1
|
Shreya S, Alam MJ, Anupriya, Jaiswal S, Rani V, Jain BP. Lipotoxicity, ER Stress, and Cardiovascular Disease: Current Understanding and Future Directions. Cardiovasc Hematol Agents Med Chem 2024; 22:319-335. [PMID: 37859305 DOI: 10.2174/0118715257262366230928051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The endoplasmic reticulum (ER) is a sub-cellular organelle that is responsible for the correct folding of proteins, lipid biosynthesis, calcium storage, and various post-translational modifications. In the disturbance of ER functioning, unfolded or misfolded proteins accumulate inside the ER lumen and initiate downstream signaling called unfolded protein response (UPR). The UPR signaling pathway is involved in lipolysis, triacylglycerol synthesis, lipogenesis, the mevalonate pathway, and low-density lipoprotein receptor recycling. ER stress also affects lipid metabolism by changing the levels of enzymes that are involved in the synthesis or modifications of lipids and causing lipotoxicity. Lipid metabolism and cardiac diseases are in close association as the deregulation of lipid metabolism leads to the development of various cardiovascular diseases (CVDs). Several studies have suggested that lipotoxicity is one of the important factors for cardiovascular disorders. In this review, we will discuss how ER stress affects lipid metabolism and their interplay in the development of cardiovascular disorders. Further, the current therapeutics available to target ER stress and lipid metabolism in various CVDs will be summarized.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Md Jahangir Alam
- Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupriya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Saumya Jaiswal
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
2
|
Billah M, Naz A, Noor R, Bhindi R, Khachigian LM. Early Growth Response-1: Friend or Foe in the Heart? Heart Lung Circ 2023; 32:e23-e35. [PMID: 37024319 DOI: 10.1016/j.hlc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023]
Abstract
Cardiovascular disease is a major cause of mortality and morbidity worldwide. Early growth response-1 (Egr-1) plays a critical regulatory role in a range of experimental models of cardiovascular diseases. Egr-1 is an immediate-early gene and is upregulated by various stimuli including shear stress, oxygen deprivation, oxidative stress and nutrient deprivation. However, recent research suggests a new, underexplored cardioprotective side of Egr-1. The main purpose of this review is to explore and summarise the dual nature of Egr-1 in cardiovascular pathobiology.
Collapse
Affiliation(s)
- Muntasir Billah
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.
| | - Adiba Naz
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Rashed Noor
- School of Environmental and Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh
| | - Ravinay Bhindi
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Yu J, Chen X, Li Y, Wang Y, Liu Z, Shen B, Teng J, Zou J, Ding X. High ultrafiltration rate induced intradialytic hypotension is a predictor for cardiac remodeling: a 5-year cohort study. Ren Fail 2021; 43:40-48. [PMID: 33307918 PMCID: PMC7745843 DOI: 10.1080/0886022x.2020.1853570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Intradialytic-hypotension (IDH) is a common complication of hemodialysis. High ultrafiltration rate (UFR) might lead to IDH. However, the relationships between UFR, IDH, and cardiac remodeling among hemodialysis patients in the long-term have not been deeply explored. METHODS This retrospective cohort study collected clinical and echocardiographic data. Patients were enrolled from 1 January 2014 to 31 March 2014 and were followed-up for 5-year. Those who suffered from more than four hypotensive events during three months (10% of dialysis treatments) were defined as the IDH group. Subgroup analysis was done according to the UFR of 10 ml/h/kg. Associations between UFR, IDH, and alterations of cardiac structure/function were analyzed. RESULTS Among 209 patients, 96 were identified with IDH (45.9%). The survival rate of IDH patients was lower than that of no-IDH patients (65.5% vs. 81.4%, p = .005). In IDH group, decreased ejection fraction (EF), larger left atrium diameter index (LADI), and left ventricular mass index (LVMI) (p < .05) were observed at the end of the follow-up. In multivariate logistic model, the interaction between UFR and IDH was notably associated with LVMI variation (OR = 1.37). After adjusting covariates, UFR was still an independent risk factor of LVMI variation (OR = 1.52) in IDH group. In subsequent analysis, we divided patients according to UFR 10 ml/h/kg. For IDH-prone patients, decreased EF, larger LADI, and LVMI (p < .05) were observed at the end of the study only in high-UFR group. CONCLUSIONS UFR and IDH have interactions on cardiac remodeling. High ultrafiltration rate induced IDH is a predictor for cardiac remodeling in long-term follow-up.
Collapse
Affiliation(s)
- Jinbo Yu
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Institute of Kidney Disease and Dialysis, Shanghai, P. R. China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, P. R. China
| | - Xiaohong Chen
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, P. R. China
| | - Yang Li
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, P. R. China
| | - Yaqiong Wang
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, P. R. China
| | - Zhonghua Liu
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, P. R. China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, P. R. China
| | - Jie Teng
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, P. R. China
| | - Jianzhou Zou
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, P. R. China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, P. R. China
| |
Collapse
|
4
|
Wang J, Zhang W, Qi Y. Intradialytic hypotension and cardiac remodeling: should we consider the renin-angiotensin-aldosterone system? Ren Fail 2021; 43:597-598. [PMID: 33781163 PMCID: PMC8018337 DOI: 10.1080/0886022x.2021.1901741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Juanli Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou, PR China
| | - Wenjun Zhang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou, PR China
| | - Yuanyuan Qi
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou, PR China
| |
Collapse
|
5
|
Gao G, Chen W, Yan M, Liu J, Luo H, Wang C, Yang P. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med 2019; 45:195-209. [PMID: 31746373 PMCID: PMC6889932 DOI: 10.3892/ijmm.2019.4407] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
The progressive loss of cardiomyocytes caused by cell death leads to cardiac dysfunction and heart failure (HF). Rapamycin has been shown to be cardioprotective in pressure-overloaded and ischemic heart diseases by regulating the mechanistic target of rapamycin (mTOR) signaling network. However, the impact of rapamycin on cardiomyocyte death in chronic HF remains undetermined. Therefore, in the current study we addressed this issue using a rat myocardial infarction (MI)-induced chronic HF model induced by ligating the coronary artery. Following surgery, rats were randomly divided into six groups, including the sham-, vehicle- and rapamycin-operated groups, at 8 or 12 weeks post-MI. A period of 4 weeks after MI induction, the rats were treated with rapamycin (1.4 mg-kg-day) or vehicle for 4 weeks. Cardiac function was determined using echocardiography, the rats were subsequently euthanized and myocardial tissues were harvested for histological and biochemical analyses. In the cell culture experiments with H9c2 rat cardiomyocytes, apoptosis was induced using angiotensin II (100 nM; 24 h). Cardiomyocyte apoptosis and autophagy were assessed via measuring apoptosis- and autophagy-associated proteins. The activities of mTOR complex 1 (mTORC1) and mTORC2 were evaluated using the phosphorylation states of ribosomal S6 protein and Akt, respectively. The activity of the endoplasmic reticulum (ER) stress pathway was determined using the levels of GRP78, caspase-12, phospho-JNK and DDIT3. Echocardiographic and histological measurements indicated that rapamycin treatment improved cardiac function and inhibited cardiac remodeling at 8 weeks post-MI. Additionally, rapamycin prevented cardiomyocyte apoptosis and promoted autophagy at 8 weeks post-MI. Rapamycin treatment for 4 weeks inhibited the mTOR and ER stress pathways. Furthermore, rapamycin prevented angiotensin II-induced H9c2 cell apoptosis and promoted autophagy by inhibiting the mTORC1 and ER stress pathways. These results demonstrated that rapamycin reduced cardiomyocyte apoptosis and promoted cardiomyocyte autophagy, by regulating the crosstalk between the mTOR and ER stress pathways in chronic HF.
Collapse
Affiliation(s)
- Guangyuan Gao
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Weiwei Chen
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Mengjie Yan
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Jinsha Liu
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Huiling Luo
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Chang Wang
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Ping Yang
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| |
Collapse
|
6
|
Mishra JS, More AS, Gopalakrishnan K, Kumar S. Testosterone plays a permissive role in angiotensin II-induced hypertension and cardiac hypertrophy in male rats. Biol Reprod 2019; 100:139-148. [PMID: 30102356 PMCID: PMC6335213 DOI: 10.1093/biolre/ioy179] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022] Open
Abstract
Sex hormones contribute to sex differences in blood pressure. Inappropriate activation of the renin-angiotensin system is involved in vascular dysfunction and hypertension. This study evaluated the role of androgens (testosterone) in angiotensin II (Ang II)-induced increase in blood pressure, vascular reactivity, and cardiac hypertrophy. Eight-week-old male Wistar rats underwent sham operation, castration, or castration with testosterone replacement. After 12 weeks of chronic changes in androgen status, Ang II (120 ng/kg per minute) or saline was infused for 28 days via subcutaneous miniosmotic pump, and changes in blood pressure was measured. Vascular reactivity and Ang II receptor levels were examined in mesenteric arteries. Heart weight, cardiac ANP mRNA levels, and fibrosis were also assessed. Ang II infusion increased arterial pressure in intact males. The Ang II-induced increase in hypertensive response was prevented in castrated males. Testosterone replacement in castrated males restored Ang II-induced hypertensive responses. Castration reduced vascular AT1R/AT2R ratio, an effect that was reversed by testosterone replacement. Ang II-induced hypertension was associated with increased contractile response of mesenteric arteries to Ang II and phenylephrine in intact and testosterone-replaced castrated males; these increases were prevented in castrated males. Ang II infusion induced increased left ventricle-to-body weight ratio and ANP mRNA expression, indicators of left ventricular hypertrophy, and fibrosis in intact and testosterone-replaced castrated males, and castration prevented the increase in these parameters caused by Ang II. This study demonstrates that testosterone plays a permissive role in development and maintenance of Ang II-induced vascular dysfunction, hypertension, and cardiac hypertrophy.
Collapse
Affiliation(s)
- Jay S Mishra
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amar S More
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Sathish Kumar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Zheng H, Pu SY, Fan XF, Li XS, Zhang Y, Yuan J, Zhang YF, Yang JL. Treatment with angiotensin-(1-9) alleviates the cardiomyopathy in streptozotocin-induced diabetic rats. Biochem Pharmacol 2015; 95:38-45. [DOI: 10.1016/j.bcp.2015.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
|
8
|
Abstract
The formation and structure of the extracellular matrix (ECM) that makes up the cardiac interstitum is well known yet the underlying mechanisms that regulate the interstitum are poorly known. This review focuses on the role of the cardiac fibroblast in the formation and regulation of the ECM components during cardiac development and in response to physiological and pathological stimulation. The role of ECM receptors (integrins), cellular phenotype, and chemical and mechanical signaling by cardiac fibroblasts are discussed.
