1
|
Hu L, Zhang Y, Li Y, Wang R, Xu H. Effect of electroacupuncture on internal carotid artery blood flow in patients undergoing laparoscopic gallbladder surgery: A randomized clinical trial. Integr Med Res 2024; 13:101097. [PMID: 39635076 PMCID: PMC11616594 DOI: 10.1016/j.imr.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background Little is known about the effect of electroacupuncture (EA) on cerebral blood flow. We investigated this question in patients undergoing laparoscopic cholecystectomy, hypothesizing that EA would increase cerebral blood flow during surgery. Methods Eighty-two patients undergoing laparoscopic cholecystectomy were randomly divided into receiving electroacupuncture and intravenous anesthesia (EA+IA) and receving intravenous anesthesia alone (IA). The patients in EA+IA were treated with EA at Baihui (GV 20), Shuigou (GV 26), unilateral Neiguan (PC 6) and unilateral Zusanli (ST 36) points 20 min before anesthesia until the end of the operation. The patients in IA received intravenous anesthesia alone. The internal carotid artery blood flow (Q), mean arterial pressure (MAP), end-tidal carbon dioxide pressure (PETCO2) and heart rate (HR) were recorded respectively before anesthesia induction (T1), 2 min after anesthesia induction (T2), 1 min after pneumoperitoneum (T3), 1 min after head-up tilt (T4) and after anesthesia resuscitation (T5). Results The internal carotid artery blood flow was significantly higher in EA+IA (mean [SD], T3, 294.0 [89.6] ml min-1; T4, 303.8 [90.6] ml min-1) than in IA (mean [SD], T3, 246.4 [80.9] ml min-1; T4, 253.5 [78.4] ml min-1) at T3 and T4 (P < 0.05). There was no difference in blood flow between the two groups at T2 and T5. As compared with baseline (T1), the internal carotid artery blood flow decreased at T2-T4 in two groups (P < 0.05). There were no differences in MAP, PETCO2, and HR between the two groups. Conclusion Electroacupuncture intervention could reduce the decline of internal carotid artery blood flow in patients undergoing laparoscopic cholecystectomy. Trial registration ChiCTR: 2,100,041,761.
Collapse
Affiliation(s)
- Lili Hu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongyan Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Hua Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Wang Y, Payne SJ. Static autoregulation in humans. J Cereb Blood Flow Metab 2024; 44:1191-1207. [PMID: 37933742 PMCID: PMC11542139 DOI: 10.1177/0271678x231210430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
The process by which cerebral blood flow (CBF) remains approximately constant in response to short-term variations in arterial blood pressure (ABP) is known as cerebral autoregulation. This classic view, that it remains constant over a wide range of ABP, has however been challenged by a growing number of studies. To provide an updated understanding of the static cerebral pressure-flow relationship and to characterise the autoregulation curve more rigorously, we conducted a comprehensive literature research. Results were based on 143 studies in healthy individuals aged 18 to 65 years. The mean sensitivities of CBF to changes in ABP were found to be 1.47 ± 0.71%/% for decreased ABP and 0.37 ± 0.38%/% for increased ABP. The significant difference in CBF directional sensitivity suggests that cerebral autoregulation appears to be more effective in buffering increases in ABP than decreases in ABP. Regression analysis of absolute CBF and ABP identified an autoregulatory plateau of approximately 20 mmHg (ABP between 80 and 100 mmHg), which is much smaller than the widely accepted classical view. Age and sex were found to have no effect on autoregulation strength. This data-driven approach provides a quantitative method of analysing static autoregulation that can be easily updated as more experimental data become available.
Collapse
Affiliation(s)
- Yufan Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| |
Collapse
|
3
|
Crippa IA, Vincent JL, Zama Cavicchi F, Pozzebon S, Gaspard N, Maenhout C, Creteur J, Taccone FS. Estimated Cerebral Perfusion Pressure and Intracranial Pressure in Septic Patients. Neurocrit Care 2024; 40:577-586. [PMID: 37420137 DOI: 10.1007/s12028-023-01783-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Sepsis-associated brain dysfunction (SABD) is frequent and is associated with poor outcome. Changes in brain hemodynamics remain poorly described in this setting. The aim of this study was to investigate the alterations of cerebral perfusion pressure and intracranial pressure in a cohort of septic patients. METHODS We conducted a retrospective analysis of prospectively collected data in septic adults admitted to our intensive care unit (ICU). We included patients in whom transcranial Doppler recording performed within 48 h from diagnosis of sepsis was available. Exclusion criteria were intracranial disease, known vascular stenosis, cardiac arrhythmias, pacemaker, mechanical cardiac support, severe hypotension, and severe hypocapnia or hypercapnia. SABD was clinically diagnosed by the attending physician, anytime during the ICU stay. Estimated cerebral perfusion pressure (eCPP) and estimated intracranial pressure (eICP) were calculated from the blood flow velocity of the middle cerebral artery and invasive arterial pressure using a previously validated formula. Normal eCPP was defined as eCPP ≥ 60 mm Hg, low eCPP was defined as eCPP < 60 mm Hg; normal eICP was defined as eICP ≤ 20 mm Hg, and high eICP was defined as eICP > 20 mm Hg. RESULTS A total of 132 patients were included in the final analysis (71% male, median [interquartile range (IQR)] age was 64 [52-71] years, median [IQR] Acute Physiology and Chronic Health Evaluation II score on admission was 21 [15-28]). Sixty-nine (49%) patients developed SABD during the ICU stay, and 38 (29%) were dead at hospital discharge. Transcranial Doppler recording lasted 9 (IQR 7-12) min. Median (IQR) eCPP was 63 (58-71) mm Hg in the cohort; 44 of 132 (33%) patients had low eCPP. Median (IQR) eICP was 8 (4-13) mm Hg; five (4%) patients had high eICP. SABD occurrence and in-hospital mortality did not differ between patients with normal eCPP and patients with low eCPP or between patients with normal eICP and patients with high eICP. Eighty-six (65%) patients had normal eCPP and normal eICP, 41 (31%) patients had low eCPP and normal eICP, three (2%) patients had low eCPP and high eICP, and two (2%) patients had normal eCPP and high eICP; however, SABD occurrence and in-hospital mortality were not significantly different among these subgroups. CONCLUSIONS Brain hemodynamics, in particular CPP, were altered in one third of critically ill septic patients at a steady state of monitoring performed early during the course of sepsis. However, these alterations were equally common in patients who developed or did not develop SABD during the ICU stay and in patients with favorable or unfavorable outcome.
Collapse
Affiliation(s)
- Ilaria Alice Crippa
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
- Department of Anesthesiology and Intensive Care, Policlinico San Marco, Gruppo San Donato, Corso Europa 7, 24046, Zingonia, Italy.
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Federica Zama Cavicchi
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Selene Pozzebon
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Christelle Maenhout
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
4
|
Qiao X, Zhang R, Yu J, Yan Y, Bouakaz A, Su X, Liu J, Zong Y, Wan M. Noninvasive assessment of pressure distribution and fractional flow in middle cerebral artery using microbubbles and plane wave in vitro. ULTRASONICS 2024; 138:107244. [PMID: 38237398 DOI: 10.1016/j.ultras.2024.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024]
Abstract
Fractional flow has been proposed for quantifying the degree of functional stenosis in cerebral arteries. Herein, subharmonic aided pressure estimation (SHAPE) combined with plane wave (PW) transmission was employed to noninvasively estimate the pressure distribution and fractional flow in the middle cerebral artery (MCA) in vitro. Consequently, the effects of incident sound pressure (peak negative pressures of 86-653 kPa), pulse repetition frequency (PRF), number of pulses, and blood flow rate on the subharmonic pressure relationship were investigated. The radio frequency data were stored and beamformed offline, and the subharmonic amplitude over a 0.4 MHz bandwidth was extracted using a 12-cycle PW at 4 MHz. The optimal incident sound pressure was 217 kPa without skull (sensitivity = 0.09 dB/mmHg; r2 = 0.997) and 410 kPa with skull (median sensitivity = 0.06 dB/mmHg; median r2 = 0.981). The optimal PRF was 500 Hz, as this value affords the highest sensitivity (0.09 dB/mmHg; r2 = 0.976) and temporal resolution. In addition, the blood flow rate exhibited a lesser effect on the subharmonic pressure relationship in our experimental setup. Using the optimized parameters, the blood pressure distribution and fractional flow (FFs) were measured. As such, the FFs value was in high agreement with the value measured using the pressure sensor (FFm). The mean ± standard deviations of the FF difference (FFm - FFs) were 0.03 ± 0.06 without skull and 0.01 ± 0.05 with skull.
Collapse
Affiliation(s)
- Xiaoyang Qiao
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Ruiyan Zhang
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Jianjun Yu
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Yadi Yan
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Xiao Su
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Jiacheng Liu
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Yujin Zong
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China.
| | - Mingxi Wan
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China.
| |
Collapse
|
5
|
Samavaki M, Söderholm S, Nia AZ, Pursiainen S. Modeling of blood flow in cerebral arterial circulation and its dynamic impact on electrical conductivity in a realistic multi-compartment head model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107983. [PMID: 38157828 DOI: 10.1016/j.cmpb.2023.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND OBJECTIVE This study aims to assess the dynamic impact of non-Newtonian cerebral arterial circulation on electrical conductivity within a realistic multi-compartment head model. Evaluating this research question is crucial and challenging due to its relevance to electrophysiological modalities like transcranial electrical stimulation (tES), electro-/magnetoencephalography (EEG/MEG), and electrical impedance tomography (EIT). In these modalities, accurate forward modeling depends on the electrical conductivity, which is affected by complex tortuous vessel networks, limited data acquisition in Magnetic Resonance Imaging (MRI), and non-linear blood flow phenomena, including shear rate and viscosity in non-Newtonian fluid. METHODS To obtain an approximation for the blood concentration, we first use Navier-Stokes equations (NSEs) to solve for the pressure and velocity of the blood in the major vessels. Then Fick's law is used to solve for the blood concentration in the tissues. Finally, Archie's law is used to estimate the electrical conductivity distribution based on the blood concentration. RESULTS The results, obtained with an open 7 Tesla MRI dataset, suggest that a dynamic model of cerebral blood flow (CBF) for both arterial and microcirculation can be established; we find blood pressure and electrical conductivity distributions given a numerically simulated pulse sequence and approximate the blood concentration and electrical conductivity inside the brain based on those. CONCLUSIONS Our model provides an approximation of the dynamical blood flow and the corresponding electrical conductivity distribution in the different parts of the brain. The advantage of our approach is that it is applicable with limited a priori information about the blood flow and with an arbitrary head model distinguishing the arteries.
