1
|
Li Z, Han H, Ma L, Li R, Li A, Zhang H, Zhu Q, Yuan K, Wang K, Wang C, Zhang Y, Zhao Y, Yan D, Lu J, Chen P, Zhou W, Zhao Y, Chen X, Chen Y. Venous aneurysms in unruptured supratentorial brain arteriovenous malformations: a protective factor against hemorrhagic stroke and insights into hemodynamic mechanisms. Eur Radiol 2025; 35:2660-2669. [PMID: 39470793 DOI: 10.1007/s00330-024-11137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 09/14/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVE This study endeavors to clarify the impact of venous aneurysms (VA) on hemorrhagic risk in brain arteriovenous malformations (AVMs) and uncover potential hemodynamic mechanisms, utilizing quantitative digital subtraction angiography (QDSA) technology and survival dataset. METHODS Patients were enrolled in a multicenter prospective collaboration registry between August 2011 and August 2021, and subsequently categorized into the VA and non-VA cohorts. Using propensity score-matched survival analysis, we quantitatively assessed the natural risk of hemorrhagic stroke in these two cohorts. Additionally, a quantitative hemodynamic analysis was conducted to explore the distinctions in hemodynamic characteristics between these two cohorts. RESULTS Among 3758 consecutive AVMs documented at a single center from the registry, 820 unruptured AVMs who maintained conservation management over 1 month were identified. Following a two-step matching process, 504 cases were retained for survival analysis and 408 cases for hemodynamic analysis. Overall, the presence of VA emerged as a protective factor, associated with a decreased risk of hemorrhagic stroke (HR, 0.21 [95% CI: 0.07-0.62], p = 0.004). Distinct hemodynamic characteristics were observed in AVMs with VA, showing a lower stasis index in two components of AVMs-the nidus (p = 0.014) and the main draining vein (p = 0.018). CONCLUSION In this observational prospective cohort study, the presence of VA is associated with a decreased risk of hemorrhagic stroke in AVMs, suggesting an underlying hemodynamic mechanism involving the redistribution of excessive pressure loads within the AVM nidus by the VA. KEY POINTS Questions What impact, if any, does VA have on the hemorrhagic risk in brain AVMs? Findings Presence of VA is associated with a decreased hemorrhagic stroke risk through the redistribution of pressure loads. Critical relevance VA in brain AVMs emerges as a protective factor against hemorrhagic stroke. Understanding this association and the underlying hemodynamic mechanisms offers valuable guidance for preventive strategies and informs clinical decision-making, improving overall patient care.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anqi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengzhuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yukun Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yang Zhao
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Debin Yan
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Shanxi, China
| | - Junlin Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Pingting Chen
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Wanting Zhou
- Beijing University of Posts and Telecommunications, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
| |
Collapse
|
2
|
Hao Q, Zhang H, Han H, Jin H, Ma L, Li R, Li Z, Li A, Yuan K, Zhu Q, Wang K, Li R, Lin F, Wang C, Zhang Y, Zhang H, Zhao Y, Jin W, Gao D, Guo G, Yan D, Pu J, Kang S, Ye X, Li Y, Sun S, Wang H, Chen Y, Chen X, Zhao Y. Recurrence of Cerebral Arteriovenous Malformation Following Complete Obliteration Through Endovascular Embolization. Transl Stroke Res 2025; 16:339-349. [PMID: 37957446 DOI: 10.1007/s12975-023-01215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Arteriovenous malformation (AVM) recurrence after embolization was rarely reported. This study aimed to explore the potential risk factors of recurrence in angiographically obliterated AVMs treated with endovascular embolization. This study reviewed AVMs treated with embolization only in a prospective multicenter registry from August 2011 to December 2021, and ultimately included 92 AVMs who had achieved angiographic obliteration. Recurrence was assessed by follow-up digital subtraction angiography (DSA) or magnetic resonance imaging (MRI). Hazard ratios (HRs) with 95% confidence intervals were calculated using Cox proportional hazards regression models. Nineteen AVMs exhibited recurrence on follow-up imaging. The recurrence rates after complete obliteration at 6 months, 1 year, and 2 years were 4.35%, 9.78%, and 13.0%, respectively. Multivariate Cox regression analysis identified diffuse nidus (HR 3.208, 95% CI 1.030-9.997, p=0.044) as an independent risk factor for recurrence. Kaplan-Meier analysis confirmed a higher cumulative risk of recurrence with diffuse nidus (log-rank, p=0.016). Further, in the exploratory analysis of the effect of embolization timing after AVM rupture on recurrence after the complete obliteration, embolization within 7 days of the hemorrhage was found as an independent risk factor (HR 4.797, 95% CI 1.379-16.689, p=0.014). Kaplan-Meier analysis confirmed that embolization within 7 days of the hemorrhage was associated with a higher cumulative risk of recurrence in ruptured AVMs (log-rank, p<0.0001). This study highlights the significance of diffuse nidus as an independent risk factor for recurrence after complete embolization of AVMs. In addition, we identified a potential recurrent risk associated with early embolization in ruptured AVMs.
Collapse
Affiliation(s)
- Qiang Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hengwei Jin
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anqi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengzhuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yukun Zhang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Hongwei Zhang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Yang Zhao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Weitao Jin
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Dezhi Gao
- Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Debin Yan
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Xi'an, Shanxi, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuai Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Youxiang Li
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Shibin Sun
- Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Ma L, Chen Y, Chen P, Ma L, Yan D, Li R, Li Z, Zhang H, Han H, Yuan K, Li R, Lin F, Zhao Y, Chen X. Quantitative hemodynamics of draining veins in brain arteriovenous malformation: a preliminary study based on computational fluid dynamics. Front Neurol 2024; 15:1474857. [PMID: 39726760 PMCID: PMC11670193 DOI: 10.3389/fneur.2024.1474857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Objective This study initiated a preliminary computational fluid dynamics (CFD)-based study to investigate the relationship between quantitative hemodynamics of arteriovenous malformation (AVM) draining veins and rupture. Methods The quantitative hemodynamics of AVM draining veins were generated from computed tomography angiography (CTA)-based steady-state CFD models. Morphological and hemodynamic parameters were compared between the ruptured and unruptured groups. The boundary conditions of the drainage vein were obtained from quantitative digital subtraction angiography (QDSA). The draining veins were divided into 15 consecutive segments to analyze the spatial distribution of the hemodynamic parameters by linear regression analysis. Results From 11 AVMs, it was revealed that morphological parameters of drainage veins in ruptured and unruptured AVMs were similar. The intravascular pressure of the draining vein in the ruptured AVMs was significantly higher than those of the unruptured AVMs (pressure average: p = 0.006; pressure maximum: p = 0.045), and the WSS of the posterior segment was higher in ruptured AVMs (p = 0.045). WSS of draining veins in ruptured AVMs showed a linear increase trend with segmenting (R = 0.731, p < 0.001), and ruptured AVMs were more likely to be accompanied by high-velocity segments in the draining vein (40.0% vs. 14.7%, p = 0.037), especially in the posterior segment (p = 0.011). Conclusion The draining veins of ruptured AVMs had significantly higher intravascular pressure and posterior segment WSS. WSS showed a linear increase with segmentation in ruptured AVMs, and they often had more high-velocity segments in the draining vein, especially in the posterior segment.
Collapse
Affiliation(s)
- Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pingting Chen
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Debin Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Li R, Chen Y, Chen P, Ma L, Han H, Li Z, Zhou W, Zhou Y, Wang M, Sun S, Zhao Y, Chen X. Lesion filling index predicts brain arteriovenous malformation obliteration after Gamma knife radiosurgery: a hemodynamic analysis. Neurosurg Rev 2024; 47:889. [PMID: 39641868 DOI: 10.1007/s10143-024-03135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/11/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Hemodynamics significantly influences the clinical outcomes of brain arteriovenous malformations (AVM). This study aimed to determine if the lesion filling index (LFI), obtained via quantitative digital subtraction angiography (QDSA), can predict complete complete obliteration after Gamma knife radiosurgery (GKRS). We retrospectively reviewed AVM patients who underwent GKRS and DSA exams from 2011 to 2021. Clinical, angioarchitectural, and QDSA hemodynamic features were analyzed. The LFI, derived from QDSA, was evaluated as a predictor of complete complete obliteration post-SRS using Cox proportional hazards and Kaplan-Meier analyses. Among 118 AVMs with a mean follow-up of 5.76 ± 2.76 years, post-SRS complete obliteration was linked to reduced nidus volume (7.27 ± 12.3 vs. 19.2 ± 35.7 mm³, p = 0.049), smaller nidus diameter (26.0 ± 14.9 vs. 34.1 ± 19.8 mm, p = 0.015), and absence of feeding artery dilation (21.1% vs. 46.3%, p = 0.008). Higher Arterial Diagnostic Window (ADW) (972.27 ± 1615.53 vs. 515.29 ± 730.26, p = 0.036), higher LFI (905.31 ± 2288.37 vs. 249.65 ± 1092.46, p = 0.037), and lower Transnidal Relative Velocity (TRV), a parameter defined as the maximum diameter of AVM divided by the full width at half maximum (74.31 ± 95.67 vs. 137.80 ± 152.01, p = 0.021), were also associated with complete obliteration. After adjusting for confounders, only two variables-absence of feeding artery dilation (HR 0.35, 95%CI 0.16-0.78, p = 0.010) and higher LFI (HR 1.00, 95%CI 1.00-1.00, p = 0.006) remained significant predictors. The ROC curve identified 188.4 as the LFI cutoff, and Kaplan-Meier analysis confirmed LFI's predictive value (log-rank test, χ² = 12.776, p < 0.001). Elevated LFI and absence of feeding artery dilation predict AVM complete obliteration after GKRS, indicating that overfilling and low blood flow in the nidus may promote complete obliteration.
Collapse
Affiliation(s)
- Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pingting Chen
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
- Department of Neurological surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Wanting Zhou
- Department of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yu Zhou
- Beijing Crealife (Scgy) Technology Co.,Ltd, Beijing, China
| | - Minhan Wang
- Beijing Crealife (Scgy) Technology Co.,Ltd, Beijing, China
| | - Shibin Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
- Department of Gamma-Knife center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Lu C, Han H, Ma L, Li R, Li Z, Zhang H, Yuan K, Zhang Y, Li A, Wang K, Zhao Y, Jin W, Gao D, Jin H, Meng X, Yan D, Li R, Lin F, Hao Q, Wang H, Ye X, Kang S, Pu J, Shi Z, Chao X, Lin Z, Lu J, Li Y, Zhao Y, Sun S, Chen X, Chen W, Chen Y, Wang S. Comparison of Long-Term Outcomes in Ruptured Diffuse Brain Arteriovenous Malformations Between Interventional Therapy and Conservative Management. Transl Stroke Res 2024; 15:1154-1164. [PMID: 37776489 DOI: 10.1007/s12975-023-01197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Brain arteriovenous malformations (AVMs) with a diffuse nidus structure present a therapeutic challenge due to their complexity and elevated risk of hemorrhagic events. This study examines the long-term effectiveness of interventional therapy versus conservative management in reducing hemorrhagic stroke or death in patients with ruptured diffuse AVMs. The analysis was conducted based on a multi-institutional database in China. Patients were divided into two groups: conservative management and interventional therapy. Using propensity score matching, patients were compared for the primary outcome of hemorrhagic stroke or death and the secondary outcomes of disability and neurofunctional decline. Out of 4286 consecutive AVMs in the registry, 901 patients were eligible. After matching, 70 pairs of patients remained with a median follow-up of 4.0 years. The conservative management group showed a trend toward higher rates of the primary outcome compared to the interventional group (4.15 vs. 1.87 per 100 patient-years, P = 0.090). While not statistically significant, intervention reduced the risk of hemorrhagic stroke or death by 55% (HR, 0.45 [95% CI 0.18-1.14], P = 0.094). No significant differences were observed in secondary outcomes of disability (OR, 0.89 [95% CI 0.35-2.26], P = 0.813) and neurofunctional decline (OR, 0.65 [95% CI 0.26 -1.63], P = 0.355). Subgroup analysis revealed particular benefits in interventional therapy for AVMs with a supplemented S-M grade of II-VI (HR, 0.10 [95% CI 0.01-0.79], P = 0.029). This study suggests a trend toward lower long-term hemorrhagic risks with intervention when compared to conservative management in ruptured diffuse AVMs, especially within supplemented S-M grade II-VI subgroups. No evidence indicated that interventional approaches worsen neurofunctional outcomes.
Collapse
Affiliation(s)
- Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yukun Zhang
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Anqi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Zhao
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Weitao Jin
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Dezhi Gao
- Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hengwei Jin
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangyu Meng
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Debin Yan
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiang Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuai Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jun Pu
- First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiyong Shi
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated to Nanjing University, Nanjing, Jiangsu, China
| | - Xiaofeng Chao
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Zhengfeng Lin
- Department of Neurosurgery, The First People's Hospital of Qinzhou, Guangxi, China
| | - Junlin Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shibin Sun
- Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Weiwei Chen
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
6
|
Loo JK, Hu YS, Kao WL, Yang HC, Lee CC, Wu HM, Luo CB, Guo WY, Liu KD, Chung WY, Lin CJ. Shortened Cerebral Circulation Time Predicts Resistance to Obliteration in High-Flow Brain Arteriovenous Malformations After Stereotactic Radiosurgery. Neurosurgery 2024; 95:1429-1440. [PMID: 38899888 DOI: 10.1227/neu.0000000000003036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/06/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Treatment selection for brain arteriovenous malformations (BAVMs) is complicated by BAVM size, location, and hemodynamics. Quantitative digital subtraction angiography is used to quantify the hemodynamic impact of BAVMs on cerebral circulation. This study investigated the association between cerebral circulation time and the complete obliteration (CO) rate of BAVMs after stereotactic radiosurgery (SRS). METHODS We analyzed the data of 143 patients who underwent SRS for BAVMs between January 2011 and December 2019 in our institute. Their pre-SRS magnetic resonance imaging and angiography images were analyzed to acquire BAVM characteristics and quantitative digital subtraction angiography parameters. Modified cerebral circulation time (mCCT) was defined as the time difference between the bolus arrival time of the ipsilateral cavernous internal carotid artery and that of the parietal vein, as determined from the lateral view of images obtained using digital subtraction angiography. Cox regression with hazard ratios and Kaplan-Meier analyses were conducted to determine the associations between the parameters and BAVM CO after SRS. RESULTS Of the 143 patients, 101 (70.6%) achieved BAVM CO. According to the multivariate analyses, an increased mCCT (hazard ratio: 1.24, P = .041) was the independent factor associated with BAVM CO after adjustment for age, sex, hemorrhagic presentation, a BAVM volume of >5 cm 3 , and a margin dose of >18 Gy. Individuals with an mCCT of ≤2.32 s had a lower 36-month probability of BAVM CO than did those with an mCCT of >2.32 s (44.1% ± 6.8% vs 63.3% ± 5.6%, P = .034). CONCLUSION The hemodynamic impact of high-flow BAVM demonstrated by a shortened mCCT is associated with a lower BAVM CO rate after SRS.
