverse aortic constriction (TAC) surgery and an in vitro cardiomyocyte hypertrophy model by stimulating neonatal rat ventricular myocytes (NRVMs) with phenylephrine (PE). HDAC2 expression was up-regulated in TAC mouse hearts and in PE-stimulated cardiomyocytes. Susceptibility to ventricular arrhythmia was increased in TAC mice, while Ito,f was decreased and APD was prolonged in TAC cardiomyocytes. Heart-specific knockdown (HKD) of HDAC2 by RNA interference increased Ito,f, shortened APD, and decreased susceptibility to ventricular arrhythmia. Concomitantly, HKD increased the expression of the obligatory β sub-unit of Ito,f, Kv channel-interacting protein 2 (KChIP2), which is down-regulated in hypertrophic hearts. The effects of HKD on KChIP2 expression, Ito,f and APD were also observed in PE-stimulated cardiomyocytes. Mechanistically, HKD increased H3K4me3 abundance and H3K4me3 enrichment at the Kcnip2 promoter in cardiomyocytes. HKD also decreased the expression of KDM5, the H3K4me3 demethylase, which resulted in H3K4me3 up-regulation. While investigating the regulatory mechanisms underlying the effect of HDAC2 on KDM5 stability, we identified CNOT4 as the active KDM5 ubiquitinase in cardiomyocytes. HKD increased CNOT4 expression and CNOT4-KDM5 interactions and thus enhanced the polyubiquitinated degradation of KDM5. CONCLUSION HDAC2 inhibition serves as a novel therapeutic strategy for preventing cardiac hypertrophy-associated electrophysiological remodelling. Furthermore, we identified a novel signalling pathway of CNOT4-mediated KDM5 degradation contributing to the up-regulation of H3K4me3-mediated KChIP2 expression in response to HDAC2 inhibition.
Collapse
MESH Headings
- Animals
- Histone Deacetylase 2/genetics
- Histone Deacetylase 2/metabolism
- Disease Models, Animal
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Down-Regulation
- Up-Regulation
- Male
- Arrhythmias, Cardiac/enzymology
- Arrhythmias, Cardiac/prevention & control
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/etiology
- Action Potentials
- Kv Channel-Interacting Proteins/metabolism
- Kv Channel-Interacting Proteins/genetics
- Cardiomegaly/enzymology
- Cardiomegaly/physiopathology
- Cardiomegaly/genetics
- Cardiomegaly/complications
- Mice, Inbred C57BL
- Cells, Cultured
- Rats
- Mice
- Signal Transduction
- Ventricular Remodeling
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jianping Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Gang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wanwen Cheng
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Haochen Gong
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yujuan Song
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ming Song
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yixin Zhuge
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ying Li
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
2
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
3
|
Time series RNA-seq analysis identifies MAPK10 as a critical gene in diabetes mellitus-induced atrial fibrillation in mice. J Mol Cell Cardiol 2022; 168:70-82. [PMID: 35489387 DOI: 10.1016/j.yjmcc.2022.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022]
Abstract
Atrial fibrillation (AF) is a major complication of type 2 diabetes mellitus (T2DM) and plays critical roles in the pathogenesis of atrial remodeling. However, the differentially expressed genes in atria during the development of AF induced by hyperglycemia have rarely been reported. Here, we showed time-dependent increased AF incidence and duration, atrial enlargement, inflammation, fibrosis, conduction time and action potential duration in db/db mice, a model of T2DM. RNA sequencing analysis showed that 2256 genes were differentially expressed in the atria at 12, 14 and 16 weeks. Gene Ontology analysis showed that these genes participate primarily in cell adhesion, cellular response to interferon-beta, immune system process, positive regulation of cell migration, ion transport and cellular response to interferon-gamma. Analysis of significant pathways revealed the IL-17 signaling pathway, TNF signaling pathway, MAPK signaling pathway, chemokine signaling pathway, and cAMP receptor signaling. Additionally, these differentially expressed genes were classified into 50 profiles by hierarchical clustering analysis. Twelve of these profiles were significant and comprised 1115 genes. Gene coexpression network analysis identified that mitogen-activated protein kinase 10 (MAPK10) was localized in the core of the gene network and was the most highly expressed gene at different time points. Knockdown of MAPK10 markedly attenuated DM-induced AF incidence, atrial inflammation, fibrosis, electrical disorder and apoptosis in db/db mice. In summary, the present findings revealed that many genes are involved in DM-induced AF and that MAPK10 plays a central role in this disease, indicating that strategies targeting MAPK10 may represent a potential therapeutic approach to treat DM-induced AF.
Collapse
|
4
|
Liu W, Wang G, Zhang C, Ding W, Cheng W, Luo Y, Wei C, Liu J. MG53, A Novel Regulator of KChIP2 and I to,f, Plays a Critical Role in Electrophysiological Remodeling in Cardiac Hypertrophy. Circulation 2020; 139:2142-2156. [PMID: 30760025 DOI: 10.1161/circulationaha.118.029413] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND KChIP2 (K+ channel interacting protein) is the auxiliary subunit of the fast transient outward K+ current ( Ito,f) in the heart, and insufficient KChIP2 expression induces Ito,f downregulation and arrhythmogenesis in cardiac hypertrophy. Studies have shown muscle-specific mitsugumin 53 (MG53) has promiscuity of function in the context of normal and diseased heart. This study investigates the possible roles of cardiac MG53 in regulation of KChIP2 expression and Ito,f, and the arrhythmogenic potential in hypertrophy. METHODS MG53 expression is manipulated by genetic ablation of MG53 in mice and adenoviral overexpression or knockdown of MG53 by RNA interference in cultured neonatal rat ventricular myocytes. Cardiomyocyte hypertrophy is produced by phenylephrine stimulation in neonatal rat ventricular myocytes, and pressure overload-induced mouse cardiac hypertrophy is produced by transverse aortic constriction. RESULTS KChIP2 expression and Ito,f density are downregulated in hearts from MG53-knockout mice and MG53-knockdown neonatal rat ventricular myocytes, but upregulated in MG53-overexpressing cells. In phenylephrine-induced cardiomyocyte hypertrophy, MG53 expression is reduced with concomitant downregulation of KChIP2 and Ito,f, which can be reversed by MG53 overexpression, but exaggerated by MG53 knockdown. MG53 knockout enhances Ito,f remodeling and action potential duration prolongation and increases susceptibility to ventricular arrhythmia in mouse cardiac hypertrophy. Mechanistically, MG53 regulates NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity and subsequently controls KChIP2 transcription. Chromatin immunoprecipitation demonstrates NF-κB protein has interaction with KChIP2 gene. MG53 overexpression decreases, whereas MG53 knockdown increases NF-κB enrichment at the 5' regulatory region of KChIP2 gene. Normalizing NF-κB activity reverses the alterations in KChIP2 in MG53-overexpressing or knockdown cells. Coimmunoprecipitation and Western blotting assays demonstrate MG53 has physical interaction with TAK1 (transforming growth factor-b [TGFb]-activated kinase 1) and IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), critical components of the NF-κB pathway. CONCLUSIONS These findings establish MG53 as a novel regulator of KChIP2 and Ito,f by modulating NF-κB activity and reveal its critical role in electrophysiological remodeling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Wenjuan Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Gang Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Cuicui Zhang
- Prenatal Diagnosis Center, The Women and Children Hospital of Guangdong Province, Guangzhou, China (C.Z.)
| | - Wenwen Ding
- Department of Basic Medicine, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.)
| | - Wanwen Cheng
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Yizhi Luo
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Chaoliang Wei
- Department of Cell Biology and Medical Genetics (C.W.), School of Medicine, Shenzhen University, China
| | - Jie Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| |
Collapse
|
5
|
Bazmi M, Escobar AL. How Ca 2+ influx is attenuated in the heart during a "fight or flight" response. J Gen Physiol 2019; 151:722-726. [PMID: 31004065 PMCID: PMC6572000 DOI: 10.1085/jgp.201912338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bazmi and Escobar highlight a recent investigation of the mechanisms that regulate Ca2+ influx during sympathetic stimulation.