Collapse
Affiliation(s)
- Maryam Samavaki
- Mathematics, Computing Sciences, Tampere University, Korkeakoulunkatu 1, Tampere University, 33014, Finland.
| | - Santtu Söderholm
- Mathematics, Computing Sciences, Tampere University, Korkeakoulunkatu 1, Tampere University, 33014, Finland
| | - Arash Zarrin Nia
- Faculty of Mathematics, K. N. Toosi University of Technology, Mirdamad Blvd, No. 470, Tehran, 1676-53381, Iran
| | - Sampsa Pursiainen
- Mathematics, Computing Sciences, Tampere University, Korkeakoulunkatu 1, Tampere University, 33014, Finland
| |
Collapse
|
6
|
Decroocq M, Frindel C, Rougé P, Ohta M, Lavoué G. Modeling and hexahedral meshing of cerebral arterial networks from centerlines. Med Image Anal 2023; 89:102912. [PMID: 37549612 DOI: 10.1016/j.media.2023.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Computational fluid dynamics (CFD) simulation provides valuable information on blood flow from the vascular geometry. However, it requires extracting precise models of arteries from low-resolution medical images, which remains challenging. Centerline-based representation is widely used to model large vascular networks with small vessels, as it encodes both the geometric and topological information and facilitates manual editing. In this work, we propose an automatic method to generate a structured hexahedral mesh suitable for CFD directly from centerlines. We addressed both the modeling and meshing tasks. We proposed a vessel model based on penalized splines to overcome the limitations inherent to the centerline representation, such as noise and sparsity. The bifurcations are reconstructed using a parametric model based on the anatomy that we extended to planar n-furcations. Finally, we developed a method to produce a volume mesh with structured, hexahedral, and flow-oriented cells from the proposed vascular network model. The proposed method offers better robustness to the common defects of centerlines and increases the mesh quality compared to state-of-the-art methods. As it relies on centerlines alone, it can be applied to edit the vascular model effortlessly to study the impact of vascular geometry and topology on hemodynamics. We demonstrate the efficiency of our method by entirely meshing a dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of the bifurcations were meshed without defects needing manual intervention, despite the challenging aspect of the input data. The source code is released publicly.
Collapse
Affiliation(s)
- Méghane Decroocq
- CREATIS, Université Lyon1, CNRS UMR5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne, France; LIRIS, CNRS UMR 5205, F-69621, France; ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Carole Frindel
- CREATIS, Université Lyon1, CNRS UMR5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne, France; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Pierre Rougé
- ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Université de Reims Champagne Ardenne, CReSTIC, 51100 Reims, France
| | - Makoto Ohta
- ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Guillaume Lavoué
- LIRIS, CNRS UMR 5205, F-69621, France; Ecole Centrale de Lyon, France
| |
Collapse
|
7
|
The impact of cerebral vasomotor reactivity on cerebrovascular diseases and cognitive impairment. J Neural Transm (Vienna) 2022; 129:1321-1330. [PMID: 36205784 PMCID: PMC9550758 DOI: 10.1007/s00702-022-02546-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
The regulation of cerebral blood flow (CBF) is a complex and tightly controlled function ensuring delivery of oxygen and nutrients and removal of metabolic wastes from brain tissue. Cerebral vasoreactivity (CVR) refers to the ability of the nervous system to regulate CBF according to metabolic demands or changes in the microenvironment. This can be assessed through a variety of nuclear medicine and imaging techniques and protocols. Several studies have investigated the association of CVR with physiological and pathological conditions, with particular reference to the relationship with cognitive impairment and cerebrovascular disorders (CVD). A better understanding of the interaction between CVR and cognitive dysfunction in chronic and particularly acute CVD could help improving treatment and rehabilitation strategies in these patients. In this paper, we reviewed current knowledge on CVR alterations in the context of acute and chronic CVD and cognitive dysfunction. Alterations in CVR and hemodynamics have been described in patients with both neurodegenerative and vascular cognitive impairment, and the severity of these alterations seems to correlate with CVR derailment. Furthermore, an increased risk of cognitive impairment progression has been associated with alterations in CVR parameters and hemodynamics. Few studies have investigated these associations in acute cerebrovascular disorders and the results are inconsistent; thus, further research on this topic is encouraged.
Collapse
|
8
|
Nogueira RC, Aries M, Minhas JS, H Petersen N, Xiong L, Kainerstorfer JM, Castro P. Review of studies on dynamic cerebral autoregulation in the acute phase of stroke and the relationship with clinical outcome. J Cereb Blood Flow Metab 2022; 42:430-453. [PMID: 34515547 PMCID: PMC8985432 DOI: 10.1177/0271678x211045222] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute stroke is associated with high morbidity and mortality. In the last decades, new therapies have been investigated with the aim of improving clinical outcomes in the acute phase post stroke onset. However, despite such advances, a large number of patients do not demonstrate improvement, furthermore, some unfortunately deteriorate. Thus, there is a need for additional treatments targeted to the individual patient. A potential therapeutic target is interventions to optimize cerebral perfusion guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). This narrative led to the development of the INFOMATAS (Identifying New targets FOr Management And Therapy in Acute Stroke) project, designed to foster interventions directed towards understanding and improving hemodynamic aspects of the cerebral circulation in acute cerebrovascular disease states. This comprehensive review aims to summarize relevant studies on assessing dCA in patients suffering acute ischemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage. The review will provide to the reader the most consistent findings, the inconsistent findings which still need to be explored further and discuss the main limitations of these studies. This will allow for the creation of a research agenda for the use of bedside dCA information for prognostication and targeted perfusion interventions.
Collapse
Affiliation(s)
- Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Department of Neurology, Hospital Nove de Julho, São Paulo, Brazil
| | - Marcel Aries
- Department of Intensive Care, University of Maastricht, Maastricht University Medical Center+, School for Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nils H Petersen
- Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Li Xiong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
| | - Pedro Castro
- Department of Neurology, Faculty of Medicine of University of Porto, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
9
|
Nogueira RC, Beishon L, Bor-Seng-Shu E, Panerai RB, Robinson TG. Cerebral Autoregulation in Ischemic Stroke: From Pathophysiology to Clinical Concepts. Brain Sci 2021; 11:511. [PMID: 33923721 PMCID: PMC8073938 DOI: 10.3390/brainsci11040511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke (IS) is one of the most impacting diseases in the world. In the last decades, new therapies have been introduced to improve outcomes after IS, most of them aiming for recanalization of the occluded vessel. However, despite this advance, there are still a large number of patients that remain disabled. One interesting possible therapeutic approach would be interventions guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). Supportive hemodynamic therapies aiming to optimize perfusion in the ischemic area could protect the brain and may even extend the therapeutic window for reperfusion therapies. However, the knowledge of how to implement these therapies in the complex pathophysiology of brain ischemia is challenging and still not fully understood. This comprehensive review will focus on the state of the art in this promising area with emphasis on the following aspects: (1) pathophysiology of CA in the ischemic process; (2) methodology used to evaluate CA in IS; (3) CA studies in IS patients; (4) potential non-reperfusion therapies for IS patients based on the CA concept; and (5) the impact of common IS-associated comorbidities and phenotype on CA status. The review also points to the gaps existing in the current research to be further explored in future trials.
Collapse
Affiliation(s)
- Ricardo C. Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Neurology, Hospital Nove de Julho, São Paulo 01409-002, Brazil
| | - Lucy Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
| | - Edson Bor-Seng-Shu
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Ronney B. Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - Thompson G. Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| |
Collapse
|
10
|
Kussman BD, Imaduddin SM, Gharedaghi MH, Heldt T, LaRovere K. Cerebral Emboli Monitoring Using Transcranial Doppler Ultrasonography in Adults and Children: A Review of the Current Technology and Clinical Applications in the Perioperative and Intensive Care Setting. Anesth Analg 2021; 133:379-392. [PMID: 33764341 DOI: 10.1213/ane.0000000000005417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transcranial Doppler (TCD) ultrasonography is the only noninvasive bedside technology for the detection and monitoring of cerebral embolism. TCD may identify patients at risk of acute and chronic neurologic injury from gaseous or solid emboli. Importantly, a window of opportunity for intervention-to eliminate the source of the emboli and thereby prevent subsequent development of a clinical or subclinical stroke-may be identified using TCD. In this review, we discuss the application of TCD sonography in the perioperative and intensive care setting in adults and children known to be at increased risk of cerebral embolism. The major challenge for evaluation of emboli, especially in children, is the need to establish the ground truth and define true emboli identified by TCD. This requires the development and validation of a predictive TCD emboli monitoring technique so that appropriately designed clinical studies intended to identify specific modifiable factors and develop potential strategies to reduce pathologic cerebral embolic burden can be performed.
Collapse
Affiliation(s)
- Barry D Kussman
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Syed M Imaduddin
- Department of Electrical Engineering and Computer Science, the Institute for Medical Engineering and Science, and the Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mohammad Hadi Gharedaghi
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Thomas Heldt
- Department of Electrical Engineering and Computer Science, the Institute for Medical Engineering and Science, and the Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kerri LaRovere
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Beishon L, Clough RH, Kadicheeni M, Chithiramohan T, Panerai RB, Haunton VJ, Minhas JS, Robinson TG. Vascular and haemodynamic issues of brain ageing. Pflugers Arch 2021; 473:735-751. [PMID: 33439324 PMCID: PMC8076154 DOI: 10.1007/s00424-020-02508-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
The population is ageing worldwide, thus increasing the burden of common age-related disorders to the individual, society and economy. Cerebrovascular diseases (stroke, dementia) contribute a significant proportion of this burden and are associated with high morbidity and mortality. Thus, understanding and promoting healthy vascular brain ageing are becoming an increasing priority for healthcare systems. In this review, we consider the effects of normal ageing on two major physiological processes responsible for vascular brain function: Cerebral autoregulation (CA) and neurovascular coupling (NVC). CA is the process by which the brain regulates cerebral blood flow (CBF) and protects against falls and surges in cerebral perfusion pressure, which risk hypoxic brain injury and pressure damage, respectively. In contrast, NVC is the process by which CBF is matched to cerebral metabolic activity, ensuring adequate local oxygenation and nutrient delivery for increased neuronal activity. Healthy ageing is associated with a number of key physiological adaptations in these processes to mitigate age-related functional and structural declines. Through multiple different paradigms assessing CA in healthy younger and older humans, generating conflicting findings, carbon dioxide studies in CA have provided the greatest understanding of intrinsic vascular anatomical factors that may mediate healthy ageing responses. In NVC, studies have found mixed results, with reduced, equivalent and increased activation of vascular responses to cognitive stimulation. In summary, vascular and haemodynamic changes occur in response to ageing and are important in distinguishing “normal” ageing from disease states and may help to develop effective therapeutic strategies to promote healthy brain ageing.
