1
|
Dou H, Brandon NR, Koper KE, Xu Y. Fingerprint of Circulating Immunocytes as Biomarkers for the Prognosis of Brain Inflammation and Neuronal Injury after Cardiac Arrest. ACS Chem Neurosci 2023; 14:4115-4127. [PMID: 37967214 DOI: 10.1021/acschemneuro.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Cardiac arrest is one of the most dangerous health problems in the world. Outcome prognosis is largely based on cerebral performance categories determined by neurological evaluations. Few systemic tests are currently available to predict survival to hospital discharge. Here, we present the results from the preclinical studies of cardiac arrest and resuscitation (CAR) in mice to identify signatures of circulating immune cells as blood-derived biomarkers to predict outcomes after CAR. Two flow cytometry panels for circulating blood lymphocytes and myeloid-derived cells, respectively, were designed to correlate with neuroinflammation and neuronal and dendritic losses in the selectively vulnerable regions of bilateral hippocampi. We found that CD4+CD25+ regulatory T cells, CD11b+CD11c- and CD11b+Ly6C+Ly6G+ myeloid-derived cells, and cells positive for the costimulatory molecules CD80 and CD86 in the blood were correlated with activation of microglia and astrocytosis, and CD4+CD25+ T cells are additionally correlated with neuronal and dendritic losses. A fingerprint pattern of blood T cells and monocytes is devised as a diagnostic tool to predict CAR outcomes. Blood tests aimed at identifying these immunocyte patterns in cardiac arrest patients will guide future clinical trials to establish better prognostication tools to avoid unnecessary early withdrawal from life-sustaining treatment.
Collapse
Affiliation(s)
- Huanyu Dou
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, and Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, Texas 79905, United States
| | - Nicole R Brandon
- Departments of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Kerryann E Koper
- Departments of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Yan Xu
- Departments of Anesthesiology and Perioperative Medicine, Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
- Department of Physics and Astronomy, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Ahn JH, Lee TK, Kim DW, Shin MC, Cho JH, Lee JC, Tae HJ, Park JH, Hong S, Lee CH, Won MH, Kim YH. Therapeutic Hypothermia after Cardiac Arrest Attenuates Hindlimb Paralysis and Damage of Spinal Motor Neurons and Astrocytes through Modulating Nrf2/HO-1 Signaling Pathway in Rats. Cells 2023; 12:cells12030414. [PMID: 36766758 PMCID: PMC9913309 DOI: 10.3390/cells12030414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrest (CA) and return of spontaneous circulation (ROSC), a global ischemia and reperfusion event, lead to neuronal damage and/or death in the spinal cord as well as the brain. Hypothermic therapy is reported to protect neurons from damage and improve hindlimb paralysis after resuscitation in a rat model of CA induced by asphyxia. In this study, we investigated roles of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the lumbar spinal cord protected by therapeutic hypothermia in a rat model of asphyxial CA. Male Sprague-Dawley rats were subjected to seven minutes of asphyxial CA (induced by injection of 2 mg/kg vecuronium bromide) and hypothermia (four hours of cooling, 33 ± 0.5 °C). Survival rate, hindlimb motor function, histopathology, western blotting, and immunohistochemistry were examined at 12, 24, and 48 h after CA/ROSC. The rats of the CA/ROSC and hypothermia-treated groups had an increased survival rate and showed an attenuated hindlimb paralysis and a mild damage/death of motor neurons located in the anterior horn of the lumbar spinal cord compared with those of the CA/ROSC and normothermia-treated groups. In the CA/ROSC and hypothermia-treated groups, expressions of cytoplasmic and nuclear Nrf2 and HO-1 were significantly higher in the anterior horn compared with those of the CA/ROSC and normothermia-treated groups, showing that cytoplasmic and nuclear Nrf2 was expressed in both motor neurons and astrocytes. Moreover, in the CA/ROSC and hypothermia-treated group, interleukin-1β (IL-1β, a pro-inflammatory cytokine) expressed in the motor neurons was significantly reduced, and astrocyte damage was apparently attenuated compared with those found in the CA/ROSC and normothermia group. Taken together, our results indicate that hypothermic therapy after CA/ROSC attenuates CA-induced hindlimb paralysis by protecting motor neurons in the lumbar spinal cord via activating the Nrf2/HO-1 signaling pathway and attenuating pro-inflammation and astrocyte damage (reactive astrogliosis).
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk 54596, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
- Correspondence: (M.-H.W.); (Y.H.K.); Tel.: +82-33-258-2306 (Y.H.K.); Fax: +82-33-258-2169 (Y.H.K.)
| | - Yang Hee Kim
- Department of Surgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
- Correspondence: (M.-H.W.); (Y.H.K.); Tel.: +82-33-258-2306 (Y.H.K.); Fax: +82-33-258-2169 (Y.H.K.)
| |
Collapse
|
3
|
Therapeutic Administration of Oxcarbazepine Saves Cerebellar Purkinje Cells from Ischemia and Reperfusion Injury Induced by Cardiac Arrest through Attenuation of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122450. [PMID: 36552657 PMCID: PMC9774942 DOI: 10.3390/antiox11122450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.
Collapse
|
4
|
The Spinal Cord Damage in a Rat Asphyxial Cardiac Arrest/Resuscitation Model. Neurocrit Care 2020; 34:844-855. [PMID: 32968971 DOI: 10.1007/s12028-020-01094-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND After cardiac arrest/resuscitation (CA/R), animals often had massive functional restrictions including spastic paralysis of hind legs, disturbed balance and reflex abnormalities. Patients who have survived CA also develop movement restrictions/disorders. A successful therapy requires detailed knowledge of the intrinsic damage pattern and the respective mechanisms. Beside neurodegenerations in the cerebellum and cortex, neuronal loss in the spinal cord could be a further origin of such movement artifacts. METHODS Thus, we aimed to evaluate the CA/R-induced degeneration pattern of the lumbar medulla spinalis by immunocytochemical expression of SMI 311 (marker of neuronal perikarya and dendrites), IBA1 (microglia marker), GFAP (marker of astroglia), calbindin D28k (marker of the cellular neuroprotective calcium-buffering system), MnSOD (neuroprotective antioxidant), the transcription factor PPARγ and the mitochondrial marker protein PDH after survival times of 7 and 21 days. The CA/R specimens were compared with those from sham-operated and completely naïve rats. RESULTS & CONCLUSION: The main ACA/R-mediated results were: (1) degeneration of lumbar spinal cord motor neurons, characterized by neuronal pyknotization and peri-neuronal tissue artifacts; (2) attendant activation of microglia in the short-term group; (3) attendant activation of astroglia in the long-term group; (4) degenerative pattern in the intermediate gray matter; (5) activation of the endogenous anti-oxidative defense systems calbindin D28k and MnSOD; (6) activation of the transcription factor PPARγ, especially in glial cells of the gray matter penumbra; and (7) activation of mitochondria. Moreover, marginal signs of anesthesia-induced cell stress were already evident in sham animals when compared with completely naïve spinal cords. A correlation between the NDS and the motor neuronal loss could not be verified. Thus, the NDS appears to be unsuitable as prognostic tool.
