1
|
Bhullar SK, Dhalla NS. Angiotensin II-Induced Signal Transduction Mechanisms for Cardiac Hypertrophy. Cells 2022; 11:cells11213336. [PMID: 36359731 PMCID: PMC9657342 DOI: 10.3390/cells11213336] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Although acute exposure of the heart to angiotensin (Ang II) produces physiological cardiac hypertrophy and chronic exposure results in pathological hypertrophy, the signal transduction mechanisms for these effects are of complex nature. It is now evident that the hypertrophic response is mediated by the activation of Ang type 1 receptors (AT1R), whereas the activation of Ang type 2 receptors (AT2R) by Ang II and Mas receptors by Ang-(1-7) exerts antihypertrophic effects. Furthermore, AT1R-induced activation of phospholipase C for stimulating protein kinase C, influx of Ca2+ through sarcolemmal Ca2+- channels, release of Ca2+ from the sarcoplasmic reticulum, and activation of sarcolemmal NADPH oxidase 2 for altering cardiomyocytes redox status may be involved in physiological hypertrophy. On the other hand, reduction in the expression of AT2R and Mas receptors, the release of growth factors from fibroblasts for the occurrence of fibrosis, and the development of oxidative stress due to activation of mitochondria NADPH oxidase 4 as well as the depression of nuclear factor erythroid-2 activity for the occurrence of Ca2+-overload and activation of calcineurin may be involved in inducing pathological cardiac hypertrophy. These observations support the view that inhibition of AT1R or activation of AT2R and Mas receptors as well as depression of oxidative stress may prevent or reverse the Ang II-induced cardiac hypertrophy.
Collapse
|
2
|
The focal adhesion protein β-parvin controls cardiomyocyte shape and sarcomere assembly in response to mechanical load. Curr Biol 2022; 32:3033-3047.e9. [PMID: 35688156 DOI: 10.1016/j.cub.2022.05.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
Physiological and pathological cardiac stress induced by exercise and hypertension, respectively, increase the hemodynamic load for the heart and trigger specific hypertrophic signals in cardiomyocytes leading to adaptive or maladaptive cardiac hypertrophy responses involving a mechanosensitive remodeling of the contractile cytoskeleton. Integrins sense load and have been implicated in cardiac hypertrophy, but how they discriminate between the two types of cardiac stress and translate mechanical loads into specific cytoskeletal signaling pathways is not clear. Here, we report that the focal adhesion protein β-parvin is highly expressed in cardiomyocytes and facilitates the formation of cell protrusions, the serial assembly of newly synthesized sarcomeres, and the hypertrophic growth of neonatal rat ventricular cardiomyocytes (NRVCs) in vitro. In addition, physiological mechanical loading of NRVCs by either the application of cyclic, uni-axial stretch, or culture on physiologically stiff substrates promotes NRVC elongation in a β-parvin-dependent manner, which is achieved by binding of β-parvin to α/β-PIX, which in turn activates Rac1. Importantly, loss-of-function studies in mice also revealed that β-parvin is essential for the exercise-induced cardiac hypertrophy response in vivo. Our results identify β-parvin as a novel mechano-responsive signaling hub in hypertrophic cardiomyocytes that drives cell elongation in response to physiological mechanical loads.
Collapse
|
3
|
Kerr CM, Richards D, Menick DR, Deleon-Pennell KY, Mei Y. Multicellular Human Cardiac Organoids Transcriptomically Model Distinct Tissue-Level Features of Adult Myocardium. Int J Mol Sci 2021; 22:8482. [PMID: 34445185 PMCID: PMC8395156 DOI: 10.3390/ijms22168482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used for disease modeling and drug cardiotoxicity screening. To this end, we recently developed human cardiac organoids (hCOs) for modeling human myocardium. Here, we perform a transcriptomic analysis of various in vitro hiPSC-CM platforms (2D iPSC-CM, 3D iPSC-CM and hCOs) to deduce the strengths and limitations of these in vitro models. We further compared iPSC-CM models to human myocardium samples. Our data show that the 3D in vitro environment of 3D hiPSC-CMs and hCOs stimulates the expression of genes associated with tissue formation. The hCOs demonstrated diverse physiologically relevant cellular functions compared to the hiPSC-CM only models. Including other cardiac cell types within hCOs led to more transcriptomic similarities to adult myocardium. hCOs lack matured cardiomyocytes and immune cells, which limits a complete replication of human adult myocardium. In conclusion, 3D hCOs are transcriptomically similar to myocardium, and future developments of engineered 3D cardiac models would benefit from diversifying cell populations, especially immune cells.
Collapse
Affiliation(s)
- Charles M. Kerr
- Molecular Cell Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Dylan Richards
- Immunology Translational Sciences, Janssen Research and Development, LLC, Spring House, PA 19477, USA;
| | - Donald R. Menick
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.M.); (K.Y.D.-P.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Kristine Y. Deleon-Pennell
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.M.); (K.Y.D.-P.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 2942, USA
| |
Collapse
|
4
|
Rho-Proteins and Downstream Pathways as Potential Targets in Sepsis and Septic Shock: What Have We Learned from Basic Research. Cells 2021; 10:cells10081844. [PMID: 34440613 PMCID: PMC8391638 DOI: 10.3390/cells10081844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.
Collapse
|
5
|
Khan AA, Sundar P, Natarajan B, Gupta V, Arige V, Reddy SS, Barthwal MK, Mahapatra NR. An evolutionarily-conserved promoter allele governs HMG-CoA reductase expression in spontaneously hypertensive rat. J Mol Cell Cardiol 2021; 158:140-152. [PMID: 34081950 DOI: 10.1016/j.yjmcc.2021.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Abstract
3-Hydroxy-3-methyl glutaryl-coenzyme A reductase (Hmgcr) encodes the rate-limiting enzyme in the cholesterol biosynthesis pathway. The regulation of Hmgcr in rat models of genetic hypertension (viz. Spontaneously Hypertensive Rat [SHR] and its normotensive control Wistar/Kyoto [WKY] strain) is unclear. Interestingly, Hmgcr transcript and protein levels are diminished in liver tissues of SHR as compared to WKY. This observation is consistent with the diminished plasma cholesterol level in SHR animals. However, the molecular basis of these apparently counter-intuitive findings remains completely unknown. Sequencing of the Hmgcr promoter in SHR and WKY strains reveals three variations: A-405G, C-62T and a 11 bp insertion (-398_-388insTGCGGTCCTCC) in SHR. Among these variations, A-405G occurs at an evolutionarily-conserved site among many mammals. Moreover, SHR-Hmgcr promoter displays lower activity than WKY-Hmgcr promoter in various cell lines. Transient transfections of Hmgcr-promoter mutants and in silico analysis suggest altered binding of Runx3 and Srebf1 across A-405G site. On the other hand, C-62T and -398_-388insTGCGGTCCTCC variations do not appear to contribute to the reduced Hmgcr promoter activity in SHR as compared to WKY. Indeed, chromatin immunoprecipitation assays confirm differential binding of Runx3 and Srebf1 to Hmgcr promoter leading to reduced expression of Hmgcr in SHR as compared to WKY under basal as well as cholesterol-modulated conditions. Taken together, this study provides, for the first time, molecular basis for diminished Hmgcr expression in SHR animals, which may account for the reduced circulating cholesterol level in this widely-studied model for cardiovascular diseases.