Collapse
Affiliation(s)
- Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Meeriam Kadicheeni
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Tamara Chithiramohan
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
12
|
Aebi MR, Bourdillon N, Kunz A, Bron D, Millet GP. Specific effect of hypobaria on cerebrovascular hypercapnic responses in hypoxia. Physiol Rep 2021; 8:e14372. [PMID: 32097541 PMCID: PMC7058173 DOI: 10.14814/phy2.14372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
It remains unknown whether hypobaria plays a role on cerebrovascular reactivity to CO2 (CVR). The present study evaluated the putative effect of hypobaria on CVR and its influence on cerebral oxygen delivery (cDO2) in five randomized conditions (i.e., normobaric normoxia, NN, altitude level of 440 m; hypobaric hypoxia, HH at altitude levels of 3,000 m and 5,500 m; normobaric hypoxia, NH, altitude simulation of 5,500 m; and hypobaric normoxia, HN). CVR was assessed in nine healthy participants (either students in aviation or pilots) during a hypercapnic test (i.e., 5% CO2). We obtained CVR by plotting middle cerebral artery velocity versus end‐tidal CO2 pressure (PETCO2) using a sigmoid model. Hypobaria induced an increased slope in HH (0.66 ± 0.33) compared to NH (0.35 ± 0.19) with a trend in HN (0.46 ± 0.12) compared to NN (0.23 ± 0.12, p = .069). PETCO2 was decreased (22.3 ± 2.4 vs. 34.5 ± 2.8 mmHg and 19.9 ± 1.3 vs. 30.8 ± 2.2 mmHg, for HN vs. NN and HH vs. NH, respectively, p < .05) in hypobaric conditions when compared to normobaric conditions with comparable inspired oxygen pressure (141 ± 1 vs. 133 ± 3 mmHg and 74 ± 1 vs. 70 ± 2 mmHg, for NN vs. HN and NH vs. HH, respectively) During hypercapnia, cDO2 was decreased in 5,500 m HH (p = .046), but maintained in NH when compared to NN. To conclude, CVR seems more sensitive (i.e., slope increase) in hypobaric than in normobaric conditions. Moreover, hypobaria potentially affected vasodilation reserve (i.e., MCAv autoregulation) and brain oxygen delivery during hypercapnia. These results are relevant for populations (i.e., aviation pilots; high‐altitude residents as miners; mountaineers) occasionally exposed to hypobaric normoxia.
Collapse
Affiliation(s)
- Mathias R Aebi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Becare SA, Renens, Switzerland
| | - Andres Kunz
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Denis Bron
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Comparison of Pressure Reactivity Index and Mean Velocity Index to Evaluate Cerebrovascular Reactivity During Induced Arterial Blood Pressure Variations in Severe Brain Injury. Neurocrit Care 2020; 34:974-982. [PMID: 33006033 DOI: 10.1007/s12028-020-01092-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To compare the assessment of cerebral autoregulation by cerebrovascular reactivity indices based on intracranial pressure (Pressure Reactivity Index, PRx) and on transcranial Doppler (Mean Velocity Index, Mx) during controlled variations of arterial blood pressure in severe brain injury. Primary outcome was the agreement between both cerebrovascular reactivity indices measured by the Bland-and-Altman method. Secondary outcomes were the association of cerebrovascular reactivity indices with arterial blood pressure variation, and the comparison of optimal cerebral perfusion pressures determined by both indices. METHODS All consecutive comatose (Glasgow Coma Scale < 8) patients from the surgical intensive care unit of Bicetre Hospital who had an acute brain injury on computerized tomography and needed vasopressor support were prospectively included. Step-by-step arterial pressure variations using vasopressors were performed to compare PRx and Mx and to calculate optimal cerebral perfusion pressure (CPPopt). MEASUREMENTS AND MAIN RESULTS 15 patients were included. Mean difference between both indices measured by Bland-and-Altman plot was - 0.07 (IC 95% [- 1.02 to 0.87]). Mx was significantly associated with arterial pressure variation (one-way ANOVA test, p = 0.007), whereas PRx was not (p = 0.44). Optimal cerebral perfusion pressure calculated with PRx and Mx was respectively 11 and 15mmHg higher than the mean perfusion pressure prescribed. Optimal cerebral perfusion pressure calculation was possible in all cases. CONCLUSIONS Cerebral vasoreactivity indices calculated with intracranial pressure or transcranial Doppler show only moderate agreement. Both indices nonetheless suggest substantially higher optimal cerebral perfusion pressure than those currently provided by international guidelines.
Collapse
|
14
|
Rivas E, Allie KN, Salvador PM. Progressive dry to humid hyperthermia alters exercise cerebral blood flow. J Therm Biol 2019; 84:398-406. [PMID: 31466779 DOI: 10.1016/j.jtherbio.2019.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Exercising in hot conditions may increase the risk for exertional heat-related illness due to reduction in cerebral blood flow (CBF); however, the acute effect of exercise-induced changes on CBF during compensable and uncompensable heat stress remain unclear. We tested the hypothesis that exercising in hot dry and humid conditions would have different CBF responses. METHODS Nine healthy active males completed a 30 min baseline rest then 60 min of low intensity self-paced exercise (12 rating of perceived exertion) in a 1) control compensable neutral dry (CN; 23.7 ± 0.7 °C; 10.7 ± 0.8%Rh) and 2) compensable hot dry (CH; 42.3 ± 0.3 °C; 10.7 ± 1.8%Rh) that progressively increased to an uncompensable hot humid (UCH; 42.3 ± 0.3 °C; 55.2 ± 7.7%Rh) environment in random order separated by at least 4 days. RESULTS We observed that during CN environments from rest through 60 min of exercise, middle cerebral velocity (MCAvmean) and conductance (MCAvmean CVC) remained unchanged. In contrast, during CH, MCAvmean, MCAvmean CVC, and cardiac output (Q) increased and systemic vascular resistance (SVR) decreased. However, under UCH, MCAvmean, MCAvmean CVC, and Q was reduced. No difference in mean arterial pressure or ventilation was observed during any condition. Only during UCH, end-tidal PO2 increased and PCO2 decreased. The redistribution of blood to the skin for thermoregulation (heart rate, skin blood flow and sweat rate) remained higher during exercise in UCH environments. CONCLUSIONS Collectively, exercise cerebral blood flow is altered by an integrative physiological manner that differs in CN, CH, and UCH environments. The control of CBF may be secondary to thermoregulatory control which may provide an explanation for the cause of exertional heat illness.
Collapse
Affiliation(s)
- Eric Rivas
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA.
| | - Kyleigh N Allie
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Paolo M Salvador
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
15
|
Wei W, Yi X, Ruan J, Duan X, Luo H, Lv Z. Influence of collateral circulation on cerebral blood flow and frontal lobe cognitive function in patients with severe internal carotid artery stenosis. BMC Neurol 2019; 19:151. [PMID: 31277587 PMCID: PMC6612158 DOI: 10.1186/s12883-019-1380-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This study aimed to investigate the cerebral blood flow (CBF) and frontal lobe cognitive function in severe internal carotid artery (ICA) stenosis patients with different types of collateral circulation. METHODS One hundred twenty-six patients with severe unilateral ICA stenosis were enrolled. Digital subtraction angiography (DSA) was performed to recruit patients with one of three common types of collateral circulation: anterior communicating artery (AcoA), posterior communicating artery (PcoA) and ophthalmic artery (OA). The hemodynamic parameters of the middle cerebral artery (MCA) were measured using transcranial Doppler (TCD), and the individual frontal lobe cognitive attention functions were evaluated using Word Fluency Test, Trail-Making Test (TMT), Digit Span, and Stroop Color Word Test (SCWT). The correlation between hemodynamic changes and the scores of all tasks was analyzed. RESULTS On the side of arterial stenosis, the CBF velocities were highest in AcoA group and lowest in the OA group. All patients performed worse in TMT and Digit Span than the matched normal controls. The AcoA group exhibited a lower pulsatility index (PI) and a longer response time in the Stroop task, but had a higher accuracy rate in the Stroop task and higher scores in Word Fluency Test than the PcoA and OA groups. In all the three groups, PI was positively correlated with the accuracy rate for Stroop interference effects. CONCLUSIONS Our findings suggested that the frontal lobe cognitive function of patients with ICA was impaired, and AcoA collaterals may be beneficial for selective attention functions, whereas OA collaterals may be associated with impairment of selective attention functions. Additionally, a high PI may be an indicator for identifying impaired selective attention in patients with severe ICA stenosis.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000 Sichuan China
| | - Xingyang Yi
- Department of Neurology, People’s Hospital of Deyang City, Deyang, 618000 Sichuan China
| | - Jianghai Ruan
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000 Sichuan China
| | - Xiaodong Duan
- Department of Rehabilitation medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Hua Luo
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000 Sichuan China
| | - Zhiyu Lv
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000 Sichuan China
| |
Collapse
|
16
|
Alkhotani A, Butt B, Khalid M, Binmahfoodh M. Peripontomedullary hydatid cyst: Case report and literature review. Int J Surg Case Rep 2019; 55:23-27. [PMID: 30710875 PMCID: PMC6356117 DOI: 10.1016/j.ijscr.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/30/2018] [Accepted: 01/15/2019] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Hydatid cyst represents the parasitic infection by Genus Echenococcus Granulosis. This disease usually involves liver followed by lungs and rarely the CNS. The CNS involvement by the Hydatid Cyst is present in 1-2% of all hydatidosis. Even when it is found in the Brain it presents usually in the supratentorial compartment. However this case was unique in having the Hydatid cyst within the infratentorial fossa. With multiple small cysts, causing mass effect and challenging for surgical resection. PRESENTATION A 44 years female presented with headache, diplobia and bulbar symptoms, followed by ataxia. Full examination, proper investigations showed the peripontomedullary hydatid cysts. Surgical management is illustrated. DISCUSSION It is still challenging for the neurosurgeons to operate on these lesions in spite of modern technologies and fancy approaches due to its delicate nature, associated risk of allergic reaction, cyst's material dissemination and irreversible injury of multiple neurological structure due to prolonged compression of cranial nerves crossing the cerebellopontine angle. CONCLUSION In this case report we are presenting a rare case of Multiple Hydatid cysts involving a rare location in the brain; peripontomedullary area and extending all the way down to the foramen magnum. Supported with a literature review in relation to disease etiology, epidemiology, clinical presentation and management.
