1
|
Carlson AP, Mayer AR, Cole C, van der Horn HJ, Marquez J, Stevenson TC, Shuttleworth CW. Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia. Rev Neurosci 2024; 35:651-678. [PMID: 38581271 PMCID: PMC11297425 DOI: 10.1515/revneuro-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Andrew R. Mayer
- Mind Research Network, 1101 Yale, Blvd, NE, Albuquerque, NM, 87106, USA
| | - Chad Cole
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | | | - Joshua Marquez
- University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Taylor C. Stevenson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| |
Collapse
|
2
|
He F, Zhou X, Cheng J, Zhang P, Zhao J, Liang Y, Hou Y, Liu W, Han D. MRI-Based Interstitial Fluid Velocity Analysis for Drug Delivery Efficiency Evaluation in Tumor. Anal Chem 2024; 96:204-211. [PMID: 38148285 DOI: 10.1021/acs.analchem.3c03678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
There are many flow behaviors in solid tumors, including intravascular, bloodstream, and interstitial convection. Studies have shown that tumor interstitial fluid (TIF) is an important part of tumor microenvironment regulation and affects drug delivery and metabolism between tumor cells. Magnetic resonance imaging (MRI) is suitable for detecting the flow rates of liquids in tissues. Clinical phase contrast PC-MRI technology has been designed to observe the blood flow in large vessels such as arteries and veins; however, it is not sensitive enough to deal with slow flow velocity. Our previously developed vertical plane echo PC-MRI technology, the Velocity Mapping sequence, improved the signal-to-noise ratio (SNR) for measuring slow interstitial fluid rate. In this study, this sequence was used to determine the TIF flow rate in MDA-MB-231 human breast tumor cells used in BALB/c nude male mice. Two different sizes of contrast agents were intravenously injected, and the relationship between their distribution and the TIF flow rate was studied for the first time. Combining the results of clinical scanning showed that small-molecule DTPA-Gd (diethylenetriaminepentaacetic acid-gadolinium) was distributed immediately around the tumor margin after the injection. This distribution was positively correlated to the high flow rate area of the TIF before administration. In contrast, nanoparticles NaGdF4-PEG (polyethylene glycol) entered the tumor and reached their peak at 3 h. Drug distribution was negatively correlated with the high-flow-rate region of the TIF. Investigation of the TIF velocity can help better understand the fluid behavior in tumors and its role in drug delivery.
Collapse
Affiliation(s)
- Fangfei He
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohan Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wentao Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Khaw AV, Thiessen JD, St. Lawrence K, Pandey SK. The Quest of Characterizing Hemodynamic Failure in Patients With Cerebrovascular Disease. J Am Heart Assoc 2023; 12:e032657. [PMID: 38084748 PMCID: PMC10863759 DOI: 10.1161/jaha.123.032657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/20/2023]
Affiliation(s)
- Alexander V. Khaw
- Department of Clinical Neurosciences, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
- Department of Medical Biophysics, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Jonathan D. Thiessen
- Lawson Health Research InstituteLondonOntarioCanada
- Department of Medical Biophysics, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
- Department of Medical Imaging, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Keith St. Lawrence
- Lawson Health Research InstituteLondonOntarioCanada
- Department of Medical Biophysics, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
- Department of Medical Imaging, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Sachin K. Pandey
- Department of Medical Imaging, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
4
|
Zhao MY, Woodward A, Fan AP, Chen KT, Yu Y, Chen DY, Moseley ME, Zaharchuk G. Reproducibility of cerebrovascular reactivity measurements: A systematic review of neuroimaging techniques . J Cereb Blood Flow Metab 2022; 42:700-717. [PMID: 34806918 PMCID: PMC9254040 DOI: 10.1177/0271678x211056702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebrovascular reactivity (CVR), the capacity of the brain to increase cerebral blood flow (CBF) to meet changes in physiological demand, is an important biomarker to evaluate brain health. Typically, this brain "stress test" is performed by using a medical imaging modality to measure the CBF change between two states: at baseline and after vasodilation. However, since there are many imaging modalities and many ways to augment CBF, a wide range of CVR values have been reported. An understanding of CVR reproducibility is critical to determine the most reliable methods to measure CVR as a clinical biomarker. This review focuses on CVR reproducibility studies using neuroimaging techniques in 32 articles comprising 427 total subjects. The literature search was performed in PubMed, Embase, and Scopus. The review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We identified 5 factors of the experimental subjects (such as sex, blood characteristics, and smoking) and 9 factors of the measuring technique (such as the imaging modality, the type of the vasodilator, and the quantification method) that have strong effects on CVR reproducibility. Based on this review, we recommend several best practices to improve the reproducibility of CVR quantification in neuroimaging studies.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Amanda Woodward
- Lane Medical Library, Stanford University, Stanford, CA, USA
| | - Audrey P Fan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA.,Department of Neurology, University of California Davis, Davis, CA, USA
| | - Kevin T Chen
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Yannan Yu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - David Y Chen
- Department of Medical Imaging, Taipei Medical University - Shuan-Ho Hospital, New Taipei City.,Department of Radiology, School of Medicine, Taipei Medical University, Taipei *Research materials supporting this publication can be accessed at https://doi.org/10.25740/hd852bg4538
| | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Toro EF, Celant M, Zhang Q, Contarino C, Agarwal N, Linninger A, Müller LO. Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting: Mathematical models, numerical methods and applications. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3532. [PMID: 34569188 PMCID: PMC9285081 DOI: 10.1002/cnm.3532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
This paper presents a mathematical model of the global, arterio-venous circulation in the entire human body, coupled to a refined description of the cerebrospinal fluid (CSF) dynamics in the craniospinal cavity. The present model represents a substantially revised version of the original Müller-Toro mathematical model. It includes one-dimensional (1D), non-linear systems of partial differential equations for 323 major blood vessels and 85 zero-dimensional, differential-algebraic systems for the remaining components. Highlights include the myogenic mechanism of cerebral blood regulation; refined vasculature for the inner ear, the brainstem and the cerebellum; and viscoelastic, rather than purely elastic, models for all blood vessels, arterial and venous. The derived 1D parabolic systems of partial differential equations for all major vessels are approximated by hyperbolic systems with stiff source terms following a relaxation approach. A major novelty of this paper is the coupling of the circulation, as described, to a refined description of the CSF dynamics in the craniospinal cavity, following Linninger et al. The numerical solution methodology employed to approximate the hyperbolic non-linear systems of partial differential equations with stiff source terms is based on the Arbitrary DERivative Riemann problem finite volume framework, supplemented with a well-balanced formulation, and a local time stepping procedure. The full model is validated through comparison of computational results against published data and bespoke MRI measurements. Then we present two medical applications: (i) transverse sinus stenoses and their relation to Idiopathic Intracranial Hypertension; and (ii) extra-cranial venous strictures and their impact in the inner ear circulation, and its implications for Ménière's disease.
Collapse
Affiliation(s)
| | - Morena Celant
- Department of MathematicsUniversity of TrentoTrentoItaly
| | - Qinghui Zhang
- Laboratory of Applied Mathematics, DICAMUniversity of TrentoTrentoItaly
| | | | | | - Andreas Linninger
- Department of BioengineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | | |
Collapse
|
6
|
Tamayo A, Siepmann T. Regulation of Blood Flow in the Cerebral Posterior Circulation by Parasympathetic Nerve Fibers: Physiological Background and Possible Clinical Implications in Patients With Vertebrobasilar Stroke. Front Neurol 2021; 12:660373. [PMID: 34777191 PMCID: PMC8585859 DOI: 10.3389/fneur.2021.660373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023] Open
Abstract
Posterior circulation involves the vertebrobasilar arteries, which supply oxygen and glucose to vital human brainstem structures and other areas. This complex circulatory- perfusion system is not homogenous throughout the day; rather, its hemodynamic changes rely on physiological demands, ensuring brainstem perfusion. This dynamic autoregulatory pattern maintains cerebral perfusion during blood pressure changes. Accumulative evidence suggests that activity within the autonomic nervous system is involved in the regulation of cerebral blood flow. Neither the sympathetic nor parasympathetic nervous systems work independently. Functional studies have shown a tight and complicated cross talk between these systems. In pathological processes where sympathetic stimulation is present, systemic vasoconstriction is followed, representing the most important CNS parasympathetic trigger that will promote local vasodilation. Stroke is a clear example of this process. The posterior circulation is affected in 30% of strokes, causing high morbidity and mortality outcomes. Currently, the management of ischemic stroke is focused on thrombolytic treatment and endovascular thrombectomy within an overall tight 4.5 to 6 h ischemic time window. Therefore, the autonomic nervous system could represent a potential therapeutic target to modulate reperfusion after cerebral ischemia through vasodilation, which could potentially decrease infarct size and increase the thrombolytic therapeutic ischemic window. In addition, shifting the autonomic nervous system balance toward its parasympathetic branch has shown to enhance neurogenesis and decrease local inflammation. Regretfully, the vast majority of animal models and human research on neuromodulation during brain ischemia have been focused on anterior circulation with disappointing results. In addition, the source of parasympathetic inputs in the vertebrobasilar system in humans is poorly understood, substantiating a gap and controversy in this area. Here, we reviewed current available literature regarding the parasympathetic vascular function and challenges of its stimulation in the vertebrobasilar system.