Collapse
Affiliation(s)
- Abrar A Khan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Poovitha Sundar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Bhargavi Natarajan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vinayak Gupta
- Bennett University, Plot No. 8-11, Techzone II, Greater Noida 201310, India
| | - Vikas Arige
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Santosh Reddy
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Manoj K Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
6
|
Nomura S, Komuro I. Precision medicine for heart failure based on molecular mechanisms: The 2019 ISHR Research Achievement Award Lecture. J Mol Cell Cardiol 2021; 152:29-39. [PMID: 33275937 DOI: 10.1016/j.yjmcc.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Heart failure is a leading cause of death, and the number of patients with heart failure continues to increase worldwide. To realize precision medicine for heart failure, its underlying molecular mechanisms must be elucidated. In this review summarizing the "The Research Achievement Award Lecture" of the 2019 XXIII ISHR World Congress held in Beijing, China, we would like to introduce our approaches for investigating the molecular mechanisms of cardiac hypertrophy, development, and failure, as well as discuss future perspectives.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, The University of Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Japan.
| |
Collapse
|
7
|
Fathi E, Farahzadi R, Javanmardi S, Vietor I. L-carnitine Extends the Telomere Length of the Cardiac Differentiated CD117 +- Expressing Stem Cells. Tissue Cell 2020; 67:101429. [PMID: 32861877 DOI: 10.1016/j.tice.2020.101429] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
Stem cell-based therapy has emerged as an attractive method for regenerating and repairing the lost heart organ. On other hand, poor survival and maintenance of the cells transferred into the damaged heart tissue are broadly accepted as serious barriers to enhance the efficacy of the regenerative therapy. For this reason, external factors, such as antioxidants are used as a favorite strategy by the investigators to improve the cell survival and retention properties. Therefore, the present study was conducted to investigate the In -vitro effect of L-carnitine (LC) on the telomere length and human telomerase reverse transcriptase (hTERT) gene expression in the cardiac differentiated bone marrow resident CD117+ stem cells through Wnt3/β-catenin and ERK1/2 pathways. To do this, bone marrow resident CD117+ stem cells were enriched by the magnetic-activated cell sorting (MACS) method, and were differentiated to the cardiac cells in the absence (-LC) and presence of the LC (+LC). Also, characterization of the enriched c-kit+ cells was performed using the flow cytometry and immunocytochemistry. At the end of the treatment period, the cells were subjected to the real-time PCR technique along with western blotting assay for measurement of the telomere length and assessment of mRNA and protein, respectively. The results showed that 0.2 mM LC caused the elongation of the telomere length and increased the hTERT gene expression in the cardiac differentiated CD117+ stem cells. In addition, a significant increase was observed in the mRNA and protein expression of Wnt3, β-catenin and ERK1/2 as key components of these pathways. It can be concluded that the LC can increase the telomere length as an effective factor in increasing the cell survival and maintenance of the cardiac differentiated bone marrow resident CD117+ stem cells via Wnt3/β-catenin and ERK1/2 signaling pathway components.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| |
Collapse
|
8
|
Morimoto S, Ichihara A. Management of primary aldosteronism and mineralocorticoid receptor-associated hypertension. Hypertens Res 2020; 43:744-753. [PMID: 32424201 DOI: 10.1038/s41440-020-0468-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/31/2022]
Abstract
Resistant hypertension is associated with a poor prognosis due to organ damage caused by prolonged suboptimal blood pressure control. The concomitant use of mineralocorticoid receptor (MR) antagonists with other antihypertensives has been shown to improve blood pressure control in some patients with resistant hypertension, and such patients are considered to have MR-associated hypertension. MR-associated hypertension is classified into two subtypes: one with a high plasma aldosterone level, which includes primary aldosteronism (PA), and the other with a normal aldosterone level. In patients with unilateral PA, adrenalectomy may be the first-choice procedure, while in patients with bilateral PA, MR antagonists are selected. In addition, in patients with other types of MR-associated hypertension with high aldosterone levels, MR antagonists may be selected as a first-line therapy. In patients with normal aldosterone levels, ARBs or ACE inhibitors are used as a first-line therapy, and MR antagonists may be used as an add-on agent. Since MR antagonist therapy may have efficacy as a first-line or add-on agent in these patients, it is important to recognize this type of hypertension. Further studies are needed to elucidate the pathogenesis and management of MR-associated hypertension in more detail to improve the clinical outcomes of patients with MR-associated hypertension.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan.
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating blood pressure and body fluid, which contributes to the pathophysiology of hypertension and cardiovascular/renal diseases. However, accumulating evidence has further revealed the complexity of this signal transduction system, including direct interactions with other receptors and proteins. This review focuses on recent research advances in RAAS with an emphasis on its receptors. RECENT FINDINGS Both systemically and locally produced angiotensin II (Ang II) bind to Ang II type 1 receptor (AT1R) and elicit strong biological functions. Recent studies have shown that Ang II-induced activation of Ang II type 2 receptor (AT2R) elicits the opposite functions to those of AT1R. However, accumulating evidence has now expanded the components of RAAS, including (pro)renin receptor, angiotensin-converting enzyme 2, angiotensin 1-7, and Mas receptor. In addition, the signal transductions of AT1R and AT2R are regulated by not only Ang II but also its receptor-associated proteins such as AT1R-associated protein and AT2R-interacting protein. Recent studies have indicated that inappropriate activation of local mineralocorticoid receptor contributes to cardiovascular and renal tissue injuries through aldosterone-dependent and -independent mechanisms. Since the mechanisms of RAAS signal transduction still remain to be elucidated, further investigations are necessary to explore novel molecular mechanisms of the RAAS, which will provide alternative therapeutic agents other than existing RAAS blockers.
Collapse
|
10
|
Yadav S, Barton M, Nguyen NT. Stretching Induces Overexpression of RhoA and Rac1 GTPases in Breast Cancer Cells. ACTA ACUST UNITED AC 2019; 4:e1900222. [PMID: 32293133 DOI: 10.1002/adbi.201900222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/13/2022]
Abstract
Rho GTPases are well known for regulating cell morphology and intracellular interactions. They can either be oncogenic or tumor suppressors. However, these proteins are associated with the acquirement of malignant features by cancer cells. It has been reported that the overexpression of protein markers of Rho family members such as RhoA and Rac1 is linked with carcinogenesis and the progression of a variety of human tumors. In this paper, the expression of RhoA and Rac1 activity in various types of breast cancers cell lines is evaluated. These cells are preconditioned by mechanically stretching them to simulate the extracellular physical forces placed upon on cancer cells. It is observed that stretching the cancer cells induces significantly higher expression of RhoA and Rac1 markers when compared to non-stretched cells and stretched control cells in vitro. This stretching strategy helps to detect and quantify the signal when it is too weak to be detected. Furthermore, stretching enhances the assay by leading to overexpression of markers and makes the assay more sensitive. It is hypothesized that this inexpensive and relatively sensitive assay can potentially aid in the development of a diagnostic tool for cancer screening.
Collapse
Affiliation(s)
- Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD, 4111, Australia
| | - Matthew Barton
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD, 4111, Australia
| |
Collapse
|
11
|
Dai F, Qi Y, Guan W, Meng G, Liu Z, Zhang T, Yao W. RhoGDI stability is regulated by SUMOylation and ubiquitination via the AT1 receptor and participates in Ang II-induced smooth muscle proliferation and vascular remodeling. Atherosclerosis 2019; 288:124-136. [DOI: 10.1016/j.atherosclerosis.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 01/16/2023]
|
12
|
Zhao G, Bao X, Huang G, Xu F, Zhang X. Differential Effects of Directional Cyclic Stretching on the Functionalities of Engineered Cardiac Tissues. ACS APPLIED BIO MATERIALS 2019; 2:3508-3519. [DOI: 10.1021/acsabm.9b00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guoxu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- School of Material Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, People’s Republic of China
| | - Xuejiao Bao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| |
Collapse
|
13
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Song HY, Chien CS, Yarmishyn AA, Chou SJ, Yang YP, Wang ML, Wang CY, Leu HB, Yu WC, Chang YL, Chiou SH. Generation of GLA-Knockout Human Embryonic Stem Cell Lines to Model Autophagic Dysfunction and Exosome Secretion in Fabry Disease-Associated Hypertrophic Cardiomyopathy. Cells 2019; 8:cells8040327. [PMID: 30965672 PMCID: PMC6523555 DOI: 10.3390/cells8040327] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Fabry disease (FD) is a rare inherited disorder characterized by a wide range of systemic symptoms; it is particularly associated with cardiovascular and renal problems. Enzyme replacement therapy and pharmacological chaperone migalastat are the only approved and effective treatment strategies for FD patients. It is well documented that alpha-galactosidase A (GLA) enzyme activity deficiency causes globotriaosylceramide (Gb3) accumulation, which plays a crucial role in the etiology of FD. However, the detailed mechanisms remain unclear, and the lack of a reliable and powerful disease model is an obstacle. In this study, we created such a model by using CRISPR/Cas9-mediated editing of GLA gene to knockout its expression in human embryonic stem cells (hESCs). The cardiomyocytes differentiated from these hESCs (GLA-null CMs) were characterized by the accumulation of Gb3 and significant increases of cell surface area, the landmarks of FD-associated cardiomyopathy. Furthermore, we used mass spectrometry to compare the proteomes of GLA-null CMs and parental wild type CMs and found that the Rab GTPases involved in exocytotic vesicle release were significantly downregulated. This caused impairment of autophagic flux and protein turnover, resulting in an increase of reactive oxygen species and apoptosis. To summarize, we established a FD model which can be used as a promising tool to study human hypertrophic cardiomyopathy in a physiologically and pathologically relevant manner and to develop new therapies by targeting Rab GTPases signaling-related exosomal vesicles transportation.