Collapse
|
9
|
Sandgren J, Scholz TD, Segar JL. ANG II modulation of cardiac growth and remodeling in immature fetal sheep. Am J Physiol Regul Integr Comp Physiol 2015; 308:R965-72. [PMID: 25810382 DOI: 10.1152/ajpregu.00034.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/20/2015] [Indexed: 01/09/2023]
Abstract
ANG II increases fetal blood pressure and stimulates fetal heart growth; however, little is known regarding its direct effects on cardiomyocytes in vivo. We sought to determine whether ANG II stimulates heart growth and cardiomyocyte hypertrophy and/or hyperplasia in utero in the immature fetal heart independent of the effects on cardiac afterload. In twin gestation, fetal sheep at ∼100 days gestation (term 145 days), one fetus received a chronic (6 days) infusion of ANG II alone (50 μg·kg(-1)·min(-1)) or ANG II plus nitroprusside (NTP) to attenuate the increase in blood pressure; noninstrumented twins served as controls. ANG II alone, but not ANG II + NTP resulted in a significant increase in heart mass (left and right ventricle + septum, corrected for body weight) compared with controls. ANG II, but not ANG II+NTP, also significantly increased cardiomyocyte area compared with control and increased the percentage of binucleated myocytes. ANG II with or without concomitant infusion of NTP increased cardiac PCNA expression, a marker of proliferation. Steady-state protein expression of terminal mitogen-activated protein kinases, cyclin B1, cyclin E1, and p21 were similar among groups. We conclude that in vivo, ANG II increases fetal cardiac mass via cardiomyocyte hypertrophy, differentiation, and to a lesser extent hyperplasia. The effects of ANG II on hypertrophy appear dependent upon the increase in blood pressure (mechanical load), whereas effects on proliferation are load-independent.
Collapse
Affiliation(s)
- Jeremy Sandgren
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Thomas D Scholz
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jeffrey L Segar
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
10
|
Intradialytic hypotension and cardiac remodeling: a vicious cycle. BIOMED RESEARCH INTERNATIONAL 2015; 2015:724147. [PMID: 25654122 PMCID: PMC4310253 DOI: 10.1155/2015/724147] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/19/2014] [Indexed: 01/17/2023]
Abstract
Hemodynamic instability during hemodialysis is a common but often underestimated issue in the nephrologist practice. Intradialytic hypotension, namely, a decrease of systolic or mean blood pressure to a certain level, prohibits the safe and smooth achievement of ultrafiltration and solute removal goal in chronic dialysis patients. Studies have elucidated the potential mechanisms involved in the development of Intradialytic hypotension, including excessive ultrafiltration and loss of compensatory mechanisms for blood pressure maintenance. Cardiac remodeling could also be one important piece of the puzzle. In this review, we intend to discuss the role of cardiac remodeling, including left ventricular hypertrophy, in the development of Intradialytic hypotension. In addition, we will also provide evidence that a bidirectional relationship might exist between Intradialytic hypotension and left ventricular hypertrophy in chronic dialysis patients. A more complete understanding of the complex interactions in between could assist the readers in formulating potential solutions for the reduction of both phenomena.
Collapse
|
11
|
Sozen E, Karademir B, Ozer NK. Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases. Free Radic Biol Med 2015; 78:30-41. [PMID: 25452144 DOI: 10.1016/j.freeradbiomed.2014.09.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 09/03/2014] [Accepted: 09/26/2014] [Indexed: 01/30/2023]
Abstract
The folding process is an important step in protein synthesis for the functional shape or conformation of the protein. The endoplasmic reticulum (ER) is the main organelle for the correct folding procedure, which maintains the homeostasis of the organism. This process is normally well organized under unstressed conditions, whereas it may fail under oxidative and ER stress. The unfolded protein response (UPR) is a defense mechanism that removes the unfolded/misfolded proteins to prevent their accumulation, and two main degradation systems are involved in this defense, including the proteasome and autophagy. Cells decide which mechanism to use according to the type, severity, and duration of the stress. If the stress is too severe and in excess, the capacity of these degradation mechanisms, proteasomal degradation and autophagy, is not sufficient and the cell switches to apoptotic death. Because the accumulation of the improperly folded proteins leads to several diseases, it is important for the body to maintain this balance. Cardiovascular diseases are one of the important disorders related to failure of the UPR. Especially, protection mechanisms and the transition to apoptotic pathways have crucial roles in cardiac failure and should be highlighted in detailed studies to understand the mechanisms involved. This review is focused on the involvement of the proteasome, autophagy, and apoptosis in the UPR and the roles of these pathways in cardiovascular diseases.
Collapse
Affiliation(s)
- Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
12
|
Irvine JC, Cao N, Gossain S, Alexander AE, Love JE, Qin C, Horowitz JD, Kemp-Harper BK, Ritchie RH. HNO/cGMP-dependent antihypertrophic actions of isopropylamine-NONOate in neonatal rat cardiomyocytes: potential therapeutic advantages of HNO over NO. Am J Physiol Heart Circ Physiol 2013; 305:H365-77. [PMID: 23729209 DOI: 10.1152/ajpheart.00495.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitroxyl (HNO) is a redox congener of NO. We now directly compare the antihypertrophic efficacy of HNO and NO donors in neonatal rat cardiomyocytes and compare their contributing mechanisms of actions in this setting. Isopropylamine-NONOate (IPA-NO) elicited concentration-dependent inhibition of endothelin-1 (ET1)-induced increases in cardiomyocyte size, with similar suppression of hypertrophic genes. Antihypertrophic IPA-NO actions were significantly attenuated by l-cysteine (HNO scavenger), Rp-8-pCTP-cGMPS (cGMP-dependent protein kinase inhibitor), and 1-H-(1,2,4)-oxodiazolo-quinxaline-1-one [ODQ; to target soluble guanylyl cyclase (sGC)] but were unaffected by carboxy-PTIO (NO scavenger) or CGRP8-37 (calcitonin gene-related peptide antagonist). Furthermore, IPA-NO significantly increased cardiomyocyte cGMP 3.5-fold (an l-cysteine-sensitive effect) and stimulated sGC activity threefold, without detectable NO release. IPA-NO also suppressed ET1-induced cardiomyocyte superoxide generation. The pure NO donor diethylamine-NONOate (DEA-NO) reproduced these IPA-NO actions but was sensitive to carboxy-PTIO rather than l-cysteine. Although IPA-NO stimulation of purified sGC was preserved under pyrogallol oxidant stress (in direct contrast to DEA-NO), cardiomyocyte sGC activity after either donor was attenuated by this stress. Excitingly IPA-NO also exhibited acute antihypertrophic actions in response to pressure overload in the intact heart. Together these data strongly suggest that IPA-NO protection against cardiomyocyte hypertrophy is independent of both NO and CGRP but rather utilizes novel HNO activation of cGMP signaling. Thus HNO acutely limits hypertrophy independently of NO, even under conditions of elevated superoxide. Development of longer-acting HNO donors may thus represent an attractive new strategy for the treatment of cardiac hypertrophy, as stand-alone and/or add-on therapy to standard care.
Collapse
Affiliation(s)
- Jennifer C Irvine
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Masuda T, Muto S, Fujisawa G, Iwazu Y, Kimura M, Kobayashi T, Nonaka-Sarukawa M, Sasaki N, Watanabe Y, Shinohara M, Murakami T, Shimada K, Kobayashi E, Kusano E. Heart angiotensin II-induced cardiomyocyte hypertrophy suppresses coronary angiogenesis and progresses diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2012; 302:H1871-83. [PMID: 22389386 DOI: 10.1152/ajpheart.00663.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To examine whether and how heart ANG II influences the coordination between cardiomyocyte hypertrophy and coronary angiogenesis and contributes to the pathogenesis of diabetic cardiomyopathy, we used Spontaneously Diabetic Torii (SDT) rats treated without and with olmesartan medoxomil (an ANG II receptor blocker). In SDT rats, left ventricular (LV) ANG II, but not circulating ANG II, increased at 8 and 16 wk after diabetes onset. SDT rats developed LV hypertrophy and diastolic dysfunction at 8 wk, followed by LV systolic dysfunction at 16 wk, without hypertension. The SDT rat LV exhibited cardiomyocyte hypertrophy and increased hypoxia-inducible factor-1α expression at 8 wk and to a greater degree at 16 wk and interstitial fibrosis at 16 wk only. In SDT rats, coronary angiogenesis increased with enhanced capillary proliferation and upregulation of the angiogenic factor VEGF at 8 wk but decreased VEGF with enhanced capillary apoptosis and suppressed capillary proliferation despite the upregulation of VEGF at 16 wk. In SDT rats, the phosphorylation of VEGF receptor-2 increased at 8 wk alone, whereas the expression of the antiangiogenic factor thrombospondin-1 increased at 16 wk alone. All these events, except for hyperglycemia or blood pressure, were reversed by olmesartan medoxomil. These results suggest that LV ANG II in SDT rats at 8 and 16 wk induces cardiomyocyte hypertrophy without affecting hyperglycemia or blood pressure, which promotes and suppresses coronary angiogenesis, respectively, via VEGF and thrombospondin-1 produced from hypertrophied cardiomyocytes under chronic hypoxia. Thrombospondin-1 may play an important role in the progression of diabetic cardiomyopathy in this model.
Collapse
Affiliation(s)
- Takahiro Masuda
- Divisions of Nephrology, Department of Internal Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cook JL, Re RN. Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model. Am J Physiol Regul Integr Comp Physiol 2011; 302:R482-93. [PMID: 22170617 DOI: 10.1152/ajpregu.00493.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the classical renin-angiotensin system, circulating ANG II mediates growth stimulatory and hemodynamic effects through the plasma membrane ANG II type I receptor, AT1. ANG II also exists in the intracellular space in some native cells, and tissues and can be upregulated in diseases, including hypertension and diabetes. Moreover, intracellular AT1 receptors can be found associated with endosomes, nuclei, and mitochondria. Intracellular ANG II can function in a canonical fashion through the native receptor and also in a noncanonical fashion through interaction with alternative proteins. Likewise, the receptor and proteolytic fragments of the receptor can function independently of ANG II. Participation of the receptor and ligand in alternative intracellular pathways may serve to amplify events that are initiated at the plasma membrane. We review historical and current literature relevant to ANG II, compared with other intracrines, in tissue culture and transgenic models. In particular, we describe a new transgenic mouse model, which demonstrates that intracellular ANG II is linked to high blood pressure. Appreciation of the diverse, pleiotropic intracellular effects of components of the renin-angiotensin system should lead to alternative disease treatment targets and new therapies.