Collapse
Affiliation(s)
- Maedeh Bazmi
- Quantitative Systems Biology Program, School of Natural Sciences, University of California, Merced, Merced, CA
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA
| |
Collapse
|
6
|
Prominent differences in left ventricular performance and myocardial properties between right ventricular and left ventricular-based pacing modes in rats. Sci Rep 2017; 7:5931. [PMID: 28725029 PMCID: PMC5517524 DOI: 10.1038/s41598-017-06197-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/30/2017] [Indexed: 01/16/2023] Open
Abstract
Biventricular pacing is an important modality to improve left ventricular (LV) synchronization and long-term function. However, the biological effects of this treatment are far from being elucidated and existing animal models are limited and demanding. Recently, we introduced an implanted device for double-site epicardial pacing in rats and echocardiographically demonstrated favorable effects of LV and biventricular (LV-based) pacing modes typically observed in humans. Here, this new animal model was further characterized. Electrodes were implanted either on the right atria (RA) and right ventricle (RV) or on the RV and LV. Following recovery, rats were either used for invasive hemodynamic measurements (pressure-volume analysis) or exposed to sustained RV vs. biventricular tachypacing for 3 days. RV pacing compromised, while LV-based pacing modes markedly enhanced cardiac performance. Changes in LV performance were associated with prominent compensatory changes in arterial resistance. Sustained RV tachypacing increased the electrocardiogram QTc interval by 7.9 ± 3.1 ms (n = 6, p < 0.05), dispersed refractoriness between the right and left pacing sites and induced important molecular changes mainly in the early-activated septal tissue. These effects were not observed during biventricular tachypacing (n = 6). Our results demonstrate that the rat is an attractive new model to study the biological consequences of LV dyssynchrony and resynchronization.
Collapse
|
7
|
Panama BK, Korogyi AS, Aschar-Sobbi R, Oh Y, Gray CBB, Gang H, Brown JH, Kirshenbaum LA, Backx PH. Reductions in the Cardiac Transient Outward K+ Current Ito Caused by Chronic β-Adrenergic Receptor Stimulation Are Partly Rescued by Inhibition of Nuclear Factor κB. J Biol Chem 2016; 291:4156-65. [PMID: 26742842 DOI: 10.1074/jbc.m115.694984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Indexed: 12/27/2022] Open
Abstract
The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory β-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of β-adrenergic receptors (β-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic β-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic β-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by β-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as β-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic β-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation.
Collapse
Affiliation(s)
- Brian K Panama
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada, the Masonic Medical Research Laboratory, Department of Experimental Cardiology, Utica, New York 13501, and
| | - Adam S Korogyi
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Roozbeh Aschar-Sobbi
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yena Oh
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Charles B B Gray
- the Department of Pharmacology, University of California, San Diego, California 92161
| | - Hongying Gang
- The Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Joan Heller Brown
- the Department of Pharmacology, University of California, San Diego, California 92161
| | - Lorrie A Kirshenbaum
- The Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Peter H Backx
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada, the Division of Cardiology, University Health Network, University of Toronto, Toronto, Ontario M5G 1L7, Canada,
| |
Collapse
|
8
|
Huo R, Sheng Y, Guo WT, Dong DL. The potential role of Kv4.3 K+ channel in heart hypertrophy. Channels (Austin) 2015; 8:203-9. [PMID: 24762397 DOI: 10.4161/chan.28972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transient outward K+ current (I(to)) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K(+) channel is an important component of I(to). The function and expression of Kv4.3 K(+) channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. Int his review, we summarized the changes of cardiac Kv4.3 K(+) channel in heart diseases and discussed the potential role of Kv4.3 K(+) channel in heart hypertrophy/heart failure. In heart hypertrophy/heart failure of mice and rats, down regulation of Kv4.3 K(+) channel leads to prolongation of action potential duration (APD), which is associated with increased [Ca(2+)](I), activation of calcineurin and heart hypertrophy/heart failure.However, in canine and human, Kv4.3 K(+) channel does not play a major role in setting cardiac APD. So, in addition to Kv4.3 K(+) channel/APD/[Ca(2+)](I) pathway, there exits another mechanism of Kv4.3 K(+) channel in heart hypertrophy and heart failure: downregulation of Kv4.3 K(+) channels leads to CaMKII dissociation from Kv4.3–CaMKII complex and subsequent activation of the dissociated CaMKII , which induces heart hypertrophy/heart failure. Upregulation of Kv4.3K(+) channel inhibits CaMKII activation and its related harmful consequences. We put forward a new point-of-view that Kv4.3 K(+) channel is involved in heart hypertrophy/heart failure independently of its electric function, and drugs inhibiting or upregulating Kv4.3 K(+) channel might be potentially harmful or beneficial to hearts through CaMKII.
Collapse
|
9
|
Xie Y, Mai JT, Wang F, Lin YQ, Yuan WL, Luo NS, Fang MC, Wang JF, Chen YX. Effects of C-reactive protein on K(+) channel interaction protein 2 in cardiomyocytes. Am J Transl Res 2015; 7:922-931. [PMID: 26175853 PMCID: PMC4494143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
Several studies have found that C-reactive protein (CRP) was associated with QTc interval prolongation and ventricular arrhythmia. However, little is known about the mechanisms involved. K(+) channel interaction protein 2 (KChIP2) is a necessary subunit for the formation of transient outward potassium current (Ito.f) which plays a critical role in early repolarization and QTc interval of heart. In this study, we aimed to evaluate the effects of CRP on KChIP2 and Ito.f in cardiomyocytes and to explore the potential mechanism. The neonatal mice ventricular cardiomyocytes were cultured and treated with CRP at different concentrations. The expression of KChIP2 was detected by real time quantitative PCR and Western blot. In addition, Ito.f current density was evaluated by whole cell patch clamp techniques. Our results showed that CRP significantly decreased the mRNA and protein expression of KChIP2 in time and doses dependent manners (P < 0.05), and also reduced the current density of Ito.f (P < 0.05). In addition, CRP increased the expression of NF-κB and decreased IκBα expression without significant influence on the expression of ERK1/2 and JNK. Meanwhile, the NF-κB inhibitor PDTC significantly attenuated the effects of CRP on KChIP2 and Ito.f current density. In conclusion, CRP could significantly down-regulate KChIP2 expression and reduce current density of Ito.f partly through NF-κB pathway, suggesting that CRP may directly or indirectly influence QTc interval and arrhythmia via influencing KChIP2 expression and Ito.f current density of cardiomyocytes.