Collapse
Affiliation(s)
- Hui-Yung Song
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Chian-Shiu Chien
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Aliaksandr A Yarmishyn
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Shih-Jie Chou
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chien-Ying Wang
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Emergent Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Hsin-Bang Leu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Wen-Chung Yu
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei 11574, Taiwan.
| |
Collapse
|
15
|
Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney disease. Hypertens Res 2018; 42:293-300. [PMID: 30523293 DOI: 10.1038/s41440-018-0158-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 01/02/2023]
Abstract
Accumulating evidence has indicated the potential contributions of aldosterone and mineralocorticoid receptor (MR) to the pathophysiology of cardiovascular disease (CVD) and chronic kidney disease (CKD). Patients with primary aldosteronism have a higher risk of CVD and CKD than those with essential hypertension. MR is strongly expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts, macrophages, glomerular mesangial cells, podocytes, and proximal tubular cells. In these cardiovascular and renal cells, aldosterone-induced cell injury is prevented by MR blockade. Interestingly, MR antagonists elicit beneficial effects on CVD and CKD in subjects with low or normal plasma aldosterone levels. Recent studies have shown that during development of CVD and CKD, cardiovascular and renal MR is activated by glucocorticoid and ligand-independent mechanisms, such as Rac1 signaling pathways. These data indicate that inappropriate activation of local MR contributes to cardiovascular and renal tissue injury through aldosterone-dependent and -independent mechanisms. In this review, recent findings on the specific role of cardiovascular and renal MR in the pathogenesis of CVD and CKD are summarized.
Collapse
|
16
|
Xue C, Huang Q, Zhang T, Zhao D, Ma Q, Tian T, Cai X. Matrix stiffness regulates arteriovenous differentiation of endothelial progenitor cells during vasculogenesis in nude mice. Cell Prolif 2018; 52:e12557. [PMID: 30485569 PMCID: PMC6495479 DOI: 10.1111/cpr.12557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives The aim of the study was to investigate the effect of matrix stiffness on arteriovenous differentiation of endothelial progenitor cells (EPCs) during vasculogenesis in nude mice. Materials and methods Dextran hydrogels of differing stiffnesses were first prepared by controlling the crosslinking reaction to generate different thioether bonds. Hydrogels with stiffnesses matching those of the arterial extracellular matrix and venous extracellular matrix were separately combined with mouse bone marrow‐derived EPCs and subcutaneously implanted on either side of the backs of nude mice. After 14 days, artery‐specific marker Efnb2 and vein‐specific marker Ephb4 in the neovasculature were detected to determine the effect of matrix stiffness on the arteriovenous differentiation of EPCs in vivo. Results Fourteen days after the implantation of the EPC‐loaded dextran hydrogels, new blood vessels were observed in both types of hydrogels. We further verified that matrix stiffness regulated the arteriovenous differentiation of EPCs during vasculogenesis via the Ras/Mek pathway. Conclusions Matrix stiffness regulates the arteriovenous differentiation of EPCs during vasculogenesis in nude mice through the Ras/Mek pathway.
Collapse
Affiliation(s)
- Changyue Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qian Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Ito Y, Maejima Y, Tamura N, Shiheido-Watanabe Y, Konishi M, Ashikaga T, Hirao K, Isobe M. Synergistic effects of HMG-CoA reductase inhibitor and angiotensin II receptor blocker on load-induced heart failure. FEBS Open Bio 2018; 8:799-816. [PMID: 29744294 PMCID: PMC5929928 DOI: 10.1002/2211-5463.12416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/15/2018] [Accepted: 03/12/2018] [Indexed: 01/19/2023] Open
Abstract
5-Hydroxy-3-methylglutaryl-CoA reductase inhibitors (statins) have beneficial effects in patients with heart failure (HF), regardless of serum cholesterol levels. However, their synergic effects with angiotensin II receptor blocker (ARB) remain to be established. We assessed the existence and potential underlying mechanisms of the effects of combined ARB [losartan (LOS)] and statin [simvastatin (SIM)] on cardiac function in rats and mice with load-induced HF. Salt-loaded Dahl salt-sensitive (DS) rats were treated with vehicle, LOS, SIM, or LOS + SIM for 8 weeks. To mimic load-induced HF in vitro, cultured neonatal rat cardiomyocytes (NRCM) were cyclically stretched. We also investigated the effect of LOS + SIM on pressure overload-induced HF using mice with transverse aortic constriction (TAC). LOS + SIM improved left ventricular (LV) function and reduced LV hypertrophy more than the monotherapies in both salt-loaded DS rats and TAC-operated mice. LV-tissue increases in Rho kinase and matrix metalloproteinase-9 activity were decreased to a greater extent by LOS + SIM than by LOS and SIM monotherapies. Plasma levels of Exp-3174, a LOS metabolite, were higher in LOS + SIM-treated DS rats than in LOS-treated rats. Stretch-induced hypertrophy of NRCM pretreated with SIM + Exp-3174 was significantly attenuated from that with LOS, Exp-3174, SIM, or LOS + SIM. SIM administration significantly enhanced mitophagy in mouse hearts after TAC. However, LOS + SIM reduced mitophagy, and the salutary effect of SIM in mouse hearts after TAC was abolished in AT1R-/- mice. In conclusion, LOS and SIM have beneficial myocardial effects on load-induced HF via differential pleiotropic effects. Thus, combination therapy of these drugs thus has potential as a therapeutic strategy for HF.