Collapse
Affiliation(s)
- Julia L Cook
- Laboratory of Molecular Genetics, Department of Research, New Orleans, LA 70121, USA.
| | | |
Collapse
|
15
|
Kaye DM, Kelly RA, Smith TW. Proceedings of the Symposium ‘Angiotensin AT1 Receptors: From Molecular Physiology to Therapeutics’: CYTOKINES AND CARDIAC HYPERTROPHY: ROLES OF ANGIOTENSIN II AND BASIC FIBROBLAST GROWTH FACTOR. Clin Exp Pharmacol Physiol 2010; 23 Suppl 3:S136-41. [DOI: 10.1111/j.1440-1681.1996.tb03075.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Günther S, Baba HA, Hauptmann S, Holzhausen HJ, Grossmann C, Punkt K, Kusche T, Jones LR, Gergs U, Neumann J. Losartan reduces mortality in a genetic model of heart failure. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:265-78. [PMID: 20697885 DOI: 10.1007/s00210-010-0544-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/21/2010] [Indexed: 01/10/2023]
Abstract
Altered Ca(2+) homoeostasis accompanies heart failure. As a model of heart failure, transgenic mice (TG) with selective overexpression of calsequestrin (CSQ) in the heart were used. CSQ is the main Ca(2+) binding protein in the lumen of the junctional sarcoplasmic reticulum. Overexpression of CSQ leads to hypertrophy, fibrosis, heart failure, cardiac arrhythmias, and ultimately premature death compared to littermate controls (WT). In the present study, cardiac hypertrophy was noted at 2 months of age (relative heart weight 6.4 +/- 0.2 mg/g in WT and 11.2 +/- 0.3 mg/g in TG, n = 7, p < 0.05) which progressed at 5 months of age (relative heart weight 15.5 +/- 1.1 mg/g in TG, n = 11). Furthermore, an increased degree of fibrosis (from 0.29 +/- 0.04 in WT to 0.77 +/- 0.06 in TG, n = 8, p < 0.05) was quantified by sirius red staining. Cardiac function was greatly impaired in TG as exemplified by reduced pressure development and cardiac arrhythmias. It is hypothesized that losartan, an inhibitor of angiotensin II receptors, might be able to attenuate these detrimental effects. Hence, TG and WT were treated for 1 or 4 months perorally with losartan (5 mg/kg/day) or solvent alone (control conditions) starting at 4 weeks of age. Under control conditions, none of the WT died within the observation period whereas all TG died within 9 months. Losartan treatment reduced the mortality of TG: Mean life span was raised from 116 to 193 days (n = 18 end, p < 0.05). Likewise, losartan reduced relative heart weight and the degree of fibrosis. In addition, losartan improved hemodynamic parameters, like left ventricular pressure and its first derivative. However, losartan treatment did not modify overexpression of CSQ in the heart of TG. These results imply that the angiotensin II receptor (type 1) contributes to heart failure due to CSQ overexpression, as its blockade improved survival.
Collapse
Affiliation(s)
- Sophie Günther
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Glassock RJ, Pecoits-Filho R, Barberato SH. Left ventricular mass in chronic kidney disease and ESRD. Clin J Am Soc Nephrol 2010; 4 Suppl 1:S79-91. [PMID: 19996010 DOI: 10.2215/cjn.04860709] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic kidney disease (CKD) and ESRD, treated with conventional hemo- or peritoneal dialysis are both associated with a high prevalence of an increase in left ventricular mass (left ventricular hypertrophy [LVH]), intermyocardial cell fibrosis, and capillary loss. Cardiac magnetic resonance imaging is the best way to detect and quantify these abnormalities, but M-Mode and 2-D echocardiography can also be used if one recognizes their pitfalls. The mechanisms underlying these abnormalities in CKD and ESRD are diverse but involve afterload (arterial pressure and compliance), preload (intravascular volume and anemia), and a wide variety of afterload/preload independent factors. The hemodynamic, metabolic, cellular, and molecular mediators of myocardial hypertrophy, fibrosis, apoptosis, and capillary degeneration are increasingly well understood. These abnormalities predispose to sudden cardiac death, most likely by promotion of electrical instability and re-entry arrhythmias and congestive heart failure. Current treatment modalities for CKD and ESRD, including thrice weekly conventional hemodialysis and peritoneal dialysis and metabolic and anemia management regimens, do not adequately prevent or correct these abnormalities. A new paradigm of therapy for CKD and ESRD that places prevention and reversal of LVH and cardiac fibrosis as a high priority is needed. This will require novel approaches to management and controlled interventional trials to provide evidence to fuel the transition from old to new treatment strategies. In the meantime, key management principles designed to ameliorate LVH and its complications should become a routine part of the care of the patients with CKD and ESRD.
Collapse
Affiliation(s)
- Richard J Glassock
- The David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | | | |
Collapse
|
18
|
Schlüter KD, Wenzel S. Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol Ther 2008; 119:311-25. [PMID: 18619489 DOI: 10.1016/j.pharmthera.2008.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 12/23/2022]
Abstract
Angiotensin II (Ang II) plays a major role in the progression of myocardial hypertrophy to heart failure. Inhibiting the angiotensin converting enzyme (ACE) or blockade of the corresponding Ang II receptors is used extensively in clinical practice, but there is scope for refinement of this mode of therapy. This review summarizes the current understanding of the direct effects of Ang II on cardiomyocytes and then focus particularly on interaction of components of the renin-angiotensin system with other hormones and cytokines. New findings described in approximately 400 papers identified in the PubMed database and published during the 2.5 years are discussed in the context of previous relevant literature. The cardiac action of Ang II is influenced by the activity of different isoforms of ACE leading to different amounts of Ang II by comparison with other angiotensinogen-derived peptides. The effect of Ang II is mediated by at least two different AT receptors that are differentially expressed in cardiomyocytes from neonatal, adult and failing hearts. The intracellular effects of Ang II are influenced by nitric oxide (NO)/cGMP-dependent cross talk and are mediated by the release of autocrine factors, such as transforming growth factor (TGF)-beta1 and interleukin (IL)-6. Besides interactions with cytokines, Ang II is involved in systemic networks including aldosterone, parathyroid hormone and adrenomedullin, which have their own effects on cardiomyocytes that modify, amplify or antagonize the primary effect of Ang II. Finally, hyperinsulemia and hyperglycaemia influence Ang II-dependent processes in diabetes and its cardiac sequelae.
Collapse
Affiliation(s)
- K-D Schlüter
- Physiologisches Institut, Justus-Liebig-Universität Giessen, Germany.
| | | |
Collapse
|
19
|
Abstract
Retinoic acid (RA), the active derivative of vitamin A, by acting through retinoid receptors, is involved in signal transduction pathways regulating embryonic development, tissue homeostasis, and cellular differentiation and proliferation. RA is important for the development of the heart. The requirement of RA during early cardiovascular morphogenesis has been studied in targeted gene deletion of retinoic acid receptors and in the vitamin A-deficient avian embryo. The teratogenic effects of high doses of RA on cardiovascular morphogenesis have also been demonstrated in different animal models. Specific cardiovascular targets of retinoid action include effects on the specification of cardiovascular tissues during early development, anteroposterior patterning of the early heart, left/right decisions and cardiac situs, endocardial cushion formation, and in particular, the neural crest. In the postdevelopment period, RA has antigrowth activity in fully differentiated neonatal cardiomyocytes and cardiac fibroblasts. Recent studies have shown that RA has an important role in the cardiac remodeling process in rats with hypertension and following myocardial infarction. This chapter will focus on the role of RA in regulating cardiomyocyte growth and differentiation during embryonic and the postdevelopment period.
Collapse
Affiliation(s)
- Jing Pan
- Division of Molecular Cardiology, The Texas A&M University System Health Science Center, Cardiovascular Research Institute, College of Medicine Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | |
Collapse
|
20
|
|
21
|
van den Brink OWV, Delbridge LMD, Pedrazzini T, Rosenfeldt FL, Pepe S. Augmented myocardial methionine-enkephalin in a murine model of cardiac angiotensin II-overexpression. J Renin Angiotensin Aldosterone Syst 2008; 8:153-9. [PMID: 18205093 DOI: 10.3317/jraas.2007.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION The endogenous opioid system has been reported to interact with both the cardiac sympathetic and renin-angiotensin systems in exerting a local regulatory action on the heart. The goal of this investigation was to examine how cardiac levels of enkephalin production are altered in the development of normotensive primary hypertrophy due to elevated intra-cardiac angiotensin II (Ang II) production. METHODS Atrial and ventricular methionine-enkephalin (ME) levels were measured by quantitative radioimmunoassay in 14 and 28-week-old male transgenic mice (TG1306/1R) and control mice. The TG1306/1R exhibit cardiac specific Ang II overexpression and cardiac hypertrophy, but not hypertension. RESULTS TG1306/1R mice had significantly higher heart/body weight ratios (15-20%) than control littermates at both 14 (p=0.02) and 28 weeks (p=0.04). Relative to controls, ME content was significantly elevated (approximately two-fold) in atria and ventricles in the older 28-week TG1306/1R mice only. A significant inverse correlation between heart size and ME level was observed for 28-week TG1306/1R only. CONCLUSIONS We have provided evidence that a marked elevation of myocardial enkephalin level is observed in the established (but not early) phase of cardiac hypertrophy associated with cardiac-specific Ang II-overexpression. This study identifies a potentially important relationship between two endogenous peptidergic signalling systems involved in the regulation of growth and function of the hypertrophic heart.