Collapse
Affiliation(s)
- Yong Xie
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Jing-Ting Mai
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Fei Wang
- Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
| | - Yong-Qing Lin
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Wo-Liang Yuan
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Nian-Sang Luo
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Ming-Cheng Fang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen UniversityGuangzhou 510120, China
- Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologyGuangzhou 510120, China
| |
Collapse
|
10
|
Choudhury S, Schnell M, Bühler T, Reinke Y, Lüdemann J, Nießner F, Brinkmeier H, Herda LR, Staudt A, Kroemer HK, Völker U, Felix SB, Landsberger M. Antibodies against potassium channel interacting protein 2 induce necrosis in isolated rat cardiomyocytes. J Cell Biochem 2014; 115:678-89. [PMID: 24453044 DOI: 10.1002/jcb.24707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 10/24/2013] [Indexed: 12/26/2022]
Abstract
Auto-antibodies against cardiac proteins have been described in patients with dilated cardiomyopathy. Antibodies against the C-terminal part of KChIP2 (anti-KChIP2 [C-12]) enhance cell death of rat cardiomyocytes. The underlying mechanisms are not fully understood. Therefore, we wanted to explore the mechanisms responsible for anti-KChIP2-mediated cell death. Rat cardiomyocytes were treated with anti-KChIP2 (C-12). KChIP2 RNA and protein expressions, nuclear NF-κB, mitochondrial membrane potential Δψm, caspase-3 and -9 activities, necrotic and apoptotic cells, total Ca(2+) and K(+) concentrations, and the effects on L-type Ca(2+) channels were quantified. Anti-KChIP2 (C-12) induced nuclear translocation of NF-κB. Anti-KChIP2 (C-12)-treatment for 2 h significantly reduced KChIP2 mRNA and protein expression. Anti-KChIP2 (C-12) induced nuclear translocation of NF-κB after 1 h. After 6 h, Δψm and caspase-3 and -9 activities were not significantly changed. After 24 h, anti-KChIP2 (C-12)-treated cells were 75 ± 3% necrotic, 2 ± 1% apoptotic, and 13 ± 2% viable. Eighty-six ± 1% of experimental buffer-treated cells were viable. Anti-KChIP2 (C-12) induced significant increases in total Ca(2+) (plus 11 ± 2%) and K(+) (plus 18 ± 2%) concentrations after 5 min. Anti-KChIP2 (C-12) resulted in an increased Ca(2+) influx through L-type Ca(2+) channels. In conclusion, our results suggest that anti-KChIP2 (C-12) enhances cell death of rat cardiomyocytes probably due to necrosis.
Collapse
Affiliation(s)
- Sangita Choudhury
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sato T, Kobayashi T, Kuno A, Miki T, Tanno M, Kouzu H, Itoh T, Ishikawa S, Kojima T, Miura T, Tohse N. Type 2 diabetes induces subendocardium-predominant reduction in transient outward K+ current with downregulation of Kv4.2 and KChIP2. Am J Physiol Heart Circ Physiol 2014; 306:H1054-65. [DOI: 10.1152/ajpheart.00414.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we examined if and how cardiac ion channels are modified by type 2 diabetes mellitus (T2DM). Subendocardial (Endo) myocytes and subepicardial (Epi) myocytes were isolated from left ventricles of Otsuka-Long-Evans-Tokushima Fatty rats (OLETF) rats, a rat model of T2DM, and Otsuka-Long-Evans-Tokushima (LETO) rats (nondiabetic control rats). Endo and Epi myocytes were used for whole cell patch-clamp recordings and for protein and mRNA analyses. Action potential durations in Endo and Epi myocytes were longer in OLETF rats than in LETO rats, and the difference was larger in Endo myocytes. Steady-state transient outward K+ current ( Ito) density was reduced in Endo but not Epi myocytes of OLETF rats compared with LETO rats, although the contribution of the fast component of Ito recovery from inactivation was smaller in both Endo and Epi myocytes of OLETF rats than in LETO rats. Kv4.2 protein was reduced only in Endo myocytes in OLETF rats, although voltage-gated K+ channel-interacting protein 2 (KChIP2) protein levels in both Endo and Epi myocytes were lower in OLETF rats than in LETO rats. Corresponding regional differences in mRNA levels of KChIP2 and Kv4.2 were observed between OLETF and LETO rats. mRNA levels of Iroquois homeobox 5 in Endo myocytes were 53% higher in OLETF rats than in LETO rats. Densities of inward rectifier K+ current and L-type Ca2+ current and mRNA levels of Kv4.3 and Kv1.4 were similar in OLETF and LETO rats. In conclusion, T2DM induces Endo-predominant prolongation of the action potential duration via a reduction of the fast component of Ito recovery from inactivation and reduced steady-state Ito, in which downregulation of Kv4.2 and KChIP2 may be involved. Increased Iroquois homeobox 5 expression may underlie Kv4.2 downregulation in T2DM.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahito Itoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoko Ishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Speerschneider T, Grubb S, Metoska A, Olesen SP, Calloe K, Thomsen MB. Development of heart failure is independent of K+ channel-interacting protein 2 expression. J Physiol 2013; 591:5923-37. [PMID: 24099801 DOI: 10.1113/jphysiol.2013.263483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abnormal ventricular repolarization in ion channelopathies and heart disease is a major cause of ventricular arrhythmias and sudden cardiac death. K(+) channel-interacting protein 2 (KChIP2) expression is significantly reduced in human heart failure (HF), contributing to a loss of the transient outward K(+) current (Ito). We aim to investigate the possible significance of a changed KChIP2 expression on the development of HF and proarrhythmia. Transverse aortic constrictions (TAC) and sham operations were performed in wild-type (WT) and KChIP2(-/-) mice. Echocardiography was performed before and every 2 weeks after the operation. Ten weeks post-surgery, surface ECG was recorded and we paced the heart in vivo to induce arrhythmias. Afterwards, tissue from the left ventricle was used for immunoblotting. Time courses of HF development were comparable in TAC-operated WT and KChIP2(-/-) mice. Ventricular protein expression of KChIP2 was reduced by 70% after 10 weeks TAC in WT mice. The amplitudes of the J and T waves were enlarged in KChIP2(-/-) control mice. Ventricular effective refractory period, RR, QRS and QT intervals were longer in mice with HF compared to sham-operated mice of either genotype. Pacing-induced ventricular tachycardia (VT) was observed in 5/10 sham-operated WT mice compared with 2/10 HF WT mice with HF. Interestingly, and contrary to previously published data, sham-operated KChIP2(-/-) mice were resistant to pacing-induced VT resulting in only 1/10 inducible mice. KChIP2(-/-) with HF mice had similar low vulnerability to inducible VT (1/9). Our results suggest that although KChIP2 is downregulated in HF, it is not orchestrating the development of HF. Moreover, KChIP2 affects ventricular repolarization and lowers arrhythmia susceptibility. Hence, downregulation of KChIP2 expression in HF may be antiarrhythmic in mice via reduction of the fast transient outward K(+) current.
Collapse
Affiliation(s)
- Tobias Speerschneider
- M. B. Thomsen: Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3b Blegdamsvej, building 12.5.36, Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
13
|
Yu L, Li M, She T, Shi C, Meng W, Wang B, Cheng M. Endothelin-1 stimulates the expression of L-type Ca2+ channels in neonatal rat cardiomyocytes via the extracellular signal-regulated kinase 1/2 pathway. J Membr Biol 2013; 246:343-53. [PMID: 23546014 DOI: 10.1007/s00232-013-9538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/16/2013] [Indexed: 01/07/2023]
Abstract
The cardiac L-type Ca(2+) channel current (I(Ca,L)) plays an important role in controlling both cardiac excitability and excitation-contraction coupling and is involved in the electrical remodeling during postnatal heart development and cardiac hypertrophy. However, the possible role of endothelin-1 (ET-1) in the electrical remodeling of postnatal and diseased hearts remains unclear. Therefore, the present study was designed to investigate the transcriptional regulation of I(Ca,L) mediated by ET-1 in neonatal rat ventricular myocytes using the whole-cell patch-clamp technique, quantitative RT-PCR and Western blotting. Furthermore, we determined whether the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway is involved. ET-1 increased I(Ca,L) density without altering its voltage dependence of activation and inactivation. In line with the absence of functional changes, ET-1 increased L-type Ca(2+) channel pore-forming α1C-subunit mRNA and protein levels without affecting the mRNA expression of auxiliary β- and α2/δ-subunits. Furthermore, an actinomycin D chase experiment revealed that ET-1 did not alter α1C-subunit mRNA stability. These effects of ET-1 were inhibited by the ETA receptor antagonist BQ-123 but not the ETB receptor antagonist BQ-788. Moreover, the effects of ET-1 on I(Ca,L) and α1C-subunit expression were abolished by the ERK1/2 inhibitor (PD98059) but not by the p38 MAPK inhibitor (SB203580) or the c-Jun N-terminal kinase inhibitor (SP600125). These findings indicate that ET-1 increased the transcription of L-type Ca(2+) channel in cardiomyocytes via activation of ERK1/2 through the ETA receptor, which may contribute to the electrical remodeling of heart during postnatal development and cardiac hypertrophy.