Collapse
Affiliation(s)
- Yusuke Ito
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Natsuko Tamura
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | | | - Masanori Konishi
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Takashi Ashikaga
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Kenzo Hirao
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan.,Department of Cardiology Sakakibara Heart Institute Tokyo Japan
| |
Collapse
|
18
|
Morse A, Schindeler A, McDonald MM, Kneissel M, Kramer I, Little DG. Sclerostin Antibody Augments the Anabolic Bone Formation Response in a Mouse Model of Mechanical Tibial Loading. J Bone Miner Res 2018; 33:486-498. [PMID: 29090474 DOI: 10.1002/jbmr.3330] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 10/29/2017] [Indexed: 12/18/2022]
Abstract
Decreased activity or expression of sclerostin, an endogenous inhibitor of Wnt/β-catenin signaling, results in increased bone formation and mass. Antibodies targeting and neutralizing sclerostin (Scl-Ab) have been shown to increase bone mass and reduce fracture risk. Sclerostin is also important in modulating the response of bone to changes in its biomechanical environment. However, the effects of Scl-Ab on mechanotransduction are unclear, and it was speculated that the loading response may be altered for individuals receiving Scl-Ab therapy. To address this, we carried out a 2-week study of tibial cyclic compressive loading on C57Bl/6 mice treated with vehicle or 100 mg/kg/wk Scl-Ab. Increases in bone volume, density, and dynamic bone formation were found with loading, and the anabolic response was further increased by the combination of load and Scl-Ab. To investigate the underlying mechanism, gene profiling by RNA sequencing (RNAseq) was performed on tibias isolated from mice from all four experimental groups. Major alterations in Wnt/β-catenin gene expression were found with tibial loading, however not with Scl-Ab treatment alone. Notably, the combination of load and Scl-Ab elicited a synergistic response from a number of specific Wnt-related and mechanotransduction factors. An unexpected finding was significant upregulation of factors in the Rho GTPase signaling pathway with combination treatment. In summary, combination therapy had a more profound anabolic response than either Scl-Ab or loading treatment alone. The Wnt/β-catenin and Rho GTPase pathways were implicated within bone mechanotransduction and support the concept that bone mechanotransduction is likely to encompass a number of interconnected signaling pathways. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alyson Morse
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michelle M McDonald
- Bone Biology Program, The Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Nguyen HG, Metavarayuth K, Wang Q. Upregulation of osteogenesis of mesenchymal stem cells with virus-based thin films. Nanotheranostics 2018; 2:42-58. [PMID: 29291162 PMCID: PMC5743837 DOI: 10.7150/ntno.19974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/15/2017] [Indexed: 01/16/2023] Open
Abstract
A major aim of tissue engineering is to develop biomimetic scaffolding materials that can guide the proliferation, self-renewal and differentiation of multipotent stem cells into specific lineages. Cellular functions can be controlled by the interactions between cells and biomaterials. Therefore, the surface chemistry and topography of support materials play a pivotal role in modulating cell behaviors at many stages of cell growth and development. Due to their highly ordered structure and programmable surface chemistries, which provide unique topography as biomaterials, viral nanoparticles have been utilized as building blocks for targeted cell growth and differentiation. This review article discusses the fabrication of two-dimensional virus-based thin film on substrates and highlights the study of the effect of chemical and physical cues introduced by plant virus nanoparticle thin films on the promotion of osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Huong Giang Nguyen
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Kamolrat Metavarayuth
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
20
|
Liu M, Zhang Z, Sampson L, Zhou X, Nalapareddy K, Feng Y, Akunuru S, Melendez J, Davis AK, Bi F, Geiger H, Xin M, Zheng Y. RHOA GTPase Controls YAP-Mediated EREG Signaling in Small Intestinal Stem Cell Maintenance. Stem Cell Reports 2017; 9:1961-1975. [PMID: 29129684 PMCID: PMC5785633 DOI: 10.1016/j.stemcr.2017.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023] Open
Abstract
RHOA, a founding member of the Rho GTPase family, is critical for actomyosin dynamics, polarity, and morphogenesis in response to developmental cues, mechanical stress, and inflammation. In murine small intestinal epithelium, inducible RHOA deletion causes a loss of epithelial polarity, with disrupted villi and crypt organization. In the intestinal crypts, RHOA deficiency results in reduced cell proliferation, increased apoptosis, and a loss of intestinal stem cells (ISCs) that mimic effects of radiation damage. Mechanistically, RHOA loss reduces YAP signaling of the Hippo pathway and affects YAP effector epiregulin (EREG) expression in the crypts. Expression of an active YAP (S112A) mutant rescues ISC marker expression, ISC regeneration, and ISC-associated Wnt signaling, but not defective epithelial polarity, in RhoA knockout mice, implicating YAP in RHOA-regulated ISC function. EREG treatment or active β-catenin Catnblox(ex3) mutant expression rescues the RhoA KO ISC phenotypes. Thus, RHOA controls YAP-EREG signaling to regulate intestinal homeostasis and ISC regeneration.
Collapse
Affiliation(s)
- Ming Liu
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Zheng Zhang
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Leesa Sampson
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Xuan Zhou
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yuxin Feng
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shailaja Akunuru
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jaime Melendez
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Laboratorio de Bioquímica y Biología Molecular Depto. Farmacia Facultad de Química, P. Universidad Católica de Chile, Santiago, Chile
| | - Ashley Kuenzi Davis
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Feng Bi
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Hartmut Geiger
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Mei Xin
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
21
|
Jiang D, Chen Y, Zhu Y, Fu G, Xu S. Expression of key enzymes in the mevalonate pathway are altered in monocrotaline-induced pulmonary arterial hypertension in rats. Mol Med Rep 2017; 16:9593-9600. [PMID: 29039598 DOI: 10.3892/mmr.2017.7798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a serious pulmonary vascular disease. The changes in the structure, function and metabolism of endothelial cells are some of the important features of PAH. Previous studies have demonstrated that the mevalonate pathway is important in cardiovascular remodeling. However, whether the mevalonate pathway is involved in the development of PAH remains to be elucidated. The present study aimed to investigate the expression pattern of mevalonate pathway-related enzymes in monocrotaline (MCT)-induced PAH. F344 rats were randomly divided into two groups (n=6/group): Control group rats were injected with a single dose of saline, and MCT group rats were injected with a single dose of MCT (60 mg/kg). After 4 weeks, the right ventricular systolic pressure (RVSP) was measured, and lung and pulmonary artery tissue samples were collected. It was demonstrated that the RVSP increased and pulmonary vascular remodeling was detected in the PAH group. The expression levels of the enzymes farnesyldiphosphate synthase farnesyltransferase α and geranylgeranyltransferase type I increased in the PAH group, which suggested that the mevalonate pathway may be involved in the pathological development of PAH.
Collapse
Affiliation(s)
- Dongmei Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yu Chen
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Yuxiang Zhu
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shiming Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
22
|
Tuttolomondo A, Simonetta I, Pinto A. MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure. Expert Opin Ther Targets 2016; 20:1287-1300. [PMID: 27409295 DOI: 10.1080/14728222.2016.1212017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- a U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Irene Simonetta
- a U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Antonio Pinto
- a U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| |
Collapse
|
23
|
Abstract
In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.
Collapse
|
24
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
25
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
26
|
Rocha DN, Ferraz-Nogueira JP, Barrias CC, Relvas JB, Pêgo AP. Extracellular environment contribution to astrogliosis-lessons learned from a tissue engineered 3D model of the glial scar. Front Cell Neurosci 2015; 9:377. [PMID: 26483632 PMCID: PMC4586948 DOI: 10.3389/fncel.2015.00377] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022] Open
Abstract
Glial scars are widely seen as a (bio)mechanical barrier to central nervous system regeneration. Due to the lack of a screening platform, which could allow in-vitro testing of several variables simultaneously, up to now no comprehensive study has addressed and clarified how different lesion microenvironment properties affect astrogliosis. Using astrocytes cultured in alginate gels and meningeal fibroblast conditioned medium, we have built a simple and reproducible 3D culture system of astrogliosis mimicking many features of the glial scar. Cells in this 3D culture model behave similarly to scar astrocytes, showing changes in gene expression (e.g., GFAP) and increased extra-cellular matrix production (chondroitin 4 sulfate and collagen), inhibiting neuronal outgrowth. This behavior being influenced by the hydrogel network properties. Astrocytic reactivity was found to be dependent on RhoA activity, and targeting RhoA using shRNA-mediated lentivirus reduced astrocytic reactivity. Further, we have shown that chemical inhibition of RhoA with ibuprofen or indirectly targeting RhoA by the induction of extracellular matrix composition modification with chondroitinase ABC, can diminish astrogliosis. Besides presenting the extracellular matrix as a key modulator of astrogliosis, this simple, controlled and reproducible 3D culture system constitutes a good scar-like system and offers great potential in future neurodegenerative mechanism studies, as well as in drug screenings envisaging the development of new therapeutic approaches to minimize the effects of the glial scar in the context of central nervous system disease.