Collapse
Affiliation(s)
- Afnan Alkhotani
- Neuroscience Department, Neurosurgery Section, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.
| | - Babar Butt
- Neuroscience Department, Neurosurgery Section, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Muhammad Khalid
- Neuroscience Department, Neurosurgery Section, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed Binmahfoodh
- Neuroscience Department, Neurosurgery Section, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Kaczynski J, Home R, Shields K, Walters M, Whiteley W, Wardlaw J, Newby DE. Reproducibility of Transcranial Doppler ultrasound in the middle cerebral artery. Cardiovasc Ultrasound 2018; 16:15. [PMID: 30200977 PMCID: PMC6131943 DOI: 10.1186/s12947-018-0133-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Transcranial Doppler ultrasound remains the only imaging modality that is capable of real-time measurements of blood flow velocity and microembolic signals in the cerebral circulation. We here assessed the repeatability and reproducibility of transcranial Doppler ultrasound in healthy volunteers and patients with symptomatic carotid artery stenosis. METHODS Between March and August 2017, we recruited 20 healthy volunteers and 20 patients with symptomatic carotid artery stenosis. In a quiet temperature-controlled room, two 1-h transcranial Doppler measurements of blood flow velocities and microembolic signals were performed sequentially on the same day (within-day repeatability) and a third 7-14 days later (between-day reproducibility). Levels of agreement were assessed by interclass correlation co-efficient. RESULTS In healthy volunteers (31±9 years, 11 male), within-day repeatability of Doppler measurements were 0.880 (95% CI 0.726-0.950) for peak velocity, 0.867 (95% CI 0.700-0.945) for mean velocity, and 0.887 (95% CI 0.741-0.953) for end-diastolic velocity. Between-day reproducibility was similar but lower: 0.777 (95% CI 0.526-0.905), 0.795 (95% CI 0.558-0.913), and 0.674 (95% CI 0.349-0.856) respectively. In patients (72±11 years, 11 male), within-day repeatability of Doppler measurements were higher: 0.926 (95% CI 0.826-0.970) for peak velocity, 0.922 (95% CI 0.817-0.968) for mean velocity, and 0.868 (95% CI 0.701-0.945) for end-diastolic velocity. Similarly, between-day reproducibility revealed lower values: 0.800 (95% CI 0.567-0.915), 0.786 (95% CI 0.542-0.909), and 0.778 (95% CI 0.527-0.905) respectively. In both cohorts, the intra-observer Bland Altman analysis demonstrated acceptable mean measurement differences and limits of agreement between series of middle cerebral artery velocity measurements with very few outliers. In patients, the carotid stenoses were 30-40% (n = 9), 40-50% (n = 6), 50-70% (n = 3) and > 70% (n = 2). No spontaneous embolisation was detected in either of the groups. CONCLUSIONS Transcranial Doppler generates reproducible data regarding the middle cerebral artery velocities. However, larger studies are needed to validate its clinical applicability. TRIAL REGISTRATION ClinicalTrial.gov (ID NCT 03050567), retrospectively registered on 15/05/2017.
Collapse
Affiliation(s)
- Jakub Kaczynski
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SA UK
| | - Rachel Home
- College of Medicine and Veterinary Medicine, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Karen Shields
- Stroke Unit, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow, G51 4TF UK
| | - Matthew Walters
- College of Medical, Veterinary and Life Sciences, Wolfson Medical School Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - William Whiteley
- Royal Infirmary of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh, EH16 4SA UK
| | - Joanna Wardlaw
- Royal Infirmary of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh, EH16 4SA UK
| | - David E. Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SA UK
| |
Collapse
|
18
|
Rivera-Lara L, Geocadin R, Zorrilla-Vaca A, Healy R, Radzik BR, Palmisano C, Mirski M, Ziai WC, Hogue C. Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients. Neurocrit Care 2018; 27:362-369. [PMID: 28664392 DOI: 10.1007/s12028-017-0421-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Transcranial Doppler (TCD) noninvasively measures cerebral blood flow (CBF) velocity and is a well-studied method to monitor cerebral autoregulation (CA). Near-infrared spectroscopy (NIRS) has emerged as a promising noninvasive method to determine CA continuously by using regional cerebral oxygen saturation (rSO2) as a surrogate for CBF. Little is known about its accuracy to determine CA in patients with intracranial lesions. The purpose of this study was to assess the accuracy of rSO2-based CA monitoring with TCD methods in comatose patients with acute neurological injury. METHODS Thirty-three comatose patients were monitored at the bedside to measure CA using both TCD and NIRS. Patients were monitored daily for up to three days from coma onset. The cerebral oximetry index (COx) was calculated as the moving correlation between the slow waves of rSO2 and mean arterial pressure (MAP). The mean velocity index (Mx) was calculated as a similar coefficient between slow waves of TCD-measured CBF velocity and MAP. Optimal blood pressure was defined as the MAP with the lowest Mx and COx. Averaged Mx and COx as well as optimal MAP, based on both Mx and COx, were compared using Pearson's correlation. Bias analysis was performed between these same CA metrics. RESULTS The median duration of monitoring was 60 min (interquartile range [IQR] 48-78). There was a moderate correlation between the averaged values of COx and Mx (R = 0.40, p = 0.005). Similarly, there was a strong correlation between optimal MAP calculated for COx and Mx (R = 0.87, p < 0.001). Bland-Altman analysis showed moderate agreement with bias (±standard deviation) of -0.107 (±0.191) for COx versus Mx and good agreement with bias of 1.90 (±7.94) for optimal MAP determined by COx versus Mx. CONCLUSIONS Monitoring CA with NIRS-derived COx is correlated and had good agreement with previously validated TCD-based method. These results suggest that COx may be an acceptable substitute for Mx monitoring in patients with acute intracranial injury.
Collapse
Affiliation(s)
- Lucia Rivera-Lara
- Department of Neurology, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Romergryko Geocadin
- Department of Neurology, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Andres Zorrilla-Vaca
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Faculty of Health, School of Medicine, Universidad del Valle, Cali, Colombia
| | - Ryan Healy
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Batya R Radzik
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Caitlin Palmisano
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Marek Mirski
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Wendy C Ziai
- Department of Neurology, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Charles Hogue
- Department of Anesthesiology, Northwestern University Feinberg, School of Medicine, Chicago, IL, 606011, USA
| |
Collapse
|
19
|
Schetelig D, Sedlacik J, Fiehler J, Frölich A, Knopp T, Sothmann T, Waschkewitz J, Werner R. Analysis of the influence of imaging-related uncertainties on cerebral aneurysm deformation quantification using a no-deformation physical flow phantom. Sci Rep 2018; 8:11004. [PMID: 30030483 PMCID: PMC6054631 DOI: 10.1038/s41598-018-29282-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
Abstract
Cardiac-cycle related pulsatile aneurysm motion and deformation is assumed to provide valuable information for assessing cerebral aneurysm rupture risk. Accordingly, numerous studies addressed quantification of cerebral aneurysm wall motion and deformation. Most of them utilized in vivo imaging data, but image-based aneurysm deformation quantification is subject to pronounced uncertainties: unknown ground-truth deformation; image resolution in the order of the expected deformation; direct interplay between contrast agent inflow and image intensity. To analyze the impact of the uncertainties on deformation quantification, a multi-imaging modality ground-truth phantom study is performed. A physical flow phantom was designed that allowed simulating pulsatile flow through a variety of modeled cerebral vascular structures. The phantom was imaged using different modalities [MRI, CT, 3D-RA] and mimicking physiologically realistic flow conditions. Resulting image data was analyzed by an established registration-based approach for automated wall motion quantification. The data reveals severe dependency between contrast media inflow-related image intensity changes and the extent of estimated wall deformation. The study illustrates that imaging-related uncertainties affect the accuracy of cerebral aneurysm deformation quantification, suggesting that in vivo imaging studies have to be accompanied by ground-truth phantom experiments to foster data interpretation and to prove plausibility of the applied image analysis algorithms.
Collapse
Affiliation(s)
- Daniel Schetelig
- University Medical Center Hamburg-Eppendorf, Department of Computational Neuroscience, Hamburg, 20246, Germany.
| | - Jan Sedlacik
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg, 20246, Germany
| | - Jens Fiehler
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg, 20246, Germany
| | - Andreas Frölich
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg, 20246, Germany
| | - Tobias Knopp
- University Medical Center Hamburg-Eppendorf, Section for Biomedical Imaging, Hamburg, 20246, Germany.,Hamburg University of Technology, Institute for Biomedical Imaging, Hamburg, 20246, Germany
| | - Thilo Sothmann
- University Medical Center Hamburg-Eppendorf, Department of Computational Neuroscience, Hamburg, 20246, Germany.,University Medical Center Hamburg-Eppendorf, Department of Radiotherapy and Radiation Oncology, Hamburg, 20246, Germany
| | - Jonathan Waschkewitz
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy and Radiation Oncology, Hamburg, 20246, Germany
| | - René Werner
- University Medical Center Hamburg-Eppendorf, Department of Computational Neuroscience, Hamburg, 20246, Germany
| |
Collapse
|
20
|
Montoro CI, Duschek S, Reyes del Paso GA. Variability in cerebral blood flow velocity at rest and during mental stress in healthy individuals: Associations with cardiovascular parameters and cognitive performance. Biol Psychol 2018; 135:149-158. [DOI: 10.1016/j.biopsycho.2018.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
|
21
|
Comparing Different Recording Lengths of Dynamic Cerebral Autoregulation: 5 versus 10 Minutes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7803426. [PMID: 29662898 PMCID: PMC5831790 DOI: 10.1155/2018/7803426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/31/2017] [Indexed: 11/30/2022]
Abstract
We compared the dynamic cerebral autoregulation (dCA) indices between 5- and 10-minute data lengths by analyzing 37 patients with ischemic stroke and 51 controls in this study. Correlation coefficient (Mx) and transfer function analysis were applied for dCA analysis. Mx and phase shift in all frequency bands were not significantly different between 5- and 10-minute recordings [mean difference: Mx = 0.02; phase shift of very low frequency (0.02–0.07 Hz) = 0.3°, low frequency (0.07–0.20 Hz) = 0.6°, and high frequency (0.20–0.50 Hz) = 0.1°]. However, the gains in all frequency bands of a 5-minute recording were slightly but significantly higher than those of a 10-minute recording (mean difference of gain: very low frequency = 0.05 cm/s/mmHg, low frequency = 0.11 cm/s/mmHg, and high frequency = 0.14 cm/s/mmHg). The intraclass correlation coefficients between all dCA indices of 5- and 10-minute recordings were favorable, especially in Mx (0.93), phase shift in very low frequency (0.87), and gain in very low frequency (0.94). The areas under the receiver operating characteristic curve for stroke diagnosis between 5- and 10-minute recordings were not different. We concluded that dCA assessed by using a 5-minute recording is not significantly different from that using a 10-minute recording in the clinical application.
Collapse
|
22
|
Chi NF, Ku HL, Wang CY, Liu Y, Chan L, Lin YC, Peng CK, Novak V, Hu HH, Hu CJ. Dynamic Cerebral Autoregulation Assessment Using Extracranial Internal Carotid Artery Doppler Ultrasonography. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1307-1313. [PMID: 28411965 DOI: 10.1016/j.ultrasmedbio.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/07/2017] [Accepted: 02/02/2017] [Indexed: 06/07/2023]
Abstract
Transcranial Doppler ultrasonography of the middle cerebral artery (MCA) is frequently used to assess dynamic cerebral autoregulation (dCA); however, this is difficult in patients with poor temporal bone windows. In the study described here, we investigated the agreement and sensitivity of dCA indices determined from the extracranial internal carotid artery (ICA) and those determined from the MCA. Measurements for 32 stroke patients and 59 controls were analyzed. Measurement of the mean flow correlation index (Mx) and transfer function analysis based on spontaneous blood pressure fluctuation were simultaneously performed for the extracranial ICA and MCA. The mean values of Mx and phase shift did not significantly differ between the ICA and MCA (mean difference: Mx = 0.01; phase shift of very low frequency [VLF] = 0.7°, low frequency [LF] = 3.3° and high frequency = 4.5°), but the gains in VLF and LF in the ICA were significantly lower than those in the MCA (mean difference: gain of VLF = -0.13, gain of LF = -0.10). The intra-class correlation coefficient between the dCA indices of the ICA and MCA was favorable in Mx (0.76) and the phase shift of VLF (0.72). The area under the receiver operating characteristic curve for stroke diagnosis did not differ among the dCA indices. We conclude that dCA assessed from the ICA is as effective as that from the MCA, but the results are not interchangeable.