Collapse
Affiliation(s)
- Jing Kai Loo
- Department of Radiology, Taipei Veterans General Hospital, Taipei , Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
| | - Yong-Sin Hu
- Department of Radiology, Taipei Veterans General Hospital, Taipei , Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
- Department of Radiology, Taipei Hospital, Ministry of Health and Welfare, New Taipei , Taiwan
| | - Wei-Lun Kao
- Department of Radiology, Taipei Veterans General Hospital, Taipei , Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
| | - Huai-Che Yang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei , Taiwan
| | - Cheng-Chia Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei , Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei , Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
| | - Chao-Bao Luo
- Department of Radiology, Taipei Veterans General Hospital, Taipei , Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
| | - Wan-Yuo Guo
- Department of Radiology, Taipei Veterans General Hospital, Taipei , Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
| | - Kang-Du Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei , Taiwan
| | - Wen-Yuh Chung
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei , Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei , Taiwan
| | - Chung-Jung Lin
- Department of Radiology, Taipei Veterans General Hospital, Taipei , Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei , Taiwan
| |
Collapse
|
7
|
Das S, Kasher P, Waqar M, Parry-Jones A, Patel H. Reporting of angiographic studies in patients diagnosed with a cerebral arteriovenous malformation: a systematic review. F1000Res 2024; 12:1252. [PMID: 39931157 PMCID: PMC11809685 DOI: 10.12688/f1000research.139256.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/13/2025] Open
Abstract
A cerebral arteriovenous malformation (cAVM) is an abnormal tangle of cerebral blood vessels. The consensus document by the Joint Writing Group (JWG) highlighted which cAVM features should be recorded. Subsequent publications have reported cAVM angioarchitecture, but it is unknown if all followed the JWG recommendations. The aim of this systematic review was to describe use of the JWG guidelines. A database search, using the PRISMA checklist, was performed. We describe the proportion of publications that used JWG reporting standards, which standards were used, whether the definitions used differed from the JWG, or if any additional angiographic features were reported. Out of 4306 articles identified, 105 were selected, and a further 114 from other sources. Thirty-three studies (33/219; 15%) specifically referred to using JWG standards. Since the JWG publication, few studies have used their standards to report cAVMs. This implies that the angioarchitecture of cAVMs are not routinely fully described.
Collapse
Affiliation(s)
- Suparna Das
- The University of Manchester, Manchester, England, UK
| | - Paul Kasher
- The University of Manchester, Manchester, England, UK
| | - Mueez Waqar
- The University of Manchester, Manchester, England, UK
| | | | - Hiren Patel
- The University of Manchester, Manchester, England, UK
| |
Collapse
|
8
|
Das S, Raffalli-Ebezant H, Kasher PR, Parry-Jones A, Patel HC. Can angiogenesis be reliably determined on digital subtraction angiography in cerebral arteriovenous malformations? Br J Neurosurg 2024:1-6. [PMID: 39513431 DOI: 10.1080/02688697.2024.2424850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Angiogenesis and nascent blood vessel formation is thought to be important in cerebral arteriovenous malformation (cAVM) development and maintenance, of which little is known. Digital subtraction angiogram (DSA) features of angiogenesis in cAVMs are poorly described and the aim of this study was to describe the frequency of angiogenesis in patients who had a DSA showing a cAVM. We also sought to evaluate the intra- and inter-observer agreement of a diagnosis of angiogenesis and explore which angioarchitectural features were associated with angiogenesis. METHOD Patients that underwent a DSA were identified from the database of referred cAVM patients at the Manchester Centre for Clinical Neurosciences. Data were collected from 100 patients (102 cAVMs). cAVM angioarchitecture, including the presence of angiogenesis, was described after reviewing cAVM patient angiograms. The association of angioarchitectural features with angiogenesis was determined using univariate analysis. Ten cases were distributed amongst two other observers for reporting (inter-observer agreement). Twenty cases (including the previous 10) were reported twice by the first author, after a six-month interval (intra-observer agreement). RESULTS Angiogenesis was observed in 39 cAVMs (38.2%), with 12 having a complete border (11.8%). Most intra-observer agreement was strong (ranging from κ = 1 to 0.2), but inter-observer agreement was moderate (κ = 1 to -0.316). There was a significant association between angiogenesis and venous reflux (OR 2.52 [95% CI = 1.08-5.88]), venous congestion (OR 4.47 [95% CI = .671-2.52]), arterial ectasia (OR 16.6 [95% CI = 4.65-59.6]), and artery: vein ratio (4.28 [95% CI = .956-19.15]). CONCLUSION We have demonstrated perinidal angiogenesis can be visualised on angiograms with moderate reliability, and that it may be related to angioarchitectural characteristics associated with venous hypertension.
Collapse
Affiliation(s)
- Suparna Das
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
- Division of Cardiovascular Science, Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Helen Raffalli-Ebezant
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Adrian Parry-Jones
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
- Division of Cardiovascular Science, Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Hiren C Patel
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
- Division of Cardiovascular Science, Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Li Z, Zhang J, Han H, Gao D, Jin H, Ma L, Li R, Li A, Zhang H, Yuan K, Wang K, Zhu Q, Wang C, Yan D, Lu J, Zhang Y, Zhao Y, Li Y, Sun S, Zhao Y, Chen Y, Chen X. Association of the combined stereotactic radiosurgery and embolization strategy and long-term outcomes in brain arteriovenous malformations with a volume >10 ml: A nationwide multicenter observational prospective cohort study. Radiother Oncol 2024; 200:110530. [PMID: 39251110 DOI: 10.1016/j.radonc.2024.110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND To assess the long-term outcome of large brain arteriovenous malformations (AVMs) (volume > 10 ml) underwent combined embolization and stereotactic radiosurgery (E+SRS) versus SRS alone. METHODS Patients were recruited from a nationwide multicenter prospective collaboration registry (MATCH study, August 2011-August 2021) and categorized into E+SRS and SRS alone cohorts. Propensity score-matched survival analysis was employed to control for potential confounding variables. The primary outcome was a composite event of non-fatal hemorrhagic stroke or death. Secondary outcomes were favorable patient outcomes, AVM obliteration, favorable neurological outcomes, seizure, worsened mRS score, radiation-induced changes (RIC), and embolization complications. Furthermore, the efficacy of distinct embolization strategies was evaluated. Hazard ratios (HRs) were computed utilizing Cox proportional hazard models. RESULTS Among 1063 AVMs who underwent SRS with or without prior embolization, 176 patients met the enrollment criteria. Following propensity score matching, the final analysis encompassed 98 patients (49 pairs). Median (interquartile range) follow-up duration for primary outcomes spanned 5.4 (2.7-8.4) years. Overall, the E+SRS strategy demonstrated a trend toward reduced incidence of primary outcomes compared to the SRS alone strategy (1.44 vs 2.37 per 100 patient-years; HR, 0.58 [95 % CI, 0.17-1.93]). Regardless of embolization degree or strategy, stratified analyses further consistently revealed a similar trend, albeit without achieving statistical significance. Secondary outcomes generally exhibited equivalence, but the combined approach showed potential superiority in most measures. CONCLUSIONS This study suggests a trend toward lower long-term non-fatal hemorrhagic stroke or death risks with the E+SRS strategy when compared to SRS alone in large AVMs (volume > 10 ml).
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dezhi Gao
- Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hengwei Jin
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anqi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengzhuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Debin Yan
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Shanxi, China
| | - Junlin Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yukun Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yang Zhao
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shibin Sun
- Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
| |
Collapse
|
10
|
Yuan K, Chen Y, Yan D, Li R, Li Z, Zhang H, Wang K, Han H, Zhao Y, Ma L, Hao Q, Ye X, Jin H, Meng X, Liu A, Gao D, Sun S, Kang S, Wang H, Li Y, Wang S, Chen X, Zhao Y. Re-rupture in ruptured brain arteriovenous malformations: a retrospective cohort study based on a nationwide multicenter prospective registry. J Neurointerv Surg 2024; 16:1145-1151. [PMID: 37903561 PMCID: PMC11503091 DOI: 10.1136/jnis-2023-020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND This study aimed to investigate the natural history of re-rupture in ruptured brain arteriovenous malformations (AVMs) and to provide comprehensive insights into its associated factors and prevention. METHODS This study included 1712 eligible ruptured AVMs from a nationwide multicenter prospective collaboration registry between August 2011 and September 2021. The natural rupture risk before intervention and the annual rupture risk after intervention were both assessed. Cox proportional hazard regression models and Kaplan-Meier survival curves were used to explore independent factors associated with AVM re-rupture. The correlation between these factors and AVM re-rupture was verified in multiple independent cohorts, and the prevention effect of intervention timing and intervention strategies on AVM re-rupture was further analyzed. RESULTS The annual re-rupture risk in ruptured AVMs was 7.6%, and the cumulative re-rupture risk in the first 1, 3, 5, and 10 years following the initial rupture were 10%, 25%, 37.5%, and 50%, respectively. Cox proportional hazard regression analysis confirmed adult patients, ventricular system involvement, and any deep venous drainage as independent factors associated with AVM re-rupture. The intervention was found to significantly reduce the risk of AVM re-rupture (annual rupture risk 11.34% vs 1.70%, p<0.001), especially in those who underwent surgical resection (annual rupture risk 0.13%). CONCLUSIONS The risk of re-rupture in ruptured AVMs is high. Adult patients, ventricular system involvement, and any deep venous drainage are independent risk factors for re-rupture. Applying the results universally to all ruptured AVM cases may be biased. Intervention could effectively reduce the risk of re-rupture.
Collapse
Affiliation(s)
- Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Debin Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Yahui Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
- Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA
| | - Qiang Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Hengwei Jin
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | | | - Ali Liu
- Department of Gamma-Knife center, Beijing Tiantan Hospital, Beijing, China
| | - Dezhi Gao
- Department of Gamma-Knife center, Beijing Tiantan Hospital, Beijing, China
| | - Shibin Sun
- Department of Gamma-Knife center, Beijing Tiantan Hospital, Beijing, China
| | - Shuai Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Capital Medical University, Beijing, Fengtai District, China
- Beijing Engineering Research Center, Beijing, Fengtai District, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
- Beijing Neurosurgical Institute, Beijing, China
- Beijing Engineering Research Center, Beijing, Fengtai District, China
| |
Collapse
|
11
|
Li R, Chen Y, Chen P, Ma L, Han H, Li Z, Zhou W, Chen X, Zhao Y. Lesion-Filling Index from Quantitative DSA Correlates with Hemorrhage of Cerebral AVM. AJNR Am J Neuroradiol 2024; 45:712-720. [PMID: 38697788 PMCID: PMC11288585 DOI: 10.3174/ajnr.a8218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/02/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND PURPOSE Rupture is the most life-threatening manifestation of cerebral AVMs. This study aimed to explore the hemodynamic mechanism of AVM rupture. We introduced a new quantitative DSA parameter that can reflect the degree of intranidal blood stasis, called the lesion-filling index. MATERIALS AND METHODS This study examined patients with AVMs who had undergone both DSA and MR imaging between 2013 and 2014. Clinical presentations, angioarchitecture, and hemodynamic parameters generated from quantitative DSA were analyzed using univariate and multivariable logistic regression. The lesion-filling index was defined as the arterial diagnostic window divided by the volume of the AVM. To assess the correlation between the lesion-filling index and rupture, we incorporated the lesion-filling index into 2 published prediction models widely recognized for predicting AVM rupture risk, R2eD and VALE. The DeLong test was used to examine whether the addition of the lesion-filling index improved predictive efficacy. RESULTS A total of 180 patients with AVMs were included. The mean lesion-filling index values in the ruptured group were higher compared with the unruptured group (390.27 [SD, 919.81] versus 49.40 [SD, 98.25]), P < .001). A higher lesion-filling index was significantly correlated with AVM rupture in 3 different multivariable logistic models, adjusting for angioarchitecture factors (OR = 1.004, P = .02); hemodynamic factors (OR = 1.005, P = .009); and combined factors (OR = 1.004, P = .03). Both R2eD (area under the curve, 0.601 versus 0.624; P = .15) and VALE (area under the curve, 0.603 versus 0.706; P < .001) predictive models showed improved predictive performance after incorporating the lesion-filling index and conducting 10-fold cross-validation. CONCLUSIONS The lesion-filling index showed a strong correlation with AVM rupture, suggesting that overperfusion is the hemodynamic mechanism leading to AVM rupture.
Collapse
Affiliation(s)
- Ruinan Li
- From the Department of Neurosurgery (R.L., Y.C., L.M., H.H., Z.L., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- From the Department of Neurosurgery (R.L., Y.C., L.M., H.H., Z.L., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.C., X.C., Y.Z.), Beijing, China
- Beijing Neurosurgical Institute (Y.C., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pingting Chen
- College of Energy and Power Engineering (P.C.), Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Li Ma
- From the Department of Neurosurgery (R.L., Y.C., L.M., H.H., Z.L., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurological Surgery (L.M.), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Heze Han
- From the Department of Neurosurgery (R.L., Y.C., L.M., H.H., Z.L., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- From the Department of Neurosurgery (R.L., Y.C., L.M., H.H., Z.L., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanting Zhou
- Department of Artificial Intelligence (W.Z.), Beijing University of Posts and Telecommunications, Beijing, China
| | - Xiaolin Chen
- From the Department of Neurosurgery (R.L., Y.C., L.M., H.H., Z.L., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.C., X.C., Y.Z.), Beijing, China
- Beijing Neurosurgical Institute (Y.C., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- From the Department of Neurosurgery (R.L., Y.C., L.M., H.H., Z.L., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.C., X.C., Y.Z.), Beijing, China
- Beijing Neurosurgical Institute (Y.C., X.C., Y.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Jin H, Li Z, Gao D, Chen Y, Han H, Ma L, Yan D, Li R, Li A, Zhang H, Yuan K, Zhang Y, Zhao Y, Meng X, Li Y, Chen X, Wang H, Sun S, Zhao Y. Association of the combined stereotactic radiosurgery and embolization strategy and long-term outcomes in brain arteriovenous malformations with a volume ≤10 mL: a nationwide multicenter observational prospective cohort study. J Neurointerv Surg 2024; 16:548-554. [PMID: 37402570 DOI: 10.1136/jnis-2023-020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND To compare the long-term outcomes of stereotactic radiosurgery (SRS) with or without prior embolization in brain arteriovenous malformations (AVMs) (volume ≤10 mL) for which SRS is indicated. METHODS Patients were recruited from a nationwide multicenter prospective collaboration registry (the MATCH study) between August 2011 and August 2021, and categorized into combined embolization and SRS (E+SRS) and SRS alone cohorts. We performed propensity score-matched survival analysis to compare the long-term risk of non-fatal hemorrhagic stroke and death (primary outcomes). The long-term obliteration rate, favorable neurological outcomes, seizure, worsened mRS score, radiation-induced changes, and embolization complications were also evaluated (secondary outcomes). Hazard ratios (HRs) were calculated using Cox proportional hazards models. RESULTS After study exclusions and propensity score matching, 486 patients (243 pairs) were included. The median (IQR) follow-up duration for the primary outcomes was 5.7 (3.1-8.2) years. Overall, E+SRS and SRS alone were similar in preventing long-term non-fatal hemorrhagic stroke and death (0.68 vs 0.45 per 100 patient-years; HR=1.46 (95% CI 0.56 to 3.84)), as well as in facilitating AVM obliteration (10.02 vs 9.48 per 100 patient-years; HR=1.10 (95% CI 0.87 to 1.38)). However, the E+SRS strategy was significantly inferior to the SRS alone strategy in terms of neurological deterioration (worsened mRS score: 16.0% vs 9.1%; HR=2.00 (95% CI 1.18 to 3.38)). CONCLUSIONS In this observational prospective cohort study, the combined strategy of E+SRS does not show substantial advantages over SRS alone. The findings do not support pre-SRS embolization for AVMs with a volume ≤10 mL.