Collapse
Affiliation(s)
- Daniela N Rocha
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto Porto, Portugal ; Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto, Portugal ; Faculdade de Engenharia, Universidade do Porto Porto, Portugal
| | - José P Ferraz-Nogueira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto, Portugal ; Glia Cell Biology Group, Instituto de Biologia Celular e Molecular, Universidade do Porto Porto, Portugal
| | - Cristina C Barrias
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto Porto, Portugal ; Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto, Portugal ; Glia Cell Biology Group, Instituto de Biologia Celular e Molecular, Universidade do Porto Porto, Portugal
| | - Ana P Pêgo
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto Porto, Portugal ; Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto, Portugal ; Faculdade de Engenharia, Universidade do Porto Porto, Portugal ; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| |
Collapse
|
27
|
Kajikawa M, Noma K, Nakashima A, Maruhashi T, Iwamoto Y, Matsumoto T, Iwamoto A, Oda N, Hidaka T, Kihara Y, Aibara Y, Chayama K, Sasaki S, Kato M, Dote K, Goto C, Liao JK, Higashi Y. Rho-associated kinase activity is an independent predictor of cardiovascular events in acute coronary syndrome. Hypertension 2015; 66:892-9. [PMID: 26283039 PMCID: PMC4989242 DOI: 10.1161/hypertensionaha.115.05587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/25/2015] [Indexed: 11/16/2022]
Abstract
Rho-associated kinases play an important role in a variety of cellular functions. Although Rho-associated kinase activity has been shown to be an independent predictor for future cardiovascular events in a general population, there is no information on Rho-associated kinase activity in patients with acute coronary syndrome. We evaluated leukocyte Rho-associated kinase activity by Western blot analysis in 73 patients with acute coronary syndrome and 73 age- and gender-matched control subjects. Rho-associated kinase activity within 2 hours of acute coronary syndrome onset was higher in patients with acute coronary syndrome than in the control subjects (0.95±0.55 versus 0.69±0.31; P<0.001). Rho-associated kinase activity promptly increased from 0.95±0.55 to 1.11±0.81 after 3 hours and reached a peak of 1.21±0.76 after 1 day (P=0.03 and P=0.03, respectively) and then gradually decreased to 0.83±0.52 after 7 days, 0.78±0.42 after 14 days, and 0.72±0.30 after 6 months (P=0.22, P=0.29, and P=0.12, respectively). During a median follow-up period of 50.8 months, 31 first major cardiovascular events (death from cardiovascular causes, myocardial infarction, ischemic stroke, and coronary revascularization) occurred. After adjustment for age, sex, cardiovascular risk factors, and concomitant treatment with statins, increased Rho-associated kinase activity was associated with increasing risk of first major cardiovascular events (hazard ratio, 4.56; 95% confidence interval, 1.98–11.34; P<0.001). These findings suggest that Rho-associated kinase activity is dramatically changed after acute coronary syndrome and that Rho-associated kinase activity could be a useful biomarker to predict cardiovascular events in Japanese patients with acute coronary syndrome.
Collapse
Affiliation(s)
- Masato Kajikawa
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Kensuke Noma
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Ayumu Nakashima
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Tatsuya Maruhashi
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yumiko Iwamoto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Takeshi Matsumoto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Akimichi Iwamoto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Nozomu Oda
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Takayuki Hidaka
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yasuki Kihara
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yoshiki Aibara
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Kazuaki Chayama
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Shota Sasaki
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Masaya Kato
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Keigo Dote
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Chikara Goto
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - James K Liao
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.)
| | - Yukihito Higashi
- From the Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences (M.K., T. Maruhashi, Y.I., T. Matsumoto, A. I., N.O., T.H., Y.K.), Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (K.N., Y.H.), and Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences (K.C.), Hiroshima University, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (K.N., A.N., Y.H.); Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan (S.S., M.K., K.D.); Department of Physical Therapy, Hirohsima International University, Hiroshima, Japan (C.G.); and Section of Cardiology, University of Chicago Medical Center, IL (J.K.L.).
| |
Collapse
|
28
|
Kai H, Ueda T, Uchiwa H, Iwamoto Y, Aoki Y, Anegawa T, Fukuda K, Fukumoto Y, Imaizumi T. Benefit of losartan/hydrochlorothiazide-fixed dose combination treatment for isolated morning hypertension: The MAPPY study. Clin Exp Hypertens 2015; 37:473-81. [DOI: 10.3109/10641963.2015.1013118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Nishimoto M, Fujita T. Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways. Am J Physiol Renal Physiol 2015; 308:F377-87. [DOI: 10.1152/ajprenal.00477.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although salt is a major environmental factor in the development of hypertension, the degree of salt sensitivity varies widely among individuals. The mechanisms responsible for this variation remain to be elucidated. Recent studies have revealed the involvement of two important signaling pathways in renal tubules that play key roles in electrolyte balance and the maintenance of normal blood pressure: the β2-adrenergic stimulant-glucocorticoid receptor (GR)-with-no-lysine kinase (WNK)4-Na+-Cl− cotransporter pathway, which is active in distal convoluted tubule (DCT)1, and the Ras-related C3 botulinum toxin substrate (Rac)1-mineralocorticoid receptor (MR) pathway, which is active in DCT2, connecting tubules, and collecting ducts. β2-Adrenergic stimulation due to increased renal sympathetic activity in obesity- and salt-induced hypertension suppresses histone deacetylase 8 activity via cAMP/PKA signaling, increasing the accessibility of GRs to the negative GR response element in the WNK4 promoter. This results in the suppression of WNK4 transcription followed by the activation of Na+-Cl− cotransporters in the DCT and elevated Na+ retention and blood pressure upon salt loading. Rac1 activates MRs, even in the absence of ligand binding, with this activity increased in the presence of ligand. In salt-sensitive animals, Rac1 activation due to salt loading activates MRs in DCT2, connecting tubules, and collecting ducts. Thus, GRs and MRs are independently involved in two pathways responsible for renal Na+ handling and salt-sensitive hypertension. These findings suggest novel therapeutic targets and may lead to the development of diagnostic tools to determine salt sensitivity in hypertensive patients.
Collapse
Affiliation(s)
- Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Lauriol J, Keith K, Jaffré F, Couvillon A, Saci A, Goonasekera SA, McCarthy JR, Kessinger CW, Wang J, Ke Q, Kang PM, Molkentin JD, Carpenter C, Kontaridis MI. RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis. Sci Signal 2014; 7:ra100. [PMID: 25336613 DOI: 10.1126/scisignal.2005262] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras-related guanosine triphosphatase RhoA mediates pathological cardiac hypertrophy, but also promotes cell survival and is cardioprotective after ischemia/reperfusion injury. To understand how RhoA mediates these opposing roles in the myocardium, we generated mice with a cardiomyocyte-specific deletion of RhoA. Under normal conditions, the hearts from these mice showed functional, structural, and growth parameters similar to control mice. Additionally, the hearts of the cardiomyocyte-specific, RhoA-deficient mice subjected to transverse aortic constriction (TAC)-a procedure that induces pressure overload and, if prolonged, heart failure-exhibited a similar amount of hypertrophy as those of the wild-type mice subjected to TAC. Thus, neither normal cardiac homeostasis nor the initiation of compensatory hypertrophy required RhoA in cardiomyocytes. However, in response to chronic TAC, hearts from mice with cardiomyocyte-specific deletion of RhoA showed greater dilation, with thinner ventricular walls and larger chamber dimensions, and more impaired contractile function than those from control mice subjected to chronic TAC. These effects were associated with aberrant calcium signaling, as well as decreased activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT. In addition, hearts from mice with cardiomyocyte-specific RhoA deficiency also showed less fibrosis in response to chronic TAC, with decreased transcriptional activation of genes involved in fibrosis, including myocardin response transcription factor (MRTF) and serum response factor (SRF), suggesting that the fibrotic response to stress in the heart depends on cardiomyocyte-specific RhoA signaling. Our data indicated that RhoA regulates multiple pathways in cardiomyocytes, mediating both cardioprotective (hypertrophy without dilation) and cardio-deleterious effects (fibrosis).
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Kimberly Keith
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Fabrice Jaffré
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Anthony Couvillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Abdel Saci
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sanjeewa A Goonasekera
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Jason R McCarthy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chase W Kessinger
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jianxun Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Qingen Ke
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Peter M Kang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | | | - Maria I Kontaridis
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Huang L, Gao D, Zhang Y, Wang C, Zuo Z. Exposure to low dose benzo[a]pyrene during early life stages causes symptoms similar to cardiac hypertrophy in adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:377-382. [PMID: 24922095 DOI: 10.1016/j.jhazmat.2014.05.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Growing evidence indicates that polycyclic aromatic hydrocarbons (PAHs) can lead to cardiac hypertrophy and recent research indicates that exposure to low dose crude oil during early embryonic development may lead to impacts on heart health at later life stages. The aim of this study was to evaluate whether exposure during early life stages to low dose benzo[a]pyrene (BaP), as a high-ring PAH, would lead to cardiac hypertrophy at later life stages. Zebrafish were exposed to low dose BaP until 96 hpf, then transferred to clean water and maintained for a year before histological and molecular biological analysis. Our results showed that exposure to low level BaP during early life stages increased heart weight to body weight ratios and deposited collagen in the heart of adult zebrafish. ANP, BNP and c-Myc were also induced in the heart of adult zebrafish by BaP. These results proved that low level BaP exposure during early life stages caused symptoms similar to cardiac hypertrophy in adult zebrafish. Our results displayed an elevated expression of CdC42, RhoA, p-ERK1, 2 and Rac1. Therefore, the mechanism of the cardiac hypertrophy caused by BaP exposure during early life stages may be through inducing the expression of CdC42, RhoA and Rac1, together with activating ERK1, 2.