Collapse
Affiliation(s)
- Nai-Fang Chi
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Lun Ku
- Department of Psychiatry, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yen Wang
- Research Center for Adaptive Data Analysis, National Central University, Taoyuan, Taiwan
| | - Yanhui Liu
- Fengsheng Yongkang Software Technology Corporation, Nanjing, China
| | - Lung Chan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Health Management Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Vera Novak
- Departments of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Han-Hwa Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Lee WJ, Jung KH, Ryu YJ, Lee KJ, Kim JM, Lee ST, Chu K, Kim M, Lee SK, Roh JK. Progression of Cerebral White Matter Hyperintensities and the Associated Sonographic Index. Radiology 2017; 284:824-833. [PMID: 28394756 DOI: 10.1148/radiol.2017162064] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose To evaluate the relationship between penetrating arterial pulsation and the progression of white matter hyperintensities (WMHs) by using the sonographic resistance index (RI) along the M1 segment of the middle cerebral artery (MCA). Materials and Methods The study design was approved by the institutional review board of Seoul National University Hospital. The study included 450 individuals who had undergone initial transcranial Doppler (TCD) sonography and magnetic resonance imaging, with follow-up imaging performed within 34-45 months, and who had no stenosis of 30% or more in the internal carotid artery or MCA or a history of stroke other than an old lacunar infarction. MRIR was defined as distal RI divided by proximal RI, where the distance between proximal MI and distal M1 was approximately 20 mm based on TCD evaluation. WMH progression was quantitatively evaluated by subtracting WMH volume at baseline from WMH volume at follow-up. Results At baseline, mean MRIR was 0.974 ± 0.045 (standard deviation), and mean WMH volume was 9.66 mL ± 14.54. After a mean of 38.3 months ± 3.4, the WMH volume change was 4.06 mL ± 7.35. WMH volume change was linearly associated with MRIR (r = 0.328, P < .001), along with the baseline WMH volume (r = 0.433, P < .001) and mean MCA pulsatility index (r = 0.275, P = .037). MRIR values greater than or equal to 1.000 were associated with a greater increase in WMH volume (P < .001). Conclusion MRIR might reflect the pulsation of penetrating arteries and is independently associated with WMH progression. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Woo-Jin Lee
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| | - Keun-Hwa Jung
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| | - Young Jin Ryu
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| | - Keon-Joo Lee
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| | - Jeong-Min Kim
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| | - Soon-Tae Lee
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| | - Kon Chu
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| | - Manho Kim
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| | - Sang Kun Lee
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| | - Jae-Kyu Roh
- From the Departments of Neurology (W.J.L., K.H.J., K.J.L., S.T.L., K.C., M.K., S.K.L., J.K.R.) and Radiology (Y.J.R.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, South Korea; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea (K.H.J., S.T.L., K.C., M.K., S.K.L.); Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea (J.M.K.); and Department of Neurology, the Armed Forces Capital Hospital, Sungnam, South Korea (J.K.R.)
| |
Collapse
|
24
|
Ruedinger KL, Rutkowski DR, Schafer S, Roldán-Alzate A, Oberstar EL, Strother C. Impact of image reconstruction parameters when using 3D DSA reconstructions to measure intracranial aneurysms. J Neurointerv Surg 2017; 10:285-289. [PMID: 28385725 DOI: 10.1136/neurintsurg-2017-013080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND PURPOSE Safe and effective use of newly developed devices for aneurysm treatment requires the ability to make accurate measurements in the angiographic suite. Our purpose was to determine the parameters that optimize the geometric accuracy of three-dimensional (3D) vascular reconstructions. METHODS An in vitro flow model consisting of a peristaltic pump, plastic tubing, and 3D printed patient-specific aneurysm models was used to simulate blood flow in an intracranial aneurysm. Flow rates were adjusted to match values reported in the literature for the internal carotid artery. 3D digital subtraction angiography acquisitions were obtained using a commercially available biplane angiographic system. Reconstructions were done using Edge Enhancement (EE) or Hounsfield Unit (HU) kernels and a Normal or Smooth image characteristic. Reconstructed images were analyzed using the vendor's aneurysm analysis tool. Ground truth measurements were derived from metrological scans of the models with a microCT. Aneurysm volume, surface area, dome height, minimum and maximum ostium diameter were determined for the five models. RESULTS In all cases, measurements made with the EE kernel most closely matched ground truth values. Differences in values derived from reconstructions displayed with Smooth or Normal image characteristics were small and had only little impact on the geometric parameters considered. CONCLUSIONS Reconstruction parameters impact the accuracy of measurements made using the aneurysm analysis tool of a commercially available angiographic system. Absolute differences between measurements made using reconstruction parameters determined as optimal in this study were, overall, very small. The significance of these differences, if any, will depend on the details of each individual case.
Collapse
Affiliation(s)
- Katrina L Ruedinger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David R Rutkowski
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Alejandro Roldán-Alzate
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erick L Oberstar
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Charles Strother
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
The Effect of Chunghyul-Dan on Hyperventilation-Induced Carbon Dioxide Reactivity of the Middle Cerebral Artery in Normal Subjects: A Dose-Dependent Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4567217. [PMID: 28512500 PMCID: PMC5415863 DOI: 10.1155/2017/4567217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/21/2022]
Abstract
Background. This study was conducted to show the prompt effect of chunghyul-dan (CHD) on cerebral hemodynamics in order to provide evidence for its use in stroke prevention. Methods. Hyperventilation-induced CO2 reactivity of the middle cerebral artery was measured in 12 healthy male volunteers (mean age: 26.3 ± 1.1 years) using transcranial Doppler sonography. All subjects were examined before and for 3 hours after administration, with an interval of 1 week between measurements. Results. Compared to baseline, the CO2 reactivity of the middle cerebral artery increased significantly at 2 and 3 hours after the administration of CHD (600 mg and 1200 mg). The mean blood pressure and heart rate did not vary from the baseline values in all groups. Conclusion. These data suggest that CHD administration (especially 600 mg) immediately improves cerebral blood flow.
Collapse
|
26
|
Comparable Cerebral Blood Flow in Both Hemispheres During Regional Cerebral Perfusion in Infant Aortic Arch Surgery. Ann Thorac Surg 2017; 103:178-185. [DOI: 10.1016/j.athoracsur.2016.05.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022]
|
27
|
Goodson CM, Rosenblatt K, Rivera-Lara L, Nyquist P, Hogue CW. Cerebral Blood Flow Autoregulation in Sepsis for the Intensivist: Why Its Monitoring May Be the Future of Individualized Care. J Intensive Care Med 2016; 33:63-73. [PMID: 27798314 DOI: 10.1177/0885066616673973] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral blood flow (CBF) autoregulation maintains consistent blood flow across a range of blood pressures (BPs). Sepsis is a common cause of systemic hypotension and cerebral dysfunction. Guidelines for BP management in sepsis are based on historical concepts of CBF autoregulation that have now evolved with the availability of more precise technology for its measurement. In this article, we provide a narrative review of methods of monitoring CBF autoregulation, the cerebral effects of sepsis, and the current knowledge of CBF autoregulation in sepsis. Current guidelines for BP management in sepsis are based on a goal of maintaining mean arterial pressure (MAP) above the lower limit of CBF autoregulation. Bedside tools are now available to monitor CBF autoregulation continuously. These data reveal that individual BP goals determined from CBF autoregulation monitoring are more variable than previously expected. In patients undergoing cardiac surgery with cardiopulmonary bypass, for example, the lower limit of autoregulation varied between a MAP of 40 to 90 mm Hg. Studies of CBF autoregulation in sepsis suggest patients frequently manifest impaired CBF autoregulation, possibly a result of BP below the lower limit of autoregulation, particularly in early sepsis or with sepsis-associated encephalopathy. This suggests that the present consensus guidelines for BP management in sepsis may expose some patients to both cerebral hypoperfusion and cerebral hyperperfusion, potentially resulting in damage to brain parenchyma. The future use of novel techniques to study and clinically monitor CBF autoregulation could provide insight into the cerebral pathophysiology of sepsis and offer more precise treatments that may improve functional and cognitive outcomes for survivors of sepsis.