Collapse
|
5
|
The Effect of Prophylactic Anticoagulation with Heparin on the Brain Cells of Sprague-Dawley Rats in a Cardiopulmonary-Cerebral Resuscitation Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8430746. [PMID: 33005203 PMCID: PMC7504766 DOI: 10.1155/2020/8430746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
After a cardiac arrest (CA) of 5 to 10 min, a marked activation of blood coagulation occurs and microthrombi are found in the cerebral vessels. These microcirculatory disturbances directly affect the outcome on cardiopulmonary resuscitation (CPR). The purpose of this study was to investigate the effects and potential mechanisms of prophylactic anticoagulation on rat brain cells after cerebral CPR. After setting up an asphyxial CA model, we monitored the basic parameters such as the vitals and survival rate of the rats and assessed the respective neurological deficit (ND) and histological damage (HD) scores of their brain tissues. We, furthermore, investigated the influence of heparin on the expressions of TNF-α, IL-1β, CD40, NF-κB, and HIF-1α after asphyxial CA. The results showed that anticoagulation with heparin could obviously improve the outcome and prognosis of brain ischemia, including improvement of neurological function recovery and prevention of morphological and immunohistochemical injury on the brain, while significantly increasing the success rate of CPR. Treatment with heparin significantly inhibited the upregulation of CD40, NF-κB, and HIF-1α induced by asphyxial CA. Thrombolysis treatment may improve the outcome and prognosis of CPR, and future clinical studies need to evaluate the efficacy of early heparin therapy after CA.
Collapse
|
6
|
Ahn JH, Lee TK, Kim B, Lee JC, Tae HJ, Cho JH, Park Y, Shin MC, Ohk TG, Park CW, Cho JH, Hong S, Park JH, Choi SY, Won MH. Therapeutic Hypothermia Improves Hind Limb Motor Outcome and Attenuates Oxidative Stress and Neuronal Damage in the Lumbar Spinal Cord Following Cardiac Arrest. Antioxidants (Basel) 2020; 9:antiox9010038. [PMID: 31906329 PMCID: PMC7023071 DOI: 10.3390/antiox9010038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Hypothermia enhances outcomes of patients after resuscitation after cardiac arrest (CA). However, the underlying mechanism is not fully understood. In this study, we investigated effects of hypothermic therapy on neuronal damage/death, microglial activation, and changes of endogenous antioxidants in the anterior horn in the lumbar spinal cord in a rat model of asphyxial CA (ACA). A total of 77 adult male Sprague–Dawley rats were randomized into five groups: normal, sham ACA plus (+) normothermia, ACA + normothermia, sham ACA + hypothermia, and ACA + hypothermia. ACA was induced for 5 min by injecting vecuronium bromide. Therapeutic hypothermia was applied after return of spontaneous circulation (ROSC) via rapid cooling with isopropyl alcohol wipes, which was maintained at 33 ± 0.5 °C for 4 h. Normothermia groups were maintained at 37 ± 0.2 °C for 4 h. Neuronal protection, microgliosis, oxidative stress, and changes of endogenous antioxidants were evaluated at 12 h, 1 day, and 2 days after ROSC following ACA. ACA resulted in neuronal damage from 12 h after ROSC and evoked obvious degeneration/loss of spinal neurons in the ventral horn at 1 day after ACA, showing motor deficit of the hind limb. In addition, ACA resulted in a gradual increase in microgliosis with time after ACA. Therapeutic hypothermia significantly reduced neuronal loss and attenuated hind limb dysfunction, showing that hypothermia significantly attenuated microgliosis. Furthermore, hypothermia significantly suppressed ACA-induced increases of superoxide anion production and 8-hydroxyguanine expression, and significantly increased superoxide dismutase 1 (SOD1), SOD2, catalase, and glutathione peroxidase. Taken together, hypothermic therapy was found to have a substantial impact on changes in ACA-induced microglia activation, oxidative stress factors, and antioxidant enzymes in the ventral horn of the lumbar spinal cord, which closely correlate with neuronal protection and neurological performance after ACA.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (T.-K.L.); (B.K.); (J.-C.L.)
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (T.-K.L.); (B.K.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (T.-K.L.); (B.K.); (J.-C.L.)
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea; (H.-J.T.); (J.H.C.)
| | - Jeong Hwi Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea; (H.-J.T.); (J.H.C.)
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Chan Woo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (Y.P.); (M.C.S.); (T.G.O.); (C.W.P.); (J.H.C.)
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (S.Y.C.); (M.-H.W.); Tel.: +82-33-248-2112 (S.Y.C.); +82-33-250-8891 (M.-H.W.); Fax: +82-33-241-1463 (S.Y.C.); +82-33-256-1614 (M.-H.W.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (T.-K.L.); (B.K.); (J.-C.L.)
- Correspondence: (S.Y.C.); (M.-H.W.); Tel.: +82-33-248-2112 (S.Y.C.); +82-33-250-8891 (M.-H.W.); Fax: +82-33-241-1463 (S.Y.C.); +82-33-256-1614 (M.-H.W.)
| |
Collapse
|
7
|
Kim YS, Cho JH, Shin MC, Park Y, Park CW, Tae HJ, Cho JH, Kim IS, Lee TK, Park YE, Ahn JH, Park JH, Kim DW, Won MH, Lee JC. Effects of regional body temperature variation during asphyxial cardiac arrest on mortality and brain damage in a rat model. J Therm Biol 2019; 87:102466. [PMID: 31999601 DOI: 10.1016/j.jtherbio.2019.102466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023]
Abstract
To date, hypothermia has focused on improving rates of resuscitation to increase survival in patients sustaining cardiac arrest (CA). Towards this end, the role of body temperature in neuronal damage or death during CA needs to be determined. However, few studies have investigated the effect of regional temperature variation on survival rate and neurological outcomes. In this study, adult male rats (12 week-old) were used under the following four conditions: (i) whole-body normothermia (37 ± 0.5 °C) plus (+) no asphyxial CA, (ii) whole-body normothermia + CA, (iii) whole-body hypothermia (33 ± 0.5 °C)+CA, (iv) body hypothermia/brain normothermia + CA, and (v) brain hypothermia/body normothermia + CA. The survival rate after resuscitation was significantly elevated in groups exposed to whole-body hypothermia plus CA and body hypothermia/brain normothermia plus CA, but not in groups exposed to whole-body normothermia combined with CA and brain hypothermia/body normothermia plus CA. However, the group exposed to hypothermia/brain normothermia combined with CA exhibited higher neuroprotective effects against asphyxial CA injury, i.e. improved neurological deficit and neuronal death in the hippocampus compared with those involving whole-body normothermia combined with CA. In addition, neurological deficit and neuronal death in the group of rat exposed to brain hypothermia/body normothermia and CA were similar to those in the rats subjected to whole-body normothermia and CA. In brief, only brain hypothermia during CA was not associated with effective survival rate, neurological function or neuronal protection compared with those under body (but not brain) hypothermia during CA. Our present study suggests that regional temperature in patients during CA significantly affects the outcomes associated with survival rate and neurological recovery.