Collapse
Affiliation(s)
- Lixing Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Dongxu Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Youyu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
32
|
Adam O, Laufs U. Rac1-mediated effects of HMG-CoA reductase inhibitors (statins) in cardiovascular disease. Antioxid Redox Signal 2014; 20:1238-50. [PMID: 23919665 DOI: 10.1089/ars.2013.5526] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE HMG-CoA reductase inhibitors (statins) lower serum cholesterol concentrations and are beneficial in the primary and secondary prevention of coronary heart disease. The positive clinical effects have only partially been reproduced with other lipid-lowering interventions suggesting potential statin effects in addition to cholesterol lowering. In experimental models, direct beneficial cardiovascular effects that are mediated by the inhibition of isoprenoids have been documented, which serve as lipid attachments for intracellular signaling molecules such as small Rho guanosine triphosphate-binding proteins, whose membrane localization and function are dependent on isoprenylation. RECENT ADVANCES Rac1 GTPase is an established master regulator of cell motility through the cortical actin reorganization and of reactive oxygen species generation through the regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. CRITICAL ISSUES Observations in cells, animals, and humans have implicated the activation of Rac1 GTPase as a key component of cardiovascular pathologies, including the endothelial dysfunction, cardiac hypertrophy and fibrosis, atrial fibrillation, stroke, hypertension, and chronic kidney disease. However, the underlying signal transduction remains incompletely understood. FUTURE DIRECTIONS Based on the recent advance made in Rac1 research in the cardiovascular system by using mouse models with transgenic overexpression of activated Rac1 or conditional knockout, as well as Rac1-specific small molecule inhibitor NSC 23766, the improved understanding of the Rac1-mediated effects statins may help to identify novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Oliver Adam
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes , Homburg, Germany
| | | |
Collapse
|
33
|
Kajikawa M, Noma K, Maruhashi T, Mikami S, Iwamoto Y, Iwamoto A, Matsumoto T, Hidaka T, Kihara Y, Chayama K, Nakashima A, Goto C, Liao JK, Higashi Y. Rho-associated kinase activity is a predictor of cardiovascular outcomes. Hypertension 2013; 63:856-64. [PMID: 24379190 DOI: 10.1161/hypertensionaha.113.02296] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases are associated with chronic activation of Rho-associated kinase. Rho-associated kinase activity is significantly correlated with endothelial function and Framingham risk score. However, there is no information on the prognostic value of Rho-associated kinase activity. We evaluated Rho-associated kinase activity in peripheral leukocytes by Western blot analysis in 633 subjects who underwent health-screening examination at Hiroshima University Hospital. We assessed the associations between Rho-associated kinase activity and first major cardiovascular events (death from cardiovascular causes, myocardial infarction, and stroke), death from cardiovascular causes, acute myocardial infarction, stroke, revascularization (percutaneous coronary intervention, coronary artery bypass grafting), and hospitalization for heart failure. During a median period of 42.0 months (interquartile range, 24.4-56.6 months) of follow-up, 29 subjects died (10 from cardiovascular causes), 2 myocardial infarction, 20 revascularization, 15 stroke, and 17 hospitalization for heart failure. After adjustment for age, sex, cardiovascular risk factors, and other relevant variables, Rho-associated kinase activity remained a strong independent indicator of first major cardiovascular events (hazard ratio, 2.19; 95% confidence interval, 1.35-3.70; P=0.002), death from cardiovascular disease (hazard ratio, 2.57; 95% confidence interval, 1.18-6.60; P=0.002), stroke (hazard ratio, 2.14; 95% confidence interval, 1.24-3.86; P=0.006), and revascularization (hazard ratio, 2.68; 95% confidence interval, 1.60-4.66; P<0.001). Leukocyte Rho-associated kinase activity may be a new biomarker of cardiovascular events. These findings suggest that inhibition of Rho-associated kinase activity may be a therapeutic target for prevention of cardiovascular events.
Collapse
Affiliation(s)
- Masato Kajikawa
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
35
|
Li ZL, Hu J, Li YL, Xue F, Zhang L, Xie JQ, Liu ZH, Li H, Yi DH, Liu JC, Wang SW. The effect of hyperoside on the functional recovery of the ischemic/reperfused isolated rat heart: potential involvement of the extracellular signal-regulated kinase 1/2 signaling pathway. Free Radic Biol Med 2013; 57:132-40. [PMID: 23291593 DOI: 10.1016/j.freeradbiomed.2012.12.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 11/21/2012] [Accepted: 12/21/2012] [Indexed: 01/22/2023]
Abstract
One of the leading causes of death in the world is ischemia/reperfusion (I/R)-mediated acute myocardial infarction. There are a lot of Chinese traditional patent medicines, such as Xin'an capsules, Xin Xuening tablets, and so on, which have protective effects against myocardial I/R injury and have been routinely used in treating cardiac diseases for a long time in China. Hyperoside (Hyp) is the chief component of these medicines. This study investigated the action of Hyp in isolated myocardial I/R injury, as well as its possible mechanisms. Using the Langendorff model, isolated Sprague-Dawley rat hearts were subjected to 30 min of global ischemia and 50 min of reperfusion. Cardiac function was measured, and infarct size was evaluated by triphenyltetrazolium chloride staining at the end of the reperfusion. Coronary effluent was analyzed for lactate dehydrogenase (LDH) and creatine kinase (CK). Myocardium was also measured for total superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. Phosphorylation of extracellular signal-regulated protein kinase (ERK) was analyzed by Western blotting. We report for the first time that administration of Hyp before/after I/R significantly improved heart contraction and limited the infarct size and CK and LDH leakage from the damaged myocardium after I/R. The activity of SOD and the MDA content remarkably changed in the presence of Hyp as well. Phosphorylation of ERK was significantly increased in Hyp-treated hearts compared to controls (p<0.01). Hyp-induced ERK phosphorylation was inhibited by PD98059. We therefore conclude that Hyp can protect cardiomyocytes from I/R-induced oxidative stress through the activation of ERK-dependent signaling.
Collapse
Affiliation(s)
- Zi-lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Inhibition of farnesyl pyrophosphate synthase attenuates angiotensin II-induced cardiac hypertrophy and fibrosis in vivo. Int J Biochem Cell Biol 2012; 45:657-66. [PMID: 23277274 DOI: 10.1016/j.biocel.2012.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/19/2012] [Accepted: 12/07/2012] [Indexed: 12/28/2022]
Abstract
Farnesyl pyrophosphate synthase (FPPS), as a key branchpoint of the mevalonate pathway, catalyzes the synthesis of isoprenoid intermediates. The isoprenoid intermediates are needed for protein isoprenylation to participate in cardiac remodeling. We have previously demonstrated that both knockdown of FPPS with small interfering RNA and inhibition of FPPS by alendronate could prevent Ang II-induced hypertrophy in cultured cardiomyocytes. In this study, we evaluated the effects of FPPS inhibition in Ang II-mediated cardiac hypertrophy and fibrosis in vivo. Wild type mice were separately treated with saline, Ang II (2.88 mg/kg per day), FPPS inhibitor alendronate (0.1 mg/kg per day), or the combination of Ang II (2.88 mg/kg per day) and alendronate (0.1 mg/kg per day) for 4 weeks. The results showed that Ang II increased FPPS expression, and the increases of Ang II-induced synthesis of the isoprenoid intermediates, FPP and GGPP, were significantly inhibited by FPPS inhibitor. In the meantime, FPPS inhibition attenuated Ang II-mediated cardiac hypertrophy and fibrosis as indexed by the heart weight to body weight ratio, echocardiographic parameters, histological examinations and expression of ANP and BNP mRNA. Furthermore, it was also found that FPPS inhibitor attenuated Ang II-induced increases of RhoA activity and p-38 MAPK phosphorylation and TGF-β1 mRNA expression. In conclusion, FPPS might play an important role in Ang II-induced cardiac hypertrophy and fibrosis in vivo, at least in part through RhoA, p-38 MAPK and TGF-β1.