Collapse
Affiliation(s)
- Hengwei Jin
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dezhi Gao
- Department of Gamma-Knife center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Debin Yan
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Shanxi, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anqi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yukun Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yang Zhao
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Xiangyu Meng
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Shibin Sun
- Department of Gamma-Knife center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
13
|
Zhang H, Han H, Ma L, Li R, Li Z, Li A, Yuan K, Zhu Q, Wang C, Zhang Y, Zhang H, Gao D, Guo G, Kang S, Ye X, Li Y, Sun S, Wang H, Hao Q, Chen Y, Wang R, Chen X, Zhao Y. A comprehensive analysis of patients with cerebral arteriovenous malformation with headache: assessment of risk factors and treatment effectiveness. J Headache Pain 2024; 25:72. [PMID: 38714978 PMCID: PMC11075233 DOI: 10.1186/s10194-024-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Due to the high mortality and disability rate of intracranial hemorrhage, headache is not the main focus of research on cerebral arteriovenous malformation (AVM), so research on headaches in AVM is still scarce, and the clinical understanding is shallow. This study aims to delineate the risk factors associated with headaches in AVM and to compare the effectiveness of various intervention treatments versus conservative treatment in alleviating headache symptoms. METHODS This study conducted a retrospective analysis of AVMs who were treated in our institution from August 2011 to December 2021. Multivariable logistic regression analysis was employed to assess the risk factors for headaches in AVMs with unruptured, non-epileptic. Additionally, the effectiveness of different intervention treatments compared to conservative management in alleviating headaches was evaluated through propensity score matching (PSM). RESULTS A total of 946 patients were included in the analysis of risk factors for headaches. Multivariate logistic regression analysis identified that female (OR 1.532, 95% CI 1.173-2.001, p = 0.002), supply artery dilatation (OR 1.423, 95% CI 1.082-1.872, p = 0.012), and occipital lobe (OR 1.785, 95% CI 1.307-2.439, p < 0.001) as independent risk factors for the occurrence of headaches. There were 443 AVMs with headache symptoms. After propensity score matching, the microsurgery group (OR 7.27, 95% CI 2.82-18.7 p < 0.001), stereotactic radiosurgery group(OR 9.46, 95% CI 2.26-39.6, p = 0.002), and multimodality treatment group (OR 8.34 95% CI 2.87-24.3, p < 0.001) demonstrate significant headache relief compared to the conservative group. However, there was no significant difference between the embolization group (OR 2.24 95% CI 0.88-5.69, p = 0.091) and the conservative group. CONCLUSIONS This study identified potential risk factors for headaches in AVMs and found that microsurgery, stereotactic radiosurgery, and multimodal therapy had significant benefits in headache relief compared to conservative treatment. These findings provide important guidance for clinicians when developing treatment options that can help improve overall treatment outcomes and quality of life for patients.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Ma
- Center for Cerebrovascular Research, University of California, San Francisco, CA, USA
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anqi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengzhuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yukun Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Dezhi Gao
- Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Shuai Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Shibin Sun
- Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Yuanli Zhao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Han H, Chen Y, Ma L, Li R, Li Z, Zhang H, Yuan K, Wang K, Jin H, Meng X, Yan D, Zhao Y, Zhang Y, Jin W, Li R, Lin F, Hao Q, Wang H, Ye X, Kang S, Gao D, Sun S, Liu A, Li Y, Chen X, Zhao Y, Wang S. Comparison of conservative management, microsurgery only, and microsurgery with preoperative embolization for unruptured arteriovenous malformations: A propensity score weighted prospective cohort study. CNS Neurosci Ther 2024; 30:e14533. [PMID: 37990420 PMCID: PMC11017441 DOI: 10.1111/cns.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
AIMS To compare the efficacy and deficiency of conservative management (CM), microsurgery (MS) only, and microsurgery with preoperative embolization (E + MS) for unruptured arteriovenous malformations (AVMs). METHODS We prospectively included unruptured AVMs undergoing CM, MS, and E + MS from our institution between August 2011 and August 2021. The primary outcomes were long-term neurofunctional outcomes and hemorrhagic stroke and death. In addition to the comparisons among CM, MS, and E + MS, E + MS was divided into single-staged hybrid and multi-staged E + MS for further analysis. Stabilized inverse probability of treatment weighting using propensity scores was applied to control for confounders by treatment indication across the three groups. RESULTS Of 3758 consecutive AVMs admitted, 718 patients were included finally (266 CM, 364 MS, and 88 E + MS). The median follow-up duration was 5.4 years. Compared with CM, interventions (MS and E + MS) were associated with neurological deterioration. MS could lower the risk of hemorrhagic stroke and death. Multi-staged E + MS was associated with neurological deterioration and higher hemorrhagic risks compared with MS, but the hybrid E + MS operation significantly reduced the hemorrhage risk. CONCLUSION In this study, unruptured AVMs receiving CM would expect better neurofunctional outcomes but bear higher risks of hemorrhage than MS or E + MS. The single-staged hybrid E + MS might be promising in reducing inter-procedural and subsequent hemorrhage.
Collapse
Affiliation(s)
- Heze Han
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hengwei Jin
- Department of Interventional Neuroradiology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiangyu Meng
- Department of Neurosurgery, The First Hospital of Hebei Medical UniversityHebei Medical UniversityShijiazhuangChina
| | - Debin Yan
- Department of NeurosurgeryShanxi Provincial People's HospitalTaiyuanShanxiChina
| | - Yang Zhao
- Department of Neurosurgery, Peking University International HospitalPeking UniversityBeijingChina
| | - Yukun Zhang
- Department of Neurosurgery, Peking University International HospitalPeking UniversityBeijingChina
| | - Weitao Jin
- Department of Neurosurgery, Peking University International HospitalPeking UniversityBeijingChina
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Fa Lin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qiang Hao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shuai Kang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dezhi Gao
- Department of Gamma‐Knife Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shibin Sun
- Department of Gamma‐Knife Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ali Liu
- Department of Gamma‐Knife Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
15
|
You W, Meng X, Chen T, Ye W, Wang Y, Lv J, Li Y, Sui Y, Zhang Y, Gong W, Sun Y, Jin H, Li Y. Quantitative Assessment of Hemodynamics Associated With Embolization Degree in Brain Arteriovenous Malformations. Neurosurgery 2024:00006123-990000000-01066. [PMID: 38391200 DOI: 10.1227/neu.0000000000002877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/13/2023] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Grading systems, including the novel brain arteriovenous malformation endovascular grading scale (NBAVMES) and arteriovenous malformation embocure score (AVMES), predict embolization outcomes based on arteriovenous malformation (AVM) morphological features. The influence of hemodynamics on embolization outcomes remains unexplored. In this study, we investigated the relationship between hemodynamics and embolization outcomes. METHODS We conducted a retrospective study of 99 consecutive patients who underwent transarterial embolization at our institution between 2012 and 2018. Hemodynamic features of AVMs were derived from pre-embolization digital subtraction angiography sequences using quantitative digital subtraction angiography. Multivariate logistic regression analysis was performed to determine the significant factors associated with embolization outcomes. RESULTS Complete embolization (CE) was achieved in 17 (17.2%) patients, and near-complete embolization was achieved in 18 (18.2%) patients. A slower transnidal relative velocity (TRV, odds ratio [OR] = 0.71, P = .002) was significantly associated with CE. Moreover, higher stasis index of the drainage vein (OR = 16.53, P = .023), shorter transnidal time (OR = 0.15, P = .013), and slower TRV (OR = 0.9, P = .049) were significantly associated with complete or near-complete embolization (C/nCE). The area under the receiver operating characteristic curve for predicting CE was 0.87 for TRV, 0.72 for NBAVMES scores (ρ = 0.287, P = .004), and 0.76 for AVMES scores. The area under the receiver operating characteristic curve for predicting C/nCE was 0.77 for TRV, 0.61 for NBAVMES scores, and 0.75 for AVMES scores. Significant Spearman correlation was observed between TRV and NBAVMES scores and AVMES scores (ρ = 0.512, P < .001). CONCLUSION Preoperative hemodynamic factors have the potential to predict the outcomes of AVM embolization. A higher stasis index of the drainage vein, slower TRV, and shorter transnidal time may indicate a moderate blood flow status or favorable AVM characteristics that can potentially facilitate embolization.
Collapse
Affiliation(s)
- Wei You
- Department of Neurosurgery, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurointerventional Engineering and Technology (NO: BG0287), Beijing Engineering Research Center, Beijing, China
| | - Xiangyu Meng
- Department of Neurosurgery, The First Hospital, Hebei Medical University, Shijiazhuang, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wanxing Ye
- China National Clinical Research Center for Neurological Diseases, Beijing Hanalytics Artificial Intelligence Research Center for Neurological Disorders, Beijing, China
| | - Yanwen Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Hanalytics Artificial Intelligence Research Center for Neurological Disorders, Beijing, China
| | - Jian Lv
- Department of Neurosurgery, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurointerventional Engineering and Technology (NO: BG0287), Beijing Engineering Research Center, Beijing, China
| | - Yuanjie Li
- China National Clinical Research Center for Neurological Diseases, Beijing Hanalytics Artificial Intelligence Research Center for Neurological Disorders, Beijing, China
| | - Yutong Sui
- China National Clinical Research Center for Neurological Diseases, Beijing Hanalytics Artificial Intelligence Research Center for Neurological Disorders, Beijing, China
| | - Yifan Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Hanalytics Artificial Intelligence Research Center for Neurological Disorders, Beijing, China
| | - Wentao Gong
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Yong Sun
- Department of Neurosurgery, The First People's Hospital of Lianyungang, Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Hengwei Jin
- Department of Neurosurgery, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurointerventional Engineering and Technology (NO: BG0287), Beijing Engineering Research Center, Beijing, China
| | - Youxiang Li
- Department of Neurosurgery, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurointerventional Engineering and Technology (NO: BG0287), Beijing Engineering Research Center, Beijing, China
| |
Collapse
|
16
|
Lin JY, Lu CF, Hu YS, Yang HC, Liu YT, Loo JK, Lee KL, Liao CY, Chang FC, Liou KD, Lin CJ. Magnetic resonance radiomics-derived sphericity correlates with seizure in brain arteriovenous malformations. Eur Radiol 2024; 34:588-599. [PMID: 37553487 DOI: 10.1007/s00330-023-09982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/14/2023] [Accepted: 05/29/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Angioarchitectural analysis of brain arteriovenous malformations (BAVMs) is qualitative and subject to interpretation. This study quantified the morphology of and signal changes in the nidal and perinidal areas by using MR radiomics and compared the performance of MR radiomics and angioarchitectural analysis in detecting epileptic BAVMs. MATERIALS AND METHODS From 2010 to 2020, a total of 111 patients with supratentorial BAVMs were retrospectively included and grouped in accordance with the initial presentation of seizure. Patients' angiograms and MR imaging results were analyzed to determine the corresponding angioarchitecture. The BAVM nidus was contoured on time-of-flight MR angiography images. The perinidal brain parenchyma was contoured on T2-weighted images, followed by radiomic analysis. Logistic regression analysis was performed to determine the independent risk factors for seizure. ROC curve analysis, decision curve analysis (DCA), and calibration curve were performed to compare the performance of angioarchitecture-based and radiomics-based models in diagnosing epileptic BAVMs. RESULTS In multivariate analyses, low sphericity (OR: 2012.07, p = .04) and angiogenesis (OR: 5.30, p = .01) were independently associated with a high risk of seizure after adjustment for age, sex, temporal location, and nidal volume. The AUC for the angioarchitecture-based, MR radiomics-based, and combined models was 0.672, 0.817, and 0.794, respectively. DCA confirmed the clinical utility of the MR radiomics-based and combined models. CONCLUSIONS Low nidal sphericity and angiogenesis were associated with high seizure risk in patients with BAVMs. MR radiomics-derived tools may be used for noninvasive and objective measurement for evaluating the risk of seizure due to BAVM. CLINICAL RELEVANCE STATEMENT Low nidal sphericity was associated with high seizure risk in patients with brain arteriovenous malformation and MR radiomics may be used as a noninvasive and objective measurement method for evaluating seizure risk in patients with brain arteriovenous malformation. KEY POINTS • Low nidal sphericity was associated with high seizure risk in patients with brain arteriovenous malformation. • The performance of MR radiomics in detecting epileptic brain arteriovenous malformations was more satisfactory than that of angioarchitectural analysis. • MR radiomics may be used as a noninvasive and objective measurement method for evaluating seizure risk in patients with brain arteriovenous malformation.
Collapse
Affiliation(s)
- Jih-Yuan Lin
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Yong-Sin Hu
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Department of Radiology, Taipei Hospital, Ministry of Health and Welfare, No. 127, Su-Yuan Rd., Hsin-Chuang Dist., New Taipei City, 24213, Taiwan
| | - Huai-Che Yang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Yo-Tsen Liu
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- Brain Research Centre, National Yang Ming Chiao Tung University College of Medicine, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Jing Kai Loo
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Kang-Lung Lee
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Chien-Yi Liao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX, USA
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Kang-Du Liou
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Chung-Jung Lin
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan.
| |
Collapse
|
17
|
Han H, Gao D, Ma L, Li R, Li Z, Zhang H, Yuan K, Wang K, Zhang Y, Zhao Y, Jin W, Jin H, Meng X, Yan D, Li R, Lin F, Hao Q, Wang H, Ye X, Kang S, Pu J, Shi Z, Chao X, Lin Z, Lu J, Li Y, Zhao Y, Sun S, Chen Y, Chen X, Wang S. Long-term outcomes of microsurgery and stereotactic radiosurgery as the first-line treatment for arteriovenous malformations: a propensity score-matched analysis using nationwide multicenter prospective registry data. Int J Surg 2023; 109:3983-3992. [PMID: 37720924 PMCID: PMC10720861 DOI: 10.1097/js9.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND This study aimed to compare the risk and benefit profile of microsurgery (MS) and stereotactic radiosurgery (SRS) as the first-line treatment for unruptured and ruptured arteriovenous malformations (AVMs). MATERIALS AND METHODS The authors included AVMs underwent MS or SRS as the first-line treatment from a nationwide prospective multicenter registry in mainland China. The authors used propensity score-matched methods to balance baseline characteristics between the MS and SRS groups. The primary outcomes were long-term hemorrhagic stroke or death, and the secondary outcomes were long-term obliteration and neurological outcomes. Subgroup analyses and sensitivity analyses with different study designs were performed to confirm the stability of our findings. RESULTS Of the 4286 consecutive AVMs in the registry from August 2011 to December 2021; 1604 patients were eligible. After matching, 244 unruptured and 442 ruptured AVMs remained for the final analysis. The mean follow-up duration was 7.0 years in the unruptured group and 6.1 years in the ruptured group. In the comparison of primary outcomes, SRS was associated with a higher risk of hemorrhagic stroke or death both in the unruptured and ruptured AVMs (unruptured: hazard ratio 4.06, 95% CI: 1.15-14.41; ruptured: hazard ratio 4.19, 95% CI: 1.58-11.15). In terms of the secondary outcomes, SRS was also observed to have a significant disadvantage in long-term obliteration [unruptured: odds ratio (OR) 0.01, 95% CI: 0.00-0.04; ruptured: OR 0.09, 95% CI: 0.05-0.15]. However, it should be noted that SRS may have advantages in preventing neurofunctional decline (unruptured: OR 0.56, 95% CI: 0.27-1.14; ruptured: OR 0.41, 95% CI: 0.23-0.76). The results of subgroup analyses and sensitivity analyses were consistent in trend but with slightly varied powers. CONCLUSIONS This clinical practice-based real-world study comprehensively compared MS and SRS for AVMs with long-term outcomes. MS is more effective in preventing future hemorrhage or death and achieving obliteration, while the risk of neurofunctional decline should not be ignored.