Collapse
Affiliation(s)
- Arturo Tamayo
- The Max Rady Faculty of Health Sciences, Department of Medicine, Section of Neurology, WRHA, Winnipeg and Brandon Regional Health Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Health Care Sciences, Center for Clinical Research and Management Education, Dresden International University, Dresden, Germany
| | - Timo Siepmann
- Department of Health Care Sciences, Center for Clinical Research and Management Education, Dresden International University, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Lewis N, Lu H, Liu P, Hou X, Damaraju E, Iraji A, Calhoun V. Static and dynamic functional connectivity analysis of cerebrovascular reactivity: An fMRI study. Brain Behav 2020; 10:e01516. [PMID: 32342644 PMCID: PMC7303385 DOI: 10.1002/brb3.1516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/20/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cerebrovascular reactivity (CVR) is an important aspect of brain function, and as such it is important to understand relationship between CVR and functional connectivity. METHODS This research studied the role of CVR, or the brain's ability to react to vasoactive stimuli on brain functional connectivity by scanning subjects with blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) while they periodically inhale room air and a CO 2-enriched gas mixture. We developed a new metric to measure the effect of CVR on each intrinsic connectivity network (ICN), which contrasts to voxel-wise CVR. We also studied the changes in whole-brain connectivity patterns using both static functional network connectivity (sFNC) and dynamic FNC (dFNC). RESULTS We found that network connectivity is generally weaker during vascular dilation, which is supported by previous research. The dFNC analysis revealed that participants did not return to the pre-CO 2 inhalation state, suggesting that one-minute periods of room-air inhalation is not enough for the CO 2 effect to fully dissipate. CONCLUSIONS Cerebrovascular reactivity is one tool that the cerebrovascular system uses to ensure the constant, finely-tuned flow of oxygen to function properly. Understanding the relationship between CVR and brain dynamism can provide unique information about cerebrovascular diseases and general brain function. We observed that CVR has a wide, but consistent relationship to connectivity patterns between functional networks.
Collapse
Affiliation(s)
- Noah Lewis
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia institute of Technology, Emory UniversityAtlantaGAUSA
- Department of Computer ScienceUniversity of New MexicoAlbuquerqueNMUSA
| | - Hanzhang Lu
- Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Peiying Liu
- Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Xirui Hou
- Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Eswar Damaraju
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia institute of Technology, Emory UniversityAtlantaGAUSA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia institute of Technology, Emory UniversityAtlantaGAUSA
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia institute of Technology, Emory UniversityAtlantaGAUSA
- Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| |
Collapse
|
8
|
Liu P, Xu C, Lin Z, Sur S, Li Y, Yasar S, Rosenberg P, Albert M, Lu H. Cerebrovascular reactivity mapping using intermittent breath modulation. Neuroimage 2020; 215:116787. [PMID: 32278094 DOI: 10.1016/j.neuroimage.2020.116787] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cerebrovascular reactivity (CVR), an index of brain vessel's dilatory capacity, is typically measured using hypercapnic gas inhalation or breath-holding as a vasoactive challenge. However, these methods require considerable subject cooperation and could be challenging in clinical studies. More recently, there have been attempts to use resting-state BOLD data to map CVR by utilizing spontaneous changes in breathing pattern. However, in subjects who have small fluctuations in their spontaneous breathing pattern, the CVR results could be noisy and unreliable. In this study, we aim to develop a new method for CVR mapping that does not require gas-inhalation yet provides substantially higher sensitivity than resting-state CVR mapping. This new method is largely based on resting-state scan, but introduces intermittent modulation of breathing pattern in the subject to enhance fluctuations in their end-tidal CO2 (EtCO2) level. Here we examined the comfort level, sensitivity, and accuracy of this method in two studies. First, in 8 healthy young subjects, we developed the intermittent breath-modulation method using two different modulation frequencies, 6 s per breath and 12 s per breath, respectively, and compared the results to three existing CVR methods, specifically hypercapnic gas inhalation, breath-holding, and resting-state. Our results showed that the comfort level of the 6-s breath-modulation method was significantly higher than breath-holding (p = 0.007) and CO2-inhalation (p = 0.015) methods, while not different from the resting-state, i.e. free breathing method (p = 0.52). When comparing the sensitivity of CVR methods, the breath-modulation methods revealed higher Z-statistics compared to the resting-state scan (p < 0.008) and was comparable to breath-holding results. Next, we tested the feasibility of breath-modulation CVR mapping (6 s per breath) in 21 cognitively normal elderly participants and compared quantitative CVR values to that obtained with the CO2-inhalation method. Whole-brain CVR was found to be 0.150 ± 0.055 and 0.154 ± 0.032 %ΔBOLD/mmHg for the breath-modulation and CO2-inhalation method, respectively, with a significant correlation between them (y = 0.97x, p = 0.007). CVR mapping with intermittent breath modulation may be a useful method that combines the advantages of resting-state and CO2-inhalation based approaches.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Cuimei Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandeepa Sur
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| |
Collapse
|
9
|
Evaluation of cerebrovascular reserve in patients with cerebrovascular diseases using resting-state MRI: A feasibility study. Magn Reson Imaging 2019; 59:46-52. [PMID: 30849484 DOI: 10.1016/j.mri.2019.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE To demonstrate the feasibility of mapping cerebrovascular reactivity (CVR) using resting-state functional MRI (fMRI) data without gas or other challenges in patients with cerebrovascular diseases and to show that brain regions affected by the diseases have diminished vascular reactivity. MATERIALS AND METHODS Two sub-studies were performed on patients with stroke and Moyamoya disease. In Study 1, 20 stroke patients (56.3 ± 9.7 years, 7 females) were enrolled and resting-state blood‑oxygenation-level-dependent (rs-BOLD) fMRI data were collected, from which CVR maps were computed. CVR values were compared across lesion, perilesional and control ROIs defined on anatomic images. Reproducibility of the CVR measurement was tested in 6 patients with follow-up scans. In Study 2, rs-BOLD fMRI and dynamic susceptibility contrast (DSC) MRI scans were collected in 5 patients with Moyamoya disease (32.4 ± 8.2 years, 4 females). Cerebral blood flow (CBF), cerebral blood volume (CBV), and time-to-peak (TTP) maps were obtained from the DSC MRI data. CVR values were compared between stenotic brain regions and control regions perfused by non-stenotic arteries. RESULTS In stroke patients, lesion CVR (0.250 ± 0.055 relative unit (r.u.)) was lower than control CVR (0.731 ± 0.088 r.u., p = 0.0002). CVR was also lower in the perilesional regions in a graded manner (perilesion 1 CVR = 0.422 ± 0.051 r.u., perilesion 2 CVR = 0.492 ± 0.046 r.u.), relative to that in the control regions (p = 0.005 and 0.036, respectively). In the repeatability analysis, a strong correlation was observed between lesion CVR (r2 = 0.91, p = 0.006) measured at two time points, as well as between control CVR (r2 = 0.79, p = 0.036) at two time points. In Moyamoya patients, CVR in the perfusion deficit regions delineated by DSC TTP maps (0.178 ± 0.189 r.u.) was lower than that in the control regions (0.868 ± 0.214 r.u., p = 0.013). Furthermore, the extent of reduction in CVR was significantly correlated with the extent of lengthening in TTP (r2 = 0.91, p = 0.033). CONCLUSION Our findings suggested that rs-BOLD data can be used to reproducibly evaluate CVR in patients with cerebrovascular diseases without the use of any vasoactive challenges.