Collapse
Affiliation(s)
- Carrie M Goodson
- 1 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn Rosenblatt
- 2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,3 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lucia Rivera-Lara
- 2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,3 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Nyquist
- 2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,3 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles W Hogue
- 4 Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
28
|
Ma X, Tian J, Wu Z, Zong X, Dong J, Zhan W, Xu Y, Li Z, Jiang G. Spatial Disassociation of Disrupted Functional Connectivity for the Default Mode Network in Patients with End-Stage Renal Disease. PLoS One 2016; 11:e0161392. [PMID: 27560146 PMCID: PMC4999135 DOI: 10.1371/journal.pone.0161392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the aberrant functional connectivity of the default mode network (DMN) in patients with end-stage renal disease (ESRD) and their clinical relevance. MATERIALS AND METHODS Resting-state functional MRI data were collected from 31 patients with ESRD (24 men, 24-61 years) and 31 age- and gender-matched healthy controls (HCs, 21 men, 26-61years). A whole-brain seed-based functional connectivity analysis of these collected R-fMRI data was performed by locating the seeds in the posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC) to investigate the functional connectivity of the posterior and anterior DMN over the whole brain, respectively. RESULTS Compared to the HCs, the patients exhibited significantly decreased functional connectivity with the PCC in the left middle temporal gyrus, the right anterior cingulate gyrus, and the bilateral medial superior frontal gyrus. For the vmPFC seed, only the right thalamus showed significantly decreased functional connectivity in the patients with ESRD compared to HCs. Interestingly, functional connectivity between the PCC and right medial superior frontal gyrus exhibited a significantly positive correlation with the hemoglobin level in the patients. CONCLUSION Our findings suggest a spatially specific disruption of functional connectivity in the DMN in patients with ESRD, thereby providing novel insights into our understanding of the neurophysiology mechanism that underlies the disease.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Medical Imaging, Guangdong Provincial No.2 People’s Hospital, Guangzhou City, Guangdong province, PR China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Provincial No.2 People’s Hospital, Guangzhou City, Guangdong province, PR China
| | - Zhanhong Wu
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xiaopeng Zong
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jianwei Dong
- Department of Mathematics, Guangdong Pharmaceutical University, Guangzhou City, Guangdong province, PR China
| | - Wenfeng Zhan
- Department of Medical Imaging, Guangdong Provincial No.2 People’s Hospital, Guangzhou City, Guangdong province, PR China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong province, PR China
| | - Zibo Li
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (GJ); (ZL)
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Provincial No.2 People’s Hospital, Guangzhou City, Guangdong province, PR China
- * E-mail: (GJ); (ZL)
| |
Collapse
|
29
|
Spooner R, Lushington K, Keage HA, Blunden S, Kennedy JD, Schembri M, Wabnitz D, Martin AJ, Kohler MJ. Cognition, temperament, and cerebral blood flow velocity in toddlers and preschool children with sleep-disordered breathing or behavioral insomnia of childhood. Sleep Med 2016; 21:77-85. [DOI: 10.1016/j.sleep.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/01/2022]
|
30
|
Madden KM, Harris DE, Meneilly GS. Attenuation of Postprandial Hypotension with Acarbose in Older Adults with Type 2 Diabetes Mellitus. J Am Geriatr Soc 2015; 63:1484-6. [PMID: 26189860 DOI: 10.1111/jgs.13503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kenneth M Madden
- Gerontology and Diabetes Research Laboratory, Division of Geriatric Medicine, Department of Medicine, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, British Columbia, Canada
| | - David E Harris
- Gerontology and Diabetes Research Laboratory, Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Graydon S Meneilly
- Gerontology and Diabetes Research Laboratory, Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Gatouillat A, Bleton H, VanSwearingen J, Perera S, Thompson S, Smith T, Sejdić E. Cognitive tasks during walking affect cerebral blood flow signal features in middle cerebral arteries and their correlation to gait characteristics. Behav Brain Funct 2015; 11:29. [PMID: 26409878 PMCID: PMC4583750 DOI: 10.1186/s12993-015-0073-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/09/2015] [Indexed: 11/23/2022] Open
Abstract
Gait is a complex process involving both cognitive and sensory ability and is strongly impacted by the environment. In this paper, we propose to study of the impact of a cognitive task during gait on the cerebral blood flow velocity, the blood flow signal features and the correlation of gait and blood flow features through a dual task methodology. Both cerebral blood flow velocity and gait characteristics of eleven participants with no history of brain or gait conditions were recorded using transcranial Doppler on mid-cerebral artery while on a treadmill. The cognitive task was induced by a backward counting starting from 10,000 with decrement of 7. Central blood flow velocity raw and envelope features were extracted in both time, frequency and time-scale domain; information-theoretic metrics were also extracted and statistical significances were inspected. A similar feature extraction was performed on the stride interval signal. Statistical differences between the cognitive and baseline trials, between the left and right mid-cerebral arteries signals and the impact of the antropometric variables where studied using linear mixed models. No statistical differences were found between the left and right mid-cerebral arteries flows or the baseline and cognitive state gait features, while statistical differences for specific features were measured between cognitive and baseline states. These statistical differences found between the baseline and cognitive states show that cognitive process has an impact on the cerebral activity during walking. The state was found to have an impact on the correlation between the gait and blood flow features.
Collapse
Affiliation(s)
- Arthur Gatouillat
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Héloïse Bleton
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jessie VanSwearingen
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Subashan Perera
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Scott Thompson
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Traci Smith
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Bleton H, Sejdić E. A cerebral blood flow evaluation during cognitive tasks following a cervical spinal cord injury: a case study using transcranial Doppler recordings. Cogn Neurodyn 2015; 9:615-26. [PMID: 26557931 DOI: 10.1007/s11571-015-9355-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/15/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022] Open
Abstract
A spinal cord injury (SCI) is one of the most common neurological disorders. In this paper, we examined the consequences of upper SCI in a male participant on the cerebral blood flow velocity. In particular, transcranial Doppler was used to study these effects through middle cerebral arteries (MCA) during resting-state periods and during cognitive challenges (non-verbal word-generation tasks and geometric-rotation tasks). Signal characteristics were analyzed from raw signals and envelope signals (maximum velocity) in the time domain, the frequency domain and the time-frequency domain. The frequency features highlighted an increase of the peak frequency in L-MCA and R-MCA raw signals, which revealed stronger cerebral blood flow during geometric/verbal processes respectively. This underlined a slight dominance of the right hemisphere during word-generation periods and a slight dominance of the left hemisphere during geometric processes. This finding was confirmed by cross-correlation in the time domain and by the entropy rate in information-theoretic domain. A comparison of our results to other neurological disorders (Alzheimer's disease, Parkinson's disease, autism, epilepsy, traumatic brain injury) showed that the SCI had similar effects such as general decreased cerebral blood flow and similar regular hemispheric dominance in a few cases.
Collapse
Affiliation(s)
- Héloïse Bleton
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA
| |
Collapse
|
33
|
Karunanithi K, Lee CJ, Chong W, Qian Y. The influence of flow diverter’s angle of curvature across the aneurysm neck on its haemodynamics. Proc Inst Mech Eng H 2015; 229:560-9. [DOI: 10.1177/0954411915593303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flow diverter stents have provided a new method of endovascular reconstruction for large and complex aneurysms. Understanding the impact of the flow diverter’s angle of curvature across the neck and its metal coverage rate on the haemodynamics of aneurysm is crucial to maximize the mass flow reduction inside the aneurysm, post-deployment. The aim of this study is to understand the correlation between the angle of curvature of flow diverter across the aneurysm neck and the metal coverage rate, and the aneurysm’s haemodynamics, using computational fluid dynamics. Varying the flow diverter angle resulted in varying metal coverage rate across the aneurysm neck for two patient vessel geometries, A (straight artery) and B (curved artery) with aspect ratios of 3.1 and 2.9, respectively. The results indicate that there exists a relationship between the aneurysm’s haemodynamics and the flow diverter’s angle of curvature across its neck. Moreover, the calculations indicated that cases with a moderately curved flow diverter, with an associated metal coverage rate of 50%–60%, achieve maximum flow reduction inside the aneurysm due to a stable flow resistance in the direction normal to the blood flow.
Collapse
Affiliation(s)
- Kaavya Karunanithi
- Australian School of Advanced Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Chang Joon Lee
- Australian School of Advanced Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | | | - Yi Qian
- Australian School of Advanced Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
34
|
Ševerdija EE, Vranken NPA, Simons AP, Gommer ED, Heijmans JH, Maessen JG, Weerwind PW. Hemodilution Combined With Hypercapnia Impairs Cerebral Autoregulation During Normothermic Cardiopulmonary Bypass. J Cardiothorac Vasc Anesth 2015; 29:1194-9. [PMID: 26146135 DOI: 10.1053/j.jvca.2015.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the influence of hemodilution and arterial pCO2 on cerebral autoregulation and cerebral vascular CO2 reactivity. DESIGN Prospective interventional study. SETTING University hospital-based single-center study. PARTICIPANTS Forty adult patients undergoing elective cardiac surgery using normothermic cardiopulmonary bypass. INTERVENTIONS Blood pressure variations induced by 6/minute metronome-triggered breathing (baseline) and cyclic 6/min changes of indexed pump flow at 3 levels of arterial pCO2. MEASUREMENTS AND MAIN RESULTS Based on median hematocrit on bypass, patients were assigned to either a group of a hematocrit ≥28% or<28%. The autoregulation index was calculated from cerebral blood flow velocity and mean arterial blood pressure using transfer function analysis. Cerebral vascular CO2 reactivity was calculated using cerebral tissue oximetry data. Cerebral autoregulation as reflected by autoregulation index (baseline 7.5) was significantly affected by arterial pCO2 (median autoregulation index amounted to 5.7, 4.8, and 2.8 for arterial pCO2 of 4.0, 5.3, and 6.6 kPa, p≤0.002) respectively. Hemodilution resulted in a decreased autoregulation index; however, during hypocapnia and normocapnia, there were no significant differences between the two hematocrit groups. Moreover, the autoregulation index was lowest during hypercapnia when hematocrit was<28% (autoregulation index 3.3 versus 2.6 for hematocrit ≥28% and<28%, respectively, p = 0.014). Cerebral vascular CO2 reactivity during hypocapnia was significantly lower when perioperative hematocrit was<28% (p = 0.018). CONCLUSIONS Hemodilution down to a hematocrit of<28% combined with hypercapnia negatively affects dynamic cerebral autoregulation, which underlines the importance of tight control of both hematocrit and paCO2 during CPB.
Collapse
Affiliation(s)
| | | | | | | | - John H Heijmans
- Anesthesiology, Maastricht University Medical Center, AZ Maastricht, The Netherlands
| | | | | |
Collapse
|
35
|
Ma X, Jiang G, Li S, Wang J, Zhan W, Zeng S, Tian J, Xu Y. Aberrant functional connectome in neurologically asymptomatic patients with end-stage renal disease. PLoS One 2015; 10:e0121085. [PMID: 25786231 PMCID: PMC4364738 DOI: 10.1371/journal.pone.0121085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/28/2015] [Indexed: 01/12/2023] Open
Abstract
Purpose This study aimed to investigate the topological organization of intrinsic functional brain networks in patients with end-stage renal disease (ESRD). Materials and Methods Resting-state functional MRI data were collected from 22 patients with ESRD (16 men, 18–61 years) and 29age- and gender-matched healthy controls (HCs, 19 men, 32–61 years). Whole-brain functional networks were obtained by calculating the interregional correlation of low-frequency fluctuations in spontaneous brain activity among 1,024 parcels that cover the entire cerebrum. Weighted graph-based models were then employed to topologically characterize these networks at different global, modular and nodal levels. Results Compared to HCs, the patients exhibited significant disruption in parallel information processing over the whole networks (P< 0.05). The disruption was present in all the functional modules (default mode, executive control, sensorimotor and visual networks) although decreased functional connectivity was observed only within the default mode network. Regional analysis showed that the disease disproportionately weakened nodal efficiency of the default mode components and tended to preferentially affect central or hub-like regions. Intriguingly, the network abnormalities correlated with biochemical hemoglobin and serum calcium levels in the patients. Finally, the functional changes were substantively unchanged after correcting for gray matter atrophy in the patients. Conclusion Our findings provide evidence for the disconnection nature of ESRD’s brain and therefore have important implications for understanding the neuropathologic substrate of the disease from disrupted network organization perspective.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medial University, Guangzhou, PR China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong No. 2 Provincial People’s Hospital, Guangzhou, PR China
| | - Shumei Li
- Department of Medical Imaging, Guangdong No. 2 Provincial People’s Hospital, Guangzhou, PR China
| | - Jinhui Wang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, PR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, PR China
| | - Wenfeng Zhan
- Department of Medical Imaging, Guangdong No. 2 Provincial People’s Hospital, Guangzhou, PR China
| | - Shaoqing Zeng
- Department of Medical Imaging, Guangdong No. 2 Provincial People’s Hospital, Guangzhou, PR China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong No. 2 Provincial People’s Hospital, Guangzhou, PR China
- * E-mail: (JZT); (YKX)
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medial University, Guangzhou, PR China
- * E-mail: (JZT); (YKX)
| |
Collapse
|
36
|
Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, Brady KM, Reinhard M, Hutchinson PJ, Smielewski P. Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab 2015; 35:248-56. [PMID: 25407266 PMCID: PMC4426741 DOI: 10.1038/jcbfm.2014.192] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 01/31/2023]
Abstract
The impulse response (IR)-based autoregulation index (ARI) allows for continuous monitoring of cerebral autoregulation using spontaneous fluctuations of arterial blood pressure (ABP) and cerebral flow velocity (FV). We compared three methods of autoregulation assessment in 288 traumatic brain injury (TBI) patients managed in the Neurocritical Care Unit: (1) IR-based ARI; (2) transfer function (TF) phase, gain, and coherence; and (3) mean flow index (Mx). Autoregulation index was calculated using the TF estimation (Welch method) and classified according to the original Tiecks' model. Mx was calculated as a correlation coefficient between 10-second averages of ABP and FV using a moving 300-second data window. Transfer function phase, gain, and coherence were extracted in the very low frequency (VLF, 0 to 0.05 Hz) and low frequency (LF, 0.05 to 0.15 Hz) bandwidths. We studied the relationship between these parameters and also compared them with patients' Glasgow outcome score. The calculations were performed using both cerebral perfusion pressure (CPP; suffix 'c') as input and ABP (suffix 'a'). The result showed a significant relationship between ARI and Mx when using either ABP (r=-0.38, P<0.001) or CPP (r=-0.404, P<0.001) as input. Transfer function phase and coherence_a were significantly correlated with ARI_a and ARI_c (P<0.05). Only ARI_a, ARI_c, Mx_a, Mx_c, and phase_c were significantly correlated with patients' outcome, with Mx_c showing the strongest association.