Collapse
Affiliation(s)
- Heze Han
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | | | - Li Ma
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Ruinan Li
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Zhipeng Li
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Haibin Zhang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Kexin Yuan
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Ke Wang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Yukun Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University
| | - Yang Zhao
- Department of Neurosurgery, Peking University International Hospital, Peking University
| | - Weitao Jin
- Department of Neurosurgery, Peking University International Hospital, Peking University
| | - Hengwei Jin
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Xiangyu Meng
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang
| | - Debin Yan
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Shanxi
| | - Runting Li
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Fa Lin
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Qiang Hao
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Hao Wang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Xun Ye
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Shuai Kang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Jun Pu
- First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming
| | - Zhiyong Shi
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated to Nanjing University, Nanjing, Jiangsu
| | - Xiaofeng Chao
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Jiangsu
| | - Zhengfeng Lin
- Department of Neurosurgery, The First People’s Hospital of Qinzhou, Guangxi
| | - Junlin Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Yuanli Zhao
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | | | - Yu Chen
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Xiaolin Chen
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Shuo Wang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| |
Collapse
|
18
|
Pacini A, Shotar E, Granger B, Maizeroi-Eugène F, Delaitre M, Talbi A, Boch AL, Valéry CA, Premat K, Drir M, Lenck S, Mounayer C, Sourour NA, Clarençon F. Nidus Compacity Determined by Semi-Automated Segmentation is a Strong Quantitative Predictor of Brain Arterio-Venous Malformation Cure. Clin Neuroradiol 2023; 33:1095-1104. [PMID: 37378842 DOI: 10.1007/s00062-023-01313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND AND OBJECTIVE A compact nidus is a well-known feature of good outcome after treatment in brain arteriovenous malformations (bAVM). This item, included in the "Supplementary AVM grading system" by Lawton, is subjectively evaluated on DSA. The present study aimed to assess whether quantitative nidus compacity along with other angio-architectural bAVM features were predictive of angiographic cure or the occurrence of procedure-related complications. MATERIALS AND METHODS Retrospective analysis of 83 patients prospectively collected data base between 2003 to 2018 having underwent digital subtraction 3D rotation angiography (3D-RA) for pre-therapeutic assessment of bAVM. Angio-architectural features were analyzed. Nidus compacity was measured with a dedicated segmentation tool. Univariate and multivariate analyses were performed to test the association between these factors and complete obliteration or complication. RESULTS Compacity was the only significant factor associated with complete obliteration in our predictive model using logistic multivariate regression; the area under the curve for compacity predicting complete obliteration was excellent (0.82; 95% CI 0.71-0.90; p < 0.0001). The threshold value maximizing the Youden index was a compacity > 23% (sensitivity 97%; specificity 52%; 95% CI 85.1-99.9; p = 0.055). No angio-architectural factor was associated with the occurrence of a complication. CONCLUSION Nidus high compacity quantitatively measured on 3D-RA, using a dedicated segmentation tool is predictive of bAVM cure. Further investigation and prospective studies are warranted to confirm these preliminary results.
Collapse
Affiliation(s)
- Aurélien Pacini
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital. APHP, Paris, France.
| | - Eimad Shotar
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital. APHP, Paris, France
| | - Benjamin Granger
- Department of Public Health, Pitié-Salpêtrière Hospital. APHP, Paris, France
- INSERM UMR 1136, Sorbonne University, Paris, France
| | | | | | - Atika Talbi
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital. APHP, Paris, France
| | - Anne-Laure Boch
- Department of Neurosurgery, Pitié-Salpêtrière Hospital. APHP, Paris, France
| | | | - Kévin Premat
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital. APHP, Paris, France
| | - Mehdi Drir
- Department of Neuro-intensive care, Pitié-Salpêtrière Hospital. APHP, Paris, France
| | - Stéphanie Lenck
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital. APHP, Paris, France
| | - Charbel Mounayer
- Department of Interventional Neuroradiology, Limoges University Hospital, Limoges, France
| | - Nader-Antoine Sourour
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital. APHP, Paris, France
| | - Frédéric Clarençon
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital. APHP, Paris, France
- INSERM UMR 1136, Sorbonne University, Paris, France
- GRC BioFast, Sorbonne University, Paris, France
| |
Collapse
|
19
|
Li R, Chen P, Han H, Li Z, Chen X, Chen Y, Zhao Y. Association of nidus size and rupture in brain arteriovenous malformations: Insight from angioarchitecture and hemodynamics. Neurosurg Rev 2023; 46:216. [PMID: 37650957 DOI: 10.1007/s10143-023-02113-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
This study aims to investigate the correlation between AVM size and rupture by examining natural history, angioarchitecture characteristics, and quantitative hemodynamics. A retrospective review of 90 consecutive AVMs from the MATCH registry was conducted. Patients were categorized into small nidus (< 3 cm) and large nidus (≥ 3 cm) groups based on the Spetzler-Martin grading system. Natural history analysis used prospective cohort survival data, while imaging analysis examined angioarchitecture characteristics and quantitative hemodynamic parameters measured with QDSA. The small-nidus group had a significantly higher annualized rupture risk (2.3% vs. 1.0%; p = 0.011). Cross-sectional imaging revealed independent hemorrhagic risk factors, including small nidus (OR, 4.801; 95%CI, 1.280-18.008; p = 0.020) and draining vein stenosis (OR, 6.773; 95%CI, 1.179-38.911; p = 0.032). Hemodynamic analysis identified higher stasis index in the feeding artery (OR, 2.442; 95%CI, 1.074-5.550; p = 0.033), higher stasis index in the draining vein (OR, 11.812; 95%CI, 1.907-73.170; p = 0.008), and lower outflow gradient in the draining vein (OR, 1.658; 95%CI, 1.068-2.574; p = 0.024) as independent predictors of AVM rupture. The small nidus group also showed a higher likelihood of being associated with hemorrhagic risk factors. Small AVM nidus has a higher risk of rupture based on natural history, angioarchitecture, and hemodynamics. Clinical Trial Registration-URL: http://www.clinicaltrials.gov . Unique identifier: NCT04572568.
Collapse
Affiliation(s)
- Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pingting Chen
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Rustici A, Vari F, Sturiale C, Conti A, Scibilia A, Bortolotti C, Agati R, Tonon C, Lodi R, Mazzatenta D, Zoli M, Princiotta C, Dall’Olio M, Cirillo L. The angio-architectural features of brain arteriovenous malformations: is it possible to predict the probability of rupture? Neuroradiol J 2023; 36:427-434. [PMID: 36533312 PMCID: PMC10588602 DOI: 10.1177/19714009221140479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Hemorrhage is the most devastating complication of brain arteriovenous malformations (bAVMs), and to date, there is still concern about the needing for treatment in case of unruptured and asymptomatic bAVM. In fact, the morbidity and mortality of treatments may exceed that of the AVM's natural history. None of the classifications and scores for bAVM allows to predict the risk of bleeding. In this study, we aimed to identify the angio-architectural characteristics of brain AVMs associated with bleeding. METHODS We retrospectively evaluated all consecutive patients diagnosed with cerebral AVMs, between January 2010 and December 2019 from our prospective bAVM database. Univariate and multivariate logistic regression analysis were used to evaluate relationships between angio-architectural features of ruptured and unruptured bAVMs. RESULTS Of the 143 retrieved bAVMs, 65 were unruptured and 78 were ruptured. The univariate logistic regression analysis demonstrated statistically significant differences into angio-architectural features of unruptured and ruptured bAVMs. The multivariate logistic regression analysis fitted well (p =.113) with a good discrimination capacity (ROC = 0.83) of three independent angio-architectural features mainly related to bleeding in bAVMs: a smaller diameter of the nidus (p < .001), the absence of venous drainage alterations (p = .047), of the presence of prenidal aneurysms (p = .005). CONCLUSIONS In our study, several features resulted related to an increased probability of rupture for bAVMs, among which the more relevant were a small diameter of the nidus, the absence of venous drainage alterations, and the presence of prenidal aneurysms.
Collapse
Affiliation(s)
- Arianna Rustici
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Vari
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neurochirurgia, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neurochirurgia, Bologna, Italy
| | - Antonino Scibilia
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neurochirurgia, Bologna, Italy
| | - Carlo Bortolotti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neurochirurgia, Bologna, Italy
| | - Raffaele Agati
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neuroradiologia con Tecniche Ad Elevata Complessità, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neuroimmagini Funzionali e Molecolari, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neuroimmagini Funzionali e Molecolari, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neurochirurgia, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi, Bologna, Italia
| | - Matteo Zoli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neurochirurgia, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi, Bologna, Italia
| | - Ciro Princiotta
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neuroradiologia, Bologna, Italy
| | - Massimo Dall’Olio
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neuroradiologia, Bologna, Italy
| | - Luigi Cirillo
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neuroradiologia con Tecniche Ad Elevata Complessità, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neuroimmagini Funzionali e Molecolari, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi, Bologna, Italia
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neuroradiologia, Bologna, Italy
| |
Collapse
|
21
|
Liu X, Mao J, Sun N, Yu X, Chai L, Tian Y, Wang J, Liang J, Tao H, Wang Z, Lu L. Comparison Between the Stereoscopic Virtual Reality Display System and Conventional Computed Tomography Workstation in the Diagnosis and Characterization of Cerebral Arteriovenous Malformations. J Digit Imaging 2023; 36:1910-1918. [PMID: 37039950 PMCID: PMC10406736 DOI: 10.1007/s10278-023-00807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
It is difficult to accurately understand the angioarchitecture of cerebral arteriovenous malformations (CAVMs) before surgery using existing imaging methods. This study aimed to evaluate the ability of the stereoscopic virtual reality display system (SVRDS) to display the angioarchitecture of CAVMs by comparing its accuracy with that of the conventional computed tomography workstation (CCTW). Nineteen patients with CAVM confirmed on digital subtraction angiography (DSA) or during surgery were studied. Computed tomography angiography images in the SVRDS and CCTW were retrospectively analyzed by two experienced neuroradiologists using a double-blind method. Angioarchitectural parameters, such as the location and size of the nidus, type and number of the arterial feeders and draining veins, and draining pattern of the vessels, were recorded and compared. The diameter of the nidus ranged from 1.1 to 9 cm. Both CCTW and SVRDS correctly diagnosed the location of the nidus in 19 patients with CAVM. Among the 19 patients, 35 arterial feeders and 25 draining veins were confirmed on DSA and during surgery. With the DSA and intraoperative results as the gold standard bases, the CCTW misjudged one arterial feeder and one draining vein and missed three arterial feeders and two draining veins; meanwhile, the SVRDS missed only two arterial feeders. SVRDS had some advantages in displaying nidus, arterial branches, and draining veins of the CAVM compared with CCTW, as well as SVRDS could more intuitively display the overall angio-architectural spatial picture of CAVM.
Collapse
Affiliation(s)
- Xiujuan Liu
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Jun Mao
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Ning Sun
- Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing, 210000, Jiangsu, China
| | - Xiangrong Yu
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Lei Chai
- Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing, 210000, Jiangsu, China
| | - Ye Tian
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Jianming Wang
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Jianchao Liang
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Haiquan Tao
- Department of Neurosurgery, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Zhishun Wang
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| | - Ligong Lu
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
22
|
Chen Y, Chen P, Li R, Han H, Li Z, Ma L, Yan D, Zhang H, Lin F, Li R, Meng X, Jin H, Li Y, Ye X, Kang S, Wang H, Chen X, Zhao Y. Rupture-related quantitative hemodynamics of the supratentorial arteriovenous malformation nidus. J Neurosurg 2023; 138:740-749. [PMID: 35962966 DOI: 10.3171/2022.6.jns212818] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/23/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The hemodynamics of a brain arteriovenous malformation (AVM) nidus may be closely related to clinical presentation. The authors of this study aimed to explore the hemorrhagic quantitative hemodynamic indicators of the nidus through quantitative digital subtraction angiography (QDSA). METHODS The quantitative hemodynamic parameters were generated from QDSA. Three data sets were used to explore independent quantitative hemodynamic indicators associated with AVM rupture. The training data set was exploited to discover independent quantitative hemodynamic indicators of AVM rupture by performing univariate and multivariate logistic regression analyses. The authors plotted receiver operating characteristic curves to validate the diagnostic performance of the hemorrhagic hemodynamic indicators using the training and two external validation data sets. Kaplan-Meier survival analysis was adopted to verify the predictive power of these risk indicators of future hemorrhage in the external prospective validation data set. RESULTS A total of 151 patients were included in this study, 91 in the training set and 30 in each of the two validation sets. A higher stasis index and slower transnidal relative velocity (TRV) of the nidus were significantly correlated with AVM rupture. The areas under the curve (AUCs) of the stasis index (nidus) were 0.765 and 0.815 and those of the TRV (nidus) were 0.735 and 0.796, respectively, in the training and retrospective external validation sets. Kaplan-Meier survival analysis confirmed the validity of the stasis index and TRV in predicting future rupture risk in the prospective validation data set (p = 0.008 and 0.041, respectively, log-rank test). CONCLUSIONS A higher stasis index (nidus) and slower TRV (nidus) in QDSA were associated with AVM rupture and were effective indicators of future hemorrhage, suggesting that the core mechanisms underlying AVM rupture could be intravascular blood stasis and occlusive hyperemia of the nidus.