Collapse
Affiliation(s)
- Olivier W V van den Brink
- Department of Cardiothoracic Surgery, Alfred Hospital & Department of Surgery, Monash University, Melbourne, Australia
| | | | | | | | | |
Collapse
|
22
|
Interaction of signal transduction between angiotensin AT1 and AT2 receptor subtypes in rat senescent heart. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200710020-00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Crowley S, Gurley S, Herrera M, Ruiz P, Griffiths R, Kumar A, Kim HS, Smithies O, Le T, Coffman T. Role of Renal Angiotensin II Type 1 Receptors in the Genesis of Hypertension: Guyton Revisited. J Am Soc Nephrol 2007. [DOI: 10.1681/asn.2006121393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
24
|
Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, Le TH, Coffman TM. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci U S A 2006; 103:17985-90. [PMID: 17090678 PMCID: PMC1693859 DOI: 10.1073/pnas.0605545103] [Citation(s) in RCA: 527] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Essential hypertension is a common disease, yet its pathogenesis is not well understood. Altered control of sodium excretion in the kidney may be a key causative feature, but this has been difficult to test experimentally, and recent studies have challenged this hypothesis. Based on the critical role of the renin-angiotensin system (RAS) and the type I (AT1) angiotensin receptor in essential hypertension, we developed an experimental model to separate AT1 receptor pools in the kidney from those in all other tissues. Although actions of the RAS in a variety of target organs have the potential to promote high blood pressure and end-organ damage, we show here that angiotensin II causes hypertension primarily through effects on AT1 receptors in the kidney. We find that renal AT1 receptors are absolutely required for the development of angiotensin II-dependent hypertension and cardiac hypertrophy. When AT1 receptors are eliminated from the kidney, the residual repertoire of systemic, extrarenal AT1 receptors is not sufficient to induce hypertension or cardiac hypertrophy. Our findings demonstrate the critical role of the kidney in the pathogenesis of hypertension and its cardiovascular complications. Further, they suggest that the major mechanism of action of RAS inhibitors in hypertension is attenuation of angiotensin II effects in the kidney.
Collapse
Affiliation(s)
- Steven D. Crowley
- *Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, NC 27710
| | - Susan B. Gurley
- *Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, NC 27710
| | - Maria J. Herrera
- *Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, NC 27710
| | - Phillip Ruiz
- Department of Pathology, University of Miami, Miami, FL 33136; and
| | - Robert Griffiths
- *Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, NC 27710
| | - Anil P. Kumar
- *Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, NC 27710
| | - Hyung-Suk Kim
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
| | - Oliver Smithies
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
| | - Thu H. Le
- *Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, NC 27710
| | - Thomas M. Coffman
- *Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, NC 27710
- To whom correspondence should be addressed at:
Duke University Medical Center, Box 3014, Durham, NC 27710. E-mail:
| |
Collapse
|
25
|
Lieb W, Graf J, Götz A, König IR, Mayer B, Fischer M, Stritzke J, Hengstenberg C, Holmer SR, Döring A, Löwel H, Schunkert H, Erdmann J. Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men. Results of the MONICA Augsburg echocardiographic substudy. J Mol Med (Berl) 2005; 84:88-96. [PMID: 16283142 DOI: 10.1007/s00109-005-0718-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 08/15/2005] [Indexed: 12/19/2022]
Abstract
Angiotensin-converting enzyme (ACE) activity is considered to be of major importance for the conversion of angiotensin (Ang) I to Ang II. Recently, a second ACE, named ACE2, has been identified. Experimental data provide evidence that ACE2 might be involved in modulating cardiac structure and function. In the present explorative study, we assessed whether polymorphisms in the ACE2 gene are related to echocardiographically determined parameters of left ventricular mass, structure or function in the general population. Five intronic single nucleotide polymorphisms (SNPs) were genotyped using the 5'-exonuclease activity (TaqMan) assay in the echocardiographic substudy of the third MONICA Augsburg survey. As ACE2 is located on the X chromosome, women and men were analysed separately. Four SNPs showed high pairwise linkage disequilibrium (rs4646156, rs879922, rs4240157 and rs233575). The minor alleles of these four SNPs were associated with higher left ventricular mass index (LVMI) and higher septal wall thickness (SWT) in men. Likewise, male carriers of a common haplotype (frequency 29.9%) consisting of the minor alleles of these four SNPs displayed higher values for LVMI and SWT than non-carriers (LVMI: TGGC 98.8+/-1.52 vs non-TGGC 94.8+/-0.99 g/m(2), p=0.027; SWT: TGGC 11.5+/-0.14 vs non-TGGC 11.1+/-0.09 mm, p=0.019). Furthermore, this haplotype was associated with an increased odds ratio (OR) for left ventricular hypertrophy (OR 3.10, p=0.006). In women, similar but less pronounced and consistent trends were observed. No association was observed between any of these SNPs and parameters of left ventricular systolic or diastolic function nor with blood pressure levels. This study provides evidence that genetic variants in the ACE2 gene may be associated with left ventricular mass, SWT and left ventricular hypertrophy in hemizygous men.
Collapse
Affiliation(s)
- Wolfgang Lieb
- Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This review discusses current understanding of the role that endogenous and exogenous progenitor cells may have in the treatment of the diseased heart. In the last several years, a major effort has been made in an attempt to identify immature cells capable of differentiating into cell lineages different from the organ of origin to be employed for the regeneration of the damaged heart. Embryonic stem cells (ESCs) and bone marrow-derived cells (BMCs) have been extensively studied and characterized, and dramatic advances have been made in the clinical application of BMCs in heart failure of ischemic and nonischemic origin. However, a controversy exists concerning the ability of BMCs to acquire cardiac cell lineages and reconstitute the myocardium lost after infarction. The recognition that the adult heart possesses a stem cell compartment that can regenerate myocytes and coronary vessels has raised the unique possibility to rebuild dead myocardium after infarction, to repopulate the hypertrophic decompensated heart with new better functioning myocytes and vascular structures, and, perhaps, to reverse ventricular dilation and wall thinning. Cardiac stem cells may become the most important cell for cardiac repair.
Collapse
Affiliation(s)
- Annarosa Leri
- Cardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, NY10595, USA
| | | | | |
Collapse
|
27
|
Abstract
A progressive chain of pathophysiological events links cardiovascular risk factors to clinical manifestations of disease and life-threatening cardiovascular events. This chain--the cardiovascular continuum--underlies cardiovascular disease and holds the key to its prevention and treatment. Progressive tissue damage can result in morbidity from congestive heart failure, end-stage heart disease, nephrotic proteinuria and dementia and, eventually, death from cardio- or cerebrovascular causes. The renin-angiotensin-aldosterone system (RAAS) is involved at all stages of the cardiovascular continuum, because the effector molecules of the RAAS, angiotensin II in particular, have direct pathobiological effects on a variety of tissues, including the endothelium, vascular smooth muscle and the renal mesangium. Clinical trials of angiotensin II receptor blockers (ARBs) and angiotensin-converting enzyme (ACE) inhibitors have demonstrated the essential validity of this hypothesis. Interruption of the RAAS has been shown to reduce cardiovascular morbidity and mortality in patients with left ventricular hypertrophy, heart failure and post-myocardial infarction, as well as renal disease in patients with type 2 diabetes. Key questions remain, however. What are the clinical effects of combination ARB and ACE inhibitor treatment? How will combinations of RAAS blockade with other agents, such as statins, affect the cardiovascular continuum? Answers to these questions will require well-planned, adequately powered clinical trials, such as the Programme of Research tO evaluate Telmisartan End-organ proteCTION (PROTECTION) and the ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET) programmes. However, it is already clear that RAAS blockade is an essential part of blocking progression along the cardiovascular continuum.
Collapse
|
28
|
Yahagi H, Takeda M, Asaumi Y, Okumura K, Takahashi R, Takahashi J, Ohta J, Tada H, Minatoya Y, Sakuma M, Watanabe J, Goto K, Shirato K, Kagaya Y. Differential regulation of diacylglycerol kinase isozymes in cardiac hypertrophy. Biochem Biophys Res Commun 2005; 332:101-8. [PMID: 15896305 DOI: 10.1016/j.bbrc.2005.04.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 04/21/2005] [Indexed: 11/20/2022]
Abstract
To examine the involvement of diacylglycerol kinase (DGK) and phosphatidic acid phosphatase (PAP) in pressure overloaded cardiac hypertrophy, rats were subjected to either ascending aortic banding for 3, 7, and 28 days or sham operation. In comparison with sham-operated rats, the left ventricular (LV) weight of the aortic-banded rats increased progressively. At 28 days after surgery, the expression of DGKepsilon mRNA but not DGKzeta or PAP2b mRNA in the LV myocardium significantly decreased in the aortic-banded rats compared with the sham-operated rats. DGKzeta protein in the LV myocardium translocated from the particulate to the cytosolic compartment in the aortic-banded rats. Furthermore, the myocardial content of 1,2-diacylglycerol and PKCdelta protein expression in the particulate fraction of the LV myocardium significantly increased in aortic-banded rats compared with sham-operated rats. These results suggest that DGKepsilon and DGKzeta play distinct roles in the development of pressure overloaded cardiac hypertrophy and that the two isozymes are differentially regulated.
Collapse
Affiliation(s)
- Hirokazu Yahagi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tenhunen O, Szokodi I, Ruskoaho H. Posttranscriptional activation of BNP gene expression in response to increased left ventricular wall stress: role of calcineurin and PKC. ACTA ACUST UNITED AC 2005; 128:187-96. [PMID: 15837527 DOI: 10.1016/j.regpep.2004.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To study the molecular mechanisms for load-induced activation of BNP gene expression, increased wall stress was imposed on isolated isovolumetrically beating adult rat hearts by distension of a fluid filled balloon within the left ventricle. The wall stress for 2 h resulted in a 1.6-fold increase in the expression of BNP gene and a 2.0-fold increase of the c-fos gene. The inhibition of transcription by actinomycin D significantly decreased the baseline BNP mRNA levels but the wall stretch-induced increase of the gene expression remained unaffected. In contrast, the protein synthesis inhibitor cycloheximide increased baseline BNP mRNA levels and abolished the load-induced activation of gene expression. Furthermore, we studied the effects of protein kinase C (PKC), calcineurin and protein phosphatase 2A (PP2A) inhibition to characterize the role of intracellular pathways in the stretch-induced gene expression in the left ventricle. The expression of BNP and c-fos genes were not influenced by calcineurin, PP2A and PKC inhibition. In conclusion, we showed that the stretch-induced activation of BNP gene expression by increased left ventricular wall stress is independent of transcriptional mechanisms and dependent on protein synthesis. Moreover, our results suggest that the load-induced activation of BNP gene expression is independent of calcineurin, PKC and PP2A.