Collapse
|
10
|
Juttukonda MR, Donahue MJ. Neuroimaging of vascular reserve in patients with cerebrovascular diseases. Neuroimage 2019; 187:192-208. [PMID: 29031532 PMCID: PMC5897191 DOI: 10.1016/j.neuroimage.2017.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/21/2022] Open
Abstract
Cerebrovascular reactivity, defined broadly as the ability of brain parenchyma to adjust cerebral blood flow in response to altered metabolic demand or a vasoactive stimulus, is being measured with increasing frequency and may have a use for portending new or recurrent stroke risk in patients with cerebrovascular disease. The purpose of this review is to outline (i) the physiological basis of variations in cerebrovascular reactivity, (ii) available approaches for measuring cerebrovascular reactivity in research and clinical settings, and (iii) clinically-relevant cerebrovascular reactivity findings in the context of patients with cerebrovascular disease, including atherosclerotic arterial steno-occlusion, non-atherosclerotic arterial steno-occlusion, anemia, and aging. Literature references summarizing safety considerations for these procedures and future directions for standardizing protocols and post-processing procedures across centers are presented in the specific context of major unmet needs in the setting of cerebrovascular disease.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Liu P, De Vis JB, Lu H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review. Neuroimage 2018; 187:104-115. [PMID: 29574034 DOI: 10.1016/j.neuroimage.2018.03.047] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular reserve and provides important information about vascular health in a range of brain conditions and diseases. Unlike steady-state vascular parameters, such as cerebral blood flow (CBF) and cerebral blood volume (CBV), CVR measures the ability of cerebral vessels to dilate or constrict in response to challenges or maneuvers. Therefore, CVR mapping requires a physiological challenge while monitoring the corresponding hemodynamic changes in the brain. The present review primarily focuses on methods that use CO2 inhalation as a physiological challenge while monitoring changes in hemodynamic MRI signals. CO2 inhalation has been increasingly used in CVR mapping in recent literature due to its potency in causing vasodilation, rapid onset and cessation of the effect, as well as advances in MRI-compatible gas delivery apparatus. In this review, we first discuss the physiological basis of CVR mapping using CO2 inhalation. We then review the methodological aspects of CVR mapping, including gas delivery apparatus, the timing paradigm of the breathing challenge, the MRI imaging sequence, and data analysis. In addition, we review alternative approaches for CVR mapping that do not require CO2 inhalation.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| | - Jill B De Vis
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, 21287, United States; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, United States
| |
Collapse
|
12
|
Kramer LA, Hasan KM, Sargsyan AE, Marshall-Goebel K, Rittweger J, Donoviel D, Higashi S, Mwangi B, Gerlach DA, Bershad EM. Quantitative MRI volumetry, diffusivity, cerebrovascular flow, and cranial hydrodynamics during head-down tilt and hypercapnia: the SPACECOT study. J Appl Physiol (1985) 2017; 122:1155-1166. [DOI: 10.1152/japplphysiol.00887.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/24/2017] [Accepted: 02/11/2017] [Indexed: 01/17/2023] Open
Abstract
To improve the pathophysiological understanding of visual changes observed in astronauts, we aimed to use quantitative MRI to measure anatomic and physiological responses during a ground-based spaceflight analog (head-down tilt, HDT) combined with increased ambient carbon dioxide (CO2). Six healthy, male subjects participated in the double-blinded, randomized crossover design study with two conditions: 26.5 h of −12° HDT with ambient air and with 0.5% CO2, both followed by 2.5-h exposure to 3% CO2. Volume and mean diffusivity quantification of the lateral ventricle and phase-contrast flow sequences of the internal carotid arteries and cerebral aqueduct were acquired at 3 T. Compared with supine baseline, HDT (ambient air) resulted in an increase in lateral ventricular volume ( P = 0.03). Cerebral blood flow, however, decreased with HDT in the presence of either ambient air or 0.5% CO2( P = 0.002 and P = 0.01, respectively); this was partially reversed by acute 3% CO2exposure. Following HDT (ambient air), exposure to 3% CO2increased aqueductal cerebral spinal fluid velocity amplitude ( P = 0.01) and lateral ventricle cerebrospinal fluid (CSF) mean diffusivity ( P = 0.001). We concluded that HDT causes alterations in cranial anatomy and physiology that are associated with decreased craniospinal compliance. Brief exposure to 3% CO2augments CSF pulsatility within the cerebral aqueduct and lateral ventricles.NEW & NOTEWORTHY Head-down tilt causes increased lateral ventricular volume and decreased cerebrovascular flow after 26.5 h. Additional short exposure to 3% ambient carbon dioxide levels causes increased cerebrovascular flow associated with increased cerebrospinal fluid pulsatility at the cerebral aqueduct. Head-down tilt with chronically elevated 0.5% ambient carbon dioxide and acutely elevated 3% ambient carbon dioxide causes increased mean diffusivity of cerebral spinal fluid within the lateral ventricles.
Collapse
Affiliation(s)
- Larry A. Kramer
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Khader M. Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | | | - Karina Marshall-Goebel
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medicine, University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Dorit Donoviel
- Department of Pharmacology and Space Medicine, Baylor College of Medicine, Houston, Texas
| | - Saki Higashi
- Tokushima University Medical School, Tokushima, Japan
| | - Benson Mwangi
- Department of Behavioral Sciences, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas; and
| | - Darius A. Gerlach
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Eric M. Bershad
- Neurology and Space Medicine, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
13
|
Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. NEUROPHOTONICS 2016; 3:031411. [PMID: 27403447 PMCID: PMC4914489 DOI: 10.1117/1.nph.3.3.031411] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/10/2016] [Indexed: 05/23/2023]
Abstract
Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation.
Collapse
Affiliation(s)
- Sergio Fantini
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Kristen T. Tgavalekos
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Joshua Kornbluth
- Tufts University School of Medicine, Department of Neurology, Division of Neurocritical Care, 800 Washington Street, Box #314, Boston, Massachusetts 02111, United States
| |
Collapse
|
14
|
Nasrallah FA, Yeow LY, Biswal B, Chuang KH. Dependence of BOLD signal fluctuation on arterial blood CO2 and O2: Implication for resting-state functional connectivity. Neuroimage 2015; 117:29-39. [PMID: 26003858 DOI: 10.1016/j.neuroimage.2015.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/22/2015] [Accepted: 05/13/2015] [Indexed: 11/16/2022] Open
Abstract
Blood oxygenation level dependent (BOLD) functional MRI signal is known to be modulated by the CO2 level. Typically only end-tidal CO2, rather than the arterial partial pressure of CO2 (paCO2), was measured while the arterial partial pressure of O2 (paO2) level was not controlled due to free breathing, making their contribution not separable. Especially, the influences of paO2 and paCO2 on resting-state functional connectivity are not well studied. In this study, we investigated the relationship between paCO2 and resting as well as stimulus-evoked BOLD signals under hyperoxic and hypercapnic manipulation with tight control of arterial paO2. Rats under isoflurane anesthesia were subjected to six inspired gas conditions: 47% O2 in air (Normal), adding 1%, 2% or 5% CO2, carbogen (95% O2/5% CO2), and 100% O2. Somatosensory BOLD activation was significantly increased under 100% O2, while reduced with increased paCO2 levels. However, while resting BOLD connectivity pattern expanded and bilateral correlation increased under 100% O2, the correlation coefficient between the left and right somatosensory cortex was generally not dependent on paCO2 or paO2. Interestingly, the correlation in 0.04-0.07Hz range significantly increased with CO2 levels. Intracortical electrophysiological recordings showed a similar trend as the BOLD but the neurovascular coupling varied. The results suggest that paO2 and paCO2 together rather than paCO2 alone alter the BOLD signal. The response is not purely vascular in nature but has strong neuronal origins. This should be taken into consideration when designing calibrated BOLD experiment and interpreting functional connectivity data especially in aging, under drug, or neurological disorders.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Ling Yun Yeow
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore; Clinical Imaging Research Centre, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Fan AP, Evans KC, Stout JN, Rosen BR, Adalsteinsson E. Regional quantification of cerebral venous oxygenation from MRI susceptibility during hypercapnia. Neuroimage 2014; 104:146-55. [PMID: 25300201 DOI: 10.1016/j.neuroimage.2014.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/18/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022] Open
Abstract
There is an unmet medical need for noninvasive imaging of regional brain oxygenation to manage stroke, tumor, and neurodegenerative diseases. Oxygenation imaging from magnetic susceptibility in MRI is a promising new technique to measure local venous oxygen extraction fraction (OEF) along the cerebral venous vasculature. However, this approach has not been tested in vivo at different levels of oxygenation. The primary goal of this study was to test whether susceptibility imaging of oxygenation can detect OEF changes induced by hypercapnia, via CO2 inhalation, within selected a priori brain regions. Ten healthy subjects were scanned at 3T with a 32-channel head coil. The end-tidal CO2 (ETCO2) was monitored continuously and inspired gases were adjusted to achieve steady-state conditions of eucapnia (41±3mmHg) and hypercapnia (50±4mmHg). Gradient echo phase images and pseudo-continuous arterial spin labeling (pcASL) images were acquired to measure regional OEF and CBF respectively during eucapnia and hypercapnia. By assuming constant cerebral oxygen consumption throughout both gas states, regional CBF values were computed to predict the local change in OEF in each brain region. Hypercapnia induced a relative decrease in OEF of -42.3% in the straight sinus, -39.9% in the internal cerebral veins, and approximately -50% in pial vessels draining each of the occipital, parietal, and frontal cortical areas. Across volunteers, regional changes in OEF correlated with changes in ETCO2. The reductions in regional OEF (via phase images) were significantly correlated (P<0.05) with predicted reductions in OEF derived from CBF data (via pcASL images). These findings suggest that susceptibility imaging is a promising technique for OEF measurements, and may serve as a clinical biomarker for brain conditions with aberrant regional oxygenation.