Collapse
Affiliation(s)
- Yoon Sung Kim
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea; Department of Emergency Medicine, Samcheok Medical Center, Samcheok, Kangwon, 25920, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Myoung-Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Chan Woo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk, 54596, Republic of Korea
| | - Jeong Hwi Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk, 54596, Republic of Korea
| | - In-Shik Kim
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk, 54596, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk, 38066, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwon, 25457, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Melatonin alleviates asphyxial cardiac arrest-induced cerebellar Purkinje cell death by attenuation of oxidative stress. Exp Neurol 2019; 320:112983. [PMID: 31251935 DOI: 10.1016/j.expneurol.2019.112983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/07/2019] [Accepted: 06/22/2019] [Indexed: 12/21/2022]
Abstract
Although multiple reports using animal models have confirmed that melatonin appears to promote neuroprotective effects following ischemia/reperfusion-induced brain injury, the relationship between its protective effects and activation of autophagy in Purkinje cells following asphyxial cardiac arrest and cardiopulmonary resuscitation (CA/CPR) remains unclear. Rats used in this study were randomly assigned to 6 groups as follows; vehicle-treated sham operated group, vehicle-treated asphyxial CA/CPR operated group, melatonin-treated sham operated group, melatonin-treated asphyxial CA/CPR operated group, PDOT (a MT2 melatonin receptor antagonist) plus (+) melatonin-treated sham operated group and PDOT+melatonin-treated asphyxial CA/CPR operated group. Melatonin (20 mg/kg, i.p., 4 times before CA and 3 times after CA) treatment significantly improved survival rate and neurological deficit compared with the vehicle-treated asphyxial CA/CPR rats (survival rates ≥40% vs 10%), showing that melatonin treatment exhibited protective effect against asphyxial CA/CPR-induced Purkinje cell death. The protective effect of melatonin against CA/CPR-induced Purkinje cell death paralleled a remarkable attenuation of autophagy-like processes (Beclin-1, Atg7 and LC3), as well as a dramatic reduction in superoxide anion radical (O2·-), intense enhancements of CuZn superoxide dismutase (SOD1) and MnSOD (SOD2) expressions. Furthermore, the protective effect was notably reversed by treatment with PDOT, which is a selective MT2 antagonist. In brief, melatonin conferred neuroprotection against asphyxial CA/CPR-induced Purkinje cell death via inhibiting autophagic activation by reducing expressions of O2·- and increasing expressions of antioxidant enzymes, and suggests that MT2 is involved in neuroprotective effect of melatonin against Purkinje cell death caused by asphyxial CA/CPR.
Collapse
|
9
|
Lee JC, Tae HJ, Cho JH, Kim IS, Lee TK, Park CW, Park YE, Ahn JH, Park JH, Yan BC, Lee HA, Hong S, Won MH. Therapeutic hypothermia attenuates paraplegia and neuronal damage in the lumbar spinal cord in a rat model of asphyxial cardiac arrest. J Therm Biol 2019; 83:1-7. [PMID: 31331507 DOI: 10.1016/j.jtherbio.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/27/2023]
Abstract
Spinal cord ischemia can result from cardiac arrest. It is an important cause of severe spinal cord injury that can lead to serious spinal cord disorders such as paraplegia. Hypothermia is widely acknowledged as an effective neuroprotective intervention following cardiac arrest injury. However, studies on effects of hypothermia on spinal cord injury following asphyxial cardiac arrest and cardiopulmonary resuscitation (CA/CPR) are insufficient. The objective of this study was to examine effects of hypothermia on motor deficit of hind limbs of rats and vulnerability of their spinal cords following asphyxial CA/CPR. Experimental groups included a sham group, a group subjected to CA/CPR, and a therapeutic hypothermia group. Severe motor deficit of hind limbs was observed in the control group at 1 day after asphyxial CA/CPR. In the hypothermia group, motor deficit of hind limbs was significantly attenuated compared to that in the control group. Damage/death of motor neurons in the lumbar spinal cord was detected in the ventral horn at 1 day after asphyxial CA/CPR. Neuronal damage was significantly attenuated in the hypothermia group compared to that in the control group. These results indicated that therapeutic hypothermia after asphyxial CA/CPR significantly reduced hind limb motor dysfunction and motoneuronal damage/death in the ventral horn of the lumbar spinal cord following asphyxial CA/CPR. Thus, hypothermia might be a therapeutic strategy to decrease motor dysfunction by attenuating damage/death of spinal motor neurons following asphyxial CA/CPR.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Chonbuk, Iksan, 54596, Republic of Korea
| | - Jeong Hwi Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Chonbuk, Iksan, 54596, Republic of Korea
| | - In-Shik Kim
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Chonbuk, Iksan, 54596, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, PR China
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Pais-Roldán P, Edlow BL, Jiang Y, Stelzer J, Zou M, Yu X. Multimodal assessment of recovery from coma in a rat model of diffuse brainstem tegmentum injury. Neuroimage 2019; 189:615-630. [PMID: 30708105 DOI: 10.1016/j.neuroimage.2019.01.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/22/2019] [Indexed: 01/03/2023] Open
Abstract
Despite the association between brainstem lesions and coma, a mechanistic understanding of coma pathogenesis and recovery is lacking. We developed a coma model in the rat mimicking human brainstem coma, which allowed multimodal analysis of a brainstem tegmentum lesion's effects on behavior, cortical electrophysiology, and global brain functional connectivity. After coma induction, we observed a transient period (∼1h) of unresponsiveness accompanied by cortical burst-suppression. Comatose rats then gradually regained behavioral responsiveness concurrent with emergence of delta/theta-predominant cortical rhythms in primary somatosensory cortex. During the acute stage of coma recovery (∼1-8h), longitudinal resting-state functional MRI revealed an increase in functional connectivity between subcortical arousal nuclei in the thalamus, basal forebrain, and basal ganglia and cortical regions implicated in awareness. This rat coma model provides an experimental platform to systematically study network-based mechanisms of coma pathogenesis and recovery, as well as to test targeted therapies aimed at promoting recovery of consciousness after coma.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, 72074, Germany
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuanyuan Jiang
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
| | - Johannes Stelzer
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
| | - Ming Zou
- Department of Geriatrics & Neurology, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
11
|
Zhang C, Brandon NR, Koper K, Tang P, Xu Y, Dou H. Invasion of Peripheral Immune Cells into Brain Parenchyma after Cardiac Arrest and Resuscitation. Aging Dis 2018; 9:412-425. [PMID: 29896429 PMCID: PMC5988596 DOI: 10.14336/ad.2017.0926] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Although a direct link has long been suspected between systemic immune responses and neuronal injuries after stroke, it is unclear which immune cells play an important role. A question remains as to whether the blood brain barrier (BBB) is transiently disrupted after circulatory arrest to allow peripheral immune cells to enter brain parenchyma. Here, we developed a clinically relevant cardiac arrest and resuscitation model in mice to investigate the BBB integrity using noninvasive magnetic resonance imaging. Changes in immune signals in the brain and periphery were assayed by immunohistochemistry and flow cytometry. Quantitative variance maps from T1-weighted difference images before and after blood-pool contrast clearance revealed BBB disruptions immediately after resuscitation and one day after reperfusion. Time profiles of hippocampal CA1 neuronal injuries correlated with the morphological changes of microglia activation. Cytotoxic T cells, CD11b+CD11c+ dendritic cells, and CD11b+CD45+hi monocytes and macrophages were significantly increased in the brain three days after cardiac arrest and resuscitation, suggesting direct infiltration of these cells following the BBB disruption. Importantly, these immune cell changes were coupled with a parallel increase in the same subset of immune cell populations in the bone marrow and blood. We conclude that neurovascular breakdown during the initial reperfusion phase contributes to the systemic immune cell invasion and subsequent neuropathogenesis affecting the long-term outcome after cardiac arrest and resuscitation.