Collapse
Affiliation(s)
- Yu Chen
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Pingting Chen
- 2College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing
| | - Ruinan Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Heze Han
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Zhipeng Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Li Ma
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Debin Yan
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Haibin Zhang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Fa Lin
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Runting Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Xiangyu Meng
- 3Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Hengwei Jin
- 3Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Youxiang Li
- 3Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Xun Ye
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing.,4Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing; and
| | - Shuai Kang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Hao Wang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Xiaolin Chen
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Yuanli Zhao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing.,4Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing; and.,5China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
23
|
Lin CJ, Chen KK, Hu YS, Yang HC, Lin CF, Chang FC. Quantified flow and angioarchitecture show similar associations with hemorrhagic presentation of brain arteriovenous malformations. J Neuroradiol 2023; 50:79-85. [PMID: 35120975 DOI: 10.1016/j.neurad.2022.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The purpose of our study was to elucidate the impact of brain arteriovenous malformation (BAVM) flow and wall shear stress (WSS) on angioarchitecture and to evaluate their association with hemorrhagic presentations. MATERIALS AND METHODS Forty-one patients with BAVMs were evaluated by phase-contrast MR angiography. Volume flow rate and WSS were quantified. Angioarchitectural features such as location, angiogenesis, venous stenosis, venous ectasia, venous phlebitis, venous rerouting, exclusive deep vein and venous sac were evaluated by two neuroradiologists. The correlation between BAVM flow and size was evaluated with Spearman correlation coefficients. Differences of size, flow, and WSS between the hemorrhagic and non-hemorrhagic groups, the seizure and non-seizure groups, and between the different groups based on angioarchitecture were evaluated with Mann-Whitney U tests. Accuracy in predicting hemorrhage was evaluated with receiver operating characteristic curves. RESULT BAVM flow was highly correlated with volume (ρ = 0.77). Higher flow was more commonly associated with angiogenesis, venous ectasia, venous rerouting, and venous phlebitis. Flow and angioarchitecture showed similar efficacy in differentiating hemorrhagic from non-hemorrhagic BAVMs. WSS did not demonstrate differences across any clinical groups. CONCLUSION Flow quantification and angioarchitecture analysis of BAVMs showed similar efficacy as evaluated by associations with hemorrhagic presentation. High flow affects both arterial and venous angioarchitecture, reflecting the nature of low vascular resistance in BAVMs.
Collapse
Affiliation(s)
- Chung-Jung Lin
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ko-Kung Chen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yong-Sin Hu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan
| | - Huai-Che Yang
- Department of Radiology, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Fu Lin
- Department of Radiology, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
24
|
Jiang J, Qin Z, Yan J, Liu J. Methodological quality assessment of genetic studies on brain arteriovenous malformation related hemorrhage: A cross-sectional study. Front Genet 2023; 14:1123898. [PMID: 37065486 PMCID: PMC10099571 DOI: 10.3389/fgene.2023.1123898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Objectives: Rupture of a brain arteriovenous malformation (bAVM) can cause intracranial hemorrhage and severe clinical outcomes. At present, the mechanisms of bAVM-related hemorrhage are poorly understood. This study aimed to summarize the potential genetic risk factors for bAVM-related hemorrhage and appraise the methodological quality of existing genetic studies on bAVM-related hemorrhage using a cross-sectional design. Methods: A systematic literature search was conducted on genetic studies associated with bAVM-related hemorrhage published in PubMed, Embase, Web of Science, China National Knowledge Internet, and Wangfang databases, up to November 2022. Subsequently, a cross-sectional study was performed to describe the potential candidate genetic variants of bAVM associated with risk of hemorrhage and to evaluate the methodological quality of the identified studies using the Newcastle-Ottawa quality assessment scale and Q-genie tool. Results: Of the 1811 records identified in the initial search, nine studies met the filtering criteria and were included. Twelve single nucleotide polymorphisms (SNPs), including IL6 rs1800795, IL17A rs2275913, MMP9 rs9509, VEGFA rs1547651, and EPHB4 rs314353, rs314308, and rs314313, were associated with bAVM-related hemorrhage. However, only 12.5% of the evaluated SNPs showed statistical power> 0.80 (α = 0.05). Methodological quality assessment revealed significant flaws in the designs of the included studies, such as less reliable representativeness of recruited individuals, short follow-up periods in cohort studies, and less comparability between groups of hemorrhagic and non-hemorrhagic patients. Conclusion: IL1B, IL6, IL17A, APOE, MMP9, VEGFA and EPHB4 were potentially associated with bAVM-related hemorrhage. The methodological designs of the analyzed studies required improvement in order to obtain more reliable results. Regional alliances and rare disease banks need to be established to recruit large numbers of bAVM patients (especially familial and extreme-trait cases) in a multicenter, prospective cohort study with an adequate follow-up period. Furthermore, it is important to use advanced sequencing techniques and efficient measures to filter candidate genetic variants.
Collapse
Affiliation(s)
- Junhao Jiang
- Hunan Normal University School of Medicine, Changsha, China
| | - Zhuo Qin
- Hunan Normal University School of Medicine, Changsha, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, China
- *Correspondence: Junyu Liu, ; Junxia Yan,
| | - Junyu Liu
- Interventional Medical Center, Hunan Province People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Junyu Liu, ; Junxia Yan,
| |
Collapse
|
25
|
Andereggen L, Gruber P, Anon J, Tortora A, Steiger HJ, Schubert GA, Marbacher S, Remonda L. Spontaneous regression of multiple flow-related aneurysms following treatment of an associated brain arteriovenous malformation: A case report. Front Surg 2022; 9:860416. [PMID: 36589623 PMCID: PMC9800803 DOI: 10.3389/fsurg.2022.860416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction There is no consensus in the treatment strategy of intracranial aneurysms (IAs) associated with brain arteriovenous malformation (BAVM). In particular, it is unknown if a more aggressive approach should be considered in patients harboring a BAVM, in whom multiple aneurysms or a history of aneurysmal subarachnoid hemorrhage (aSAH) is present. Case presentation We report on an elderly woman harboring multiple aneurysms with a history of SAH due to rupture of an unrelated IA. On evaluation, she was also found to harbor a contralateral, left parietal convexity BAVM. Following resection of the latter, spontaneous regression of two large flow-related aneurysms was encountered. Discussion We discuss the therapeutic decision-making, risk stratification, and functional outcome in this patient with regard to the pertinent literature on the risk of hemorrhage in IAs associated with BAVM.
Collapse
Affiliation(s)
- Lukas Andereggen
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland,Faculty of Medicine, University of Bern, Bern, Switzerland,Correspondence: Lukas Andereggen
| | - Philipp Gruber
- Department of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | - Javier Anon
- Department of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | - Angelo Tortora
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | | | | | - Serge Marbacher
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland,Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Luca Remonda
- Faculty of Medicine, University of Bern, Bern, Switzerland,Department of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
26
|
State of the Art in the Role of Endovascular Embolization in the Management of Brain Arteriovenous Malformations-A Systematic Review. J Clin Med 2022; 11:jcm11237208. [PMID: 36498782 PMCID: PMC9739246 DOI: 10.3390/jcm11237208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
As a significant cause of intracerebral hemorrhages, seizures, and neurological decline, brain arteriovenous malformations (bAVMs) are a rare group of complex vascular lesions with devastating implications for patients' quality of life. Although the concerted effort of the scientific community has improved our understanding of bAVM biology, the exact mechanism continues to be elucidated. Furthermore, to this day, due to the high heterogeneity of bAVMs as well as the lack of objective data brought by the lack of evaluative and comparative studies, there is no clear consensus on the treatment of this life-threatening and dynamic disease. As a consequence, patients often fall short of obtaining the optimal treatment. Endovascular embolization is an inherent part of multidisciplinary bAVM management that can be used in various clinical scenarios, each with different objectives. Well-trained neuro-interventional centers are proficient at curing bAVMs that are smaller than 3 cm; are located superficially in noneloquent areas; and have fewer, larger, and less tortuous feeding arteries. The transvenous approach is an emerging effective and safe technique that potentially offers a chance to cure previously untreatable bAVMs. This review provides the state of the art in all aspects of endovascular embolization in the management of bAVMs.
Collapse
|
27
|
Agyemang K, Rose A, Olukoya O, Brown J, St George EJ. Spontaneous obliteration of brain arteriovenous malformations: illustrative cases. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE22309. [PMID: 36411546 PMCID: PMC9678798 DOI: 10.3171/case22309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spontaneous angiographic obliteration of a brain arteriovenous malformation (AVM) is considered a rare outcome, with most cases in the literature related to prior hemorrhage in small brain AVMs. The authors present a prospective, single center, consecutive case series. The clinical course and radiographic features of four cases with spontaneous obliteration of brain AVM were analyzed. OBSERVATIONS The median age of patients in this series was 47.6 years, with an equal gender split. The median maximum brain AVM diameter was 2 cm. The median time to spontaneous obliteration was 26 months, with hemorrhage preceding this in three out of four cases and a prolonged latency in the only case with a nidus size larger than 3 cm and no hemorrhage. LESSONS The present study provides additional information to allow clinicians to counsel patients about the rare outcomes of conservative management. This work extends our understanding of when this phenomenon can occur by reporting on the differences associated with spontaneous obliteration of larger AVMs.
Collapse
Affiliation(s)
- Kevin Agyemang
- Neurosurgical Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom; and ,School of Medicine, University of Glasgow, Scotland, United Kingdom
| | - Anna Rose
- School of Medicine, University of Glasgow, Scotland, United Kingdom
| | | | - Jennifer Brown
- Neurosurgical Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom; and
| | - Edward Jerome St George
- Neurosurgical Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom; and ,School of Medicine, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
28
|
Li Z, Chen Y, Chen P, Li R, Ma L, Yan D, Zhang H, Han H, Zhao Y, Zhang Y, Meng X, Jin H, Li Y, Chen X, Zhao Y. Quantitative evaluation of hemodynamics after partial embolization of brain arteriovenous malformations. J Neurointerv Surg 2022; 14:1112-1117. [PMID: 34872987 DOI: 10.1136/neurintsurg-2021-018187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/16/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND To explore the hemodynamic changes after embolization of arteriovenous malformations (AVMs) using quantitative digital subtraction angiography (QDSA). METHODS We reviewed 74 supratentorial AVMs that underwent endovascular embolization and performed a quantitative hemodynamic analysis comparing parameters in pre- and post-operative DSA in correlation with rupture. The AVMs were further divided into two subgroups based on the embolization degree: Group I: 0%-50%, Group II: 51%-100%. In the intergroup analysis, we examined the correlations between embolization degree and hemodynamic parameter changes. RESULTS A longer time to peak (TTP) of the main feeding artery (OR 11.836; 95% CI 1.388 to 100.948; P=0.024) and shorter mean transit time (MTT) of the nidus (OR 0.174; 95% CI 0.039 to 0.766; P=0.021) were associated with AVM rupture. After embolization, all MTTs were significantly prolonged (P<0.05). The full width at half maximum (FWHM) duration of the main feeding artery was significantly shortened (P<0.001), and several hemodynamic parameters of the main draining vein changed significantly (TTP: prolonged, P=0.005; FWHM: prolonged, P=0.014; inflow gradient: decreased, P=0.004; outflow gradient: decreased, P=0.042). In the subgroup analysis, several MTT parameters were significantly prolonged in both groups (P<0.05), and the MTT increase rate in Group II was greater than in Group I (P<0.05). CONCLUSIONS Embolization can significantly change the hemodynamics of AVMs, especially when an embolization degree >50% is obtained. Partial embolization may reduce the AVM rupture risk in hemodynamics perspective.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pingting Chen
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Debin Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhao
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yukun Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Xiangyu Meng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Hengwei Jin
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Disease, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
- China National Clinical Research Center for Neurological Disease, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
29
|
Dumot C, Picart T, Eker O, Guyotat J, Berhouma M, Pelissou-Guyotat I. Outcomes of Unruptured Low-Grade Brain Arteriovenous Malformations Using TOBAS (Treatment of Brain Arteriovenous Malformations Study) Criteria. World Neurosurg 2022; 167:e1050-e1061. [PMID: 36089272 DOI: 10.1016/j.wneu.2022.08.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Treatment of an unruptured brain arteriovenous malformation (bAVM) is a matter of debate, especially for low-grade bAVM (Spetzler-Martin grade I and II). The aim is to compare the outcomes of patients with low-grade unruptured bAVM after interventional or medical management in a pragmatic manner. METHODS Adults with unruptured low-grade bAVM diagnosed between 2006 and 2016 were included. The primary end points were death from all causes and disabling stroke that resulted in a modified Rankin Scale (mRS) score >2 at last follow-up. RESULTS Eighty-four patients presented with an unruptured Spetzler-Martin low-grade bAVM. Among these patients, 55 (65.5%) were treated and 29 (34.5%) were untreated, with no differences regarding clinical and radiologic characteristics. The modality of treatment was embolization in 25.5%, radiosurgery (alone, 30.9%; with embolization, 18.2%), and surgery (alone, 5.5%; with embolization, 20%). The rupture rate was 6.7% person-year in the untreated group; 12.7% (n = 7) of treated and 16.7% (n = 5) of untreated patients achieved the primary evaluation criteria (P = 0.744). Using a Kaplan-Meier curve, the probability of reaching this criterion at 5 years was not different between groups (P = 0.07). Complications resulting in an mRS score >2 at last follow-up occurred in 9.1%, in 80% of cases after embolization. CONCLUSIONS This study shows no differences between treated and untreated low-grade bAVM. Embolization seems to carry a high risk of complication and should be used with caution. The small number of cases must encourage cautious interpretations especially because of the spontaneous high-rupture rate. One major interest is to investigate center habits in pathology when treatment standards are limited.