Collapse
Affiliation(s)
- Xiuyun Liu
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- 1] Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK [2] Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Joseph Donnelly
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Georgios V Varsos
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Nathalie Nasr
- 1] Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK [2] Service de Neurologie Vasculaire, Hôpital Rangueil, INSERM U1048 - Team 11 (I2MC-Toulouse), Université de Toulouse III, Toulouse, France
| | - Ken M Brady
- Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Matthias Reinhard
- Department of Neurology, University Hospital, University of Freiburg, Freiburg, Germany
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Seule M, Muroi C, Sikorski C, Hugelshofer M, Winkler K, Keller E. Therapeutic hypothermia reduces middle cerebral artery flow velocity in patients with severe aneurysmal subarachnoid hemorrhage. Neurocrit Care 2014; 20:255-62. [PMID: 24132567 DOI: 10.1007/s12028-013-9927-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transcranial Doppler (TCD) is widely used to detect and follow up cerebral vasospasm after subarachnoid hemorrhage (SAH). Therapeutic hypothermia might influence blood flow velocities assessed by TCD. The aim of the study was to evaluate the effect of hypothermia on Doppler blood flow velocity after SAH. METHODS In 20 patients treated with hypothermia (33°) due to refractory intracranial hypertension or delayed cerebral ischemia (DCI), mean flow velocity of the middle cerebral artery (MFV(MCA)) was assessed by TCD. Thirteen patients were treated with combined hypothermia and barbiturate coma and seven with hypothermia alone. MFV(MCA) was obtained within 24 h before and after induction of hypothermia as well as before and after rewarming. RESULTS Hypothermia was induced on average 5 days after SAH (range 1-12) and maintained for 144 h (range 29-270). After hypothermia induction, MFV(MCA) decreased from 113.7 ± 49.0 to 93.8 ± 44.7 cm/s (p = 0.001). The decrease was independent of SAH-related complications and barbiturate coma. MFV(MCA) further decreased by 28.2 cm/s between early and late hypothermia (p < 0.001). This second decrease was observed in patients with DCI (p < 0.001), but not in patients with intracranial hypertension (p = 0.715). Compared to late hypothermia, MFV(MCA) remained unchanged after rewarming (65.6 ± 32.1 vs 70.3 ± 36.8 cm/s; p = 0.219). However, patients treated with hypothermia alone showed an increase in MFV(MCA) after rewarming (p = 0.016). CONCLUSION Therapeutic hypothermia after SAH decreases Doppler blood flow velocity in both intracranial hypertension and DCI cases. The results can be the effect of hypothermia-related mechanisms or resolving cerebral vasospasm during prolonged hypothermia.
Collapse
Affiliation(s)
- M Seule
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland,
| | | | | | | | | | | |
Collapse
|
38
|
Banahan C, Rogerson Z, Rousseau C, Ramnarine KV, Evans DH, Chung EML. An in vitro comparison of embolus differentiation techniques for clinically significant macroemboli: dual-frequency technique versus frequency modulation method. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2642-2654. [PMID: 25218455 PMCID: PMC4195753 DOI: 10.1016/j.ultrasmedbio.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/12/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
The ability to distinguish harmful solid cerebral emboli from gas bubbles intra-operatively has potential to direct interventions to reduce the risk of brain injury. In this in vitro study, two embolus discrimination techniques, dual-frequency (DF) and frequency modulation (FM) methods, are simultaneously compared to assess discrimination of potentially harmful large pieces of carotid plaque debris (0.5-1.55 mm) and thrombus-mimicking material (0.5-2 mm) from gas bubbles (0.01-2.5 mm). Detection of plaque and thrombus-mimic using the DF technique yielded disappointing results, with four out of five particles being misclassified (sensitivity: 18%; specificity: 89%). Although the FM method offered improved sensitivity, a higher number of false positives were observed (sensitivity: 72%; specificity: 50%). Optimum differentiation was achieved using the difference between peak embolus/blood ratio and mean embolus/blood ratio (sensitivity: 77%; specificity: 81%). We conclude that existing DF and FM techniques are unable to confidently distinguish large solid emboli from small gas bubbles (<50 μm).
Collapse
Affiliation(s)
- Caroline Banahan
- Medical Physics Department, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | - Zach Rogerson
- Department of Physics, University of Leicester, Leicester, UK
| | - Clément Rousseau
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | - David H Evans
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Emma M L Chung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
39
|
Del Pozzi AT, Pandey A, Medow MS, Messer ZR, Stewart JM. Blunted cerebral blood flow velocity in response to a nitric oxide donor in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 2014; 307:H397-404. [PMID: 24878770 DOI: 10.1152/ajpheart.00194.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cognitive deficits are characteristic of postural tachycardia syndrome (POTS). Intact nitrergic nitric oxide (NO) is important to cerebral blood flow (CBF) regulation, neurovascular coupling, and cognitive efficacy. POTS patients often experience defective NO-mediated vasodilation caused by oxidative stress. We have previously shown dilation of the middle cerebral artery in response to a bolus administration of the NO donor sodium nitroprusside (SNP) in healthy volunteers. In the present study, we hypothesized a blunted middle cerebral artery response to SNP in POTS. We used combined transcranial Doppler-ultrasound to measure CBF velocity and near-infrared spectroscopy to measure cerebral hemoglobin oxygenation while subjects were in the supine position. The responses of 17 POTS patients were compared with 12 healthy control subjects (age: 14-28 yr). CBF velocity in POTS patients and control subjects were not different at baseline (75 ± 3 vs. 71 ± 2 cm/s, P = 0.31) and decreased to a lesser degree with SNP in POTS patients (to 71 ± 3 vs. 62 ± 2 cm/s, P = 0.02). Changes in total and oxygenated hemoglobin (8.83 ± 0.45 and 8.13 ± 0.48 μmol/kg tissue) were markedly reduced in POTS patients compared with control subjects (14.2 ± 1.4 and 13.6 ± 1.6 μmol/kg tissue), primarily due to increased venous efflux. The data indicate reduced cerebral oxygenation, blunting of cerebral arterial vasodilation, and heightened cerebral venodilation. We conclude, based on the present study outcomes, that decreased bioavailability of NO is apparent in the vascular beds, resulting in a downregulation of NO receptor sites, ultimately leading to blunted responses to exogenous NO.
Collapse
Affiliation(s)
- Andrew T Del Pozzi
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Akash Pandey
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Marvin S Medow
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Zachary R Messer
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Julian M Stewart
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| |
Collapse
|
40
|
Wallace S, Logallo N, Faiz KW, Lund C, Brucher R, Russell D. Relative blood flow changes measured using calibrated frequency-weighted Doppler power at different hematocrit levels. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:828-836. [PMID: 24462159 DOI: 10.1016/j.ultrasmedbio.2013.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 04/14/2013] [Accepted: 04/21/2013] [Indexed: 06/03/2023]
Abstract
In theory, the power of a trans-cranial Doppler signal may be used to measure changes in blood flow and vessel diameter in addition to velocity. In this study, a flow index (FI) of relative changes in blood flow was derived from frequency-weighted Doppler power signals. The FI, plotted against velocity, was calibrated to the zero intercept with absent flow to reduce the effects of non-uniform vessel insonation. An area index was also calculated. FIs were compared with actual flow in four silicone tubes of different diameter at increasing flow rates and increasing hematocrit (Hct) in a closed-loop phantom model. FI values were strongly correlated with actual flow, at constant Hct, but varied substantially with changes in Hct. Percentage changes in area indexes, relative to the 4-mm tube, were strongly correlated with tube cross-sectional area. The implications of these results for in vivo use are discussed.