Collapse
Affiliation(s)
| | | | | | - Pei Tang
- 1Departments of Anesthesiology.,2Pharmacology and Chemical Biology.,3Computational and Systems Biology
| | - Yan Xu
- 1Departments of Anesthesiology.,2Pharmacology and Chemical Biology.,4Physics and Astronomy, and.,5Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huanyu Dou
- 6Department of Biomedical Sciences, Paul L. Foster School of Medicine, and.,7Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
12
|
Mai N, Prifti L, Rininger A, Bazarian H, Halterman MW. Endotoxemia induces lung-brain coupling and multi-organ injury following cerebral ischemia-reperfusion. Exp Neurol 2017; 297:82-91. [PMID: 28757259 DOI: 10.1016/j.expneurol.2017.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/04/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Post-ischemic neurodegeneration remains the principal cause of mortality following cardiac resuscitation. Recent studies have implicated gastrointestinal ischemia in the sepsis-like response associated with the post-cardiac arrest syndrome (PCAS). However, the extent to which the resulting low-grade endotoxemia present in up to 86% of resuscitated patients affects cerebral ischemia-reperfusion injury has not been investigated. Here we report that a single injection of low-dose lipopolysaccharide (50μg/kg, IP) delivered after global cerebral ischemia (GCI) induces blood-brain barrier permeability, microglial activation, cortical injury, and functional decline in vivo, compared to ischemia alone. And while GCI was sufficient to induce neutrophil (PMN) activation and recruitment to the post-ischemic CNS, minimal endotoxemia exhibited synergistic effects on markers of systemic inflammation including PMN priming, lung damage, and PMN burden within the lung and other non-ischemic organs including the kidney and liver. Our findings predict that acute interventions geared towards blocking the effects of serologically occult endotoxemia in survivors of cardiac arrest will limit delayed neurodegeneration, multi-organ dysfunction and potentially other features of PCAS. This work also introduces lung-brain coupling as a novel therapeutic target with broad effects on innate immune priming and post-ischemic neurodegeneration following cardiac arrest and related cerebrovascular conditions.
Collapse
Affiliation(s)
- Nguyen Mai
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States
| | - Landa Prifti
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States
| | - Aric Rininger
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States
| | - Hannah Bazarian
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States
| | - Marc W Halterman
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States; Department of Neurology, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
13
|
Ding XD, Zheng NN, Cao YY, Zhao GY, Zhao P. Dexmedetomidine preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest. Int J Neurosci 2015; 126:249-56. [PMID: 25565380 DOI: 10.3109/00207454.2015.1005291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS To investigate the protection effect of dexmedetomidine preconditioning on global cerebral ischemic injury following asphyxial cardiac arrest (CA) in rats. METHODS Seventy-two rats were randomly assigned into three groups, sham group (no asphyxia), control group (asphyxia only), and dexmedetomidine preconditioned group (asphyxia + dexmedetomidine). Dexmedetomidine was administered 5 minutes before an 8 min of asphyxia. Rats were resuscitated by a standardized method. Blood O(2) and CO(2) partial pressures were, pH, base excess (BE), and blood glucose concentration measured before asphyxial CA and 1 h after resuscitation. Neurological deficit score (NDS) was measured at 12, 24, 48, and 72 h after CA. Histopathologic changes in the hippocampal region were observed by H&E staining and histopathologic damage score. Ultrastructural morphology was observed by transmission electron microscopy. HIF-1 and VEGF expression were measured by immunostaining of serial sections obtained from brain tissue. RESULTS Asphyxial CA -induced global cerebral ischemic decreased PaO(2), pH, BE and increased PaCO(2), blood glucose. Dexmedetomidine preconditioning improved neurologic outcome, which was associated with reduction in histopathologic injury measured by H&E staining, the histopathologic damage score and electron microscopy. Dexmedetomidine preconditioning also elevated HIF-1α and VEGF expression after global cerebral ischemia following asphyxial CA. CONCLUSION Dexmedetomidine preconditioning protected against cerebral ischemic injury and was associated with upregulation of HIF-1α and VEGF expression.
Collapse
Affiliation(s)
- Xu-Dong Ding
- a Department of Anesthesiology, Shengjing Hospital , China Medical University , Shenyang , China
| | - Ning-Ning Zheng
- b Department of Pathophysiology, College of Basic Medical Science , China Medical University , Shenyang , China
| | - Yan-Yan Cao
- a Department of Anesthesiology, Shengjing Hospital , China Medical University , Shenyang , China
| | - Guang-Yi Zhao
- a Department of Anesthesiology, Shengjing Hospital , China Medical University , Shenyang , China
| | - Ping Zhao
- a Department of Anesthesiology, Shengjing Hospital , China Medical University , Shenyang , China
| |
Collapse
|
14
|
Kim J, Lampe JW, Yin T, Shinozaki K, Becker LB. Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation. Mol Cell Biochem 2015; 408:273-81. [PMID: 26160279 DOI: 10.1007/s11010-015-2505-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a substantial increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation.
Collapse
Affiliation(s)
- Junhwan Kim
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, 3501 Civic Center Boulevard, Suite 6023, Philadelphia, PA, 19104-4399, USA.
| | - Joshua W Lampe
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, 3501 Civic Center Boulevard, Suite 6023, Philadelphia, PA, 19104-4399, USA
| | - Tai Yin
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, 3501 Civic Center Boulevard, Suite 6023, Philadelphia, PA, 19104-4399, USA
| | - Koichiro Shinozaki
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, 3501 Civic Center Boulevard, Suite 6023, Philadelphia, PA, 19104-4399, USA
| | - Lance B Becker
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, 3501 Civic Center Boulevard, Suite 6023, Philadelphia, PA, 19104-4399, USA
| |
Collapse
|
15
|
Kim J, Yin T, Yin M, Zhang W, Shinozaki K, Selak MA, Pappan KL, Lampe JW, Becker LB. Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation. PLoS One 2014; 9:e112012. [PMID: 25383962 PMCID: PMC4226499 DOI: 10.1371/journal.pone.0112012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.