Collapse
Affiliation(s)
- Olli Tenhunen
- Department of Pharmacology and Toxicology, Faculty of Medicine, Biocenter Oulu, University of Oulu, Finland
| | | | | |
Collapse
|
30
|
Bridgman P, Aronovitz MA, Kakkar R, Oliverio MI, Coffman TM, Rand WM, Konstam MA, Mendelsohn ME, Patten RD. Gender-specific patterns of left ventricular and myocyte remodeling following myocardial infarction in mice deficient in the angiotensin II type 1a receptor. Am J Physiol Heart Circ Physiol 2005; 289:H586-92. [PMID: 15764682 DOI: 10.1152/ajpheart.00474.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Left ventricular (LV) remodeling after myocardial infarction (MI) results from hypertrophy of myocytes and activation of fibroblasts induced, in part, by ligand stimulation of the ANG II type 1 receptor (AT1R). The purpose of the present study was to explore the specific role for activation of the AT 1a R subtype in post-MI remodeling and whether gender differences exist in the patterns of remodeling in wild-type and AT 1a R knockout (KO) mice. AT 1a R-KO mice and wild-type littermates underwent coronary ligation to induce MI or sham procedures; echocardiography and hemodynamic evaluation were performed 6 wk later, and LV tissue was harvested for infarct size determination, morphometric measurements, and gene expression analysis. Survival and infarct size were similar among all male and female wild-type and AT 1a R-KO mice. Hemodynamic indexes were also similar except for lower systolic blood pressure in the AT 1a R-KO mice compared with wild-type mice. Male and female wild-type and male AT 1a R-KO mice developed similar increases in LV chamber size, LV mass corrected for body weight (LV/BW), and myocyte cross-sectional area (CSA). However, female AT 1a R-KO mice demonstrated no increase in LV/BW and myocyte CSA post-MI compared with shams. Both male and female wild-type mice demonstrated higher atrial natriuretic peptide (ANP) levels after MI, with female wild types being significantly greater than males. However, male and female AT 1a R-KO mice developed no increase in ANP gene expression with MI despite an increase in LV mass and myocyte size in males. These data support that gender-specific patterns of LV and myocyte hypertrophy exist after MI in mice with a disrupted AT 1a R gene, and suggest that myocyte hypertrophy post-MI in females relies, in part, on activation of the AT 1a R. Further work is necessary to explore the potential mechanisms underlying these gender-based differences.
Collapse
Affiliation(s)
- Paul Bridgman
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Box 80, 750 Washington St., Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The renin-angiotensin system (RAS) is an ancient and complex cascade of homeostatic reactions aimed at regulating primordial functions that ensure organ perfusion through the control of blood pressure and the regulation of renal-cardiac activity. However, the over-expression or lack of compensatory mechanisms of any of its components may initiate detrimental effects that potentially lead to disease, a balance that makes the RAS a sequence with a labile physiological equilibrium and with a strong harm potential. These characteristics of the RAS in general, and of the angiotensin converting enzyme (ACE) in particular, make it not only an important complex for the regulation of blood pressure and neuropeptide metabolism, but also a fascinating subject of study from a biochemical, evolutionary and genetic point of view. Pharmacological interventions that influence the RAS by inhibiting the ACE or the angiotensin II type 1 receptor (AT1R) have demonstrated sustained efficacy in reducing the incidence of cardiovascular events and, consequently, vascular mortality in several clinical situations. ACE inhibitors and angiotensin II receptor antagonists (ARAs) reduce blood pressure and have cardio- and vasculoprotective effects. Anti-atherosclerotic effects have also been attributed to these drugs. For these reasons, it has been hypothesised that RAS inhibitors could also reduce the recurrence of ischaemic events after myocardial revascularisation procedures, namely coronary artery by-pass graft surgery (CABG) or percutaneous coronary interventions (PCI). Information available on the effect of ACE inhibitors and ARAs in patients with coronary artery disease (CAD) previously treated with revascularisation techniques indicates a substantial reduction of mortality and infarction in these patients. However, data regarding the progression of CAD, restenosis or reocclusion of vascular conduits of the coronary circulation after myocardial revascularisation are inconsistent. In most studies, the administration of ACE inhibitors neither improved the ischaemic threshold nor reduced the need for new revascularisation procedures. On the contrary, ACE inhibitors have been associated with higher restenosis rates after PCI in some retrospective series. Conversely, a single, exploratory randomised trial demonstrated that the selective AT1R antagonist valsartan significantly reduced stent restenosis after PCI. In patients undergoing CABG, ACE inhibitors did not reduce the risk of graft degeneration or occlusion. Studies that evaluated a possible anti-atherosclerotic effect of ACE inhibitors (including some large randomised trials) have generally been negative.
Collapse
Affiliation(s)
- Flavio Ribichini
- Division of Cardiology and Laboratory of Experimental Physiology, Università del Piemonte Orientale, Ospedale Maggiore della Carità, Novara, Italy.
| | | | | | | | | |
Collapse
|
32
|
Dendorfer A, Dominiak P, Schunkert H. ACE inhibitors and angiotensin II receptor antagonists. Handb Exp Pharmacol 2005:407-42. [PMID: 16596809 DOI: 10.1007/3-540-27661-0_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The biological actions of angiotensin II (ANG), the most prominent hormone of the renin-angiotensin-aldosterone system (RAAS), may promote the development of atherosclerosis in many ways. ANG aggravates hypertension, metabolic syndrome, and endothelial dysfunction, and thereby constitutes a major risk factor for cardiovascular disease. The formation of atherosclerotic lesions involves local uptake, synthesis and oxidation of lipids, inflammation, as well as cellular migration and proliferation--mechanisms that may all be enhanced by ANG via its AT1 receptor. ANG may also increase the risk of acute thrombosis by destabilizing atherosclerotic plaques and enhancing the activity of thrombocytes and coagulation. After myocardial infarction, ANG promotes myocardial remodeling and fibrosis, and its many pathological mechanisms deteriorate the prognosis of these high-risk patients in particular. Therapeutically, inhibitors of the angiotensin I-converting enzyme (ACEI) and AT1 receptor blockers (ARB) are available to suppress the generation and cellular signaling of ANG, respectively. Despite major differences in the efficacy of ANG suppression and the modulation of other hormones and receptors, both classes of drugs are generally effective in attenuating numerous pathomechanisms of ANG in vitro, and in diminishing the development of atherosclerotic lesions and restenosis after angioplasty in various animal models. In clinical therapy, ACEI and ACE are well-tolerated antihypertensive drugs that also improve the prognosis of heart failure patients. After myocardial infarction and in stable coronary heart disease, ACEI have been shown to reduce mortality in a manner independent of hemodynamic alterations. However, there is little evidence that inhibitors of the RAAS may be effective against arterial restenosis, and a possible benefit of these substances compared to other antihypertensive drugs in the primary prevention of coronary heart disease in hypertensive patients is still a matter of debate, possibly depending on the specific substance and condition being investigated. As such, the general clinical efficacy of ACEI and ARB may be due to a positive influence on hemodynamic load, vascular function, myocardial remodeling, and neuro-humoral regulation, rather than to a direct attenuation of the atherosclerotic process. Further therapeutic advances may be achieved by identifying optimum drugs, patient populations, and treatment protocols.
Collapse
Affiliation(s)
- A Dendorfer
- Medizinische Klinik II, Universitätsklinikum Schleswig-Hostein, Lübeck, Germany
| | | | | |
Collapse
|
33
|
Soylu A, Temizhan A, Duzenli MA, Sokmen G, Koylu O, Telli HH. The influence of aldosterone on the development of left ventricular geometry and hypertrophy in patients with essential hypertension. ACTA ACUST UNITED AC 2004; 45:807-21. [PMID: 15557722 DOI: 10.1536/jhj.45.807] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The identification of risk factors for the initiation of left ventricle hypertrophy (LVH), which is an independent risk factor for cardiovascular mortality and morbidity in hypertensive patients, is very important. The objective of the present study was to identify the relationship of aldosterone with LVH and different geometrical patterns of left ventricle that develop in patients with essential hypertension. A total of 83 patients with essential hypertension (44 females, mean age, 51 +/- 8 years, 39 males, mean age, 57 +/- 10 years) were included in this study. Thirty-two had LVH. When evaluated according to the geometrical patterns of LVH, 18 patients had concentric LVH, 14 had eccentric LVH, and 17 had concentric remodeling. Thirty-four patients had normal left ventricle geometry. Two weeks after the cessation of antihypertensive medications, sodium, potassium, and proteinuria in 24-hour urine samples and plasma aldosterone levels and plasma renin activity were measured. Plasma aldosterone levels of the patients with LVH were found to be significantly higher (9.92 +/- 6.34 ng/dL versus 5.83 +/- 3.5 ng/dL, P < 0.01). The difference between plasma renin activities was not statistically significant. Linear regression analysis revealed that plasma aldosterone level and age were independent parameters increasing left ventricle mass index. The plasma aldosterone levels of patients with concentric hypertrophy of the left ventricle were significantly higher than those of patients with normal geometry and concentric remodeling. There was no significant difference between plasma renin activities. Twenty-four hour urine protein concentrations of the patients with LVH were found to be significantly higher and sodium to be significantly lower. Plasma aldosterone levels seem to be correlated with LVH especially with concentric hypertrophy of the left ventricle in patients with essential hypertension.
Collapse
Affiliation(s)
- Ahmet Soylu
- Department of Cardiology, Meram Medical School of Selcuk University, Konya, Turkiye
| | | | | | | | | | | |
Collapse
|
34
|
Chen K, Carey LC, Liu J, Valego NK, Tatter SB, Rose JC. The effect of hypothalamo-pituitary disconnection on the renin-angiotensin system in the late-gestation fetal sheep. Am J Physiol Regul Integr Comp Physiol 2004; 288:R1279-87. [PMID: 15604301 DOI: 10.1152/ajpregu.00560.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of the renin-angiotensin system (RAS) increases significantly in the late-gestation fetal sheep. Fetal cortisol is also increased during this time, and it is thought that the increase in cortisol may modulate the RAS changes. Previous studies have examined the effects of cortisol infusion on RAS activity, but the effects of blocking the peripartum increase in cortisol concentrations on the developmental changes in the RAS are not known. Therefore, we utilized the technique of hypothalamic-pituitary disconnection (HPD), which prevents the cortisol surge from occurring, to investigate the importance of the late-gestation increase in cortisol on the ontogenic changes in RAS activity. HPD of fetal sheep was performed at 120 days of gestational age (dGA), and fetuses were delivered between 135 and 139 dGA. Control fetuses were sham operated. HPD blocked the late-gestation cortisol increase but did not alter renal renin mRNA, renal renin or prorenin protein content, nor plasma renin levels compared with sham operated. However, HPD fetuses had increased ANG II receptor subtype 1 (AT1) mRNA and protein expression in the kidney and lungs. ANG II receptor subtype 2 (AT2) expression was not altered in these tissues at either mRNA or protein level. HPD did not change AT1 or AT2 mRNA in the left ventricle but did result in decreased protein levels for both receptors. These studies demonstrate that blockade of the naturally occurring increase in fetal cortisol concentration in late gestation is associated with tissue-specific alterations in expression of AT1 and AT2 receptors. These changes may impact on fetal tissue maturation and hence have consequences in postnatal life.