Collapse
Affiliation(s)
- Chloe Dumot
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Lyon, France; Claude Bernard University, Lyon, Lyon, France; CarMeN laboratory, InsermU1060, INRAU1397, INSA Lyon, Université Claude Bernard, Lyon, Lyon, France.
| | - Thiebaud Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Lyon, France; Claude Bernard University, Lyon, Lyon, France; Department of Cancer Cell Plasticity-INSERMU1052, Cancer Research Center of Lyon, Lyon, France
| | - Omer Eker
- Claude Bernard University, Lyon, Lyon, France; CarMeN laboratory, InsermU1060, INRAU1397, INSA Lyon, Université Claude Bernard, Lyon, Lyon, France; Department of Neurointerventional Radiology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Lyon, France
| | - Jacques Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Lyon, France
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Lyon, France; Claude Bernard University, Lyon, Lyon, France; CREATIS Laboratory, InsermU1206, UMR 5220, Claude Bernard University of Lyon, Villeurbanne, France
| | - Isabelle Pelissou-Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Lyon, France
| |
Collapse
|
30
|
Chen Y, Han H, Ma L, Li R, Li Z, Yan D, Zhang H, Yuan K, Wang K, Zhao Y, Zhang Y, Jin W, Li R, Lin F, Meng X, Hao Q, Wang H, Ye X, Kang S, Jin H, Li Y, Gao D, Sun S, Liu A, Wang S, Chen X, Zhao Y. Multimodality treatment for brain arteriovenous malformation in Mainland China: design, rationale, and baseline patient characteristics of a nationwide multicenter prospective registry. Chin Neurosurg J 2022; 8:33. [PMID: 36253875 PMCID: PMC9575306 DOI: 10.1186/s41016-022-00296-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brain arteriovenous malformation (AVM) is an important cause of hemorrhagic stroke in young adults, which can lead to severe neurological impairment. The registry of Multimodality treatment for brain ArTeriovenous malformation in mainland CHina (MATCH) is a national prospective registry to identify the natural history of AVMs in Asian population; to investigate traditional and emerging hemorrhagic predictors; and to explore the superiority of the multidisciplinary assessment in improving the long-term outcomes. METHODS: Consecutive AVM patients will be enrolled from 52 participating hospitals in mainland China. Baseline demographic, clinical and imaging data will be collected prospectively. Conservation, microsurgery, embolization, stereotactic radiosurgery (SRS), and multimodal strategies are all included in this study. Patients will be divided into experimental and control group according to whether the treatment protocols are formulated by multidisciplinary team. Neurofunctional status, subsequent hemorrhage, seizure, and novel neurofunctional deficit will be queried at 3 months, annually (1 and 2 years), 3 years, and 10 years follow-up. RESULTS Between August 2011 and April 2021, 3241 AVMs were enrolled in 11 participating sites. Among them, 59.0% were male with an average age of 28.4 ± 14.6 years, 61.2% had rupture history and 2268 hemorrhagic events occurred before admission. The median Spetzler-Martin grade and Lawton-Young grade was 3 and 5, respectively. Microsurgery is the dominant strategy (35.7%), with a similar proportion of embolization, SRS, and a combination of both (12.7%; 14.8%; 11.8%; respectively). Among them, 15.43% underwent multidisciplinary assessment and received standardized treatment. At the most recent follow-up, 7.8% were lost and the median follow-up duration was 5.6 years. CONCLUSIONS The MATCH study is a large-sample nationwide prospective registry to investigate multimodality management strategy for AVMs. Data from this registry may also provide the opportunity for individualized risk assessment and the development of optimal individual management strategies. TRIAL REGISTRATION ClinicalTrials.gov Registry ( NCT04572568 ).
Collapse
Affiliation(s)
- Yu Chen
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Ma
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruinan Li
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Debin Yan
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhao
- grid.449412.eDepartment of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yukun Zhang
- grid.449412.eDepartment of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Weitao Jin
- grid.449412.eDepartment of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Runting Li
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fa Lin
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangyu Meng
- grid.411617.40000 0004 0642 1244Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Hao
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Ye
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Kang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hengwei Jin
- grid.411617.40000 0004 0642 1244Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Youxiang Li
- grid.411617.40000 0004 0642 1244Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dezhi Gao
- grid.411617.40000 0004 0642 1244Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shibin Sun
- grid.411617.40000 0004 0642 1244Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ali Liu
- grid.411617.40000 0004 0642 1244Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China ,grid.411617.40000 0004 0642 1244China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
31
|
Liu YT, Lee CC, Lin CF, Wu HM, Guo WY, Yang HC, Chang FC, Liou KD, Lin CJ. Plasma Matrix Metalloproeteinase-9 Is Associated with Seizure and Angioarchitecture Changes in Brain Arteriovenous Malformations. Mol Neurobiol 2022; 59:5925-5934. [PMID: 35831556 DOI: 10.1007/s12035-022-02958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Both angiogenesis and inflammation contribute to activation of matrix metalloproeteinase-9 (MMP-9), which dissolves the extracellular matrix, disrupts the blood-brain barrier, and plays an important role in the pathogenesis of brain arteriovenous malformations (BAVMs). The key common cytokine in both angiogenesis and inflammation is interleukin 6 (IL-6). Previous studies have shown elevated systemic MMP-9 and decreased systemic vascular endothelial growth factor (VEGF) in BAVM patients. However, the clinical utility of plasma cytokines is unclear. The purpose of this study is to explore the relationship between plasma cytokines and the clinical presentations of BAVMs. Prospectively, we recruited naive BAVM patients without hemorrhage as the experimental group and unruptured intracranial aneurysm (UIA) patients as the control group. All patients received digital subtraction angiography, and plasma cytokines were collected from the lesional common carotid artery. Plasma cytokine levels were determined using a commercially available, monoclonal antibody-based enzyme-linked immunosorbent assay. Subgroup analysis based on hemorrhagic presentation and angiograchitecture was done for the BAVM group. Pearson correlations were calculated for the covariates. Means and differences for continuous and categorical variables were compared using Student's t and χ2 tests respectively. Plasma MMP-9 levels were significantly higher in the BAVM group (42,945 ± 29,991 pg/mL) than in the UIA group (28,270 ± 17,119 pg/mL) (p < 0.001). Plasma MMP-9 levels in epileptic BAVMs (57,065 ± 35,732; n = 9) were higher than in non-epileptic BAVMs (35,032 ± 28,301; n = 19) (p = 0.049). Lower plasma MMP-9 levels were found in cases of BAVM with angiogenesis and with peudophlebitis. Plasma MMP-9 is a good biomarker reflecting ongoing vascular remodeling in BAVMs. Angiogenesis and pseudophlebitis are two angioarchitectural signs that reflect MMP-9 activities and can potentially serve as imaging biomarkers for epileptic BAVMs.
Collapse
Affiliation(s)
- Yo-Tsen Liu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Centre, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chia Lee
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Fu Lin
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Shipai Rd., Sec. 2, Beitou District, Taipei, 112, Taiwan
| | - Wan-Yuo Guo
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Shipai Rd., Sec. 2, Beitou District, Taipei, 112, Taiwan
| | - Huai-Che Yang
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Chi Chang
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Shipai Rd., Sec. 2, Beitou District, Taipei, 112, Taiwan
| | - Kang-Du Liou
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Jung Lin
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan.
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Shipai Rd., Sec. 2, Beitou District, Taipei, 112, Taiwan.
| |
Collapse
|
32
|
Li N, Yan D, Li Z, Chen Y, Ma L, Li R, Han H, Meng X, Jin H, Zhao Y, Chen X, Wang H, Zhao Y. Long-term outcomes of Spetzler-Martin grade IV and V arteriovenous malformations: a single-center experience. Neurosurg Focus 2022; 53:E12. [PMID: 35901717 DOI: 10.3171/2022.4.focus21648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to explore whether intervention can benefit Spetzler-Martin (SM) grade IV-V arteriovenous malformations (AVMs). METHODS Eighty-two patients with SM grade IV-V AVMs were retrospectively reviewed from 2015 to 2018. Patients were divided into two groups: those who received conservative management (22 cases [26.8%]) and intervention (60 cases [73.2%], including 21 cases of microsurgery, 19 embolization, and 20 hybrid surgery). Neurofunctional outcomes were assessed with the modified Rankin Scale (mRS). The primary outcome was long-term neurofunctional status, and the secondary outcomes were short-term neurofunctional status, long-term obliteration rate, seizure control, and risk of subsequent hemorrhage. RESULTS Regarding the primary outcome, after an average of 4.7 years of clinical follow-up, long-term neurofunctional outcomes were similar after conservative management or intervention (absolute difference -0.4 [95% CI -1.5 to 0.7], OR 0.709 [95% CI 0.461-1.090], p = 0.106), whereas intervention had an advantage over conservative management for avoidance of severe disability (defined as mRS score > 3) (1.7% vs 18.2%, absolute difference 16.5% [95% CI -23.6% to 56.6%], OR 0.076 [95% CI 0.008-0.727], p = 0.025). Regarding the secondary outcomes, intervention was conducive to better seizure control (Engel class I-II) (70.0% vs 0.0%, absolute difference 70.0% [95% CI 8.6%-131.4%], p = 0.010) and avoidance of subsequent hemorrhage (1.4% vs 6.0%, absolute difference 4.6% [95% CI -0.4% to 9.6%], p = 0.030). In the subgroup analysis based on different intervention modalities, microsurgery and hybrid surgery achieved higher complete obliteration rates than embolization (p < 0.001), and hybrid surgery resulted in significantly less intraoperative blood loss than microsurgery (p = 0.041). CONCLUSIONS Intervention is reasonable for properly indicated SM grade IV-V AVMs because it provides satisfactory seizure control with decreased risks of severe disability and subsequent hemorrhage than conservative management. Clinical trial registration no.: NCT04572568 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Nan Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Debin Yan
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Zhipeng Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Yu Chen
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Li Ma
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Ruinan Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Heze Han
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Xiangyu Meng
- 2Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Hengwei Jin
- 2Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Yang Zhao
- 3Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing
| | - Xiaolin Chen
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Hao Wang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing.,4China National Clinical Research Center for Neurological Diseases, Beijing; and.,5Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yuanli Zhao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing.,3Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing.,4China National Clinical Research Center for Neurological Diseases, Beijing; and.,5Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| |
Collapse
|
33
|
Behzadi F, Heiferman DM, Wozniak A, Africk B, Ballard M, Chazaro J, Zsigray B, Reynolds M, Anderson DE, Serrone JC. Comparison of transarterial n-BCA and Onyx embolization of brain arteriovenous malformations: A single-center 18-year retrospective analysis. J Cerebrovasc Endovasc Neurosurg 2022; 24:144-153. [PMID: 35526856 PMCID: PMC9260459 DOI: 10.7461/jcen.2022.e2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/02/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Brain arteriovenous malformations (AVM) are commonly treated with endovascular embolization. Due to the rapid evolution of endovascular technology and lack of consistent practice guidelines regarding AVM embolization, further study of AVM embolization outcomes is warranted. METHODS We conducted a retrospective review of AVMs embolized at a single center from 2002-2019. Patient demographics, AVM characteristics, intention of embolization, and angiographic and clinical outcome after embolization were recorded. We compared the embolization results of those treated with n-butyl cyanoacrylate (n-BCA) and Onyx. RESULTS Over an 18-year period at our institution, 30 (33%) of 92 AVMs were treated with embolization. n-BCA was used in 12 cases and Onyx in 18 cases. Eighty-seven pedicles were embolized over 47 embolization sessions. Fifty percent of AVMs treated with n-BCA underwent more than one embolization session compared to 22% when Onyx was used. The median total percent volume reduction in the n-BCA AVMs was 52% compared to 51% in Onyx AVMs. There were 2 periprocedural complications in the n-BCA cohort and none in the Onyx cohort. CONCLUSIONS In this small retrospective series, Onyx and n-BCA achieved similar occlusion results, although n-BCA required more sessions and pedicles embolized to do so.
Collapse
Affiliation(s)
- Faraz Behzadi
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | - Amy Wozniak
- Clinical Research Office, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Benjamin Africk
- Department of Pediatric Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew Ballard
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Joshua Chazaro
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Brandon Zsigray
- Department of Neurological Surgery, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Matthew Reynolds
- Department of Neurological Surgery, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Douglas E Anderson
- Department of Neurological Surgery, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Joseph C Serrone
- Department of Neurological Surgery, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
34
|
Taweel BA, Gillespie CS, Richardson GE, Mustafa MA, Ali T, Islim AI, Hannan CJ, Chavredakis E. External validation of brain arteriovenous malformation haemorrhage scores, AVICH, ICH and R2eD. Acta Neurochir (Wien) 2022; 164:1685-1692. [PMID: 35435515 PMCID: PMC9160159 DOI: 10.1007/s00701-022-05190-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To externally validate the arteriovenous malformation-related intracerebral haemorrhage (AVICH), intracerebral haemorrhage (ICH), and novel haemorrhage presentation risk score (R2eD) in brain arteriovenous malformations. METHODS Adult patients diagnosed radiologically with an arteriovenous malformation (AVM) at a tertiary neurosurgical centre between 2007 and 2018 were eligible for inclusion. Both the AVICH and ICH scores were calculated for AVM-related symptomatic haemorrhage (SH) and compared against the modified Rankin scale (mRS) at discharge and last follow-up, with unfavourable outcome defined as mRS > 2. R2eD scores were stratified based on presentation with SH. External validity was assessed using Harrel's C-statistic. RESULTS Two hundred fifty patients were included. Mean age at diagnosis was 46.2 years [SD = 16.5]). Eighty-seven patients (34.8%) had a SH, with 83 included in the analysis. Unfavourable mRS outcome was seen in 18 (21.6%) patients at discharge and 18 (21.6%) patients at last follow-up. The AVICH score C-statistic was 0.67 (95% confidence interval [CI], 0.53-0.80) at discharge and 0.70 (95% CI, 0.56-0.84) at last follow-up. The ICH score C-statistic was 0.78 (95% CI 0.67-0.88), at discharge and 0.80 (95% CI 0.69-0.91) at last follow-up. The R2eD score C-statistic for predicting AVM haemorrhage was 0.60 (95% CI, 0.53-0.67). CONCLUSIONS The AVICH score showed fair-poor performance, while the ICH score showed good-fair performance. The R2eD score demonstrated poor performance, and its clinical utility in predicting AVM haemorrhage remains unclear.
Collapse
Affiliation(s)
- Basel A Taweel
- Institute of Systems, Integrative and Molecular Biology (ISMIB), University of Liverpool, Liverpool, UK.
- The Walton Centre NHS Foundation Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Fazakerley, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Conor S Gillespie
- Institute of Systems, Integrative and Molecular Biology (ISMIB), University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - George E Richardson
- Institute of Systems, Integrative and Molecular Biology (ISMIB), University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Mohammad A Mustafa
- Institute of Systems, Integrative and Molecular Biology (ISMIB), University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Tamara Ali
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | | | - Emmanuel Chavredakis
- Institute of Systems, Integrative and Molecular Biology (ISMIB), University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
35
|
Hu YS, Yang HC, Lin CJ, Lee CC, Guo WY, Luo CB, Liu KD, Chung WY, Wu HM. Imaging Markers Associated With Radiation-Induced Changes in Brain Arteriovenous Malformations After Radiosurgery. Neurosurgery 2022; 90:464-474. [PMID: 35080514 DOI: 10.1227/neu.0000000000001864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Radiation-induced changes (RICs) in brain tissue, seen as increased perinidal T2-weighted hyperintensity on MRI, are commonly observed in patients with brain arteriovenous malformations (BAVMs) within 2 years after Gamma Knife (Elekta) radiosurgery (GKRS). OBJECTIVE To explore the imaging markers associated with RICs in patients with BAVMs. METHODS We retrospectively included 106 treatment-naïve patients with BAVMs who received GKRS alone between 2011 and 2018 and had ≥24 months of clinical and MRI follow-up. Pre-GKRS angiography and MRIs were analyzed for morphological characteristics and quantitative digital subtraction angiography parameters. RIC severity was categorized as mild (grade I), moderate (grade II), or severe (grade III). Firth logistic regression analysis was conducted to determine the associations between the parameters and RICs. RESULTS Among the 106 patients, 83 (78.3%) developed RICs, with 16 categorized as grade I, 62 as grade II, and 5 as grade III. RICs were symptomatic in 19 patients (17.9%). In multivariable models, BAVMs with a volume of >5 cm3 (odds ratio [OR]: 4.322, P = .024) and neoangiogenesis on angiography before treatment (OR: 3.846, P = .029), and thrombus within nidus or drainage vein on follow-up MRI (OR: 3.679, P = .001) were independently associated with grade II or III RICs. Symptomatic RICs were more likely to develop in basal ganglia or brainstem. CONCLUSION Large BAVMs and neoangiogenesis were associated with moderate to severe RICs in treatment-naïve patients with BAVMs. Our findings may assist with the complication risk assessment for these patients.