Collapse
Affiliation(s)
- Junhwan Kim
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Tai Yin
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ming Yin
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wei Zhang
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichiro Shinozaki
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary A. Selak
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirk L. Pappan
- Metabolon Inc., Durham, North Carolina, United States of America
| | - Joshua W. Lampe
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lance B. Becker
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Zinkel JL. Rat forebrain perfusion in vivo by 1 artery like the isolated kidney model: a robust recovery model permitting ischemia without anesthesia to compare multiple brain injury states. Neurosurgery 2013; 72:662-77; discussion 676-7. [PMID: 23277378 DOI: 10.1227/neu.0b013e3182846f4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rat brain perfusion models are critical to basic research, but they can be imprecise and/or not durable for extended outcome studies. OBJECTIVE To demonstrate a rat brain perfusion model that provides a simplified reliable brain perfusion circuit, reduces variables during experiment and recovery, and therefore permits more precise, reliable, and context-independent research data. METHODS Rat forebrain perfusion was reduced surgically to that by 1 internal carotid artery without injury to the animal. The next day, the fully awake rat was studied for brain ischemia painlessly yet in the absence of anesthesia or other interventions that might bias or alter the biochemistry of the event. This model was rigorously validated with isotope cerebral blood studies during ischemia and with histology studies at 72 hours after ischemia. The first application of this model was to compare ischemia injuries for global total, global penumbra, and global shock ischemia in a single experimental context. RESULTS This model is accurate, reliable, and remarkably durable. This model permits the severest brain ischemia by vessel occlusion ever demonstrated in a recovery model. It also confirms that, with conditions otherwise identical, penumbra ischemia is less injurious than total ischemia and that total ischemia is less injurious than shock ischemia. CONCLUSION Although meticulous in construction, this model creates ischemia more simply and more reliably than the Pulsinelli 4-vessel ischemia model that inspired it, with the inherent advantages of an isolated organ system, in which a known tissue volume is perfused at a predetermined volume and rate. This model permits robust long-term recovery.
Collapse
Affiliation(s)
- John L Zinkel
- Department of Neurological Surgery, Beaumont Hospital Grosse Pointe, St. Clair Shores, MI 48081, USA.
| |
Collapse
|
17
|
Potential Therapeutic Targets for Cerebral Resuscitation After Global Ischemia. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Wang Y, Feng J, You G, Kan X, Qiu L, Chen G, Gao D, Guo W, Zhao L, Zhou H. Heating pad for the bleeding: external warming during hemorrhage improves survival. THE JOURNAL OF TRAUMA 2011; 71:1915-1919. [PMID: 22182901 DOI: 10.1097/ta.0b013e31823bbfe3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypothermia is common during hemorrhagic shock. To warm the victims or not has been controversial. This study aims to investigate the effect of warming during the initial time of hemorrhage on body temperature, blood pressure, and survival in rat hemorrhagic shock models. METHODS Forty anesthetized rats were divided into control group (n = 20) and warming group (n = 20). The rats of control group were placed on a wooden pad without heating, and the rats of warming group were placed on a heating pad maintained at 37°C ± 0.1°C. Blood withdrawal reached 40% of the total blood volume within 60 minutes. Numbers of survival rats, rectal temperature, and mean arterial pressure (MAP) were recorded when blood loss reached 0 (T0), 20% (T20), 30% (T30), and 40% (T40) of the total blood volume, respectively. RESULTS Rectal temperature and MAP decrease gradually in both groups during hemorrhage. Warming continuously makes the rectal temperature of the warming group (36.68°C ± 0.63°C) slightly higher than that of the control group (36.17°C ± 0.69°C) at T0. The rectal temperature and MAP of the warming group are higher than that of the control group at T20, T30, and T40 (p < 0.05). Survival rates of the warming group are higher than that of the control group (p < 0.01). CONCLUSIONS Warming during hemorrhage may prevent exacerbation of hypothermia and hypotension and therefore improve survival.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dallasen RM, Bowman JD, Xu Y. Isoflurane does not cause neuroapoptosis but reduces astroglial processes in young adult mice. Med Gas Res 2011; 1:27. [PMID: 22146123 PMCID: PMC3253045 DOI: 10.1186/2045-9912-1-27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Isoflurane, a volatile anesthetic widely used clinically, has been implicated to be both neuroprotective and neurotoxic. The claim about isoflurane causing neural apoptosis remains controversial. In this study, we investigated the effects of isoflurane exposures on apoptotic and anti-apoptotic signals, cell proliferation and neurogenesis, and astroglial processes in young adult mouse brains. METHODS Sixty 6-week-old mice were randomly assigned to four anesthetic concentration groups (0 as control and 0.6%, 1.3%, and 2%) with four recovery times (2 h and 1, 6, and 14 d) after 2-h isoflurane exposure. Immunohistochemistry measurements of activated caspase-3 and Bcl-xl for apoptotic and anti-apoptotic signals, respectively, glial fibrillary acidic protein (GFAP) and vimentin for reactive astrocytosis, doublecortin (Dcx) for neurogenesis, and BrdU for cell proliferation were performed. RESULTS Contrary to the previous conclusion derived from studies with neonatal rodents, we found no evidence of isoflurane-induced apoptosis in the adult mouse brain. Neurogenesis in the subgranule zone of the dentate gyrus was not affected by isoflurane. However, there is a tendency of reduced cell proliferation after 2% isoflurane exposure. VIM and GFAP staining showed that isoflurane exposure caused a delayed reduction of astroglial processes in the hippocampus and dentate gyrus. CONCLUSION Two-hour exposure to isoflurane did not cause neuroapoptosis in adult brains. The delayed reduction in astroglial processes after isoflurane exposure may explain why some volatile anesthetics can confer neuroprotection after experimental stroke because reduced glial scarring facilitates better long-term neuronal recoveries.
Collapse
Affiliation(s)
- Renee M Dallasen
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
20
|
Model of cardiac arrest in rats by transcutaneous electrical epicardium stimulation. Resuscitation 2010; 81:1197-204. [PMID: 20598423 DOI: 10.1016/j.resuscitation.2010.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/17/2010] [Accepted: 05/20/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To establish a new model of cardiac arrest (CA) in rats by transcutaneous electrical epicardium stimulation. METHODS Two acupuncture needles connected to the anode and cathode of a stimulator were transcutaneously inserted into the epicardium as electrodes. The stimulating current was steered to the epicardium and the stimulation was maintained for 3 min to induce CA. Cardiopulmonary resuscitation (CPR) was performed at 6 min after a period of nonintervention. RESULTS CA was successfully induced in a total of 20 rats. The success rate of induction was 12/20 at the current intensity of 1 mA; and reached 20/20 when the current intensity was increased to 2 mA. After the electrical stimulation, the femoral blood pressure quickly dropped below 25 mmHg and the arterial pulse waveform disappeared. The average time from the electrical stimulation to CA induction was 5.10 (+/-2.81) s. When the electrical stimulation stopped, 18/20 rats had ventricular fibrillation and 2/20 rats had pulseless electrical activity. CPR was performed for averagely 207.4 (+/-148.8) s. The restoration of spontaneous circulation (ROSC) was 20/20. The death rate within 4h after ROSC was 5/20, and the 72-h survival rate was 10/20. There were only two cases of complications, a minor muscle contraction and a minor lung lobe injury. CONCLUSION The model of CA in rats induced by transcutaneous electrical epicardium stimulation is a stable model that requires low-intensity current and has fewer complications. This model may provide another option for experimental research of CA induced by malignant arrhythmia (especially VF).