Collapse
Affiliation(s)
- Liangzhu Yu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Peoples Republic of China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kaur K, Zarzoso M, Ponce-Balbuena D, Guerrero-Serna G, Hou L, Musa H, Jalife J. TGF-β1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes. PLoS One 2013; 8:e55391. [PMID: 23393573 PMCID: PMC3564808 DOI: 10.1371/journal.pone.0055391] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Cardiac injury promotes fibroblasts activation and differentiation into myofibroblasts, which are hypersecretory of multiple cytokines. It is unknown whether any of such cytokines are involved in the electrophysiological remodeling of adult cardiomyocytes. We cultured adult cardiomyocytes for 3 days in cardiac fibroblast conditioned medium (FCM) from adult rats. In whole-cell voltage-clamp experiments, FCM-treated myocytes had 41% more peak inward sodium current (INa) density at −40 mV than myocytes in control medium (p<0.01). In contrast, peak transient outward current (Ito) was decreased by ∼55% at 60 mV (p<0.001). Protein analysis of FCM demonstrated that the concentration of TGF-β1 was >3 fold greater in FCM than control, which suggested that FCM effects could be mediated by TGF-β1. This was confirmed by pre-treatment with TGF-β1 neutralizing antibody, which abolished the FCM-induced changes in both INa and Ito. In current-clamp experiments TGF-β1 (10 ng/ml) prolonged the action potential duration at 30, 50, and 90 repolarization (p<0.05); at 50 ng/ml it gave rise to early afterdepolarizations. In voltage-clamp experiments, TGF-β1 increased INa density in a dose-dependent manner without affecting voltage dependence of activation or inactivation. INa density was −36.25±2.8 pA/pF in control, −59.17±6.2 pA/pF at 0.1 ng/ml (p<0.01), and −58.22±6.6 pA/pF at 1 ng/ml (p<0.01). In sharp contrast, Ito density decreased from 22.2±1.2 pA/pF to 12.7±0.98 pA/pF (p<0.001) at 10 ng/ml. At 1 ng/ml TGF-β1 significantly increased SCN5A (NaV1.5) (+73%; p<0.01), while reducing KCNIP2 (Kchip2; −77%; p<0.01) and KCND2 (KV4.2; −50% p<0.05) mRNA levels. Further, the TGF-β1-induced increase in INa was mediated through activation of the PI3K-AKT pathway via phosphorylation of FOXO1 (a negative regulator of SCN5A). TGF-β1 released by myofibroblasts differentially regulates transcription and function of the main cardiac sodium channel and of the channel responsible for the transient outward current. The results provide new mechanistic insight into the electrical remodeling associated with myocardial injury.
Collapse
Affiliation(s)
- Kuljeet Kaur
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Manuel Zarzoso
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniela Ponce-Balbuena
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Luqia Hou
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hassan Musa
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - José Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhang M, Wang Y, Jiang M, Zankov DP, Chowdhury S, Kasirajan V, Tseng GN. KCNE2 protein is more abundant in ventricles than in atria and can accelerate hERG protein degradation in a phosphorylation-dependent manner. Am J Physiol Heart Circ Physiol 2011; 302:H910-22. [PMID: 22180649 DOI: 10.1152/ajpheart.00691.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
KCNE2 functions as an auxiliary subunit in voltage-gated K and HCN channels in the heart. Genetic variations in KCNE2 have been linked to long QT syndrome. The underlying mechanisms are not entirely clear. One of the issues is whether KCNE2 protein is expressed in ventricles. We use adenovirus-mediated genetic manipulations of adult cardiac myocytes to validate two antibodies (termed Ab1 and Ab2) for their ability to detect native KCNE2 in the heart. Ab1 faithfully detects native KCNE2 proteins in spontaneously hypertensive rat and guinea pig hearts. In both cases, KCNE2 protein is more abundant in ventricles than in atria. In both ventricular and atrial myocytes, KCNE2 protein is preferentially distributed on the cell surface. Ab1 can detect a prominent KCNE2 band in human ventricular muscle from nonfailing hearts. The band intensity is much fainter in atria and in failing ventricles. Ab2 specifically detects S98 phosphorylated KCNE2. Through exploring the functional significance of S98 phosphorylation, we uncover a novel mechanism by which KCNE2 modulates the human ether-a-go-go related gene (hERG) current amplitude: by accelerating hERG protein degradation and thus reducing the hERG protein level on the cell surface. S98 phosphorylation appears to be required for this modulation, so that S98 dephosphorylation leads to an increase in hERG/rapid delayed rectifier current amplitude. Our data confirm that KCNE2 protein is expressed in the ventricles of human and animal models. Furthermore, KCNE2 can modulate its partner channel function not only by altering channel conductance and/or gating kinetics, but also by affecting protein stability.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Physiology and Biophysics, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Panama BK, Latour-Villamil D, Farman GP, Zhao D, Bolz SS, Kirshenbaum LA, Backx PH. Nuclear factor kappaB downregulates the transient outward potassium current I(to,f) through control of KChIP2 expression. Circ Res 2011; 108:537-43. [PMID: 21252158 DOI: 10.1161/circresaha.110.229112] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE The fast transient outward K(+) current (I(to,f)) plays a critical role in early repolarization of the heart. I(to,f) is consistently downregulated in cardiac disease. Despite its importance, the regulation of I(to,f) in disease remains poorly understood. OBJECTIVE Because the transcription factor nuclear factor (NF)-κB is activated in cardiac hypertrophy and disease, we studied the role of NF-κB in mediating I(to,f) reductions induced by hypertrophy. METHODS AND RESULTS Culturing neonatal rat ventricular myocytes in the presence of phenylephrine (PE) plus propranolol (Pro), to selectively activate α(1)-adrenergic receptors, caused reductions in I(to,f), as well as KChIP2 and Kv4.3 expression, while increasing Kv4.2 expression. Inhibition of NF-κB, via overexpression of a phosphorylation-deficient mutant of IκBα (IκBαSA) prevented PE/Pro-induced reductions in I(to,f) and KChIP2 mRNA, without affecting Kv4.2 or Kv4.3 expression, suggesting NF-κB mediates the I(to,f) reductions by repressing KChIP2. Indeed, overexpression of the NF-κB activator IκB kinase-β also decreased KChIP2 expression and I(to,f) (despite increasing Kv4.2), whereas IκBαSA overexpression elevated KChIP2 and decreased Kv4.2 levels. In addition, the classic NF-κB activator tumor necrosis factor α also induced NF-κB-dependent reductions of KChIP2 and I(to,f). Finally, inhibition of calcineurin did not prevent PE/Pro-induced reductions in KChIP2. CONCLUSIONS NF-κB regulates KChIP2 and Kv4.2 expression. The reductions in I(to,f) observed following α-adrenergic receptor stimulation or tumor necrosis factor α application require NF-κB-dependent decreases in KChIP2 expression.