Collapse
Affiliation(s)
- Kai Chen
- Dept. of Obstetrics and Gynecology, Wake Forest Univ. School of Medicine, Winston-Salem, NC 27157-1066, USA
| | | | | | | | | | | |
Collapse
|
35
|
Patten RD, Soman P. Prevention and Reversal of LV Remodeling with Neurohormonal Inhibitors. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2004; 6:313-325. [PMID: 15212726 DOI: 10.1007/s11936-004-0033-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Left ventricular (LV) remodeling refers to alterations in ventricular mass, chamber size, and shape that result from myocardial injury, pressure, or volume overload. Numerous studies have demonstrated that LV remodeling correlates with the incidence of heart failure and death, supporting a causative role for remodeling in heart failure progression. Heart failure trials have shown that neurohormonal antagonists, including angiotensin-converting enzyme (ACE) inhibitors and beta-adrenergic receptor blockers (beta blockers), reduce remodeling in parallel with improved clinical outcomes. Existing data favor using angiotensin II type 1 (AT1) receptor antagonists (or "ARBs"), although their anti-remodeling effects are less well established. Recently, mineralocorticoid receptor antagonists have gained substantial interest based on favorable clinical trial results, although data regarding their effects on remodeling are limited. Thus, an optimal medical regimen to prevent or limit LV remodeling in patients with LV dysfunction should include both an ACE inhibitor and beta-adrenergic receptor antagonist, irrespective of the degree of LV dysfunction and symptom status. For patients intolerant to ACE inhibitors, an AT1 receptor antagonist should be substituted. An aldosterone antagonist should be administered to patients with severe, New York Heart Association class III to IV heart failure who have normal or only mildly impaired renal function, or to those patients with depressed LV function following an acute myocardial infarction. Through the aggressive pharmacologic inhibition of both the renin-angiotensin-aldosterone and sympathetic nervous systems, progressive LV remodeling can be prevented or hindered, thereby favorably altering the natural history of the heart failure syndrome.
Collapse
Affiliation(s)
- Richard D. Patten
- Molecular Cardiology Research Institute, Heart Failure and Cardiac Transplant Program Division of Cardiology, Department of Medicine, Tufts-New England Medical Center, 750 Washington Street, Boston, MA 02111, USA.
| | | |
Collapse
|
36
|
Sarkar S, Vellaichamy E, Young D, Sen S. Influence of cytokines and growth factors in ANG II-mediated collagen upregulation by fibroblasts in rats: role of myocytes. Am J Physiol Heart Circ Physiol 2004; 287:H107-17. [PMID: 15059775 DOI: 10.1152/ajpheart.00763.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abnormal stiffness and altered cardiac function arising from abnormal collagen deposition occur in hypertrophy and heart failure. ANG II has been shown to play a role in this process. To evaluate the mechanism, we developed an in vitro model by subjecting fibroblasts to ANG II treatment in the presence or absence of myocytes in coculture (25). Employing this model, we demonstrated that ANG II-induced collagen gene transcription in cardiac fibroblasts was potentiated by myocyte-derived factors. In attempting to identify mechanisms of collagen upregulation and to define the role of myocytes, we found that interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and the transforming growth factor (TGF)-beta superfamily were also involved in collagen upregulation. Collagen transcripts were increased after fibroblasts were treated with IL-6 (20-50 ng/ml) and TNF-alpha (0.1-0.5 ng/ml). In this study, we show that cardiomyocytes induce secretion of active TGF-beta in the presence of ANG II and that a paracrine action of TGF-beta subsequently induces different cytokines (IL-6) in fibroblasts, thereby promoting collagen synthesis. The cross-talk between myocytes and fibroblasts and involvement of these cytokines in the upregulation of collagen transcript levels are novel findings that may explain their possible roles in the upregulation of collagen.
Collapse
Affiliation(s)
- Sagartirtha Sarkar
- Department of Molecular Cardiology, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
37
|
Rosenkranz AC, Hood SG, Woods RL, Dusting GJ, Ritchie RH. B-type natriuretic peptide prevents acute hypertrophic responses in the diabetic rat heart: importance of cyclic GMP. Diabetes 2003; 52:2389-95. [PMID: 12941780 DOI: 10.2337/diabetes.52.9.2389] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stimulation of cardiomyocyte guanosine 3',5'-cyclic monophosphate (cyclic GMP) via endothelial-derived nitric oxide (NO) is an important mechanism by which bradykinin and ACE inhibitors prevent hypertrophy. Endothelial NO dysfunction and cardiac hypertrophy are morbid features of diabetes not entirely prevented by ACE inhibitors. In cardiomyocyte/endothelial cell cocultures, bradykinin efficacy is abolished by high-glucose-induced endothelial NO dysfunction. We now demonstrate that antihypertrophic actions of natriuretic peptides, which stimulate cyclic GMP independently of NO, are preserved in cardiomyocytes despite high-glucose-induced endothelial dysfunction. Further, streptozotocin-induced diabetes significantly impairs the effectiveness of acute antihypertrophic strategies in isolated rat hearts. In hearts from citrate-treated control rats, angiotensin II-stimulated [(3)H]phenylalanine incorporation and atrial natriuretic peptide and beta-myosin heavy chain mRNA expression were prevented by B-type natriuretic peptide (BNP), bradykinin, the ACE inhibitor ramiprilat, and the neutral endopeptidase inhibitor candoxatrilat. These antihypertrophic effects were accompanied by increased left ventricular cyclic GMP. In age-matched diabetic hearts, the antihypertrophic and cyclic GMP stimulatory actions of bradykinin, ramiprilat, and candoxatrilat were absent. However, the blunting of hypertrophic markers and accompanying increases in cyclic GMP stimulated by BNP were preserved in diabetes. Thus BNP, which increases cyclic GMP independently of NO, is an important approach to prevent growth in the diabetic myocardium, where endothelium-dependent mechanisms are compromised.
Collapse
Affiliation(s)
- Anke C Rosenkranz
- Howard Florey Institute, University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
38
|
Sundgren NC, Giraud GD, Stork PJS, Maylie JG, Thornburg KL. Angiotensin II stimulates hyperplasia but not hypertrophy in immature ovine cardiomyocytes. J Physiol 2003; 548:881-91. [PMID: 12626668 PMCID: PMC2342902 DOI: 10.1113/jphysiol.2003.038778] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rat and sheep cardiac myocytes become binucleate as they complete the 'terminal differentiation' process soon after birth and are not able to divide thereafter. Angiotensin II (Ang II) is known to stimulate hypertrophic changes in rodent cardiomyocytes under both in vivo and in vitro conditions via the AT1 receptor and intracellular extracellular regulated kinase (ERK) signalling cascade. We sought to develop culture methods for immature sheep cardiomyocytes in order to test the hypothesis that Ang II is a hypertrophic agent in the immature myocardium of the sheep. We isolated fetal sheep cardiomyocytes and cultured them for 96 h, added Ang II and phenylephrine (PE) for 48 h, and measured footprint area and proliferation (5-bromo-2'-deoxyuridine (BrdU) uptake) separately in mono- vs. binucleate myocytes. We found that neither Ang II nor PE changed the footprint area of mononucleated cells. PE stimulated an increase in footprint area of binucleate cells but Ang II did not. Ang II increased myocyte BrdU uptake compared to serum free conditions, but PE did not affect BrdU uptake. The MAP kinase kinase (MEK) inhibitor UO126 prevented BrdU uptake in Ang II-stimulated cells and prevented cell hypertrophy in PE-stimulated cells. This paper establishes culture methods for immature sheep cardiomyocytes and reports that: (1) Ang II is not a hypertrophic agent; (2) Ang II stimulates hyperplastic growth among mononucleate myocytes; (3) PE is a hypertrophic agent in binucleate myocytes; and (4) the ERK cascade is required for the proliferation effect of Ang II and the hypertrophic effect of PE.
Collapse
Affiliation(s)
- N C Sundgren
- Department of Physiology, Oregon Health and Science University, Portland, USA
| | | | | | | | | |
Collapse
|
39
|
Mohammadi K, Liu L, Tian J, Kometiani P, Xie Z, Askari A. Positive inotropic effect of ouabain on isolated heart is accompanied by activation of signal pathways that link Na+/K+-ATPase to ERK1/2. J Cardiovasc Pharmacol 2003; 41:609-14. [PMID: 12658063 DOI: 10.1097/00005344-200304000-00014] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exposure of cultured rat cardiac myocytes to ouabain is known to cause the interaction of Na+/K+-ATPase with adjacent proteins, leading to activation of multiple signal transduction pathways, regulation of growth-related genes, and hypertrophy. The aim of this work was to determine if the proximal signaling events identified in cultured myocytes also occur in isolated intact hearts of rat and guinea pig in response to positive inotropic doses of ouabain. Langendorff rat heart preparations were exposed to 50 microM ouabain to produce positive inotropy without toxicity, and assayed for Src kinase, protein kinase C, and extracellular signal-regulated kinases 1 and 2 (ERK(1/2)). These kinases were rapidly activated by ouabain as in cultured cells. In isolated guinea pig hearts, 1 microM ouabain caused ERK(1/2) activation comparable to the effect of 50 microM ouabain in rat heart and consistent with the higher ouabain sensitivity of the contractility of guinea pig heart. These data show that the proximal ouabain-induced signal pathways previously noted in cultured cells are not artifacts of dispersion/culturing of myocytes, and are not the peculiar properties of the rat heart with its relatively low ouabain sensitivity. They also suggest that treatment with positive inotropic doses of cardiac glycosides is likely to be associated with changes in the cardiac phenotype.