Collapse
Affiliation(s)
- Yong-Sin Hu
- Department of Radiology, Taoyuan Branch, Taipei Veterans General Hospital, Taoyuan, Taiwan
- Department of Radiology, Taipei Hospital, Ministry of Health and Welfare, New Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Huai-Che Yang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Jung Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Chia Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Yuo Guo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Bao Luo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kang-Du Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Yuh Chung
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
36
|
Shortened cerebral circulation time correlates with seizures in brain arteriovenous malformation: a cross-sectional quantitative digital subtraction angiography study. Eur Radiol 2022; 32:5402-5412. [PMID: 35320410 DOI: 10.1007/s00330-022-08690-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Seizure is the most common clinical presentation in patients with nonhemorrhagic brain arteriovenous malformations (BAVMs) and it influences their quality of life. Angioarchitectural analysis of the seizure risk for BAVMs is subjective and does not consider hemodynamics. This study aimed to investigate the angioarchitectural and hemodynamic factors that may be associated with seizure in patients with BAVMs. METHODS From 2011 to 2019, 104 patients with supratentorial BAVMs without previous hemorrhage or treatment were included and grouped according to the initial presentation of seizure. Their angiograms and MRI results were analyzed for morphological characteristics and quantitative digital subtraction angiography (QDSA) parameters. Modified cerebral circulation time (mCCT) was defined as the difference between the bolus arrival time of the ipsilateral cavernous internal carotid artery and the parietal vein on lateral DSA. Logistic regression analysis was performed to estimate the odds ratio (OR) for BAVMs presenting with seizure. RESULTS The seizure group had shorter mCCT (1.98 s vs. 2.44 s, p = 0.005) and more BAVMs with temporal location (45% vs. 30.8%, p = 0.013), neoangiogenesis (55% vs. 33%, p = 0.03), and long draining veins (95% vs. 72%, p = 0.004) than did the nonseizure group. Shorter mCCT (OR: 3.4, p = 0.02), temporal location (OR: 13.4, p < 0.001), and neoangiogenesis (OR: 4.7, p = 0.013) were independently associated with higher risks of seizure, after adjustments for age, gender, BAVM volume, and long draining vein. CONCLUSIONS Shorter mCCT, temporal location, and neoangiogenesis were associated with epileptic BAVMs. QDSA can objectively evaluate hemodynamic changes in epileptic BAVMs. KEY POINTS • Quantitative digital subtraction angiography may be used to evaluate the hemodynamic differences between brain arteriovenous malformations presenting with and without seizure. • BAVMs with temporal location, neoangiogenesis, and shortened cerebral circulation time were more likely to present with seizure.
Collapse
|
37
|
Cezayirli PC, Türe H, Türe U. Microsurgical Treatment of Deep and Eloquent AVMs. Adv Tech Stand Neurosurg 2022; 44:17-53. [PMID: 35107672 DOI: 10.1007/978-3-030-87649-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the past 30 years, the treatment of deep and eloquent arteriovenous malformations (AVMs) has moved away from microneurosurgical resection and towards medical management and the so-called minimally invasive techniques, such as endovascular embolization and radiosurgery. The Spetzler-Martin grading system (and subsequent modifications) has done much to aid in risk stratification for surgical intervention; however, the system does not predict the risk of hemorrhage nor risk from other interventions. In more recent years, the ARUBA trial has suggested that unruptured AVMs should be medically managed. In our experience, although these eloquent regions of the brain should be discussed with patients in assessing the risks and benefits of intervention, we believe each AVM should be assessed based on the characteristics of the patient and the angio-architecture of the AVM, in particular venous hypertension, which may guide us to treat even high-grade AVMs when we believe we can (and need to) to benefit the patient. Advances in imaging and intraoperative adjuncts have helped us in decision making, preoperative planning, and ensuring good outcomes for our patients. Here, we present several cases to illustrate our primary points that treating low-grade AVMs can be more difficult than treating high-grade ones, mismanagement of deep and eloquent AVMs at the behest of dogma can harm patients, and the treatment of any AVM should be tailored to the individual patient and that patient's lesion.
Collapse
Affiliation(s)
- Phillip Cem Cezayirli
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey
- Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Medical Center, Bronx, NY, USA
| | - Hatice Türe
- Department of Anesthesiology, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Uğur Türe
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
38
|
Keil F, Bergkemper A, Birkhold A, Kowarschik M, Tritt S, Berkefeld J. 4D Flat Panel Conebeam CTA for Analysis of the Angioarchitecture of Cerebral AVMs with a Novel Software Prototype. AJNR Am J Neuroradiol 2022; 43:102-109. [PMID: 35027345 PMCID: PMC8757557 DOI: 10.3174/ajnr.a7382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Time-resolved 3DRA (4D-DSA) and flat panel conebeam CTA are new methods for visualizing the microangioarchitecture of cerebral AVMs. We applied a 4D software prototype to a series of cases of AVMs to assess the utility of this method in relation to treatment planning. MATERIALS AND METHODS In 33 patients with AVMs, 4D volumes and flat panel conebeam CTA images were recalculated from existing 3D rotational angiography data. The multiplanar reconstructions were used to determine intranidal arteriovenous branching patterns, categorize them according to common classifications of AVM angioarchitecture, and compare the results with those from 2D-DSA. RESULTS 4D flat panel conebeam CTA showed angioarchitectural features equal to or better than those of 2D-DSA in 30 of 33 cases. In particular, the reconstructions helped in understanding the intranidal microvasculature. Fistulous direct arteriovenous connections with a low degree of arterial branching (n = 22) could be distinguished from plexiform arterial networks before the transition to draining veins (n = 11). We identified AVMs with a single draining vein (n = 20) or multiple draining veins (n = 10). Arteriovenous shunts in the lateral wall of the draining veins (n = 22) could be distinguished from cases with increased venous branching and shunts between corresponding intranidal arteries and veins (n = 11). Limitations were the time-consuming postprocessing and the difficulties in correctly tracing intranidal vessels in larger and complex AVMs. CONCLUSIONS 4D flat panel conebeam CTA reconstructions allow detailed analysis of the nidal angioarchitecture of AVMs. However, further improvements in temporal resolution and automated reconstruction techniques are needed to use the method generally in clinical practice.
Collapse
Affiliation(s)
- F. Keil
- From the Institute of Neuroradiology (F.K., A. Bergkemper., J.B.), University of Frankfurt, Frankfurt, Germany
| | - A. Bergkemper
- From the Institute of Neuroradiology (F.K., A. Bergkemper., J.B.), University of Frankfurt, Frankfurt, Germany
| | - A. Birkhold
- Siemens Healthcare (A. Birkhold, M.K.), Forchheim, Germany,Advanced Therapies (A. Birkhold, M.K.), Siemens Healthcare, Forchheim, Germany
| | - M. Kowarschik
- Siemens Healthcare (A. Birkhold, M.K.), Forchheim, Germany,Advanced Therapies (A. Birkhold, M.K.), Siemens Healthcare, Forchheim, Germany
| | - S. Tritt
- Helios Dr. Horst Schmidt Kliniken Wiesbaden (S.T.), Wiesbaden, Germany
| | - J. Berkefeld
- From the Institute of Neuroradiology (F.K., A. Bergkemper., J.B.), University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
39
|
Mosteiro A, Pedrosa L, Torne R, Rodríguez-Hernández A, Amaro S, Reyes LA, Hoyos JA, San Roman L, de Riva N, Domínguez CJ, Enseñat J. Venous tortuosity as a novel biomarker of rupture risk in arteriovenous malformations: ARI score. J Neurointerv Surg 2021; 14:1220-1225. [PMID: 34880076 DOI: 10.1136/neurintsurg-2021-018181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Risk of rupture in arteriovenous malformations (AVMs) varies considerably among series. Hemodynamic factors, especially within the venous side of the circuit, seem to be responsible but are not yet well defined. We analyzed tortuosity in the draining vein as a potential new marker of rupture in AVMs, and propose a simple index to predict AVM bleeding. METHODS A retrospective analysis of the venous angioarchitecture of brain AVMs was carried out at our center from 2013 to 2021, with special attention to venous tortuosity. After univariate analysis, the features of interest were combined to construct several predictive models using multivariate logistic regression. The best model proposed was the new AVM rupture index (ARI), which was then validated in an independent cohort. RESULTS 68 AVMs were included in the first step and 32 in the validation cohort. Venous tortuosity, expressed as at least one curve >180°, was a significant predictor of rupture (p=0.023). The proposed bleeding index consisted of: venous tortuosity (any curve of >180°), single draining vein, and paraventricular/infratentorial location. It seems to be a robust evaluation tool, with an area under the receiver operating characteristic (AUROC) curve of 0.806 (95% CI 0.714 to 0.899), consistently replicated in the independent sample (AUROC 0.759 (95% CI 0.607 to 0.911)), and with an inter-rater kappa coefficient of 0.81 . CONCLUSIONS Venous tortuosity may serve as a predictor of bleeding in AVMs that warrants further investigation. This likely new marker was one of the three elements of the proposed ARI. ARI outperformed the predictive accuracy of previous scores, and remained consistent in an independent cohort.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Leire Pedrosa
- Department of Neurosurgery, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Ramón Torne
- Department of Neurosurgery, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain .,IDIBAPS Biomedical Research Institute, Barcelona, Spain.,Comprehensive Stroke Unit, Neurology, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Sergi Amaro
- Comprehensive Stroke Unit, Neurology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Luis A Reyes
- Department of Neurosurgery, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Jhon A Hoyos
- Department of Neurosurgery, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Luis San Roman
- Radiology Department, Angioradiology Section, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Nicolás de Riva
- Department of Anesthesiology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Carlos J Domínguez
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Joaquim Enseñat
- Department of Neurosurgery, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,IDIBAPS Biomedical Research Institute, Barcelona, Spain
| |
Collapse
|
40
|
Venugopal V, Sumi S. Molecular Biomarkers and Drug Targets in Brain Arteriovenous and Cavernous Malformations: Where Are We? Stroke 2021; 53:279-289. [PMID: 34784742 DOI: 10.1161/strokeaha.121.035654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular malformations of the brain (VMB) comprise abnormal development of blood vessels. A small fraction of VMBs causes hemorrhages with neurological morbidity and risk of mortality in patients. Most often, they are symptomatically silent and are detected at advanced stages of disease progression. The most common forms of VMBs are arteriovenous and cavernous malformations in the brain. Radiopathological features of these diseases are complex with high phenotypic variability. Early detection of these malformations followed by preclusion of severe neurological deficits such as hemorrhage and stroke is crucial in the clinical management of patients with VMBs. The technological advances in high-throughput omics platforms have currently infused a zest in translational research in VMBs. Besides finding novel biomarkers and therapeutic targets, these studies have withal contributed significantly to the understanding of the etiopathogenesis of VMBs. Here we discuss the recent advances in predictive and prognostic biomarker research in sporadic and familial arteriovenous malformations as well as cerebral cavernous malformations. Furthermore, we analyze the clinical applicability of protein and noncoding RNA-based molecular-targeted therapies which may have a potentially key role in disease management.
Collapse
Affiliation(s)
- Vani Venugopal
- Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
41
|
Yan D, Chen Y, Li Z, Zhang H, Li R, Yuan K, Han H, Meng X, Jin H, Gao D, Li Y, Sun S, Liu A, Chen X, Zhao Y. Stereotactic Radiosurgery With vs. Without Prior Embolization for Brain Arteriovenous Malformations: A Propensity Score Matching Analysis. Front Neurol 2021; 12:752164. [PMID: 34712200 PMCID: PMC8545857 DOI: 10.3389/fneur.2021.752164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: Whether partial embolization could facilitate the post-stereotactic radiosurgery (SRS) obliteration for brain arteriovenous malformations (bAVMs) remains controversial. We performed this study to compare the outcomes of SRS with and without prior embolization for bAVMs. Methods: We retrospectively reviewed the Beijing Tiantan AVMs prospective registration research database from September 2011 to October 2014. Patients were categorized into two groups, combined upfront embolization and SRS (Em+SRS group) and SRS alone (SRS group), and we performed a propensity score matching analysis based on pre-embolization baseline characteristics; the matched groups each comprised 76 patients. Results: The obliteration rate was similar between SRS and Em+SRS (44.7 vs. 31.6%; OR, 1.754; 95% CI, 0.905–3.401; p = 0.096). However, the SRS group was superior to the Em+SRS group in terms of cumulative obliteration rate at a follow-up of 5 years (HR,1.778; 95% CI, 1.017–3.110; p = 0.033). The secondary outcomes, including functional state, post-SRS hemorrhage, all-cause mortality, and edema or cyst formation were similar between the matched cohorts. In the ruptured subgroup, the SRS group could achieve higher obliteration rate than Em+SRS group (56.5 vs. 31.9%; OR, 2.773; 95% CI, 1.190–6.464; p = 0.018). The cumulative obliteration rate at 5 years was also higher in the SRS group (64.5 vs. 41.3%; HR, 2.012; 95% CI, 1.037–3.903; p = 0.038), and the secondary outcomes were also similar between the matched cohorts. Conclusion: Although there was no significant difference in the overall obliteration rate between the two strategies, this study suggested that pre-SRS embolization may have a negative effect on post-SRS obliteration. Furthermore, the obliteration rates of the SRS only strategy was significantly higher than that of the Em+SRS strategy in the ruptured cohort, while no such phenomenon was found in the unruptured cohort.
Collapse
Affiliation(s)
- Debin Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangyu Meng
- Stroke Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Hengwei Jin
- Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translation Medicine for Cerebrovascular Disease, Beijing, China
| | - Dezhi Gao
- Beijing Translational Engineering Enter for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Youxiang Li
- Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translation Medicine for Cerebrovascular Disease, Beijing, China
| | - Shibin Sun
- Beijing Translational Engineering Enter for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Ali Liu
- Beijing Translational Engineering Enter for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Gamma-Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
42
|
Africk BN, Heiferman DM, Wozniak AW, Behzadi F, Ballard MS, Chazaro JM, Zsigray BM, Shanker RM, Reynolds MR, Anderson DE, Serrone JC. Angioarchitectural features amongst patients with unruptured brain arteriovenous malformations presenting with headache: findings from a single center retrospective review of 76 patients. J Headache Pain 2021; 22:122. [PMID: 34627140 PMCID: PMC8501699 DOI: 10.1186/s10194-021-01331-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Background Brain arteriovenous malformations (AVMs) consist of abnormal connections between arteries and veins via an interposing nidus. While hemorrhage is the most common presentation, unruptured AVMs can present with headaches, seizures, neurological deficits, or be found incidentally. It remains unclear as to what AVM characteristics contribute to pain generation amongst unruptured AVM patients with headaches. Methods To assess this relationship, the current study evaluates angiographic and clinical features amongst patients with unruptured brain AVMs presenting with headache. Loyola University Medical Center medical records were queried for diagnostic codes corresponding to AVMs. In patients with unruptured AVMs, we analyzed the correlation between the presenting symptom of headache and various demographic and angiographic features. Results Of the 144 AVMs treated at our institution between 1980 and 2017, 76 were unruptured and had sufficient clinical data available. Twenty-three presented with headaches, while 53 patients had other presenting symptoms. Patients presenting with headache were less likely to have venous stenosis compared to those with a non-headache presentation (13 % vs. 36 %, p = 0.044). Conclusions Our study suggests that the absence of venous stenosis may contribute to headache symptomatology. This serves as a basis for further study of correlations between AVM angioarchitecture and symptomatology to direct headache management in AVM patients.