Collapse
Affiliation(s)
- Brian K Panama
- DVM, 150 College St, Fitzgerald Bldg, Rm 68, Toronto, Ontario, Canada M5S 3E2
| | | | | | | | | | | | | |
Collapse
|
17
|
Medei E, Marocolo M, Rodrigues DDC, Arantes PC, Takiya CM, Silva J, Rondinelli E, Goldenberg RCDS, de Carvalho ACC, Nascimento JHM. Chronic treatment with anabolic steroids induces ventricular repolarization disturbances: cellular, ionic and molecular mechanism. J Mol Cell Cardiol 2010; 49:165-175. [PMID: 20462507 DOI: 10.1016/j.yjmcc.2010.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 02/08/2023]
Abstract
The illicit use of supraphysiological doses of androgenic steroids (AAS) has been suggested as a cause of arrhythmia in athletes. The objectives of the present study were to investigate the time-course and the cellular, ionic and molecular processes underlying ventricular repolarization in rats chronically treated with AAS. Male Wistar rats were treated weekly for 8 weeks with 10mg/kg of nandrolone decanoate (DECA n=21) or vehicle (control n=20). ECG was recorded weekly. Action potential (AP) and transient outward potassium current (I(to)) were recorded in rat hearts. Expression of KChIP2, Kv1.4, Kv4.2, and Kv4.3 was assessed by real-time PCR. Hematoxylin/eosin and Picrosirius red staining were used for histological analysis. QTc was greater in the DECA group. After DECA treatment the left, but not right, ventricle showed a longer AP duration than did the control. I(to) current densities were 47.5% lower in the left but not in the right ventricle after DECA. In the right ventricle the I(to) inactivation time-course was slower than in the control group. After DECA the left ventricle showed lower KChIP2 ( approximately 26%), Kv1.4 ( approximately 23%) and 4.3 ( approximately 70%) expression while the Kv 4.2 increased in 4 ( approximately 250%) and diminished in 3 ( approximately 30%) animals of this group. In the right ventricle the expression of I(to) subunits was similar between the treatment and control groups. DECA-treated hearts had 25% fewer nuclei and greater nuclei diameters in both ventricles. Our results strongly suggest that supraphysiological doses of AAS induce morphological remodeling in both ventricles. However, the electrical remodeling was mainly observed in the left ventricle.
Collapse
|
18
|
High-mobility group box 1 (HMGB1) downregulates cardiac transient outward potassium current (Ito) through downregulation of Kv4.2 and Kv4.3 channel transcripts and proteins. J Mol Cell Cardiol 2010; 49:438-48. [PMID: 20483361 DOI: 10.1016/j.yjmcc.2010.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/13/2010] [Accepted: 05/11/2010] [Indexed: 11/21/2022]
Abstract
Transient outward potassium currents (I(to)) are major early repolarization currents in shaping cardiac action potential (AP). Downregulation of I(to) contributes to AP configuration alteration in myocardial infarction (MI) and numerous other heart diseases. High-mobility group box 1 (HMGB1), a proinflammatory cytokine, has been reported to increase dramatically in the serum of patients with MI, participating in ischemia-reperfusion injury and recovery of post-infarction failing heart. This study investigated the possible role of HMGB1 in regulating cardiac I(to) and electrical stability. HMGB1 treatment for 24h significantly inhibited the current densities of heterologously expressed Kv4.3 and Kv4.2 in COS-7 cells and native I(to) in neonatal rat ventricular myocytes (NRVMs) in a dose-dependent manner. HMGB1 decreased the mRNA and protein levels of the I(to) alpha subunits Kv4.2 and Kv4.3 channels, but not the beta subunit KChIP2 and KCNE2 in NRVMs. The receptor binding domain (150-186 amino acid residues) responsible for receptor of advanced glycation end product (RAGE) binding similarly inhibited I(to)(,) while treatment with soluble RAGE that blocks binding of ligands to cell-surface RAGE partially restored I(to) current density and Kv4 protein expressions. Box A which possesses no proinflammatory activity of HMGB1 still remained part of the I(to) suppression effect. In addition to downregulating I(to), HMGB1 modestly inhibited L-type Ca(2+) current, but not I(K1). The AP duration (APD) was slightly prolonged by HMGB1 treatment. These results collectively establish HMGB1 as a novel pathological factor downregulating I(to) partially through HMGB1-RAGE interaction, providing new insights into the potential molecular mechanisms underlying the electrical remodeling in MI.
Collapse
|
19
|
Long-term fish oil supplementation induces cardiac electrical remodeling by changing channel protein expression in the rabbit model. PLoS One 2010; 5:e10140. [PMID: 20405051 PMCID: PMC2854119 DOI: 10.1371/journal.pone.0010140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/22/2010] [Indexed: 11/19/2022] Open
Abstract
Clinical trials and epidemiological studies have suggested that dietary fish oil (FO) supplementation can provide an anti-arrhythmic benefit in some patient populations. The underlying mechanisms are not entirely clear. We wanted to understand how FO supplementation (for 4 weeks) affected the action potential configuration/duration of ventricular myocytes, and the ionic mechanism(s)/molecular basis for these effects. The experiments were conducted on adult rabbits, a widely used animal model for cardiac electrophysiology and pathophysiology. We used gas chromatography - mass spectroscopy to confirm that FO feeding produced a marked increase in the content of n-3 polyunsaturated fatty acids in the phospholipids of rabbit hearts. Left ventricular myocytes were used in current and voltage clamp experiments to monitor action potentials and ionic currents, respectively. Action potentials of myocytes from FO-fed rabbits exhibited much more positive plateau voltages and prolonged durations. These changes could be explained by an increase in the L-type Ca current (ICaL) and a decrease in the transient outward current (Ito) in these myocytes. FO feeding did not change the delayed rectifier or inward rectifier current. Immunoblot experiments showed that the FO-feeding induced changes in ICaL and Ito were associated with corresponding changes in the protein levels of major pore-forming subunits of these channels: increase in Cav1.2 and decrease in Kv4.2 and Kv1.4. There was no change in other channel subunits (Cav1.1, Kv4.3, KChIP2, and ERG1). We conclude that long-term fish oil supplementation can impact on cardiac electrical activity at least partially by changing channel subunit expression in cardiac myocytes.
Collapse
|
20
|
Sun Q, Zang WJ, Chen C. Growth hormone secretagogues reduce transient outward K+ current via phospholipase C/protein kinase C signaling pathway in rat ventricular myocytes. Endocrinology 2010; 151:1228-35. [PMID: 20056829 DOI: 10.1210/en.2009-0877] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous ghrelin and its synthetic counterpart hexarelin are peptide GH secretagogues (GHS) that exert a positive ionotropic effect in the cardiovascular system. The mechanism by which GHS modulate cardiac electrophysiology properties to alter myocyte contraction is poorly understood. In the present study, we examined whether GHS regulates the transient outward potassium current (I(to)) as well as the putative intracellular signaling cascade responsible for such regulation. GHS and experimental agents were applied locally onto freshly isolated adult Sprague-Dawley rat ventricular myocytes and action potential morphology and I(to) was recorded using nystatin-perforated whole-cell patch-clamp recording technique. Under current clamp, ghrelin and hexarelin (10 nm) significantly prolonged action potential duration. Under voltage clamp, hexarelin and ghrelin inhibited I(to) in a concentration-dependent manner. This inhibition was abolished in the presence of the GHS receptor (GHS-R) antagonist [D-Lys(3)]GH-releasing peptide-6 (10 microm) and GHS-R1a-specific antagonist BIM28163 (1 microm). GHS-induced I(to) inhibition was totally reversed by the phospholipase C inhibitor U73122 (5 microm) and protein kinase C inhibitors GO6983 (1 microm) and calphostin C (0.1 microm) but not by the cAMP antagonist Rp-cAMP (100 microm) or the PKA inhibitor H89 (1 microm). We conclude that hexarelin and ghrelin activate phospholipase C and protein kinase C signaling cascade through the stimulation of the GHS-R, resulting in a decrease in the I(to) current and subsequent prolongation of action potential duration.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | |
Collapse
|
21
|
Jin H, Hadri L, Palomeque J, Morel C, Karakikes I, Kaprielian R, Hajjar R, Lebeche D. KChIP2 attenuates cardiac hypertrophy through regulation of Ito and intracellular calcium signaling. J Mol Cell Cardiol 2010; 48:1169-79. [PMID: 20051248 DOI: 10.1016/j.yjmcc.2009.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/24/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
Abstract
Recent evidence shows that the auxiliary subunit KChIP2, which assembles with pore-forming Kv4-subunits, represents a new potential regulator of the cardiac calcium-independent transient outward potassium current (I(to)) density. In hypertrophy and heart failure, KChIP2 expression has been found to be significantly decreased. Our aim was to examine the role of KChIP2 in cardiac hypertrophy and the effect of restoring its expression on electrical remodeling and cardiac mechanical function using a combination of molecular, biochemical and gene targeting approaches. KChIP2 overexpression through gene transfer of Ad.KChIP2 in neonatal cardiomyocytes resulted in a significant increase in I(to)-channel forming Kv4.2 and Kv4.3 protein levels. In vivo gene transfer of KChIP2 in aortic banded adult rats showed that, compared to sham-operated or Ad.beta-gal-transduced hearts, KChIP2 significantly attenuated the developed left ventricular hypertrophy, robustly increased I(to) densities, shortened action potential duration, and significantly altered myocyte mechanics by shortening contraction amplitudes and maximal rates of contraction and relaxation velocities and decreasing Ca(2+) transients. Interestingly, blocking I(to) with 4-aminopyridine in KChIP2-overexpressing adult cardiomyocytes significantly increased the Ca(2+) transients to control levels. One-day-old rat pups intracardially transduced with KChIP2 for two months then subjected to aortic banding for 6-8 weeks (to induce hypertrophy) showed similar echocardiographic, electrical and mechanical remodeling parameters. In addition, in cultured adult cardiomyocytes, KChIP2 overexpression increased the expression of Ca(2+)-ATPase (SERCA2a) and sodium calcium exchanger but had no effect on ryanodine receptor 2 or phospholamban expression. In neonatal myocytes, KChIP2 notably reversed Ang II-induced hypertrophic changes in protein synthesis and MAP-kinase activation. It also significantly decreased calcineurin expression, NFATc1 expression and nuclear translocation and its downstream target, MCiP1.4. Altogether, these data show that KChIP2 can attenuate cardiac hypertrophy possibly through modulation of intracellular calcium concentration and calcineurin/NFAT pathway.