Collapse
Affiliation(s)
- Kamiar Mohammadi
- Department of Pharmacology, Medical College of Ohio, Toledo, Ohio, 43614-5804, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hosoya K, Ishimitsu T. Protection of the cardiovascular system by imidapril, a versatile angiotensin-converting enzyme inhibitor. CARDIOVASCULAR DRUG REVIEWS 2002; 20:93-110. [PMID: 12177688 DOI: 10.1111/j.1527-3466.2002.tb00185.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Imidapril hydrochloride (imidapril) is a long-acting, non-sulfhydryl angiotensin-converting enzyme (ACE) inhibitor, which has been used clinically in the treatment of hypertension, chronic congestive heart failure (CHF), acute myocardial infarction (AMI), and diabetic nephropathy. It has the unique advantage over other ACE inhibitors in causing a lower incidence of dry cough. After oral administration, imidapril is rapidly converted in the liver to its active metabolite imidaprilat. The plasma levels of imidaprilat gradually increase in proportion to the dose, and decline slowly. The time to reach the maximum plasma concentration (T(max)) is 2.0 h for imidapril and 9.3 h for imidaprilat. The elimination half-lives (t(1/2)) of imidapril and imidaprilat is 1.7 and 14.8 h, respectively. Imidapril and its metabolites are excreted chiefly in the urine. As an ACE inhibitor, imidaprilat is as potent as enalaprilat, an active metabolite of enalapril, and about twice as potent as captopril. In patients with hypertension, blood pressure was still decreased at 24 h after imidapril administration. The antihypertensive effect of imidapril was dose-dependent. The maximal reduction of blood pressure and plasma ACE was achieved with imidapril, 10 mg once daily, and the additional effect was not prominent with higher doses. When administered to patients with AMI, imidapril improved left ventricular ejection fraction and reduced plasma brain natriuretic peptide (BNP) levels. In patients with mild-to-moderate CHF [New York Heart Association (NYHA) functional class II-III], imidapril increased exercise time and physical working capacity and decreased plasma atrial natriuretic peptide (ANP) and BNP levels in a dose-related manner. In patients with diabetic nephropathy, imidapril decreased urinary albumin excretion. Interestingly, imidapril improved asymptomatic dysphagia in patients with a history of stroke. In the same patients it increased serum substance P levels, while the angiotensin II receptor antagonist losartan was ineffective. These studies indicate that imidapril is a versatile ACE inhibitor. In addition to its effectiveness in the treatment of hypertension, CHF, and AMI, imidapril has beneficial effects in the treatment of diabetic nephropathy and asymptomatic dysphagia. Good tissue penetration and inhibition of tissue ACE by imidapril contributes to its effectiveness in preventing cardiovascular complications of hypertension. The major advantages of imidapril are its activity in the treatment of various cardiovascular diseases and lower incidence of cough compared with some of the older ACE inhibitors.
Collapse
Affiliation(s)
- Kazuyoshi Hosoya
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi, Japan
| | | |
Collapse
|
41
|
Wagner KD, Essmann V, Mydlak K, Wirth M, Gmehling G, Bohlender J, Stauss HM, Günther J, Schimke I, Scholz H. Decreased susceptibility of cardiac function to hypoxia-reoxygenation in renin-angiotensinogen transgenic rats. Am J Physiol Regul Integr Comp Physiol 2002; 283:R153-60. [PMID: 12069940 DOI: 10.1152/ajpregu.00491.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that the renin-angiotensin system (RAS) protects the contractile function of the myocardium against the damaging effect of hypoxia-reoxygenation. For this purpose, the contractility of isolated papillary muscles from wild-type (WT) rats and from rats expressing human renin and angiotensinogen as transgenes (TGR) was compared. After 15 min of hypoxia, peak force (PF) was decreased to 24 +/- 5% of the normoxic values in TGR (n = 10) and to 18 +/- 1% in WT rats (n = 12). PF and relaxation rates recovered completely in TGR but not in WT rats during 45 min of reoxygenation. Improved contractility of the papillary muscles from TGR during hypoxia-reoxygenation correlated with increased glutathione peroxidase activities and creatine kinase (CK)-MB and CK-BB isoenzyme levels. On the other hand, inhibition of the RAS with ramipril (1 mg/kg body wt for 3 wk) in WT animals resulted in deterioration of the contractile function of the papillary muscles during reoxygenation compared with untreated rats. These findings suggest that activation of the RAS protects contractile function of the cardiac muscle against hypoxia-reoxygenation, possibly through changes in CK isoenzymes and enhanced antioxidant capacity.
Collapse
Affiliation(s)
- Kay-Dietrich Wagner
- Johannes Müller Institut für Physiologie, Humboldt University, Charité, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Oka-Akagi T, Fujimori A, Shibasaki M, Matsuda-Satoh Y, Inagaki O, Yanagisawa I. Effects of angiotensin II type 1 receptor antagonist, YM358, on cardiac hypertrophy and dysfunction after myocardial infarction in rats. Biol Pharm Bull 2002; 25:857-60. [PMID: 12132657 DOI: 10.1248/bpb.25.857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was undertaken to investigate the effects of an angiotensin II type 1 receptor antagonist, YM358 (2,7-diethyl-5-[[2'(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]-5H-pyrazolo [1,5-b] [1,2,4]triazole potassium salt monohydrate), on cardiac hypertrophy and dysfunction in rats with heart failure after myocardial infarction (MI). One day after the coronary ligation, rats were randomized, and administered YM358 or vehicle for 2, 4 or 8 weeks. In MI rats, mean blood pressure, left ventricular (LV) systolic pressure, and the first derivative of LV pressure significantly decreased, and LV end-diastolic pressure (LVEDP) markedly increased after 2 to 8 week treatment of YM358. From 2 weeks after the ligation, ratios of cardiac weight and lung weight to body weight (BW) significantly increased, which indicated the progression of cardiac hypertrophy and lung congestion in MI rats. Two weeks after the ligation, YM358 did not improve LV function, although it decreased the elevated LVEDP and cardiac weights/BW ratios 8 weeks after the ligation. These results indicated that long-term treatment with YM358 improves the reduced cardiac function and reduces cardiac hypertrophy after MI, and may be useful for the treatment of congestive heart failure.
Collapse
Affiliation(s)
- Tomoko Oka-Akagi
- Biometrics Department, Yamanouchi Pharmaceutical Co., Ltd, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Recent discoveries have revolutionized our conceptions of enzyme-substrate specificity in signal transduction pathways. Protein kinases A and C are localized to discreet subcellular regions, and this localization changes in an isozyme-specific manner upon activation, a process referred to as translocation. The mechanisms for translocation involve interactions of soluble kinases with membrane-bound anchor proteins that recognize individual kinase isoenzymes and their state of activation. Recently, modulation of kinase-anchor protein interactions has been used to specifically regulate, positively or negatively, the activity of C kinase isozymes. Also described in this review is a role for the Rab family of small G proteins in regulating subcellular protein trafficking. The pathophysiological significance of disrupted subcellular protein transport in cell signaling and the potential therapeutic utility of targeted regulation of these events are in the process of being characterized.
Collapse
Affiliation(s)
- Gerald W Dorn
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0542, USA.
| | | |
Collapse
|
44
|
Tang W, Devereux RB, Rao DC, Oberman A, Hopkins PN, Kitzman DW, Arnett DK. Associations between angiotensinogen gene variants and left ventricular mass and function in the HyperGEN study. Am Heart J 2002; 143:854-60. [PMID: 12040348 DOI: 10.1067/mhj.2002.121926] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The angiotensinogen M235T polymorphism is positively associated with plasma angiotensinogen, hypertension, and coronary heart disease. However, the association of M235T polymorphism with left ventricular (LV) mass and function is not well defined at the population level. We investigated whether 2 tightly linked polymorphisms of angiotensinogen gene, M235T and G-6A, are associated with LV mass and function in a large population-based sample, composed mostly of patients with hypertension. METHODS Two-dimensional guided M-mode and pulsed Doppler scan echocardiograms were performed in 605 participants. The angiotensinogen M235T was analyzed with a standard polymerase chain reaction test, and the G-6A variant was measured with mass spectrophotometry. RESULTS The association of angiotensinogen gene to LV mass and LV mass indexed to body surface area (LVMI) differed significantly between subjects with normotensive and hypertensive conditions with respect to the direction of association (P <.005). The methionine-threonine/threonine-threonine genotype was negatively associated with LV mass and LVMI in patients with hypertension after adjustment for blood pressure, antihypertensive medication use, weight, and other covariates (P <.001), and patients with normotensive conditions with the methionine-threonine/threonine-threonine genotype had higher LV mass and LVMI (P =.04, for LV mass; P =.14, for LVMI). The association in patients with normotensive conditions was not influenced by blood pressure but was partly confounded by weight. CONCLUSION Variation in the angiotensinogen gene was modestly associated with LV mass independently of covariates in patients with hypertensive conditions. The direction of the association was opposite to that observed in patients with normotensive conditions, probably because of the influence of other risk factors or antihypertensive medication use or both.