Collapse
|
21
|
Obeid NR, Rojas A, Reoma JL, Hall CM, Cook KE, Bartlett RH, Punch JD. Organ Donation After Cardiac Determination of Death (DCD): A Swine Model. ASAIO J 2009; 55:562-8. [DOI: 10.1097/mat.0b013e3181ba133b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Xu Y, Liachenko SM, Tang P, Chan PH. Faster recovery of cerebral perfusion in SOD1-overexpressed rats after cardiac arrest and resuscitation. Stroke 2009; 40:2512-8. [PMID: 19461023 DOI: 10.1161/strokeaha.109.548453] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Protracted hypoperfusion is one of the hallmarks of secondary cerebral derangement after cardiac arrest and resuscitation (CAR), and reactive oxygen species have been implicated in reperfusion abnormalities. METHODS Using transgenic (Tg) rats overexpressing copper zinc superoxide dismutase (SOD1), we investigated the role of this intrinsic antioxidant in the restoration of cerebral blood flow (CBF) after CAR. Nine Tg and 11 wild-type (WT) rats were subjected to a nominal 15-minute cardiac arrest, and CBF was measured using the noninvasive arterial spin labeling MRI method before and during cardiac arrest, and 0 to 2 hours and 1 to 5 days after resuscitation. RESULTS The SOD1-Tg rats showed rapid normalization of CBF 1 day after the insult, whereas CBF in WT animals remained abnormal for at least 5 days, showing a progressive increase in CBF from hypo- to hyperperfusion on postresuscitation days 1 to 5. The long-term outcome, as measured by survival time, change in body weight, and mapping of apparent diffusion coefficient (ADC) for ion/water homeostasis, was significantly better in the SOD1-Tg rats. CONCLUSIONS Our results support the notion that reactive oxygen species are at least partially responsible for microvascular reperfusion disorders.
Collapse
Affiliation(s)
- Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
23
|
Kubo K, Nakao S, Jomura S, Sakamoto S, Miyamoto E, Xu Y, Tomimoto H, Inada T, Shingu K. Edaravone, a free radical scavenger, mitigates both gray and white matter damages after global cerebral ischemia in rats. Brain Res 2009; 1279:139-46. [PMID: 19410562 DOI: 10.1016/j.brainres.2009.04.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/21/2009] [Accepted: 04/25/2009] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that similar to cerebral gray matter (mainly composed of neuronal perikarya), white matter (composed of axons and glias) is vulnerable to ischemia. Edaravone, a free radical scavenger, has neuroprotective effects against focal cerebral ischemia even in humans. In this study, we investigated the time course and the severity of both gray and white matter damage following global cerebral ischemia by cardiac arrest, and examined whether edaravone protected the gray and the white matter. Male Sprague-Dawley rats were used. Global cerebral ischemia was induced by 5 min of cardiac arrest and resuscitation (CAR). Edaravone, 3 mg/kg, was administered intravenously either immediately or 60 min after CAR. The morphological damage was assessed by cresyl violet staining. The microtubule-associated protein 2 (a maker of neuronal perikarya and dendrites), the beta amyloid precursor protein (the accumulation of which is a maker of axonal damage), and the ionized calcium binding adaptor molecule 1 (a marker of microglia) were stained for immunohistochemical analysis. Significant neuronal perikaryal damage and marked microglial activation were observed in the hippocampal CA1 region with little axonal damage one week after CAR. Two weeks after CAR, the perikaryal damage and microglial activation were unchanged, but obvious axonal damage occurred. Administration of edaravone 60 min after CAR significantly mitigated the perikaryal damage, the axonal damage, and the microglial activation. Our results show that axonal damage develops slower than perikaryal damage and that edaravone can protect both gray and white matter after CAR in rats.
Collapse
Affiliation(s)
- Kozue Kubo
- Department of Anesthesiology, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Gao L, Meng L. Naloxone combined with epinephrine decreases cerebral injury in cardiopulmonary resuscitation. J Emerg Med 2009; 39:296-300. [PMID: 19264439 DOI: 10.1016/j.jemermed.2008.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/06/2008] [Accepted: 10/08/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cardiopulmonary arrest is a serious disease that claims many lives every day; 30% of the patients suffer irreversible central nervous system injury after restoration of systemic circulation (ROSC). OBJECTIVES Naloxone combined with epinephrine was tested in a cardiac arrest rat model in which asphyxia was induced to determine if this drug combination could increase the resuscitation rate (survival) and decrease the cerebral damage. METHODS Twenty-four male Wistar rats were randomly assigned to one of three groups: the group treated with 1 mL saline (SA group; n = 8), the group treated with only epinephrine 5 microg/100 g (EP group; n = 8), or the group treated with epinephrine 5 microg/100 g combined with naloxone 1 mg/kg (NA group; n = 8). Eight minutes after arrest, cardiopulmonary resuscitation was initiated and the different drugs were administered to the rats in their respective groups at the same time. Mean arterial pressure (MAP), heart rate (HR), and neurodeficit score (NDS) were measured. RESULTS The HR in the NA group (414 +/- 45 beats/min) was faster than in the EP group (343 +/- 29 beats/min) at the 5-min time point (P < 0.01). The HR in the NA group was 392 +/- 44 beats/min and 416 +/- 19 beats/min at the 60-min and 180-min time points, respectively. There were no statistically significant differences in MAP before or after ROSC. The rates of ROSC were 2 of 8, 6 of 8, and 7 of 8 animals in the SA group, EP group, and NA group, respectively. Three days later, the rates decreased to 1, 3, and 5 in the SA group, EP group, and NA group, respectively. The average resuscitation time in the NA group was significantly shorter than in the other two groups. The NDS in the NA group was 57 +/- 13, higher than in the EP group (45 +/- 13) and SA group (38). CONCLUSION Naloxone combined with epinephrine significantly increased the resuscitation rate in a rat model. Furthermore, the combination of naloxone and epinephrine increased the NDS after cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesia, Shengjing Hospital, China Medical University, Shenyang, China
| | | | | |
Collapse
|
25
|
Small-dose naloxone combined with epinephrine improves the resuscitation of cardiopulmonary arrest. Am J Emerg Med 2008; 26:898-901. [DOI: 10.1016/j.ajem.2008.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/14/2008] [Accepted: 04/14/2008] [Indexed: 11/22/2022] Open
|
26
|
Hossmann KA. Cerebral ischemia: Models, methods and outcomes. Neuropharmacology 2008; 55:257-70. [DOI: 10.1016/j.neuropharm.2007.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 01/31/2023]
|
27
|