Collapse
Affiliation(s)
- Hongwei Jin
- Cardiovascular Research Center, Mount Sinai School of Medicine, Atran Building AB5-10, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Larger transient outward K(+) current and shorter action potential duration in Galpha(11) mutant mice. Pflugers Arch 2009; 459:607-18. [PMID: 19953263 DOI: 10.1007/s00424-009-0762-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/05/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
Abstract
The alpha(1)-adrenoceptor as well as the AT(1)- and the ET(A)-receptor couple to G-proteins of the Galpha(q/11) family and contribute to the regulation of the transient outward K(+) current (I(to,f)) under pathological conditions such as cardiac hypertrophy or failure. This suggests an important role of Galpha(q/11)-signalling in the physiological regulation of I(to,f). Here, we investigate mice deficient of the Galpha(11) protein (gna11(-/-)) to clarify the physiological role of Galpha(11) signalling in cardiac ion channel regulation. Myocytes from endocardial and epicardial layers were isolated from the left ventricular free wall and investigated using the ruptured-patch whole-cell patch-clamp technique. At +40 mV, epicardial myocytes from gna11(-/-) mice displayed a 23% larger I(to,f) than controls (52.6 + or - 4.1 pApF(-1), n = 20 vs 42.7 + or - 2.8 pApF(-1), n = 26, p < 0.05). Endocardial I(to,f) was similar in gna11(-/-) mice and controls. With the except of minor changes in endocardial myocytes, I(to,f) kinetics were similar in both groups. In the epicardial layer, western blot analysis revealed a 19% higher expression of the K(+)-channel alpha-subunit Kv4.2 in gna11(-/-) mice than in wild type (wt; p < 0.05). The beta-subunit KChIP2b was upregulated by 102% in epicardial myocytes of gna11(-/-) mice (p < 0.01, n = 4). Consistent with the difference in I(to,f), action potential duration was shorter in epicardial cells of gna11(-/-) mice than in wt (p < 0.05), while no difference was found in endocardial myocytes. These results suggest that Galpha(11)-coupled signalling is a central pathway in the regulation of I(to,f). It physiologically exerts a tonic inhibitory influence on the expression of I(to,f) and thereby contributes to the regulation of cardiac repolarisation.
Collapse
|
23
|
Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2009; 48:12-25. [PMID: 19619557 DOI: 10.1016/j.yjmcc.2009.07.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
Rapidly activating and inactivating cardiac transient outward K(+) currents, I(to), are expressed in most mammalian cardiomyocytes, and contribute importantly to the early phase of action potential repolarization and to plateau potentials. The rapidly recovering (I(t)(o,f)) and slowly recovering (I(t)(o,s)) components are differentially expressed in the myocardium, contributing to regional heterogeneities in action potential waveforms. Consistent with the marked differences in biophysical properties, distinct pore-forming (alpha) subunits underlie the two I(t)(o) components: Kv4.3/Kv4.2 subunits encode I(t)(o,f), whereas Kv1.4 encodes I(t)(o,s), channels. It has also become increasingly clear that cardiac I(t)(o) channels function as components of macromolecular protein complexes, comprising (four) Kvalpha subunits and a variety of accessory subunits and regulatory proteins that influence channel expression, biophysical properties and interactions with the actin cytoskeleton, and contribute to the generation of normal cardiac rhythms. Derangements in the expression or the regulation of I(t)(o) channels in inherited or acquired cardiac diseases would be expected to increase the risk of potentially life-threatening cardiac arrhythmias. Indeed, a recently identified Brugada syndrome mutation in KCNE3 (MiRP2) has been suggested to result in increased I(t)(o,f) densities. Continued focus in this area seems certain to provide new and fundamentally important insights into the molecular determinants of functional I(t)(o) channels and into the molecular mechanisms involved in the dynamic regulation of I(t)(o) channel functioning in the normal and diseased myocardium.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
24
|
Bai J, Ren C, Hao W, Wang R, Cao JM. Chemical sympathetic denervation, suppression of myocardial transient outward potassium current, and ventricular fibrillation in the rat. Can J Physiol Pharmacol 2009; 86:700-9. [PMID: 18841175 DOI: 10.1139/y08-075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sympathetic denervation is frequently observed in heart disease. To investigate the linkage of sympathetic denervation and cardiac arrhythmia, we developed a rat model of chemical sympathectomy by subcutaneous injections of 6-hydroxydopamine (6-OHDA). Cardiac sympathetic innervation was visualized by means of a glyoxylic catecholaminergic histofluorescence method. Transient outward current (Ito) of ventricular myocytes was recorded with the whole-cell configuration of the patch clamp technique. We observed that sympathectomy (i) decreased cardiac sympathetic nerve density and norepinephrine level, (ii) reduced the protein expression of Kv4.2, Kv1.4, and Kv channel-interacting protein 2 (KChIP2), (iii) decreased current densities and delayed activation of Ito channels, (iv) reduced the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP response element-binding protein (CREB), and (v) increased the severity of ventricular fibrillation induced by rapid pacing. Three weeks after 6-OHDA injections, which allowed time for sympathetic regeneration, we found cardiac sympathetic nerve density, norepinephrine levels, expression levels of Kv4.2 and KChIP2 proteins, and I(to) densities were partially normalized and ventricular fibrillation severity was decreased. We conclude that chemical sympathectomy downregulates the expression of selective Kv channel subunits and decreases myocardial I(to) channel activities, contributing to the elevated susceptibility to ventricular fibrillation.