Collapse
Affiliation(s)
- Audrey P Fan
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA.
| | - Karleyton C Evans
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Psychiatry, Massachusetts General Hospital East, 149 Thirteenth Street, Charlestown, MA, USA.
| | - Jeffrey N Stout
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Bruce R Rosen
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Elfar Adalsteinsson
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| |
Collapse
|
16
|
New brain reperfusion rehabilitation therapy improves cognitive impairment in mild Alzheimer's disease: a prospective, controlled, open-label 12-month study with NIRS correlates. Aging Clin Exp Res 2014; 26:417-25. [PMID: 24338518 DOI: 10.1007/s40520-013-0185-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS A large body of evidence indicates that cerebral hypoperfusion is one of the earliest signs in the development of Alzheimer's disease (AD). The aim of our study was to evaluate whether the brain reperfusion rehabilitation therapy (BRRT) would improve verbal memory and learning and/or global cognitive impairment in mild AD. METHODS Using a prospective, controlled, open-label 12-month study, we enrolled 15 patients with mild AD, who underwent BRRT program (BRRT group), and 10 age-sex-matched mild AD patients, who received no treatment (control group). At baseline (T0), and at the end of the 3 months (T3), 6 months (T6) and 12 months (T12) participants from both groups were given an evaluation, using Mini-Mental State Examination (MMSE) and Rey Auditory Verbal Learning Test (RAVLT). In both groups by using near-infrared spectroscopy, at T0 and T12, we measured tissue oxygen saturation (TOI) on temporal-parietal and frontal cortex of both sides. RESULTS Ten patients from the BRRT group and 10 from the control group completed the 12-month follow-up. At the end of rehabilitation protocol, a significant improvement of MMSE and RAVLT was observed in the BRRT group as compared to control group. At T12 compared to T0, a significant improvement of TOI on frontal cortex of both sides was observed in the BRRT group as compared to control group. CONCLUSION BRRT improves verbal memory-learning and global cognitive impairment which are associated with increased TOI values on frontal cortex of both sides.
Collapse
|
17
|
Müller LO, Toro EF. A global multiscale mathematical model for the human circulation with emphasis on the venous system. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:681-725. [PMID: 24431098 DOI: 10.1002/cnm.2622] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/04/2013] [Accepted: 11/20/2013] [Indexed: 05/29/2023]
Abstract
We present a global, closed-loop, multiscale mathematical model for the human circulation including the arterial system, the venous system, the heart, the pulmonary circulation and the microcirculation. A distinctive feature of our model is the detailed description of the venous system, particularly for intracranial and extracranial veins. Medium to large vessels are described by one-dimensional hyperbolic systems while the rest of the components are described by zero-dimensional models represented by differential-algebraic equations. Robust, high-order accurate numerical methodology is implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that includes variable material properties. Because of the large intersubject variability of the venous system, we perform a patient-specific characterization of major veins of the head and neck using MRI data. Computational results are carefully validated using published data for the arterial system and most regions of the venous system. For head and neck veins, validation is carried out through a detailed comparison of simulation results against patient-specific phase-contrast MRI flow quantification data. A merit of our model is its global, closed-loop character; the imposition of highly artificial boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of particular interest is the study of some neurodegenerative diseases, whose venous haemodynamic connection has recently been identified by medical researchers.
Collapse
Affiliation(s)
- Lucas O Müller
- Laboratory of Applied Mathematics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38100, Trento, Italy
| | | |
Collapse
|
18
|
van Bogerijen GHW, van Herwaarden JA, Conti M, Auricchio F, Rampoldi V, Trimarchi S, Moll FL. Importance of dynamic aortic evaluation in planning TEVAR. Ann Cardiothorac Surg 2014; 3:300-6. [PMID: 24967170 DOI: 10.3978/j.issn.2225-319x.2014.04.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/27/2014] [Indexed: 11/14/2022]
Abstract
Dynamic aortic evaluation in planning thoracic endovascular aortic repair (TEVAR) is important to provide optimal stent graft sizing. Static imaging protocols do not consider normal aortic dynamics and may lead to stent graft to aorta mismatch, causing stent graft related complications, such as type I endoleak and stent graft migration. Dynamic imaging can assist in accurate stent graft selection and sizing preoperatively, and evaluate stent graft performance during follow-up. To create new imaging technologies, integration of knowledge between diverse scientific fields is essential (i.e., engineering, informatics and medicine). Different dynamic imaging modalities, such as electrocardiographic-gated computed tomography angiography (ECG-gated CTA) and four-dimensional phase-contrast MRI (4D PC-MRI), are progressively investigated and implemented into clinical practice as important instruments in preoperative planning for TEVAR. In time, further application of dynamic imaging tools for preoperative screening and follow-up after TEVAR might lead to better outcomes for patients. The advances in dynamic imaging for evaluation of the thoracic aorta using new imaging modalities and their future perspectives are addressed in this manuscript.
Collapse
Affiliation(s)
- Guido H W van Bogerijen
- 1 Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands ; 2 Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy ; 3 Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Italy
| | - Joost A van Herwaarden
- 1 Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands ; 2 Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy ; 3 Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Italy
| | - Michele Conti
- 1 Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands ; 2 Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy ; 3 Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Italy
| | - Ferdinando Auricchio
- 1 Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands ; 2 Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy ; 3 Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Italy
| | - Vincenzo Rampoldi
- 1 Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands ; 2 Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy ; 3 Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Italy
| | - Santi Trimarchi
- 1 Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands ; 2 Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy ; 3 Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Italy
| | - Frans L Moll
- 1 Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands ; 2 Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy ; 3 Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Italy
| |
Collapse
|
19
|
Caputi L, Ghielmetti F, Faragò G, Longaretti F, Lamperti M, Anzola GP, Carriero MR, Charbel FT, Bruzzone MG, Parati E, Ciceri E. Cerebrovascular reactivity by quantitative magnetic resonance angiography with a Co₂ challenge. Validation as a new imaging biomarker. Eur J Radiol 2014; 83:1005-1010. [PMID: 24721002 DOI: 10.1016/j.ejrad.2014.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
Assessment of cerebrovascular reactivity (CVR) is essential in cerebrovascular diseases, as exhausted CVR may enhance the risk of cerebral ischemic events. Transcranial Doppler (TCD) with a vasodilatory stimulus is currently used for CVR evaluation. Scanty data are available for Quantitative Magnetic Resonance Angiography (QMRA), which supplies higher spatial resolution and quantitative cerebral blood flow values. Aims of our pilot study were: (a) to assess safety and feasibility of CO2 administration during QMRA, (b) evaluation of CVR under QMRA compared to TCD, and (c) quantitative evaluation of blood flow from the major intracranial arterial vessels both at rest and after CO2. CVR during 5% CO2 air breathing was measured with TCD as a reference method and compared with QMRA. Fifteen healthy subjects (age 60.47 ± 2.24; male 11/15) were evaluated at rest and during CO2 challenge. Feasibility and safety of QMRA under CO2 were ensured in all subjects. CVR from middle cerebral artery territory was not statistically different between TCD and MRI (p>0.05). Mean arterial pressure (MAP) and heart rate (HR) increased during QMRA and TCD (MAP p=0.007 and p=0.001; HR p=0.043 and p=0.068, respectively). Blood flow values from all intracranial vessels increased after CO2 inhalation (p<0.001). CO2 administration during QMRA sessions is safe and feasible. Good correlation in terms of CVR was obtained comparing TCD and QMRA. Blood flow values significantly increased from all intracranial arterial vessels after CO2. Studies regarding CVR in physiopathological conditions might consider the utilization of QMRA both in routine clinical settings and in research projects.