Hirko AC, Dallasen R, Jomura S, Xu Y. Modulation of inflammatory responses after global ischemia by transplanted umbilical cord matrix stem cells. Stem Cells 2008; 26:2893-901. [PMID: 18719227 DOI: 10.1634/stemcells.2008-0075] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rat umbilical cord matrix (RUCM) cells are stem-cell-like cells and have been shown to reduce neuronal loss in the selectively vulnerable brain regions after cardiac arrest (CA). Here, we investigate whether this protection is mediated by the RUCM cells' modulation of the postischemia inflammation responses, which have long been implicated as a secondary mechanism of injury following ischemia. Brain sections were examined immunohistochemically for glial fibrillary acidic protein (GFAP), vimentin, and nestin as markers for astroglia and reactive astrogliosis, Ricinus Communis Agglutinin-1 (RCA-1) as a marker for microglia, and Ki67 as a marker for cell proliferation. Rats were randomly assigned to six experimental groups: (1) 8-minute CA without treatment, (2) 8-minute CA pre-treated with culture medium injection, (3) 8-minute CA pre-treated with RUCM cells, (4) sham-operated CA, (5) medium injection without CA, and (6) RUCM cell transplantation without CA. Groups 1-3 have significantly higher Ki67(+) cell counts and higher GFAP(+) immunoreactivity in the hippocampal Cornu Ammonis layer 1 (CA1) region compared to groups 4-6, irrespective of treatment. Groups 1 and 2 have highly elevated GFAP(+), vimentin(+), and nestin(+) immunoreactivity, indicating reactive astrogliosis. Strikingly, RUCM cell treatment nearly completely inhibited the appearance of vimentin(+) and greatly reduced nestin(+) reactive astrocytes. RUCM cell treatment also greatly reduced RCA-1 staining, which is found to strongly correlate with the neuronal loss in the CA1 region. Our study indicates that treatment with stem-cell-like RUCM cells modulates the inflammatory response to global ischemia and renders neuronal protection by preventing permanent damage to the selectively vulnerable astrocytes in the CA1 region. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Aaron C Hirko
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
28
|
Ho Y, Logue E, Callaway CW, DeFranco DB. Different mechanisms account for extracellular-signal regulated kinase activation in distinct brain regions following global ischemia and reperfusion. Neuroscience 2007; 145:248-55. [PMID: 17207579 PMCID: PMC1859863 DOI: 10.1016/j.neuroscience.2006.11.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/17/2006] [Accepted: 11/21/2006] [Indexed: 01/19/2023]
Abstract
Oxidative stress after cerebral ischemia and reperfusion activates extracellular signal-regulated kinases (ERK) in brain. However, the mechanism of this activation has not been elucidated. We have previously reported that in an in vitro model of oxidative stress in immature cortical neuronal cultures, the inhibition of ERK phosphatase activity contributes to ERK1/2 activation and subsequent neuronal toxicity. This study examined whether ERK activation was associated with altered activity of ERK phosphatases in a rat cardiac arrest model. Rats in experimental groups were subjected to asphyxial cardiac arrest for 8 min and then resuscitated for 30 min. Significant ERK activation was detected in both cortex and hippocampus following ischemia/reperfusion by immunoblotting. ERK phosphatase activity was reversibly inhibited in cerebral cortex but not affected in hippocampus following ischemia/reperfusion. MEK1/2 was activated in both cerebral cortex and hippocampus following ischemia/reperfusion. Using a specific inhibitor of protein phosphatase 2A (PP2A), okadaic acid (OA), we have identified PP2A to be the major ERK phosphatase that is responsible for regulating ERK activation in ischemic brain tissues. Orthovanadate inhibited ERK phosphatase activity in brain tissues, suggesting that tyrosine phosphatases and dual specificity phosphatases may also contribute to the ERK phosphatase activity in brain tissues. Together, these data implicate ERK phosphatase in the regulation of ERK activation in distinct brain regions following global ischemia.
Collapse
Affiliation(s)
- Yeung Ho
- Center for Neuroscience, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Eric Logue
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Donald B DeFranco
- Center for Neuroscience, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
- Department of Pharmacology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| |
Collapse
|
29
|
Jomura S, Uy M, Mitchell K, Dallasen R, Bode CJ, Xu Y. Potential treatment of cerebral global ischemia with Oct-4+ umbilical cord matrix cells. Stem Cells 2006; 25:98-106. [PMID: 16960128 DOI: 10.1634/stemcells.2006-0055] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Potential therapeutic effects of Oct-4-positive rat umbilical cord matrix (RUCM) cells in treating cerebral global ischemia were evaluated using a reproducible model of cardiac arrest (CA) and resuscitation in rats. Animals were randomly assigned to four groups: A, sham-operated; B, 8-minute CA without pretreatment; C, 8-minute CA pretreated with defined media; and D, 8-minute CA pretreated with Oct-4(+) RUCM cells. Pretreatment was done 3 days before CA by 2.5-microl microinjection of defined media or approximately 10(4) Oct-4(+) RUCM cells in left thalamic nucleus, hippocampus, corpus callosum, and cortex. Damage was assessed histologically 7 days after CA and was quantified by the percentage of injured neurons in hippocampal CA1 regions. Little damage (approximately 3%-4%) was found in the sham group, whereas 50%-68% CA1 pyramidal neurons were injured in groups B and C. Pretreatment with Oct-4(+) RUCM cells significantly (p < .001) reduced neuronal loss to 25%-32%. Although the transplanted cells were found to have survived in the brain with significant migration, few were found directly in CA1. Therefore, transdifferentiation and fusion with host cells cannot be the predominant mechanisms for the observed protection. The Oct-4(+) RUCM cells might repair nonfocal tissue damage by an extracellular signaling mechanism. Treating cerebral global ischemia with umbilical cord matrix cells seems promising and worthy of further investigation.
Collapse
Affiliation(s)
- Sachiko Jomura
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tormo-Calandín C. Papel de la neuroprotección. Med Intensiva 2004. [DOI: 10.1016/s0210-5691(04)70037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Liachenko S, Tang P, Xu Y. Deferoxamine improves early postresuscitation reperfusion after prolonged cardiac arrest in rats. J Cereb Blood Flow Metab 2003; 23:574-81. [PMID: 12771572 DOI: 10.1097/01.wcb.0000057742.00152.3f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The no-reflow phenomenon and delayed hypoperfusion after transient cardiac arrest (CA) impede postischemic recovery. Activation of lipid peroxidation (LPO) after ischemia and reperfusion is considered one of the mechanisms responsible for such abnormalities. The present study investigates the influence of iron-dependent LPO inhibitor deferoxamine (DFO) on the cerebral perfusion after prolonged CA and resuscitation. Fourteen male Sprague-Dawley rats were subjected to 17 minutes of CA, induced by esmolol (an ultrashort-acting beta-blocker) and apnea, followed by resuscitation by retrograde intraaortic infusion of oxygenated donor blood mixed with a resuscitation cocktail inside a vertical-bore 9.4-T magnetic resonance imaging (MRI) magnet. Animals were randomized double-blindly into two groups to receive DFO or saline, respectively. Cerebral perfusion was measured by MRI continuously using the arterial spin-labeling method before, during, and after CA. All animals were successfully resuscitated in 1.36 +/- 0.04 minutes with well-controlled arrest time (17.99 +/- 0.03 minutes) in both groups. Deferoxamine significantly increased cerebral perfusion in hippocampus, thalamus, hypothalamus, and amygdala, but not in cortex, during the first 20 minutes of reperfusion. In the DFO-treated group, the neurologic deficit score was significantly better (400 +/- 30 vs. 250 +/- 47, out of 500 as the best, P < 0.05) and weight loss was significantly less (33 +/- 6 vs. 71 +/- 19 g, P < 0.05) 5 d after arrest. The finding supports the notion that early reperfusion immediately after resuscitation is important for long-term outcome and that LPO may be involved in microvascular disorders during the reperfusion, particularly in the brain after prolonged cardiac arrest and resuscitation.