Collapse
Affiliation(s)
- Sean Wallace
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Nicola Logallo
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kashif W Faiz
- Department of Neurology, Akershus University Hospital, Oslo, Norway
| | - Christian Lund
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rainer Brucher
- Department of Medical Engineering, University of Applied Sciences, Ulm, Germany
| | - David Russell
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
41
|
Cerebral oxygenation during the Richalet hypoxia sensitivity test and cycling time-trial performance in severe hypoxia. Eur J Appl Physiol 2014; 114:1037-48. [DOI: 10.1007/s00421-014-2835-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/25/2014] [Indexed: 02/03/2023]
|
42
|
Landenhed M, Al-Rashidi F, Blomquist S, Höglund P, Pierre L, Koul B. Systemic effects of carbon dioxide insufflation technique for de-airing in left-sided cardiac surgery. J Thorac Cardiovasc Surg 2014; 147:295-300. [DOI: 10.1016/j.jtcvs.2012.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/03/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
|
43
|
Fan JL, Subudhi AW, Evero O, Bourdillon N, Kayser B, Lovering AT, Roach RC. AltitudeOmics: enhanced cerebrovascular reactivity and ventilatory response to CO2 with high-altitude acclimatization and reexposure. J Appl Physiol (1985) 2013; 116:911-8. [PMID: 24356520 DOI: 10.1152/japplphysiol.00704.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study is the first to examine the effect of high-altitude acclimatization and reexposure on the responses of cerebral blood flow and ventilation to CO2. We also compared the steady-state estimates of these parameters during acclimatization with the modified rebreathing method. We assessed changes in steady-state responses of middle cerebral artery velocity (MCAv), cerebrovascular conductance index (CVCi), and ventilation (V(E)) to varied levels of CO2 in 21 lowlanders (9 women; 21 ± 1 years of age) at sea level (SL), during initial exposure to 5,260 m (ALT1), after 16 days of acclimatization (ALT16), and upon reexposure to altitude following either 7 (POST7) or 21 days (POST21) at low altitude (1,525 m). In the nonacclimatized state (ALT1), MCAv and V(E) responses to CO2 were elevated compared with those at SL (by 79 ± 75% and 14.8 ± 12.3 l/min, respectively; P = 0.004 and P = 0.011). Acclimatization at ALT16 further elevated both MCAv and Ve responses to CO2 compared with ALT1 (by 89 ± 70% and 48.3 ± 32.0 l/min, respectively; P < 0.001). The acclimatization gained for V(E) responses to CO2 at ALT16 was retained by 38% upon reexposure to altitude at POST7 (P = 0.004 vs. ALT1), whereas no retention was observed for the MCAv responses (P > 0.05). We found good agreement between steady-state and modified rebreathing estimates of MCAv and V(E) responses to CO2 across all three time points (P < 0.001, pooled data). Regardless of the method of assessment, altitude acclimatization elevates both the cerebrovascular and ventilatory responsiveness to CO2. Our data further demonstrate that this enhanced ventilatory CO2 response is partly retained after 7 days at low altitude.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
44
|
Bellapart J, Jones L, Bandeshe H, Boots R. Plasma Endothelin-1 as Screening Marker for Cerebral Vasospasm After Subarachnoid Hemorrhage. Neurocrit Care 2013; 20:77-83. [DOI: 10.1007/s12028-013-9887-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Regan RE, Duffin J, Fisher JA. Instability of the middle cerebral artery blood flow in response to CO2. PLoS One 2013; 8:e70751. [PMID: 23936248 PMCID: PMC3728315 DOI: 10.1371/journal.pone.0070751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/26/2013] [Indexed: 01/09/2023] Open
Abstract
Background The middle cerebral artery supplies long end-artery branches to perfuse the deep white matter and shorter peripheral branches to perfuse cortical and subcortical tissues. A generalized vasodilatory stimulus such as carbon dioxide not only results in an increase in flow to these various tissue beds but also redistribution among them. We employed a fast step increase in carbon dioxide to detect the dynamics of the cerebral blood flow response. Methodology/Principal Findings The study was approved by the Research Ethics Board of the University Health Network at the University of Toronto. We used transcranial ultrasound to measure the time course of middle cerebral artery blood flow velocity in 28 healthy adults. Normoxic, isoxic step increases in arterial carbon dioxide tension of 10 mmHg from both hypocapnic and normocapnic baselines were produced using a new prospective targeting system that enabled a more rapid step change than has been previously achievable. In most of the 28 subjects the responses at both carbon dioxide ranges were characterised by more complex responses than a single exponential rise. Most responses were characterised by a fast initial response which then declined rapidly to a nadir, followed by a slower secondary response, with some showing oscillations before stabilising. Conclusions/Significance A rapid step increase in carbon dioxide tension is capable of inducing instability in the cerebral blood flow control system. These dynamic aspects of the cerebral blood flow responses to rapid changes in carbon dioxide must be taken into account when using transcranial blood flow velocity in a single artery segment to measure cerebrovascular reactivity.
Collapse
Affiliation(s)
- Rosemary E. Regan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anaesthesia, University of Toronto, and University Health Network, Toronto, Ontario, Canada
- * E-mail:
| | - Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anaesthesia, University of Toronto, and University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Lucas RAI, Pearson J, Schlader ZJ, Crandall CG. Hypercapnia-induced increases in cerebral blood flow do not improve lower body negative pressure tolerance during hyperthermia. Am J Physiol Regul Integr Comp Physiol 2013; 305:R604-9. [PMID: 23864641 DOI: 10.1152/ajpregu.00052.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat-related decreases in cerebral perfusion are partly the result of ventilatory-related reductions in arterial CO2 tension. Cerebral perfusion likely contributes to an individual's tolerance to a challenge like lower body negative pressure (LBNP). Thus increasing cerebral perfusion may prolong LBNP tolerance. This study tested the hypothesis that a hypercapnia-induced increase in cerebral perfusion improves LBNP tolerance in hyperthermic individuals. Eleven individuals (31 ± 7 yr; 75 ± 12 kg) underwent passive heat stress (increased intestinal temperature ∼1.3°C) followed by a progressive LBNP challenge to tolerance on two separate days (randomized). From 30 mmHg LBNP, subjects inhaled either (blinded) a hypercapnic gas mixture (5% CO2, 21% oxygen, balanced nitrogen) or room air (SHAM). LBNP tolerance was quantified via the cumulative stress index (CSI). Mean middle cerebral artery blood velocity (MCAvmean,) and end-tidal CO2 (PetCO2) were also measured. CO2 inhalation of 5% increased PetCO2 at ∼40 mmHg LBNP (by 16 ± 4 mmHg) and at LBNP tolerance (by 18 ± 5 mmHg) compared with SHAM (P < 0.01). Subsequently, MCAvmean was higher in the 5% CO2 trial during ∼40 mmHg LBNP (by 21 ± 12 cm/s, ∼31%) and at LBNP tolerance (by 18 ± 10 cm/s, ∼25%) relative to the SHAM (P < 0.01). However, hypercapnia-induced increases in MCAvmean did not alter LBNP tolerance (5% CO2 CSI: 339 ± 155 mmHg × min; SHAM CSI: 273 ± 158 mmHg × min; P = 0.26). These data indicate that inhaling a hypercapnic gas mixture increases cerebral perfusion during LBNP but does not improve LBNP tolerance when hyperthermic.
Collapse
Affiliation(s)
- Rebekah A I Lucas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | |
Collapse
|
47
|
Anxiety, pCO2 and cerebral blood flow. Int J Psychophysiol 2013; 89:72-7. [PMID: 23727628 DOI: 10.1016/j.ijpsycho.2013.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
This study examined the effect of anxiety on cerebral blood flow at different levels of pCO2 in healthy participants (N=29). Three types of breathing were used to manipulate pCO2 in a within-subject threat-of-shock paradigm: spontaneous breathing, CO2-inhalation and hyperventilation resulting in normo-, hyper- and hypocapnia. Transcranial Doppler ultrasonography was used to measure CBF velocity (CBFv) in the right middle cerebral artery, while breathing behavior and end-tidal pCO2 were monitored. During normocapnia, elevated anxiety was clearly associated with increased CBFv. Consistent with the cerebral vasoconstrictive and vasodilating effects of, respectively, hypo- and hypercapnia, we observed a positive linear association between CBFv and pCO2. The slope of this association became steeper with increasing anxiety, indicating that anxiety enhances the sensitivity of CBFv to changes in pCO2. The findings may elucidate conflicting findings in the literature and are relevant for brain imaging relying on regional cerebral blood flow.
Collapse
|
48
|
Schlader ZJ, Seifert T, Wilson TE, Bundgaard-Nielsen M, Secher NH, Crandall CG. Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage. J Appl Physiol (1985) 2013; 114:1730-5. [PMID: 23580601 DOI: 10.1152/japplphysiol.00079.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia reduces the capacity to withstand a simulated hemorrhagic challenge, but volume loading preserves this capacity. This study tested the hypotheses that acute volume expansion during hyperthermia increases cerebral perfusion and attenuates reductions in cerebral perfusion during a simulated hemorrhagic challenge induced by lower-body negative pressure (LBNP). Eight healthy young male subjects underwent a supine baseline period (pre-LBNP), followed by 15- and 30-mmHg LBNP while normothermic, hyperthermic (increased pulmonary artery blood temperature ~1.1°C), and following acute volume infusion while hyperthermic. Primary dependent variables were mean middle cerebral artery blood velocity (MCAvmean), serving as an index of cerebral perfusion; mean arterial pressure (MAP); and cardiac output (thermodilution). During baseline, hyperthermia reduced MCAvmean (P = 0.001) by 12 ± 9% relative to normothermia. Volume infusion while hyperthermic increased cardiac output by 2.8 ± 1.4 l/min (P < 0.001), but did not alter MCAvmean (P = 0.99) or MAP (P = 0.39) compared with hyperthermia alone. Relative to hyperthermia, at 30-mmHg LBNP acute volume infusion attenuated reductions (P < 0.001) in cardiac output (by 2.5 ± 0.9 l/min; P < 0.001), MAP (by 5 ± 6 mmHg; P = 0.004), and MCAvmean (by 12 ± 13%; P = 0.002). These data indicate that acute volume expansion does not reverse hyperthermia-induced reductions in cerebral perfusion pre-LBNP, but that it does attenuate reductions in cerebral perfusion during simulated hemorrhage in hyperthermic humans.
Collapse
Affiliation(s)
- Zachary J Schlader
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas, Dallas, Texas 75231, USA
| | | | | | | | | | | |
Collapse
|
49
|
Stewart JM, Medow MS, DelPozzi A, Messer ZR, Terilli C, Schwartz CE. Middle cerebral O₂ delivery during the modified Oxford maneuver increases with sodium nitroprusside and decreases during phenylephrine. Am J Physiol Heart Circ Physiol 2013; 304:H1576-83. [PMID: 23564308 DOI: 10.1152/ajpheart.00114.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The modified Oxford maneuver is the reference standard for assessing arterial baroreflex function. The maneuver comprises a systemic bolus injection of 100 μg sodium nitroprusside (SNP) followed by 150 μg phenylephrine (PE). On the one hand, this results in an increase in oxyhemoglobin and total hemoglobin followed by a decrease within the cerebral sample volume illuminated by near-infrared spectroscopy (NIRS). On the other hand, it produces a decrease in cerebral blood flow velocity (CBFv) within the middle cerebral artery (MCA) during SNP and an increase in CBFv during PE as measured by transcranial Doppler ultrasound. To resolve this apparent discrepancy, we hypothesized that SNP dilates, whereas PE constricts, the MCA. We combined transcranial Doppler ultrasound of the right MCA with NIRS illuminating the right frontal cortex in 12 supine healthy subjects 18-24 yr old. Assuming constant O₂ consumption and venous saturation, as estimated by partial venous occlusion plethysmography, we used conservation of mass (continuity) equations to estimate the changes in arterial inflow (ΔQa) and venous outflow (ΔQv) of the NIRS-illuminated area. Oxyhemoglobin and total hemoglobin, respectively, increased by 13.6 ± 1.6 and 15.2 ± 1.4 μmol/kg brain tissue with SNP despite hypotension and decreased by 6 ± 1 and 7 ± 1 μmol/kg with PE despite hypertension. SNP increased ΔQa by 0.36 ± .03 μmol·kg(-1)·s(-1) (21.6 μmol·kg(-1)·min(-1)), whereas CBFv decreased from 71 ± 2 to 62 ± 2 cm/s. PE decreased ΔQa by 0.27 ± .2 μmol·kg(-1)·s(-1) (16.2 μmol·kg(-1)·min(-1)), whereas CBFv increased to 75 ± 3 cm/s. These results are consistent with dilation of the MCA by SNP and constriction by PE.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Salinet ASM, Haunton VJ, Panerai RB, Robinson TG. A systematic review of cerebral hemodynamic responses to neural activation following stroke. J Neurol 2013; 260:2715-21. [DOI: 10.1007/s00415-013-6836-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
|