Collapse
Affiliation(s)
- Luigi Caputi
- Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Francesco Ghielmetti
- Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Giuseppe Faragò
- Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Fabio Longaretti
- Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Massimo Lamperti
- Department of Neuroanesthesia and Intensive Care, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Gian Paolo Anzola
- Service of Neurology, S. Orsola Hospital, Fondazione Poliambulanza, Via Vittorio Emanuele II 27, 25122 Brescia, Italy.
| | - Maria Rita Carriero
- Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Fady T Charbel
- Department of Neurosurgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA.
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Eugenio Parati
- Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Elisa Ciceri
- Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|
20
|
Juan CJ, Liu YJ, Huang TY, Chen CY, Huang GS. Measuring steady-state cerebral vasomotor reactivity using non-triggered phase-contrast magnetic resonance imaging. Magn Reson Imaging 2014; 32:487-90. [PMID: 24629509 DOI: 10.1016/j.mri.2013.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/05/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
Abstract
To investigate cVMR by using CO2-based hypercapnic challenge and blood flow monitoring employing non-triggered phase contrast (PC) magnetic resonance imaging. Six healthy volunteers (6 male; mean age: 29 years) participated this study after providing institutionally approved consent. This study used non-triggered PC imaging to increase temporal resolution of dynamic blood flow measurements, allowing real-time monitoring of the hypercapnic challenge response. Results suggest that vasomotor reactivity measured by non-triggered PC imaging is positively associated with the concentration of inhaled CO2. This study concludes that CO2 challenge combined with non-triggered PC flow imaging is potentially useful to provide diagnostic information for patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Chun-Jung Juan
- Department of Radiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Jui Liu
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan, ROC.
| | - Teng-Yi Huang
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
| | - Cheng-Yu Chen
- Graduate Institute of Clinical Medcine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Chang K, Barnes S, Haacke EM, Grossman RI, Ge Y. Imaging the effects of oxygen saturation changes in voluntary apnea and hyperventilation on susceptibility-weighted imaging. AJNR Am J Neuroradiol 2013; 35:1091-5. [PMID: 24371029 DOI: 10.3174/ajnr.a3818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Cerebrovascular oxygenation changes during respiratory challenges have clinically important implications for brain function, including cerebral autoregulation and the rate of brain metabolism. SWI is sensitive to venous oxygenation level by exploitation of the magnetic susceptibility of deoxygenated blood. We assessed cerebral venous blood oxygenation changes during simple voluntary breath-holding (apnea) and hyperventilation by use of SWI at 3T. MATERIALS AND METHODS We performed SWI scans (3T; acquisition time of 1 minute, 28 seconds; centered on the anterior commissure and the posterior commissure) on 10 healthy male volunteers during baseline breathing as well as during simple voluntary hyperventilation and apnea challenges. The hyperventilation and apnea tasks were separated by a 5-minute resting period. SWI venograms were generated, and the signal changes on SWI before and after the respiratory stress tasks were compared by means of a paired Student t test. RESULTS Changes in venous vasculature visibility caused by the respiratory challenges were directly visualized on the SWI venograms. The venogram segmentation results showed that voluntary apnea decreased the mean venous blood voxel number by 1.6% (P < .0001), and hyperventilation increased the mean venous blood voxel number by 2.7% (P < .0001). These results can be explained by blood CO2 changes secondary to the respiratory challenges, which can alter cerebrovascular tone and cerebral blood flow and ultimately affect venous oxygen levels. CONCLUSIONS These results highlight the sensitivity of SWI to simple and noninvasive respiratory challenges and its potential utility in assessing cerebral hemodynamics and vasomotor responses.
Collapse
Affiliation(s)
- K Chang
- From the Department of Radiology (K.C., R.I.G., Y.G.), Center for Biomedical Imaging, New York University School of Medicine, New York, New York
| | - S Barnes
- Division of Biology (S.B.), Caltech, Pasadena, California
| | - E M Haacke
- Department of Radiology (E.M.H.), Wayne State University School of Medicine, Detroit, Michigan
| | - R I Grossman
- From the Department of Radiology (K.C., R.I.G., Y.G.), Center for Biomedical Imaging, New York University School of Medicine, New York, New York
| | - Y Ge
- From the Department of Radiology (K.C., R.I.G., Y.G.), Center for Biomedical Imaging, New York University School of Medicine, New York, New York
| |
Collapse
|
22
|
Liu YJ, Huang TY, Lee YH, Juan CJ. The cerebral vasomotor response in varying CO(2) concentrations, as evaluated using cine phase contrast MRI: Flow, volume, and cerebrovascular resistance indices. Med Phys 2013; 39:6534-41. [PMID: 23127048 DOI: 10.1118/1.4754806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Previous studies have identified that impaired cerebral vasomotor reactivity (VMR) is associated with a higher risk of stroke and transient ischemic attack. This study aims to evaluate VMR by measuring the blood flow waveforms of the supplying arteries and dural sinuses using cine phase contrast MRI (PC MRI) and hypercapnic challenge. METHODS PC MRI flow quantification was performed on an oblique slice approximately perpendicular to the target vessels to include the left (LICA) and right internal carotid artery (RICA), basilar artery (BA), sinus rectus (SR), and superior sagittal sinus (SSS). A total of four PC MRI scans were performed at different CO(2) concentrations (room air and 3%, 5%, and 7% CO(2)). RESULTS The analyses obtained the flow parameters and cerebrovascular resistance parameters for all five vessels. Results indicated that the vascular resistance indices decreased with increasing CO(2) concentration in four vessels (LICA, RICA, BA, and SR). The obtained VMR parameters demonstrated exponential increases with increasing CO(2) concentration. CONCLUSIONS Using entire blood flow waveforms, this study applied separate flow dynamics during systolic and diastolic periods to obtain cerebrovascular resistance parameters and extensive flow-related information. It is the first to investigate the cerebrovascular resistance parameters under hypercapnic challenge using cine MRI. This technique could provide a useful tool for clinical application in cerebrovascular disease.
Collapse
Affiliation(s)
- Yi-Jui Liu
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
23
|
Benders MJNL, Hendrikse J, de Vries L, Groenendaal F, van Bel F. Doppler-assessed cerebral blood flow velocity in the neonate as estimator of global cerebral blood volume flow measured using phase-contrast magnetic resonance angiography. Neonatology 2013; 103:21-6. [PMID: 23018990 DOI: 10.1159/000342336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND We hypothesized that color Doppler-measured cerebral blood flow velocity (CD-CBFV) as measured in the three feeding arteries of the brain can be used as an estimator of global cerebral blood flow. PATIENTS AND METHODS CD-CBFV was determined as soon as possible after determination of phase-contrast magnetic resonance angiography-measured blood volume flow (PC-MRA BVF) by adding up angle-corrected time-averaged mean flow velocities of both internal carotid arteries and basilar artery. 30 newborns (gestational age ranging from 25 to 42 weeks; actual weight ranging from 1,050 to 5,858 g; postconceptional age ranging from 225 to 369 days) were investigated. RESULTS Doppler-determined CBFV ranged from 37 to 131 cm/s with a median of 69 cm/s. CD-CBFV showed a positive correlation with actual weight (r = 0.56, p < 0.01) and postconceptional age (r = 0.53, p < 0.01). CD-CBFV correlated positively with PC-MRA-measured BVF (r = 0.51, p < 0.01). Gestational age at birth, mechanical ventilation or gender did not influence this relationship. The limits of agreement, however, are wide, especially at higher CD-CBFV- and PC-MRA-measured BVF. CONCLUSION CD-CBFV may be used as a non-invasive trend-monitoring tool to detect gross changes in global cerebral blood flow in the unstable and sick neonate.