Collapse
Affiliation(s)
- Juan Bai
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, P.R. China
| | | | | | | | | |
Collapse
|
25
|
Schwoerer AP, Melnychenko I, Goltz D, Hedinger N, Broichhausen I, El-Armouche A, Eschenhagen T, Volk T, Ehmke H. Unloaded rat hearts in vivo express a hypertrophic phenotype of cardiac repolarization. J Mol Cell Cardiol 2008; 45:633-41. [DOI: 10.1016/j.yjmcc.2008.02.271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/25/2022]
|
26
|
Lu Z, Abe JI, Taunton J, Lu Y, Shishido T, McClain C, Yan C, Xu SP, Spangenberg TM, Xu H. Reactive oxygen species-induced activation of p90 ribosomal S6 kinase prolongs cardiac repolarization through inhibiting outward K+ channel activity. Circ Res 2008; 103:269-78. [PMID: 18599872 DOI: 10.1161/circresaha.107.166678] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
p90 ribosomal S6 kinase (p90RSK) is activated in cardiomyopathies caused by conditions such as ischemia/reperfusion injury and diabetes mellitus in which prolongation of cardiac repolarization and frequent arrhythmias are common. Molecular mechanisms underlying the electric remodeling in cardiac diseases are largely unknown. In the present study, we determined the role of p90RSK activation in the modulation of voltage-gated K+ channel activity determining cardiac repolarization. Mice with increased cardiac p90RSK activity due to transgenic expression of p90RSK (p90RSK-Tg) had prolongation of QT intervals and of ventricular myocyte action potential durations. Fast transient outward K+ current (I(to,f)), slow delayed outward K+ current (I(K,slow)), and steady-state K+ current (I(SS)) were significantly decreased in p90RSK-Tg mouse ventricular myocytes. mRNA levels of Kv4.3, Kv4.2, Kv1.5, Kv2.1, and KChIP2 from ventricles between p90RSK-Tg and nontransgenic littermate control mice were similar, as assessed by quantitative reverse transcriptase-polymerase chain reaction, indicating that p90RSK regulates voltage-gated K+ channels through posttranslational modification. Kv4.3- and Kv1.5- rather than Kv4.2- and Kv2.1-encoded channels in HEK 293 cells were inhibited by p90RSK. In vitro phosphorylation analysis showed that Kv4.3 was phosphorylated by p90RSK at 2 conserved sites, Ser516 and Ser550. p90RSK expression significantly inhibited Kv4.3- and Kv4.3 and KChIP2-encoded channel activities in HEK 293 cells, whereas p90RSK's effects were blocked by amino acid mutation(s) at phosphorylation site(s) in Kv4.3. Hydrogen peroxide, a mediator of induced cardiac p90RSK activation in ischemia/reperfusion injury and diabetes mellitus, had effects similar to those of p90RSK on Kv4.3- or Kv4.3- and KChIP2-encoded channels. Fluoromethylketone, a specific p90RSK inhibitor, abolished hydrogen peroxide effects. These findings indicate that p90RSK activation is critical for reactive oxygen species-mediated inhibition of voltage-gated K+ channel activity and leads to prolongation of cardiac repolarization.
Collapse
Affiliation(s)
- Zhibo Lu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Li X, Tang K, Xie B, Li S, Rozanski GJ. Regulation of Kv4 channel expression in failing rat heart by the thioredoxin system. Am J Physiol Heart Circ Physiol 2008; 295:H416-24. [PMID: 18515646 DOI: 10.1152/ajpheart.91446.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Redox imbalance elicited by oxidative stress contributes to pathogenic remodeling of ion channels that underlies arrhythmogenesis and contractile dysfunction in the failing heart. This study examined whether the expression of K(+) channels in the remodeled ventricle is controlled by the thioredoxin system, a principal oxidoreductase network regulating redox-sensitive proteins. Ventricular dysfunction was induced in rats by coronary artery ligation, and experiments were conducted 6-8 wk postinfarction. Biochemical assays of tissue extracts from infarcted hearts showed that thioredoxin reductase activity was decreased by 32% from sham-operated controls (P < 0.05), whereas thioredoxin activity was 51% higher postinfarction (P < 0.05). These differences in activities paralleled changes in protein abundance as determined by Western blot analysis. However, whereas real-time PCR showed thioredoxin reductase mRNA levels to be significantly decreased postinfarction, thioredoxin mRNA was not altered. In voltage-clamp studies of myocytes from infarcted hearts, the characteristic downregulation of transient-outward K(+) current density was reversed by exogenous pyruvate (5 mmol/l), and this effect was blocked by the specific inhibitors of the thioredoxin system: auranofin or 13-cis-retinoic acid. Real-time PCR and Western blot analyses of myocyte suspensions from infarcted hearts showed that pyruvate increased mRNA and protein abundance of Kv4.2 and Kv4.3 channel alpha-subunits as well as the accessory protein KChIP2 when compared with time-matched, untreated cells (P < 0.05). The pyruvate-induced increase in Kv4.x expression was blocked by auranofin, but the upregulation of KChIP2 expression was not affected. These data suggest that the expression of Kv4.x channels is redox-regulated by the thioredoxin system, which may be a novel therapeutic target to reverse or limit electrical remodeling of the failing heart.
Collapse
Affiliation(s)
- Xun Li
- Dept. of Cellular and Integrative Physiology, Univ. of Nebraska Medical Ctr., Omaha, NE 68198-5850, USA
| | | | | | | | | |
Collapse
|
29
|
Hu X, Zhao Y, He X, Li J, Wang T, Zhou W, Wan D, Wang H, Gu J. Ciliary neurotrophic factor receptor alpha subunit-modulated multiple downstream signaling pathways in hepatic cancer cell lines and their biological implications. Hepatology 2008; 47:1298-308. [PMID: 18307269 DOI: 10.1002/hep.22163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UNLABELLED Ciliary neurotrophic factor (CNTF) plays important roles in a variety of tissues including neural and non-neural systems, but the function of CNTF and its receptor (CNTFR) in liver remains unclear. In this study, we demonstrate that CNTFRalpha is expressed heterogeneously in normal human liver and hepatocellular carcinoma (HCC) specimens but not in hepatoblastoma specimens. We choose the CNTFRalpha(+)/CNTFRalpha(-) (CNTFRalpha positive/ CNTFRalpha negative) cell models of hepatic origin to study multiple downstream pathways of CNTFRalpha. We show that the presence of CNTFRalpha determines the temporal activation patterns of downstream signaling molecules and serves as a key modulator in regulating PI3K and AMP-activated protein kinase (AMPK) dynamically under CNTF stimulation, thus resulting in the increase of glucose uptake and translocation of glucose transporter 4 (GLUT4). Furthermore, CNTF-induced mitogen-activated protein kinase (MAPK) activation suppresses AMPK activity in the early phase of CNTF stimulation. Moreover, the protective role of CNTF against cell-cycle arrest is dependent on the presence of CNTFRalpha and is modulated by the glucose concentration of the culture medium. CONCLUSION Our results demonstrate the importance of CNTFRalpha-mediated downstream signaling pathways and their functional implications in hepatic cancer cells, thus highlighting a better understanding of the biological roles of CNTFRalpha in human liver abnormalities, including metabolic diseases and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xin Hu
- Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic Ion-Channel Remodeling in the Heart: Heart Failure, Myocardial Infarction, and Atrial Fibrillation. Physiol Rev 2007; 87:425-56. [PMID: 17429037 DOI: 10.1152/physrev.00014.2006] [Citation(s) in RCA: 616] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rhythmic and effective cardiac contraction depends on appropriately timed generation and spread of cardiac electrical activity. The basic cellular unit of such activity is the action potential, which is shaped by specialized proteins (channels and transporters) that control the movement of ions across cardiac cell membranes in a highly regulated fashion. Cardiac disease modifies the operation of ion channels and transporters in a way that promotes the occurrence of cardiac rhythm disturbances, a process called “arrhythmogenic remodeling.” Arrhythmogenic remodeling involves alterations in ion channel and transporter expression, regulation and association with important protein partners, and has important pathophysiological implications that contribute in major ways to cardiac morbidity and mortality. We review the changes in ion channel and transporter properties associated with three important clinical and experimental paradigms: congestive heart failure, myocardial infarction, and atrial fibrillation. We pay particular attention to K+, Na+, and Ca2+channels; Ca2+transporters; connexins; and hyperpolarization-activated nonselective cation channels and discuss the mechanisms through which changes in ion handling processes lead to cardiac arrhythmias. We highlight areas of future investigation, as well as important opportunities for improved therapeutic approaches that are being opened by an improved understanding of the mechanisms of arrhythmogenic remodeling.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada.