Collapse
Affiliation(s)
- Benjamin N Africk
- Department of Pediatric Neurology, Lucile Packard Children's Hospital at Stanford, 725 Welch Road, CA, 94304, Palo Alto, USA
| | | | - Amy W Wozniak
- Clinical Research Office, Stritch School of Medicine, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Faraz Behzadi
- Loyola Stritch School of Medicine, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Matthew S Ballard
- Loyola Stritch School of Medicine, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Joshua M Chazaro
- Loyola Stritch School of Medicine, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Brandon M Zsigray
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Rachyl M Shanker
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Matthew R Reynolds
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Douglas E Anderson
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA.,Edward Hines Jr Veteran Administration Hospital, 5000 5th Avenue, IL, 60141, Hines, USA
| | - Joseph C Serrone
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA. .,Edward Hines Jr Veteran Administration Hospital, 5000 5th Avenue, IL, 60141, Hines, USA. .,Loyola University Medical Center, 2160 S 1st Avenue, IL, 60153, Maywood, USA.
| |
Collapse
|
43
|
Koch MJ, Bram R, Amin-Hanjani S. Commentary: Does Variceal Drainage Affect Arteriovenous Malformation Obliteration and Hemorrhage Rates After Stereotactic Radiosurgery? A Case-Matched Analysis. Neurosurgery 2021; 89:E219-E220. [PMID: 34318880 DOI: 10.1093/neuros/nyab281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew J Koch
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard Bram
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sepideh Amin-Hanjani
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
44
|
Wu CX, Zang ZX, Hong T, Dong MQ, Shan Y, Zhao ZL, Hou CB, Lu J. Signal intensity ratio of draining vein on silent MR angiography as an indicator of high-flow arteriovenous shunt in brain arteriovenous malformation. Eur Radiol 2021; 31:9252-9261. [PMID: 34263361 PMCID: PMC8589750 DOI: 10.1007/s00330-021-08170-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate whether the signal intensity ratio (rSI) of the draining vein on silent MR angiography is correlated with arteriovenous (A-V) transit time on digital subtraction angiography (DSA), thereby identifying high-flow A-V shunt in brain arteriovenous malformation (BAVM), and to analyze whether the rSI and the characteristic of draining veins on silent MRA are associated with hemorrhage presentation. METHODS Eighty-one draining veins of 46 participants with BAVM (mean age 33.2 ± 16.9 years) who underwent silent MRA and DSA were evaluated retrospectively. The correlation between the rSI of the draining vein on silent MRA and A-V transit time on DSA was examined. The AUC-ROC was obtained to evaluate the performance of the rSI in determining the presence of high-flow A-V shunt. The characteristics of draining veins with the maximum rSI (rSImax) were further compared between the hemorrhagic and non-hemorrhagic untreated BAVM. RESULTS The rSI of each draining vein on silent MRA was significantly correlated with A-V transit time from DSA (r = -0.81, p < .001). The AUC-ROC was 0.89 for using the rSI to determine the presence of high-flow A-V shunt. A cut-off rSI value of 1.09 yielded a sensitivity of 82.4% and a specificity of 82.8%. The draining vein with rSImax and no ectasia was significantly more observed in the hemorrhagic group (p = 0.045). CONCLUSIONS The rSI of the draining vein on silent MRA is significantly correlated with A-V transit time on DSA, and it can be used as an indicator of high-flow A-V shunt in BAVM. KEY POINTS • The signal intensity ratio (rSI) of the draining vein on silent MRA significantly correlated with arteriovenous (A-V) transit time of brain arteriovenous malformation (BAVM) on digital subtraction angiography (DSA). • The area under the receiver operating characteristic curve (AUC) was 0.89 for using the rSI of draining veins to determine high-flow A-V shunt. • Draining veins with maximum rSI and no ectasia were significantly more observed in the hemorrhagic group of BAVM (p = 0.045).
Collapse
Affiliation(s)
- Chun-Xue Wu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhen-Xiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng-Qi Dong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhi-Lian Zhao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Cheng-Bei Hou
- Center for Evidence-Based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
45
|
Hetts SW, Shieh JT, Ohliger MA, Conrad MB. Hereditary Hemorrhagic Telangiectasia: The Convergence of Genotype, Phenotype, and Imaging in Modern Diagnosis and Management of a Multisystem Disease. Radiology 2021; 300:17-30. [PMID: 33973836 DOI: 10.1148/radiol.2021203487] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease that manifests as vascular malformations in the brain, lung, liver, gastrointestinal tract, nasal mucosa, and skin. Diagnosis and management of HHT is guided in large part by imaging studies, making it a condition with which the radiology community needs familiarity. Proper screening and care lead to improved morbidity and mortality in patients with HHT. International guidelines were recently updated and form the basis for a detailed discussion of the role of imaging and image-guided therapy in HHT. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Steven W Hetts
- From the Department of Radiology and Biomedical Imaging (S.W.H., M.O., M.C.), HHT Center of Excellence (S.W.H., J.S., M.O., M.C.), and Department of -Pediatrics (J.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628
| | - Joseph T Shieh
- From the Department of Radiology and Biomedical Imaging (S.W.H., M.O., M.C.), HHT Center of Excellence (S.W.H., J.S., M.O., M.C.), and Department of -Pediatrics (J.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628
| | - Michael A Ohliger
- From the Department of Radiology and Biomedical Imaging (S.W.H., M.O., M.C.), HHT Center of Excellence (S.W.H., J.S., M.O., M.C.), and Department of -Pediatrics (J.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628
| | - Miles B Conrad
- From the Department of Radiology and Biomedical Imaging (S.W.H., M.O., M.C.), HHT Center of Excellence (S.W.H., J.S., M.O., M.C.), and Department of -Pediatrics (J.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628
| |
Collapse
|
46
|
Martín-Noguerol T, Concepción-Aramendia L, Lim CT, Santos-Armentia E, Cabrera-Zubizarreta A, Luna A. Conventional and advanced MRI evaluation of brain vascular malformations. J Neuroimaging 2021; 31:428-445. [PMID: 33856735 DOI: 10.1111/jon.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/14/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022] Open
Abstract
Vascular malformations (VMs) of the central nervous system (CNS) include a wide range of pathological conditions related to intra and extracranial vessel abnormalities. Although some VMs show typical neuroimaging features, other VMs share and overlap pathological and neuroimaging features that hinder an accurate differentiation between them. Hence, it is not uncommon to misclassify different types of VMs under the general heading of arteriovenous malformations. Thorough knowledge of the imaging findings of each type of VM is mandatory to avoid these inaccuracies. Conventional MRI sequences, including MR angiography, have allowed the evaluation of CNS VMs without using ionizing radiation. Newer MRI techniques, such as susceptibility-weighted imaging, black blood sequences, arterial spin labeling, and 4D flow imaging, have an added value of providing physiopathological data in real time regarding the hemodynamics of VMs. Beyond MR images, new insights using 3D printed models are being incorporated as part of the armamentarium for a noninvasive evaluation of VMs. In this paper, we briefly review the pathophysiology of CNS VMs, focusing on the MRI findings that may be helpful to differentiate them. We discuss the role of each conventional and advanced MRI sequence for VMs assessment and provide some insights about the value of structured reports of 3D printing to evaluate VMs.
Collapse
Affiliation(s)
| | | | - Cc Tchoyoson Lim
- Neuroradiology Department, National Neuroscience Institute and Duke-NUS Medical School, Singapore
| | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Medica, Jaén, Spain
| |
Collapse
|
47
|
Efficacy and Safety of Combined Endovascular Embolization and Stereotactic Radiosurgery for Patients with Intracranial Arteriovenous Malformations: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6686167. [PMID: 33954197 PMCID: PMC8060080 DOI: 10.1155/2021/6686167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 12/03/2022]
Abstract
Whether the use of endovascular embolization could provide additional benefits in patients treated with stereotactic radiosurgery (SRS) for intracranial arteriovenous malformations (IAVMs) remains controversial. The current meta-analysis was conducted to assess the efficacy and safety of SRS with and without prior endovascular embolization in patients with IAVMs. The electronic databases of PubMed, EmBase, and Cochrane Library were systematically searched for eligible studies published from inception to August 12, 2020. The pooled results for obliteration rate, rehemorrhage rate, and permanent neurological deficits were calculated by odds ratios (ORs) with 95% confidence intervals (CIs) using the random-effects model. The sensitivity analysis, subgroup analysis, and publication bias for investigated outcomes were also evaluated. Nineteen studies (two prospective and 17 retrospective studies) involving a total of 3,454 patients with IAVMs were selected for the final meta-analysis. We noted that prior embolization and SRS were associated with a lower obliteration rate compared with SRS alone (OR, 0.57; 95% CI, 0.44–0.74; P < 0.001). However, prior embolization and SRS were not associated with the risk of rehemorrhage (OR, 1.05; 95% CI, 0.81–1.34; P = 0.729) and permanent neurological deficits (OR, 0.80; 95% CI, 0.48–1.33; P = 0.385) compared with SRS alone. The sensitivity analysis suggested that prior embolization might reduce the risk of permanent neurological deficits in patients with IAVMs treated with SRS. The treatment effects of prior embolization in patients with IAVMs could be affected by nidus volume, margin dose, intervention, and follow-up duration. This study found that prior embolization was associated with a reduced risk of obliteration in patients with IAVMs treated with SRS. Moreover, prior embolization might reduce the risk of permanent neurological deficits in patients with IAVMs.
Collapse
|
48
|
Guest W, Krings T. Brain Arteriovenous Malformations: The Role of Imaging in Treatment Planning and Monitoring Response. Neuroimaging Clin N Am 2021; 31:205-222. [PMID: 33902875 DOI: 10.1016/j.nic.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brain arteriovenous malformations (AVMs) are characterized by shunting between pial arteries and cortical or deep veins, with the presence of an intervening nidus of tortuous blood vessels. These lesions present a therapeutic challenge, because their natural history entails a risk of intracranial hemorrhage, but treatment may cause significant morbidity. In this article, imaging features of AVMs on MR imaging and catheter angiography are reviewed to stratify the risk of hemorrhage and guide appropriate management. The angioarchitecture of AVMs may evolve over time, spontaneously or in response to treatment, necessitating ongoing imaging surveillance.
Collapse
Affiliation(s)
- Will Guest
- Department of Neuroradiology, University of Toronto, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Timo Krings
- Department of Neuroradiology, University of Toronto, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
49
|
Yan KL, Ko NU, Hetts SW, Weinsheimer S, Abla AA, Lawton MT, Kim H. Maternal and Fetal Outcomes in Women with Brain Arteriovenous Malformation Rupture during Pregnancy. Cerebrovasc Dis 2021; 50:296-302. [PMID: 33640891 DOI: 10.1159/000513573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sporadic brain arteriovenous malformations (BAVM) are a major cause of hemorrhagic stroke in younger persons. Prior studies have reported contradictory results regarding the risk of hemorrhage during pregnancy, and there are no standard guidelines for the management of pregnant women who present with BAVM rupture. The purpose of this study is to describe maternal and fetal outcomes and treatment strategies in patients with BAVM hemorrhage during pregnancy. METHODS We performed a retrospective review of the University of California, San Francisco Brain AVM Project database for female patients who were pregnant at the time of BAVM hemorrhage between 2000 and 2017. Clinical and angiographic characteristics at presentation, BAVM treatment, and maternal outcomes using modified Rankin scale (mRS) score at presentation and 2-year follow-up were recorded. Fetal outcomes were abstracted from medical records and maternal reports. RESULTS Sixteen patients presented with BAVM hemorrhage during pregnancy, 81% (n = 13) of whom were in their second or third trimester. Three patients (19%) who were in their first trimester terminated or miscarried pregnancy prior to BAVM intervention. Of the remaining 13 patients, 77% (n = 10) received emergent BAVM treatment at time of hemorrhage prior to delivery, and 85% of patients achieved BAVM obliteration and good maternal outcomes (mRS 0-2) at 2-year follow-up. All patients had uncomplicated deliveries (69% cesarean and 23% vaginal) with no reports of postnatal cognitive or developmental delays in infants at 2-year follow-up. CONCLUSIONS Our study shows good long-term maternal and fetal outcomes in ruptured BAVM patients presenting during pregnancy, the majority who received BAVM interventional treatment prior to delivery.
Collapse
Affiliation(s)
- Kimberly L Yan
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California - San Francisco, San Francisco, California, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nerissa U Ko
- Department of Neurology, University of California - San Francisco, San Francisco, California, USA
| | - Steven W Hetts
- Department of Radiology and Biomedical Engineering, University of California - San Francisco, San Francisco, California, USA
| | - Shantel Weinsheimer
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California - San Francisco, San Francisco, California, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California - San Francisco, San Francisco, California, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California - San Francisco, San Francisco, California, USA,
| |
Collapse
|
50
|
Stagnant venous outflow in ruptured arteriovenous malformations revealed by delayed quantitative digital subtraction angiography. Eur J Radiol 2020; 134:109455. [PMID: 33296802 DOI: 10.1016/j.ejrad.2020.109455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE To investigate the reproducibility of quantitative digital subtraction angiography (QDSA) measurements and their associations with brain arteriovenous malformation (BAVM) hemorrhage. METHODS From 2011-2019, 37 patients with BAVMs who had undergone both diagnostic and stereotactic DSA were divided into hemorrhagic and nonhemorrhagic groups. QDSA analysis was performed on the 2 DSA exams. The inter-exam reliabilities of QDSA measurements across the diagnostic and stereotactic DSA were tested using intraclass correlation coefficients (ICCs). Demographics, BAVM characteristics, and QDSA results for the hemorrhagic and nonhemorrhagic groups were compared. RESULTS Fifteen of 37 (40.5 %) patients presented with hemorrhage were associated with smaller BAVM volume and the presence of intranidal aneurysm and exclusive deep venous drainage. The median interval between the diagnostic and stereotactic DSA was 49 days and did not differ between the groups. In both groups, the inter-exam QDSA measurements were more reliable for drainage veins and transnidal time (ICCs ranged from 0.38-0.93) than for feeding arteries (ICCs ranged from 0.01-0.74). Among the venous parameters, the hemorrhagic group had lower peak density, area under the curve, inflow gradient, and outflow gradient on both DSA exams and larger full width at half maximum and stasis index on the stereotactic DSA exam than the nonhemorrhagic group. CONCLUSIONS In BAVMs, the QDSA measurements for veins are more reliable than those for arteries. QDSA analysis reflecting stagnant venous drainage is associated with BAVM hemorrhage, but may be confounded by the acute hemodynamic change after hemorrhage.
Collapse
|