Collapse
|
37
|
Okamoto R, Li Y, Noma K, Hiroi Y, Liu PY, Taniguchi M, Ito M, Liao JK. FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2. FASEB J 2012; 27:1439-49. [PMID: 23271052 DOI: 10.1096/fj.12-217018] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Rho-associated coiled-coil containing kinases, ROCK1 and ROCK2, are important regulators of cell shape, migration, and proliferation through effects on the actin cytoskeleton. However, it is not known whether ROCK2 plays an important role in the development of cardiac hypertrophy. To determine whether the loss of ROCK2 could prevent cardiac hypertrophy, cardiomyocyte-specific ROCK2-null (c-ROCK2(-/-)) were generated using conditional ROCK2(flox/flox) mice and α-myosin heavy-chain promoter-driven Cre recombinase transgenic mice. Cardiac hypertrophy was induced by Ang II infusion (400 ng/kg/min, 28 d) or transverse aortic constriction (TAC). Under basal conditions, hemodynamic parameters, cardiac anatomy, and function of c-ROCK2(-/-) mice were comparable to wild-type (WT) mice. However, following Ang II infusion or TAC, c-ROCK2(-/-) mice exhibited a substantially smaller increase in heart-to-body weight ratio, left ventricular mass, myocyte cross-sectional area, hypertrophy-related fetal gene expression, intraventricular fibrosis, cardiac apoptosis, and oxidative stress compared to control mice. Deletion of ROCK2 in cardiomyocytes leads to increased expression of four-and-a-half LIM-only protein-2 (FHL2) and FHL2-mediated inhibition of serum response factor (SRF) and extracellular signal-regulated mitogen-activated protein kinase (ERK). Knockdown of FHL2 expression in ROCK2-deficient cardiomyocytes or placing ROCK2-haploinsufficient (ROCK2(+/-)) mice on FHL2(+/-)-haploinsufficient background restored the hypertrophic response to Ang II. These results indicate that cardiomyocyte ROCK2 is essential for the development of cardiac hypertrophy and that up-regulation of FHL2 may contribute to the antihypertrophic phenotype that is observed in cardiac-specific ROCK2-deficient mice.
Collapse
Affiliation(s)
- Ryuji Okamoto
- Vascular Medicine Research Unit, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang J, Mou Y, Wu T, Ye Y, Jiang JC, Zhao CZ, Zhu HH, Du CQ, Zhou L, Hu SJ. Cardiac-specific overexpression of farnesyl pyrophosphate synthase induces cardiac hypertrophy and dysfunction in mice. Cardiovasc Res 2012. [DOI: 10.1093/cvr/cvs347] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Ma H, Gong H, Chen Z, Liang Y, Yuan J, Zhang G, Wu J, Ye Y, Yang C, Nakai A, Komuro I, Ge J, Zou Y. Association of Stat3 with HSF1 plays a critical role in G-CSF-induced cardio-protection against ischemia/reperfusion injury. J Mol Cell Cardiol 2012; 52:1282-90. [PMID: 22426029 DOI: 10.1016/j.yjmcc.2012.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 11/25/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been shown to be cardio-protective against ischemia through activating Jak2/Stat3 pathway, however, the mechanism is unclear. Heat shock transcription factor 1 (HSF1), a definite endogenous protective protein in cardiomyocytes, may interact with Stat family under stress conditions. We hypothesized that G-CSF could induce cardio-protection against ischemia/reperfusion (I/R) through association of HSF1 with Stat3. To test the hypothesis, we built cardiac I/R injury model with HSF1 knockout (KO) mice and wild type (WT) mice by occlusion of the left anterior descending (LAD) coronary artery for 30min and subsequent release of the occlusion for 24h. These mice were administered with G-CSF (100μg/kg/day) or vehicle subcutaneously for 3days before surgery. As expected, G-CSF induced significant cardio-protections against I/R injury, characterized by higher ejection fraction (EF%), lower left ventricular end diastolic pressure (LVEDP), increased dp/dt value and decreased infarct area as compared with the vehicle treatment in WT mice. In HSF1-KO mice, however, these cardio-protections induced by G-CSF were greatly attenuated. Inhibition of oxidative stress-induced cardiomyocyte apoptosis by G-CSF also disappeared due to the deficiency of HSF1 in vitro and in vivo. Furthermore, G-CSF increased the phosphorylation and the association of Stat3 with HSF1, which enhanced transcriptional activity of HSF1. Inhibition of either Stat3 or HSF1 by pharmacological agents suppressed G-CSF-induced association of the two proteins and anti-apoptotic effect on cardiomyocytes. Our data suggest that G-CSF stimulates phosphorylation and association of Stat3 with HSF1 and therefore enhances transcriptional activity of HSF1, leading to the cardio-protection against I/R injury.
Collapse
Affiliation(s)
- Hong Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Elnakish MT, Awad MM, Hassona MDH, Alhaj MA, Kulkarni A, Citro LA, Sayyid M, Abouelnaga ZA, El-Sayed O, Kuppusamy P, Moldovan L, Khan M, Hassanain HH. Cardiac remodeling caused by transgenic overexpression of a corn Rac gene. Am J Physiol Heart Circ Physiol 2011; 301:H868-80. [PMID: 21622832 DOI: 10.1152/ajpheart.00807.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure.
Collapse
Affiliation(s)
- Mohammad T Elnakish
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Han J, Jiang DM, Du CQ, Hu SJ. Alteration of enzyme expressions in mevalonate pathway: possible role for cardiovascular remodeling in spontaneously hypertensive rats. Circ J 2011; 75:1409-17. [PMID: 21467659 DOI: 10.1253/circj.cj-10-1101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The mevalonate pathway is an important metabolic pathway that plays a key role in multiple cellular processes. The aim of this study was to define whether the enzyme expression in mevalonate pathway changes during cardiovascular remodelling in spontaneously hypertensive rats (SHR). METHODS AND RESULTS Hearts and thoracic aortas were removed for the study of cardiovascular remodeling in SHR and Wistar-Kyoto rats (WKY). The protein expression of the enzymes in hearts, aortas and livers was analyzed by western blot. The histological measurements showed that the mass and the size of cardiomyocytes, the media thickness and the media cross-sectional area (MCSA) of the thoracic aorta were all increased in SHR since 3 weeks of age. In the heart, there was overexpression of some enzymes, including 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), farnesyl diphosphate synthase (FDPS), and geranylgeranyltransferase type I (GGTase-I), and downregulation of squalene synthetase (SQS) in SHR since 3 weeks of age. In the aorta, besides similar expressions of HMGR, SQS, FDPS and GGTase-I as in the heart, there was upregulation of farnesyltransferase α at 16 and 25 weeks of age and of farnesyltransferase β in 25-weeks-old SHR. Western blot demonstrated overexpression of HMGR and downregulation of SQS in SHR livers at all ages tested. CONCLUSIONS The cardiovascular remodeling of SHR preceded the development of hypertension, and altered expression of several key enzymes in the mevalonate pathway may play a potential pathophysiological role in cardiovascular remodeling.