Collapse
Affiliation(s)
- Serguei Liachenko
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, U.S.A
| | | | | |
Collapse
|
32
|
Bauer E, Funk GC, Gendo A, Kramer L, Zauner C, Sterz F, Schneider B, Madl C. Electrophysiological assessment of the afferent sensory pathway in cardiac arrest survivors. Eur J Clin Invest 2003; 33:283-7. [PMID: 12662157 DOI: 10.1046/j.1365-2362.2003.01134.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hypoxic-ischaemic brain damage in cardiac arrest survivors is global, but postmortem histology could identify parts of the brain that are selectively vulnerable to ischaemia, comprising the thalamus and cortex. We hypothesized that hypoxic-ischaemic brain damage increases along the afferent sensory pathway with a stepwise decrease of detectable somatosensory evoked potential peaks. METHODS Somatosensory evoked potentials were recorded within 72 h after cardiac arrest in 305 comatose patients after cardiopulmonary resuscitation. We measured the short latency SEP peaks N9, P15, N20, P25 (reflecting the peripheral-thalamo-cortical pathway) and the long latency SEP peaks N35 and N70 (reflecting complex cortico-cortical interactions). Patients with a Cerebral Performance Category score > 2 at 1 year were defined as patients with hypoxic-ischaemic brain damage. RESULTS Patients with hypoxic-ischaemic brain damage (n = 232) showed a statistically significant decrease of detectable peaks (P < 0.05) along the thalamo-cortical afferent pathway: N13, P15, N20, P25 and N70 peaks were detectable in 99%, 63%, 59%, 55% and 44% patients, respectively. In patients without hypoxic-ischaemic brain damage (n = 73) the N13, P15, N20, P25 peaks were detectable in all, and the N35 and N70 peaks in 98%. Furthermore, in patients with hypoxic-ischaemic brain damage and detectable SEP peaks, P15, N20, P25, N35 and N70, peak latencies were prolonged (P < 0.05) and N20 and N70 amplitudes were decreased (P < 0.05) compared with patients without hypoxic-ischaemic brain damage. CONCLUSION Extent of hypoxic-ischaemic brain damage in cardiac arrest survivors increases along the afferent sensory pathway, with pronounced vulnerability of thalamic and cortical brain regions.
Collapse
Affiliation(s)
- E Bauer
- Department of Medicine IV, University of Vienna Medical School, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang L, Yushmanov VE, Liachenko SM, Tang P, Hamilton RL, Xu Y. Late reversal of cerebral perfusion and water diffusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 2002; 22:253-61. [PMID: 11891430 DOI: 10.1097/00004647-200203000-00002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Region-specific cerebral blood flow (CBF) and the apparent diffusion coefficient (ADC) of tissue water in the rat brain were quantified by high-field magnetic resonance imaging at 9.4 T in the rat suture occlusion model. Cerebral blood flow and ADC were compared during the short- (4.5 hours) and long-term (up to 6 days) reperfusion after 80 minutes of transient middle cerebral artery occlusion, and correlated with the histology analysis. On occlusion, average CBF fell from approximately 100 to less than 50 mL x 100 g(-1) x min(-1) in the cortex, and to less than 20 mL x 100 g(-1) x min(-1) in the caudate putamen (CP). Corresponding ADC values decreased from (6.98 +/- 0.82) x 10(-4) to (5.49 +/- 0.54) x 10(-4) mm2/s in the cortex, and from (7.16 +/- 0.58) x 10(-4) to (4.86 +/- 0.62) x 10(-4) mm2/s in the CP. On average, CBF recovered to approximately 50% of baseline in the first 24 hours of reperfusion. After 2 to 4 days, a strong hyperperfusion in the ipsilateral cortex and CP, up to approximately 300 mL x 100 g(-1) x min(-1), was observed. The ADC ratio in the ipsilateral and contralateral CP was also inverted in the late reperfusion period. Histology revealed more severe tissue damage at the late stage of reperfusion than at 4.5 hours. Significant reversal of CBF and ADC during the late reperfusion period may reflect the impairment of autoregulation in the ischemic regions. Vascular factors may play an important role in the infarct development after 80-minute focal ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Departments of Anesthesiology and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
34
|
Yushmanov VE, Wang L, Liachenko S, Tang P, Xu Y. ADC characterization of region-specific response to cerebral perfusion deficit in rats by MRI at 9.4 T. Magn Reson Med 2002; 47:562-70. [PMID: 11870844 DOI: 10.1002/mrm.10103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Region-specific cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) of water in the rat brain were quantified in vivo by high-field MRI (9.4 T) for 6-7 h after middle cerebral artery occlusion (MCAO). Upon occlusion, average CBF fell from about 1.5-2 ml/g/min to below 0.5 ml/g/min in cortical areas and the amygdala, and below 0.2 ml/g/min in the caudate putamen. CBF in some of the homologous contralateral areas also decreased by 20-30%. Average ADC decreased from about 8 center dot 10(-4) to 5 center dot 10(-4) mm(2)/s in the caudate putamen and parietal cortex. Corresponding changes in ADC were lower in the frontal cortex and negligible in the piriform cortex, suggesting that the perfusion threshold for ADC decrease may be different for different brain regions in the same animal. The area of decreased ADC correlated well with the infarction area revealed by 2,3,5-triphenyltetrazolium chloride (TTC) staining of brain slices in vitro. A better understanding of the mechanisms linking ADC and CBF changes to ischemic cell disorders may prove useful in characterizing the degree of tissue damage, and in developing and evaluating treatment strategies.
Collapse
Affiliation(s)
- Victor E Yushmanov
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
35
|
Liachenko S, Tang P, Hamilton RL, Xu Y. Regional dependence of cerebral reperfusion after circulatory arrest in rats. J Cereb Blood Flow Metab 2001; 21:1320-9. [PMID: 11702047 DOI: 10.1097/00004647-200111000-00008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The severity of neurologic dysfunction after circulatory arrest depends on cerebral reperfusion during and after resuscitation. The objective of current study was to investigate the temporal and spatial patterns of the cerebral perfusion immediately after resuscitation. Precise control of circulatory arrest was achieved in rats by combination of asphyxia and transient blockage of cardiac-specific beta-adrenergic receptors with esmolol, an ultra-short-acting beta-blocker. Animals were randomized into 3 groups with resuscitation starting 0.5 (sham group, no asphyxia, n = 5), 4 (Group 2, n = 5), or 12 minutes (Group 3, n = 8) later by retrograde intraarterial infusion of donor blood along with a resuscitation mixture. Cerebral perfusion was measured by magnetic resonance imaging (MRI) using arterial spin labeling. The average perfusion before arrest was 163 +/- 27 mL 100 g(-1) min(-1) under isoflurane anesthesia. Resuscitation led to transient perfusion increase, which started from thalamus and hypothalamus and later shifted to the cortex. Severe hypoperfusion to as low as 6% to 20% of the normal level developed in the first 10 to 20 minutes of reperfusion and lasted for at least 2 hours. On the fifth day after circulatory arrest, all animals showed a normal level of perfusion (159 +/- 57 mL 100 g(-1) min(-1) ) and minimal neurologic deficit. Nevertheless, histologic examination revealed extensive changes in the CA1 region of the hippocampus consistent with global ischemia and reperfusion damage. The combination of an improved circulatory arrest model and noninvasive MRI cerebral perfusion measurements provides a powerful tool for investigations of circulatory arrest and resuscitation, allowing for evaluation of therapies aimed at modulating cerebral reperfusion.
Collapse
Affiliation(s)
- S Liachenko
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|