Collapse
Affiliation(s)
- Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Center, Utrecht, The Netherlands. m.benders @ umcutrecht.nl
| | | | | | | | | |
Collapse
|
24
|
Flow-gated radial phase-contrast imaging in the presence of weak flow. Int J Cardiovasc Imaging 2012; 29:131-40. [DOI: 10.1007/s10554-012-0056-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/17/2012] [Indexed: 11/26/2022]
|
25
|
Lu H, Hutchison J, Xu F, Rypma B. The Relationship Between M in "Calibrated fMRI" and the Physiologic Modulators of fMRI. Open Neuroimag J 2011; 5:112-9. [PMID: 22276083 PMCID: PMC3263507 DOI: 10.2174/1874440001105010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/02/2011] [Accepted: 03/13/2011] [Indexed: 02/05/2023] Open
Abstract
The “calibrated fMRI” technique requires a hypercapnia calibration experiment in order to estimate the factor “M”. It is desirable to be able to obtain the M value without the need of a gas challenge calibration. According to the analytical expression of M, it is a function of several baseline physiologic parameters, such as baseline venous oxygenation and CBF, both of which have recently been shown to be significant modulators of fMRI signal. Here we studied the relationship among hypercapnia-calibrated M, baseline venous oxygenation and CBF, and assessed the possibility of estimating M from the baseline physiologic parameters. It was found that baseline venous oxygenation and CBF are highly correlated (R2=0.77, P<0.0001) across subjects. However, the hypercapnia-calibrated M was not correlated with baseline venous oxygenation or CBF. The hypercapnia-calibrated M was not correlated with an estimation of M based on analytical expression either. The lack of correlation may be explained by the counteracting effect of venous oxygenation and CBF on the M factor, such that the actual M value of an individual may be mostly dependent on other parameters such as hematocrit. Potential biases in hypercapnia-based M estimation were also discussed in the context of possible reduction of CMRO2 during hypercapnia.
Collapse
Affiliation(s)
- Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
26
|
Benders MJNL, Hendrikse J, De Vries LS, Van Bel F, Groenendaal F. Phase-contrast magnetic resonance angiography measurements of global cerebral blood flow in the neonate. Pediatr Res 2011; 69:544-7. [PMID: 21364492 DOI: 10.1203/pdr.0b013e3182176aab] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral blood flow (CBF) alterations are important in pathogenesis of neonatal ischemic/hemorrhagic brain damage. In clinical practice, estimation of neonatal CBF is mostly based on Doppler-measured blood flow velocities in major intracranial arteries. Using phase-contrast magnetic resonance angiography (PC-MRA), global CBF can be estimated, but there is limited neonatal experience. The objective of this study was to gain experience with PC-MRA for the determination of global CBF in neonates. In infants eligible for MRI, PC-MRA global CBF was determined by measuring volume blood flow in both internal carotid arteries (ICAs) and basilar artery (BA). Thirty newborns (GA, 25.7-42.1 wk; weight, 1050-5858 g; postconceptional age, 225-369 d) were investigated. Total PC-MRA CBF ranged from 27 to 186 mL/min. Significant correlations between PC-MRA CBF and postconceptional age and weight were detected. When calculating PC-MRA measured CBF per kilogram body weight, brain perfusion was about stable over the range of postconceptional ages and ranged between 11 and 48 mL/min/kg (median, 25 mL/min/kg). In conclusion, neonatal PC-MRA CBF seems to be a useful technique to estimate noninvasive CBF.
Collapse
Affiliation(s)
- Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center, 3508 AB Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Measurement of cerebral blood flow responses to the thigh cuff maneuver: a comparison of TCD with a novel MRI method. J Cereb Blood Flow Metab 2011; 31:1302-10. [PMID: 21189480 PMCID: PMC3099636 DOI: 10.1038/jcbfm.2010.225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral autoregulation (CA) describes the mechanism responsible for maintaining cerebral blood flow (CBF) relatively constant, despite changes in mean arterial blood pressure (ABP). This paper introduces a novel method for assessing CA using magnetic resonance imaging (MRI). Images are rapidly and repeatedly acquired using a gradient-echo echo-planar imaging pulse sequence for a period of 4 minutes, during which a transient decrease in ABP is induced by rapid release of bilateral thigh cuffs. The method was validated by comparing the observed MRI signal intensity change with the CBF velocity change in the middle cerebral arteries, as measured by transcranial Doppler (TCD) ultrasound, using a standardized thigh cuff maneuver in both cases. Cross-correlation analysis of the response profiles from the left and right hemispheres showed a greater consistency for MRI measures than for TCD, both for interhemisphere comparisons and for repeated measures. The new MRI method may provide opportunities for assessing regional autoregulatory changes following acute stroke, and in other conditions in which poor autoregulation is implicated.
Collapse
|
28
|
van Beek AHEA, de Wit HM, Olde Rikkert MGM, Claassen JAHR. Incorrect Performance of the Breath Hold Method in the Old Underestimates Cerebrovascular Reactivity and Goes Unnoticed Without Concomitant Blood Pressure and End-Tidal CO2 Registration. J Neuroimaging 2011; 21:340-7. [DOI: 10.1111/j.1552-6569.2010.00517.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Abstract
A better understanding of carbon dioxide (CO(2)) effect on brain activity may have a profound impact on clinical studies using CO(2) manipulation to assess cerebrovascular reserve and on the use of hypercapnia as a means to calibrate functional magnetic resonance imaging (fMRI) signal. This study investigates how an increase in blood CO(2), via inhalation of 5% CO(2), may alter brain activity in humans. Dynamic measurement of brain metabolism revealed that mild hypercapnia resulted in a suppression of cerebral metabolic rate of oxygen (CMRO(2)) by 13.4% ± 2.3% (N=14) and, furthermore, the CMRO(2) change was proportional to the subject's end-tidal CO(2) (Et-CO(2)) change. When using functional connectivity MRI (fcMRI) to assess the changes in resting-state neural activity, it was found that hypercapnia resulted in a reduction in all fcMRI indices assessed including cluster volume, cross-correlation coefficient, and amplitude of the fcMRI signal in the default-mode network (DMN). The extent of the reduction was more pronounced than similar indices obtained in visual-evoked fMRI, suggesting a selective suppression effect on resting-state neural activity. Scalp electroencephalogram (EEG) studies comparing hypercapnia with normocapnia conditions showed a relative increase in low frequency power in the EEG spectra, suggesting that the brain is entering a low arousal state on CO(2) inhalation.
Collapse
|
30
|
Wang YJ, Chao AC, Chung CP, Huang YJ, Hu HH. Different cerebral hemodynamic responses between sexes and various vessels in orthostatic stress tests. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2010; 29:1299-1304. [PMID: 20733185 DOI: 10.7863/jum.2010.29.9.1299] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE The argument about why the head-up tilt table test (HUT) does not include the posterior cerebral circulation, which is mainly responsible for syncope, as a monitor target has not been resolved. It is also unclear whether there is a sex difference in cerebral blood flow (CBF) changes. We hypothesized that orthostatic CBF changes more in the posterior circulation than in the anterior circulation and is different between sexes. METHODS Thirty healthy volunteers (13 female and 17 male) were recruited for the HUT. The blood pressure (BP), middle cerebral artery flow velocity (MCAFV), and posterior cerebral artery flow velocity (PCAFV) were monitored simultaneously. Static cerebral autoregulation (CA) was calculated. RESULTS The female volunteers had a lower BP, but there was no difference in orthostatic BP changes (female versus male: 1.29% +/- 5.26% versus 4.22% +/- 12.65%; P = .65). The female volunteers had a significantly greater orthostatic drop in the PCAFV than in the MCAFV (23.8% +/- 9.1% versus 18.2% +/- 7.3%; P = .008). The static CA in the middle cerebral artery was better than in the posterior cerebral artery, although not significantly (13.6% +/- 34.8% versus - 2.8% +/- 12.2%; P = .15). CONCLUSIONS Our study showed the different cerebral hemodynamic responses between anterior and posterior circulations and between sexes during the HUT. We conclude that HUT studies for syncope should include the posterior cerebral circulation, especially for female patients.