Collapse
Affiliation(s)
- Jie Han
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | |
Collapse
|
42
|
Micromechanical regulation in cardiac myocytes and fibroblasts: implications for tissue remodeling. Pflugers Arch 2011; 462:105-17. [PMID: 21308471 DOI: 10.1007/s00424-011-0931-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
Cells of the myocardium are at home in one of the most mechanically dynamic environments in the body. At the cellular level, pulsatile stimuli of chamber filling and emptying are experienced as cyclic strains (relative deformation) and stresses (force per unit area). The intrinsic characteristics of tension-generating myocytes and fibroblasts thus have a continuous mechanical interplay with their extrinsic surroundings. This review explores the ways that the micromechanics at the scale of single cardiac myocytes and fibroblasts have been measured, modeled, and recapitulated in vitro in the context of adaptation. Both types of cardiac cells respond to externally applied strain, and many of the intracellular mechanosensing pathways have been identified with the careful manipulation of experimental variables. In addition to strain, the extent of loading in myocytes and fibroblasts is also regulated by cues from the microenvironment such as substrate surface chemistry, stiffness, and topography. Combinations of these structural cues in three dimensions are needed to mimic the micromechanical complexity derived from the extracellular matrix of the developing, healthy, or pathophysiologic heart. An understanding of cardiac cell micromechanics can therefore inform the design and composition of tissue engineering scaffolds or stem cell niches for future applications in regenerative medicine.
Collapse
|
43
|
Maejima Y, Nobori K, Ono Y, Adachi S, Suzuki JI, Hirao K, Isobe M, Ito H, for the Heart Failure by Coadminist. Synergistic Effect of Combined HMG-CoA Reductase Inhibitor and Angiotensin-II Receptor Blocker Therapy in Patients With Chronic Heart Failure. Circ J 2011; 75:589-95. [DOI: 10.1253/circj.cj-10-0804] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Nakabayashi H, Shimizu K. HA1077, a Rho kinase inhibitor, suppresses glioma-induced angiogenesis by targeting the Rho-ROCK and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signal pathways. Cancer Sci 2010; 102:393-9. [DOI: 10.1111/j.1349-7006.2010.01794.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
45
|
Simvastatin prevents large blood pressure variability induced aggravation of cardiac hypertrophy in hypertensive rats by inhibiting RhoA/Ras–ERK pathways. Hypertens Res 2010; 34:341-7. [DOI: 10.1038/hr.2010.229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Ou L, Li W, Liu Y, Zhang Y, Jie S, Kong D, Steinhoff G, Ma N. Animal models of cardiac disease and stem cell therapy. Open Cardiovasc Med J 2010; 4:231-9. [PMID: 21258568 PMCID: PMC3024564 DOI: 10.2174/1874192401004010231] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 01/25/2023] Open
Abstract
Animal models that mimic cardiovascular diseases are indispensable tools for understanding the mechanisms underlying the diseases at the cellular and molecular level. This review focuses on various methods in preclinical research to create small animal models of cardiac diseases, such as myocardial infarction, dilated cardiomyopathy, heart failure, myocarditis and cardiac hypertrophy, and the related stem cell treatment for these diseases.
Collapse
Affiliation(s)
- Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kajimoto K, Shao D, Takagi H, Maceri G, Zablocki D, Mukai H, Ono Y, Sadoshima J. Hypotonic swelling-induced activation of PKN1 mediates cell survival in cardiac myocytes. Am J Physiol Heart Circ Physiol 2010; 300:H191-200. [PMID: 21037231 DOI: 10.1152/ajpheart.00232.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypotonic cell swelling in the myocardium is induced by pathological conditions, including ischemia-reperfusion, and affects the activities of ion transporters/channels and gene expression. However, the signaling mechanism activated by hypotonic stress (HS) is not fully understood in cardiac myocytes. A specialized protein kinase cascade, consisting of Pkc1 and MAPKs, is activated by HS in yeast. Here, we demonstrate that protein kinase N1 (PKN1), a serine/threonine protein kinase and a homolog of Pkc1, is activated by HS (67% osmolarity) within 5 min and reaches peak activity at 60 min in cardiac myocytes. Activation of PKN1 by HS was accompanied by Thr(774) phosphorylation and concomitant activation of PDK1, a potential upstream regulator of PKN1. HS also activated RhoA, thereby increasing interactions between PKN1 and RhoA. PP1 (10(-5) M), a selective Src family tyrosine kinase inhibitor, significantly suppressed HS-induced activation of RhoA and PKN1. Constitutively active PKN1 significantly increased the transcriptional activity of Elk1-GAL4, an effect that was inhibited by dominant negative MEK. Overexpression of PKN1 significantly increased ERK phosphorylation, whereas downregulation of PKN1 inhibited HS-induced ERK phosphorylation. Downregulation of PKN1 and inhibition of ERK by U-0126 both significantly inhibited the survival of cardiac myocytes in the presence of HS. These results suggest that a signaling cascade, consisting of Src, RhoA, PKN1, and ERK, is activated by HS, thereby promoting cardiac myocyte survival.
Collapse
Affiliation(s)
- Katsuya Kajimoto
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mohamed JS, Boriek AM. Stretch augments TGF-beta1 expression through RhoA/ROCK1/2, PTK, and PI3K in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2010; 299:L413-24. [PMID: 20511342 PMCID: PMC2951069 DOI: 10.1152/ajplung.90628.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 05/25/2010] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) expression in smooth muscle cells may play an important role in the pathogenesis of asthma. However, mechanisms that are involved in the regulation of TGF-beta1 gene expression in human airway smooth muscle cells (HASMCs) remain elusive. Here, we show that mechanical stretch of HASMCs augmented TGF-beta1 expression through a de novo RNA synthesis mechanism. Luciferase reporter assays revealed that stretch-induced TGF-beta1 expression was mediated through the enhanced activation of TGF-beta1 promoter. Interestingly, selective inhibitors of PTK, PI3K, or MEK1/2 attenuated TGF-beta1 expression through blocking ERK1/2 phosphorylation and TGF-beta1 promoter activity in response to stretch. In addition, stretch rapidly and transiently augmented GTP-bound RhoA and Rac1 but not Cdc42 GTPase. Either blockade of RhoA GTPase using C3 transferase, ROCK1/2 using Y27632, or knockdown of endogenous RhoA using RhoA siRNA attenuated stretch-induced TGF-beta1 expression through the inhibition of ERK1/2 phosphorylation. Moreover, stretch augmented DNA binding activity of AP-1 in a time-dependent manner. Either treatment of HASMCs with the inhibitors of RhoA, ROCK1/2, PTK, PI3K, MEK1/2, or AP-1 or transfection of HASMCs with AP-1 decoy oligonucleotide attenuated stretch-induced TGF-beta1 expression through repressing the DNA binding activity of AP-1. Site-directed mutagenesis demonstrated that two AP-1 binding sites in the TGF-beta1 promoter region are responsible for stretch-induced TGF-beta1 expression. Overall, in HASMCs, mechanical stretch plays an important role in TGF-beta1 gene upregulation through a stretch-induced signaling pathway, which could be a potential therapeutic intervention for TGF-beta1-induced pathogenesis in asthma.
Collapse
Affiliation(s)
- Junaith Shaik Mohamed
- Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
49
|
Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol Cell Biol 2010; 30:4134-48. [PMID: 20606005 DOI: 10.1128/mcb.00154-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Subjecting cardiomyocytes to mechanical stress or neurohumoral stimulation causes cardiac hypertrophy characterized in part by reactivation of the fetal cardiac gene program. Here we demonstrate a new common mechanism by which these stimuli are transduced to a signal activating the hypertrophic gene program. Mechanically stretching cardiomyocytes induced nuclear accumulation of myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), in a Rho- and actin dynamics-dependent manner. Expression of brain natriuretic peptide (BNP) and other SRF-dependent fetal cardiac genes in response to acute mechanical stress was blunted in mice lacking MRTF-A. Hypertrophic responses to chronic pressure overload were also significantly attenuated in mice lacking MRTF-A. Mutation of a newly identified, conserved and functional SRF-binding site within the BNP promoter, or knockdown of MRTF-A, reduced the responsiveness of the BNP promoter to mechanical stretch. Nuclear translocation of MRTF-A was also involved in endothelin-1- and angiotensin-II-induced activation of the BNP promoter. Moreover, mice lacking MRTF-A showed significantly weaker hypertrophic responses to chronic angiotensin II infusion than wild-type mice. Collectively, these findings point to nuclear translocation of MRTF-A as a novel signaling mechanism mediating both mechanical stretch- and neurohumoral stimulation-induced BNP gene expression and hypertrophic responses in cardiac myocytes.
Collapse
|
50
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 641] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|