| | | | | | | |
Collapse
|
31
|
Liu XS, Jiang M, Zhang M, Tang D, Clemo HF, Higgins RSD, Tseng GN. Electrical remodeling in a canine model of ischemic cardiomyopathy. Am J Physiol Heart Circ Physiol 2007; 292:H560-71. [PMID: 16920806 DOI: 10.1152/ajpheart.00616.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nature of electrical remodeling in a canine model of ischemic cardiomyopathy (ICM; induced by repetitive intracoronary microembolizations) that exhibits spontaneous ventricular tachycardia is not entirely clear. We used the patch-clamp technique to record action potentials and ionic currents of left ventricular myocytes isolated from the region affected by microembolizations. We also used the immunoblot technique to examine channel subunit expression in adjacent affected tissue. Ventricular myocytes and tissue isolated from the corresponding region of normal hearts served as control. ICM myocytes had prolonged action potential duration (APD) and more pronounced APD dispersion. Slow delayed rectifier current ( IKs) was reduced at voltages positive to 0 mV, along with a negative shift in its voltage dependence of activation. Immunoblots showed that there was no change in KCNQ1.1 ( IKs pore-forming or α-subunit), but KCNE1 ( IKs auxiliary or β-subunit) was reduced, and KCNQ1.2 (a truncated KCNQ1 splice variant with a dominant-negative effect on IKs) was increased. Transient outward current ( Ito) was reduced, along with an acceleration of the slow phase of recovery from inactivation. Immunoblots showed that there was no change in Kv4.3 (α-subunit of fast-recovering Ito component), but KChIP2 (β-subunit of fast-recovering component) and Kv1.4 (α-subunit of slow-recovering component) were reduced. Inward rectifier current was reduced. L-type Ca current was unaltered. The immunoblot data provide mechanistic insights into the observed changes in current amplitude and gating kinetics of IKs and Ito. We suggest that these changes, along with the decrease in inward rectifier current, contribute to APD prolongation in ICM hearts.
Collapse
Affiliation(s)
- Xian-Sheng Liu
- Dept. of Physiology, Virginia Commonwealth Univ., Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Furukawa T, Kurokawa J. Potassium channel remodeling in cardiac hypertrophy. J Mol Cell Cardiol 2006; 41:753-61. [PMID: 16962130 DOI: 10.1016/j.yjmcc.2006.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
Cardiac hypertrophy is an adaptive process against increased work loads; however, hypertrophy also presents substrates for lethal ventricular arrhythmias, resulting in sudden arrhythmic deaths that account for about one third of deaths in cardiac hypertrophy. To maintain physiological cardiac function in the face of increased work loads, hypertrophied cardiomyocytes undergo K(+) channel remodeling that provides a prolongation in action potential duration and an increase in Ca(2+) entry. Increased Ca(2+) entry, in turn, activates signaling mechanisms including a calcineruin/NFAT pathway to permit remodeling of the K(+) channels. This results in a positive feedback loop between the K(+) channel remodeling and altered Ca(2+) handling; this loop may represent a potential therapeutic target against sudden arrhythmic deaths in cardiac hypertrophy. The purposes of this review are to: (1) discuss types of K(+) channels and their mRNA that undergo remodeling in cardiac hypertrophy; (2) report on recent research on molecular mechanisms of K(+) channel remodeling; and (3) address physiological events underlying new therapeutic modalities to ameliorate arrhythmias and sudden death in cardiac hypertrophy.
Collapse
Affiliation(s)
- Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan.
| | | |
Collapse
|
33
|
Gong N, Bodi I, Zobel C, Schwartz A, Molkentin JD, Backx PH. Calcineurin increases cardiac transient outward K+ currents via transcriptional up-regulation of Kv4.2 channel subunits. J Biol Chem 2006; 281:38498-506. [PMID: 17060317 DOI: 10.1074/jbc.m607774200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fast transient outward potassium currents (I(to,f)) are critical determinants of regional heterogeneity of cardiomyocyte repolarization as well as cardiomyocyte contractility. Additionally, I(to,f) densities are markedly down-regulated in cardiac hypertrophy and heart disease, conditions associated with activation of the serine/threonine phosphatase calcineurin (Cn). In this study, we investigated the regulation of I(to,f) expression by Cn in cultured neonatal rat ventricular myocytes (NRVMs) with and without alpha(1)-adrenoreceptor stimulation with phenylephrine (PE). Overexpression of constitutively active Cn in NRVMs induced hypertrophy and caused profound increases in I(to,f) density as well as Kv4.2 mRNA and protein expression and promoter activity, without affecting Kv4.3 or KChIP2 levels. The effects of Cn on hypertrophy, I(to,f), and Kv4.2 transcription were associated with NFAT activation and were abrogated by NFAT inhibition. Despite activating Cn and inducing hypertrophy in NRVMs, PE resulted in profound down-regulation of I(to,f) densities as well as Kv4.2, Kv4.3, and KChIP2 expression. Although hypertrophy and NFAT activation were inhibited by the Cn inhibitory peptide CAIN, I(to,f) and Kv4.2 expression were further reduced by CAIN, whereas Cn overexpression eliminated PE-induced reductions in I(to,f) and Kv4.2 expression without affecting Kv4.3 or KChIP2 levels. We conclude that Cn increases cardiac I(to,f) densities by positively regulating Kv4.2 gene transcription. Consistent with this conclusion, we found that I(to,f) was increased in myocytes isolated from young mice overexpressing Cn prior to the development of heart disease. This positive regulation of Kv4.2 transcription by Cn activation is expected to minimize the reductions in I(to,f) and Kv4.2 expression observed in hypertrophic cardiomyocytes.
Collapse
Affiliation(s)
- Nanling Gong
- Departments of Physiology and Medicine, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Rossow CF, Dilly KW, Santana LF. Differential Calcineurin/NFATc3 Activity Contributes to the
I
to
Transmural Gradient in the Mouse Heart. Circ Res 2006; 98:1306-13. [PMID: 16614306 DOI: 10.1161/01.res.0000222028.92993.10] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kv4 channels are differentially expressed across the mouse left ventricular free wall. Accordingly, the transient outward K
+
current (
I
to
), which is produced by Kv4 channels, is greater in left ventricular epicardial (EPI) than in endocardial (ENDO) cells. However, the mechanisms underlying heterogeneous Kv4 expression in the heart are unclear. Here, we tested the hypothesis that differential [Ca
2+
]
i
and calcineurin/NFATc3 signaling in EPI and ENDO cells contributes to the gradient of
I
to
function in the mouse left ventricle. In support of this hypothesis, we found that [Ca
2+
]
i
, calcineurin, and NFAT activity were greater in ENDO than in EPI myocytes. However, the amplitude of
I
to
was the same in ENDO and EPI cells when [Ca
2+
]
i
, calcineurin, and NFAT activity were equalized. Consistent with this, we observed complete loss of
I
to
and Kv4 heterogeneity in NFATc3-null mice. Interestingly, Kv4.3, Kv4.2, and KChIP2 genes had different apparent thresholds for NFATc3-dependent suppression and were ordered as Kv4.3≈KChIP2>Kv4.2. Based on these data, we conclude that calcineurin and NFATc3 constitute a Ca
2+
-driven signaling module that contributes to the nonuniform distribution of Kv4 expression, and hence
I
to
function, in the mouse left ventricle.
Collapse
Affiliation(s)
- Charles F Rossow
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98118, USA
| | | | | |
Collapse
|
36
|
Barth AS, Kääb S. MAPK= mitogen-activated protein KChIP2? Unraveling signaling pathways controlling cardiac Ito expression. Circ Res 2006; 98:301-2. [PMID: 16484624 DOI: 10.1161/01.res.0000208057.36708.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|