Collapse
Affiliation(s)
- Yuh-Jen Wang
- Department of Neurology and Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Sato K, Sadamoto T. Different blood flow responses to dynamic exercise between internal carotid and vertebral arteries in women. J Appl Physiol (1985) 2010; 109:864-9. [DOI: 10.1152/japplphysiol.01359.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The blood flow regulation in vertebral system during dynamic exercise in humans remains unclear. We examined the blood flow responses in both the internal carotid artery (Q̇ICA) and vertebral artery (Q̇VA) simultaneously during graded dynamic exercise by Doppler ultrasound to evaluate whether cerebrovascular responses to exercise were similar. In the semisupine position, 10 young women performed a graded cycling exercise at three loads of 30, 50, and 70% of peak oxygen uptake (V̇o2peak) for 5 min for each workload. Mean arterial pressure, heart rate, and cardiac output increased progressively with three workloads ( P < 0.01). The end-tidal partial pressure of CO2 (PetCO2) in the expired gas increased from the resting level ( P < 0.01) at 30 and 50% V̇o2peak. The PetCO2 at 70% V̇o2peak (43.2 ± 1.6 Torr) was significantly lower than that at 50% V̇o2peak (45.3 ± 1.4 Torr). In parallel with the changes in PetCO2, Q̇ICA increased from resting level by 11.6 ± 1.5 and 18.4 ± 2.7% at 30 and 50% V̇o2peak ( P < 0.01), respectively, and leveled off at 70% V̇o2peak. In contrast, Q̇VA did not show a leveling off and increased proportionally with workload: 16.8 ± 3.1, 32.8 ± 3.6, and 39.5 ± 3.4% elevations at the three exercise loads, respectively ( P < 0.01). With increasing exercise load, the cerebrovascular resistance in internal carotid artery increased ( P < 0.01), while cerebrovascular resistance in vertebral artery remained stable during exercise. The different responses between Q̇ICA and Q̇VA in the present study indicate a heterogenous blood flow and cerebrovascular control in the internal carotid and vertebral systems during dynamic exercise in humans.
Collapse
Affiliation(s)
- Kohei Sato
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan
| | - Tomoko Sadamoto
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan
| |
Collapse
|
32
|
Kassner A, Winter JD, Poublanc J, Mikulis DJ, Crawley AP. Blood-oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: reproducibility and gender differences. J Magn Reson Imaging 2010; 31:298-304. [PMID: 20099341 DOI: 10.1002/jmri.22044] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate the reproducibility and gender differences in cerebrovascular reactivity (CVR) measurements obtained using the blood-oxygen level dependent (BOLD) response to controlled changes in end-tidal partial pressure of carbon dioxide (PETCO(2)). MATERIALS AND METHODS We obtained ethical approval to image 19 healthy volunteers (10 men, 9 women) on a 1.5 Tesla (T) MRI scanner twice on two separate days using identical procedures. CVR images were generated by collecting BOLD MRI data during controlled changes in PETCO(2) induced by a sequential gas delivery system. RESULTS Using the intraclass correlation coefficient (ICC), we demonstrated excellent within-day CVR measures in gray matter (GM) (ICC = 0.92) and white matter (WM) (ICC = 0.88) regions, excellent between-day reproducibility in GM (ICC = 0.81), and good between-day reproducibility in the WM (ICC = 0.66). CVR values between men and women were significantly different in the GM and WM. Men exhibited a 22 +/- 2% greater CVR in GM and a 17 +/- 2% greater CVR in WM compared with females. CONCLUSION Our results demonstrate the reliability of BOLD MRI CVR measurements obtained using a controlled cerebrovascular challenge. Using this technique, we also revealed significantly increased BOLD response to CO(2) in males compared with females.
Collapse
Affiliation(s)
- Andrea Kassner
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
33
|
Totman JJ, Marciani L, Foley S, Campbell E, Hoad CL, Macdonald IA, Spiller RC, Gowland PA. Characterization of the time course of the superior mesenteric, abdominal aorta, internal carotid and vertebral arteries blood flow response to the oral glucose challenge test using magnetic resonance imaging. Physiol Meas 2009; 30:1117-36. [PMID: 19759401 DOI: 10.1088/0967-3334/30/10/011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Blood flow to the splanchnic circulation increases postprandially which may cause a reduction in systemic and cerebral perfusion leading to postprandial syncope in the elderly who lack adequate cardiovascular reserve. We used multi-station 2D phase contrast cine magnetic resonance imaging (PC-MRI) with the aim of characterizing the time course of the haemodynamic response to an oral glucose challenge test (OGCT) in the large arteries perfusing the splanchnic, systemic and cerebral circulations (superior mesenteric artery SMA, abdominal aorta AA, internal carotid arteries, ICA and vertebral arteries VA). In this study nine fasted healthy volunteers were studied. Separate cine PC-MRI scans were acquired in the neck and in the abdomen every 88 s, these two measurements being interleaved for ten baseline scans at each station with the scanner automatically moving the subject between the two stations. After ingestion of the OGCT, a further 30 cine PC-MRI scans were acquired at each station. Using this technique we were able to characterize with frequent sampling of volumetric blood flow the time course of blood flow response to the OGCT of the SMA, AA and both VA and ICA. We found a substantial variation between individuals in the amplitude and the time to the peak of the SMA blood flow response to the OGCT which correlated positively with body mass index. MRI provides a robust, non-invasive method of studying normal physiology that could be valuable in studies of diseases such as postprandial hypotension.
Collapse
Affiliation(s)
- J J Totman
- Brain and Body Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pollock JM, Deibler AR, Whitlow CT, Tan H, Kraft RA, Burdette JH, Maldjian JA. Hypercapnia-induced cerebral hyperperfusion: an underrecognized clinical entity. AJNR Am J Neuroradiol 2008; 30:378-85. [PMID: 18854443 DOI: 10.3174/ajnr.a1316] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The incidence of cerebral hyperperfusion and hypoperfusion, respectively, resulting from hypercapnia and hypocapnia in hospitalized patients is unknown but is likely underrecognized by radiologists and clinicians without routine performance of quantitative perfusion imaging. Our purpose was to report the clinical and perfusion imaging findings in a series of patients confirmed to have hypercapnic cerebral hyperperfusion and hypocapnic hypoperfusion. MATERIALS AND METHODS Conventional cerebral MR imaging examination was supplemented with arterial spin-labeled (ASL) MR perfusion imaging in 45 patients during a 16-month period at a single institution. Patients presented with an indication of altered mental status, metastasis, or suspected stroke. Images were reviewed and correlated with arterial blood gas (ABG) analysis and clinical history. RESULTS Patients ranged in age from 1.5 to 85 years. No significant acute findings were identified on conventional MR imaging. Patients with hypercapnia showed global hyperperfusion on ASL cerebral blood flow (CBF) maps, respiratory acidosis on ABG, and diffuse air-space abnormalities on same-day chest radiographs. Regression analysis revealed a significant positive linear relationship between cerebral perfusion and the partial pressure of carbon dioxide (pCO(2); beta, 4.02; t, 11.03; P < .0005), such that rates of cerebral perfusion changed by 4.0 mL/100 g/min for each 1-mm Hg change in pCO(2). CONCLUSIONS With the inception of ASL as a routine perfusion imaging technique, hypercapnic-associated cerebral hyperperfusion will be recognized more frequently and may provide an alternative cause of unexplained neuropsychiatric symptoms in hospitalized patients. In a similar fashion, hypocapnia may account for a subset of patients with normal MR imaging examinations with poor ASL perfusion signal.
Collapse
Affiliation(s)
- J M Pollock
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Guo G. The Quantification of Cerebral Blood Flow by Phase Contrast MRA: Basics and Applications. Neuroradiol J 2008; 21:11-21. [PMID: 24256745 DOI: 10.1177/197140090802100102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/02/2007] [Indexed: 11/16/2022] Open
Abstract
Phase-contrast magnetic resonance (PCMRA) flow quantification can determine vascular velocities and volumetric flow rate (VFR) non-invasively for in vitro and in vivo studies. Recently, the increasing power of MR imaging units and the reduced time for data acquisition and post-processing have led to an increasing number of investigations on the use of phase-contrast flow measurements as an additional source of quantitative functional information in MR imaging. In addition, PCMRA can be added to morphologic MRI sequences, offering the option to correlate flow to morphology based on data generated during one examination. This review discusses the basics of phase-contrast imaging, describing the errors and avoiding methods associated with PCMRA, providing guidelines for flow measurement and data analysis, and presenting the current clinical cerebral applications.