Collapse
Affiliation(s)
- Weihong Tang
- Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis 55454, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Han H, Hoffmann S, Hu K, Ertl G. Angiotensin II subtype 1 (AT1) receptors contribute to ischemic contracture and regulate chemomechanical energy transduction in isolated transgenic rat (alphaMHC-hAT1)594-17 hearts. Eur J Heart Fail 2002; 4:131-7. [PMID: 11959040 DOI: 10.1016/s1388-9842(02)00005-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The role of AT1 receptors in myocardial ischemia/reperfusion injury is unclear. We, therefore, investigated the effects of the AT1 receptor antagonist irbesartan (Irb) in isolated hearts of selective myocardial AT1 overexpressing transgenic [transgenic(alphaMHC-hAT1)594-17] and Sprague-Dawley rats (SD) subjected to ischemia/reperfusion injury. METHODS AND RESULTS Hearts of 4-week-old male SD or transgenic rats were isolated and perfused with Krebs-Henseleit buffer with or without 10 microM Irb in Langendorff mode. After 15 min of stabilization, pressure-volume curves were obtained and the hearts subjected to 20 min ischemia followed by 30 min reperfusion. A second set of pressure-volume curves was obtained thereafter. Left ventricular developed pressure (LVDP), end-diastolic pressure (LVEDP), total coronary flow (CF) and oxygen consumption (MVO2) were recorded continuously. Myocardial efficiency was derived from the slope of relations of MVO2 to pressure/volume area. After 20 min ischemia, LVEDP was significantly higher in transgenic than in SD (35.7+/-1.8 vs. 29.2+/-1.0 mmHg, P<0.05) or Irb treated transgenic hearts (24.3+/-1.6 mmHg, P<0.05). Myocardial efficiency was increased by Irb before ischemia. Ischemia increased efficiency in SD but not in transgenic rats, Irb increased efficiency in transgenic hearts post-ischemia. CONCLUSION Transgenic hearts developed ischemic contracture more rapidly than SD hearts as indicated by higher LVEDP during ischemia. This response was antagonized by Irb, indicating a role of AT1 receptors in ischemic contracture, AT1-receptors also appear to be involved in the control of myocardial efficiency.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Citrate (si)-Synthase/analysis
- Citrate (si)-Synthase/drug effects
- Creatine Kinase/analysis
- Creatine Kinase/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Heart/physiopathology
- Hemodynamics/drug effects
- Hemodynamics/physiology
- L-Lactate Dehydrogenase/analysis
- L-Lactate Dehydrogenase/drug effects
- Male
- Models, Cardiovascular
- Myocardial Reperfusion Injury/complications
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/physiopathology
- Oxygen Consumption/drug effects
- Oxygen Consumption/physiology
- Pilot Projects
- Rats
- Rats, Sprague-Dawley/genetics
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/administration & dosage
- Stroke Volume/drug effects
- Stroke Volume/physiology
- Ventricular Fibrillation/complications
- Ventricular Fibrillation/physiopathology
- Ventricular Function, Left/drug effects
- Ventricular Function, Left/physiology
Collapse
Affiliation(s)
- Hong Han
- Department of Medicine, Medizinische Universitätsklinik, Universität Würzburg, Josef-Schneider Strasse 2, 97080, Würzburg, Germany
| | | | | | | |
Collapse
|
46
|
Park JB, Schiffrin EL. Cardiac and vascular fibrosis and hypertrophy in aldosterone-infused rats: role of endothelin-1. Am J Hypertens 2002; 15:164-9. [PMID: 11863252 DOI: 10.1016/s0895-7061(01)02291-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Increased endothelin-1 (ET-1) or aldosterone may be associated with promotion of cardiovascular hypertrophy and fibrosis. We evaluated whether the selective ETA receptor-antagonist BMS 182874 (BMS) prevents cardiac and vascular collagen deposition and hypertrophy in aldosterone-infused rats. Rats received subcutaneous aldosterone (0.75 microg/h) and 1% sodium chloride in drinking water +/- BMS (40 mg/kg per day in food) for 6 weeks. Heart and aorta were cross-sectioned and stained with Sirius red. Heart weight did not change with either aldosterone infusion or BMS treatment. Cardiac and aortic interstitial and perivascular collagen were quantified with videomorphometry. Aortic collagen and media cross-sectional area were significantly increased 3.5-fold (P < .01) and 1.13-fold (P < .05), respectively, with aldosterone infusion and decreased in BMS-treated rats (P < .05, P < .001, respectively). Aldosterone infusion increased interstitial and perivascular collagen in the left (1.6- and 2.7-fold, P < .05 and P < .01, respectively) and right ventricle (1.5- and 1.7-fold, P > .05 and P < .05, respectively). BMS prevented collagen deposition except for interstitial collagen in the right ventricle. Cardiac and aortic fibrosis were significantly increased in aldosterone-infused hypertensive rats. The ETA receptor antagonist prevented cardiac and aortic collagen deposition and aortic hypertrophy. This suggests a role for ET-1 in fibrosis of heart and large vessels in conditions associated with mineralocorticoid excess.
Collapse
Affiliation(s)
- Jeong Bae Park
- Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada
| | | |
Collapse
|
47
|
Al-Shafei AIM, Wise RG, Gresham GA, Bronns G, Carpenter TA, Hall LD, Huang CLH. Non-invasive magnetic resonance imaging assessment of myocardial changes and the effects of angiotensin-converting enzyme inhibition in diabetic rats. J Physiol 2002; 538:541-53. [PMID: 11790818 PMCID: PMC2290059 DOI: 10.1113/jphysiol.2001.012856] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A non-invasive cine magnetic resonance imaging (MRI) technique was developed to allow, for the first time, detection and characterization of chronic changes in myocardial tissue volume and the effects upon these of treatment by the angiotensin-converting enzyme (ACE) inhibitor captopril in streptozotocin (STZ)-diabetic male Wistar rats. Animals that had been made diabetic at the ages of 7, 10 and 13 weeks and a captopril-treated group of animals made diabetic at the age of 7 weeks were scanned. The findings were compared with the results from age-matched controls. All animal groups (n = 4 animals in each) were consistently scanned at 16 weeks. Left and right ventricular myocardial volumes were reconstructed from complete data sets of left and right ventricular transverse sections which covered systole and most of diastole using twelve equally incremented time points through the cardiac cycle. The calculated volumes remained consistent through all twelve time points of the cardiac cycle in all five experimental groups and agreed with the corresponding post-mortem determinations. These gave consistent myocardial densities whose values could additionally be corroborated by previous reports, confirming the validity of the quantitative MRI results and analysis. The myocardial volumes were conserved in animals whose diabetes was induced at 13 weeks but were significantly increased relative to body weight in animals made diabetic at 7 and 10 weeks. Captopril treatment, which was started immediately after induction of diabetes, prevented the development of this relative hypertrophy in both the left and right ventricles. We have thus introduced and validated quantitative MRI methods in a demonstration, for the first time, of chronic myocardial changes in both the right and left ventricles of STZ-diabetic rats and their prevention by the ACE inhibitor captopril.
Collapse
Affiliation(s)
- Ahmad I M Al-Shafei
- Herchel Smith Laboratory for Medicinal Chemistry, University of Cambridge School of Clinical Medicine, Forvie Site, Robinson Way, Cambridge CB2 2PZ, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Filipeanu CM, Henning RH, Nelemans SA, de Zeeuw D. Intracellular angiotensin II: from myth to reality? J Renin Angiotensin Aldosterone Syst 2001; 2:219-26. [PMID: 11881127 DOI: 10.3317/jraas.2001.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- C M Filipeanu
- Department of Clinical Pharmacology, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
49
|
Segar JL, Dalshaug GB, Bedell KA, Smith OM, Scholz TD. Angiotensin II in cardiac pressure-overload hypertrophy in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2001; 281:R2037-47. [PMID: 11705791 DOI: 10.1152/ajpregu.2001.281.6.r2037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated in fetal sheep that blockade of ANG II type 1 (AT(1)) receptors did not attenuate an increase in right ventricle (RV) mass resulting from partial occlusion of the pulmonary artery (PA). We have now determined the effects of AT(2)-receptor blockade (PD-123319, 10 mg. kg(-1). day(-1) continuous iv) on the response of the fetal RV to PA banding for 7 days. Four groups of fetuses (each n = 7) were studied beginning at 126 +/- 1 days gestation (term 145 days). RV weight-to-body weight ratio (RV wt/body wt) increased (P < 0.05) in PA-banded (6.00 +/- 0.09 g/kg) and PA-banded + PD-123319 (6.19 +/- 0.27 g/kg) compared with control (5.17 +/- 0.17 g/kg) and PD-123319-infused (5.27 +/- 0.35 g/kg) fetuses (means +/- SE). Blood pressure and heart rate were similar in all groups. PD-123319 produced a decrease (P < 0.05) in AT(1) but not AT(2) mRNA levels in both fetal ventricles. To examine the effect of ANG II on fetal heart growth, twin fetal sheep were infused with either ANG II (twin received vehicle) or phenylephrine (Phe) (twin received vehicle) continuously for 7 days. Mean arterial blood pressure was 20-25 mmHg higher in ANG II and Phe fetuses compared with controls. The rate-pressure product was similar in ANG II and Phe fetuses and 40-50% greater than controls. Phe resulted in no change in RV wt/body wt or left ventricle-to-body weight ratio (LV wt/body wt) compared with controls. In contrast, ANG II produced a selective increase (27 +/- 5%, P < 0.05) in LV wt/body wt; no effect was seen on the RV. ANG II produced a decrease (P < 0.05) in LV but not RV AT(1) mRNA levels compared with controls; no effect was seen with Phe. The data demonstrate that in the ovine fetus, AT(2) receptors do not contribute to the maintenance of blood pressure or the development of pressure-overload RV hypertrophy. Elevated ANG II levels produce a selective increase in LV mass in the fetal sheep that is, in part, independent of increased systolic load.
Collapse
Affiliation(s)
- J L Segar
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
50
|
Dzau VJ, Bernstein K, Celermajer D, Cohen J, Dahlöf B, Deanfield J, Diez J, Drexler H, Ferrari R, van Gilst W, Hansson L, Hornig B, Husain A, Johnston C, Lazar H, Lonn E, Lüscher T, Mancini J, Mimran A, Pepine C, Rabelink T, Remme W, Ruilope L, Ruzicka M, Schunkert H, Swedberg K, Unger T, Vaughan D, Weber M. The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and endpoint data. Am J Cardiol 2001; 88:1L-20L. [PMID: 11694220 DOI: 10.1016/s0002-9149(01)01878-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Angiotensin-converting enzyme (ACE) is primarily localized (>90%) in various tissues and organs, most notably on the endothelium but also within parenchyma and inflammatory cells. Tissue ACE is now recognized as a key factor in cardiovascular and renal diseases. Endothelial dysfunction, in response to a number of risk factors or injury such as hypertension, diabetes mellitus, hypercholesteremia, and cigarette smoking, disrupts the balance of vasodilation and vasoconstriction, vascular smooth muscle cell growth, the inflammatory and oxidative state of the vessel wall, and is associated with activation of tissue ACE. Pathologic activation of local ACE can have deleterious effects on the heart, vasculature, and the kidneys. The imbalance resulting from increased local formation of angiotensin II and increased bradykinin degradation favors cardiovascular disease. Indeed, ACE inhibitors effectively reduce high blood pressure and exert cardio- and renoprotective actions. Recent evidence suggests that a principal target of ACE inhibitor action is at the tissue sites. Pharmacokinetic properties of various ACE inhibitors indicate that there are differences in their binding characteristics for tissue ACE. Clinical studies comparing the effects of antihypertensives (especially ACE inhibitors) on endothelial function suggest differences. More comparative experimental and clinical studies should address the significance of these drug differences and their impact on clinical events.
Collapse
Affiliation(s)
- V J Dzau
- Department of Medicine, Brigham Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|