Collapse
Affiliation(s)
- Gang Guo
- Department of Radiology, No.2 Hospital Xiamen; Xiamen, Fujian, China -
| |
Collapse
|
36
|
Emir UE, Ozturk C, Akin A. Multimodal investigation of fMRI and fNIRS derived breath hold BOLD signals with an expanded balloon model. Physiol Meas 2007; 29:49-63. [PMID: 18175859 DOI: 10.1088/0967-3334/29/1/004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multimodal investigation of blood oxygenation level-dependent (BOLD) signals, using both functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI), may give further insight to the underlying physiological principles and the detailed transient dynamics of the vascular response. Utilizing a breath hold task (BHT), we measured deoxy-hemoglobin (HbR) and oxy-hemoglobin (HbO) changes via fNIRS and blood oxygen level dependent (BOLD) changes by fMRI. Measurements were taken in four volunteers asynchronously and carefully aligned for comparative analysis. In order to describe the main stimulus in BHT, partial pressure of carbon dioxide (PaCO(2)) parameter was integrated into the balloon model as the driving function of cerebral blood flow (CBF) which led to the development of an expanded balloon model (EBM). During BHT, the increase in HbR was observed later than the BOLD peak and coincided temporally with its post-stimulus undershoot. Further investigation of these transients with a PaCO(2) integrated balloon model suggests that post-stimulus undershoot measured by fMRI is dominated by slow return of cerebral blood volume (CBV). This was confirmed by fNIRS measurements. In addition, the BOLD signal decreased with the increase of the initial level of PaCO(2) derived from EBM, indicating an effect of basal CBF level on the BOLD signal. In conclusion, a multimodal approach with an appropriate biophysical model gave a comprehensive description of the hemodynamic response during BHT.
Collapse
Affiliation(s)
- U E Emir
- Institute of Biomedical Engineering, Bogazici University, 34342 Bebek-Istanbul, Turkey
| | | | | |
Collapse
|
37
|
The respiratory modulation of intracranial cerebrospinal fluid pulsation observed on dynamic echo planar images. Magn Reson Imaging 2007; 26:198-205. [PMID: 17826939 DOI: 10.1016/j.mri.2007.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 07/05/2007] [Accepted: 07/07/2007] [Indexed: 11/23/2022]
Abstract
Pressure changes in cerebrospinal fluid (CSF) that occur with respiration rhythms have been studied in animals and humans for more than 100 years. This phenomenon has been recently validated in vivo on MR images by applying spectral analysis to signal-time curves at selected regions of interest. However, selecting regions of interest requires knowledge of physiology and anatomy, and manual selection is time consuming. We postulate that CSF pulsation is passively modulated by intra-thoracic pressure that is secondary to respiration, and this pulsation can be observed as a flow-related enhancement on MR images. To investigate the spatiotemporal patterns of respiratory rhythms in human brains, we conducted a study on MR scanning of 12 healthy volunteers who performed normal-breathing and breath-holding experiments during scanning. Spectral analysis, spectroscopic images, independent component analysis and signal measurements in selected regions were applied to dynamic MR images acquired from these volunteers. Through independent component analysis, respiratory rhythms were found at the vicinity of ventricles and CSF areas in nine subjects in normal-breathing experiments. In breath-holding experiments, respiratory rhythm suppression and vessel dilation were observed in 8 and 10 subjects, respectively. Information obtained from this study further elucidates the respiratory modulation of CSF in vivo.
Collapse
|
38
|
Zhao M, Amin-Hanjani S, Ruland S, Curcio AP, Ostergren L, Charbel FT. Regional cerebral blood flow using quantitative MR angiography. AJNR Am J Neuroradiol 2007; 28:1470-3. [PMID: 17846193 PMCID: PMC8134363 DOI: 10.3174/ajnr.a0582] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/06/2007] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE We sought to derive regional cerebral blood flow using vessel flows from quantitative MR angiography (qMRA). MATERIALS AND METHODS Flow rates in the 15 major cerebral arteries were measured on retrospectively gated fast 2D phase-contrast MR angiography obtained in 83 healthy adult volunteers (age range, 24-74 years; mean, 42 years). The arterial network of the brain was partitioned into 12 different regions, in which flows were calculated from the measured flows of the 15 cerebral arteries. RESULTS The mean flows of the 15 arteries and the 12 regions were calculated. The mean total cranial flow and the mean total cerebral blood flow were 949 +/- 158 mL/min and 695 +/- 113 mL/min, respectively. The mean regional flows for the anterior and posterior circulation were 483 +/- 87 mL/min and 212 +/- 34 mL/min, respectively. The relative contributions of the flows in the 11 regions to their parent regions were obtained. The mean flows in the individual arteries and the regions with age were also calculated. The mean flows for the female group were significantly lower than those for the male group (P < .001) for the 2 common carotids and the cranial circulation and left/right extracranial circulation. However, the intracranial circulation was not different between sexes. CONCLUSIONS The 12 regions in the cerebral circulation were identified and formed into a partition tree, and the mean regional flow for each region was determined using vessel flows from qMRA.
Collapse
Affiliation(s)
- M Zhao
- Department of Neurosurgery, University of Illinois at Chicago, IL 60612-5970, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Bammer R, Hope TA, Aksoy M, Alley MT. Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magn Reson Med 2007; 57:127-40. [PMID: 17195166 PMCID: PMC3985842 DOI: 10.1002/mrm.21109] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature.
Collapse
Affiliation(s)
- Roland Bammer
- Lucas Center, Department of Radiology, Stanford University, Stanford, California 94305-5488, USA.
| | | | | | | |
Collapse
|
40
|
Rozet I, Vavilala MS, Lindley AM, Visco E, Treggiari M, Lam AM. Cerebral Autoregulation and CO2 Reactivity in Anterior and Posterior Cerebral Circulation During Sevoflurane Anesthesia. Anesth Analg 2006; 102:560-4. [PMID: 16428561 DOI: 10.1213/01.ane.0000184817.10595.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of the study was to compare cerebral autoregulation (CA) and CO2 reactivity (CO2R) between the anterior and posterior circulation under sevoflurane anesthesia. We studied 9 adult ASA physical status I patients (22-47 yr) scheduled for elective orthopedic surgery. Blood flow velocity in the middle cerebral artery (Vmca) and in the basilar artery (Vba) were measured using transcranial Doppler ultrasonography. For CA testing, arterial blood pressure was increased using phenylephrine infusion. CA was quantified with the autoregulatory index (ARI). CO2R was investigated at PaCO2 of 30 +/- 2.8 mm Hg, 39.4 +/- 2.6 mm Hg, and 48.7 +/- 2.8 mm Hg. Linear regression analysis was used for CO2R. We found ARI was preserved in both arteries: ARImca (middle cerebral artery) = 0.72 +/- 0.2; ARIba (basilar artery) = 0.66 +/- 0.2; P = 0.5. With regard to CO2R, Vmca increased with slope of 1.7 cm/s/mm Hg PaCO2, Vba increased with slope of 1.5 cm/s/mm Hg PaCO2; P = 0.83. Absolute Vmca was higher compared with Vba; P < 0.05. We conclude that in healthy individuals under 0.5 MAC of sevoflurane and small-dose remifentanil: 1) mean flow velocities of BA are less than those of MCA; 2) autoregulation and CO2R are preserved in the basilar artery and are similar to those of MCA.
Collapse
Affiliation(s)
- Irene Rozet
- Department of Anesthesiology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Guo G, Wu RH, Mikulis DJ. Construction of Optimal Velocity Encoding for Cerebral Blood Flow Volume Measurement with Phase-Contrast MRA. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2005; 2005:1404-7. [PMID: 17282461 DOI: 10.1109/iembs.2005.1616692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Accurate velocity encoding is crucial for quantification of arterial inflow and venous outflow in intracranial diseases. The purpose of this study was to optimize the velocity encoding of phase-contrast (PC) MRA and quantify cerebral blood flow in normal volunteers. METHODS Ten healthy volunteers were examined on a GE 1.5T MR system with 2D PCMRA sequence. The parameters of the sequence were as follows: TR 40ms, TE 6.6ms, flip angle 20°, slice thickness 4mm, matrix 256x256, field of view 140 mm. In each cardiac cycle, 40 images were obtained. Velocity encoding was set from 30 to 90 cm/sec at 10cm/sec interval for total of 7 scans per volunteer. The scan level was chosen at C2 perpendicular to the vessels of interest. Data were analyzed using CV Flow software on a GE Advantage Windows Workstation.
Collapse
Affiliation(s)
- G Guo
- Department of Medical Imaging, Shantou University Medical College, Shantou 515041, China; Department of Neuroradiology, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada
| | | | | |
Collapse
|