1
|
Grobs Y, Romanet C, Lemay SE, Bourgeois A, Voisine P, Theberge C, Sauvaget M, Breuils-Bonnet S, Martineau S, El Kabbout R, Valasarajan C, Chelladurai P, Pelletier A, Mougin M, Dumais E, Perron J, Flamand N, Potus F, Provencher S, Pullamsetti SS, Boucherat O, Bonnet S. ATP citrate lyase drives vascular remodeling in systemic and pulmonary vascular diseases through metabolic and epigenetic changes. Sci Transl Med 2024; 16:eado7824. [PMID: 39661707 DOI: 10.1126/scitranslmed.ado7824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/04/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
ATP citrate lyase (ACLY), a crucial enzyme in de novo lipid synthesis and histone acetylation, plays a key role in regulating vascular smooth muscle cell (VSMC) proliferation and survival. We found that human coronary and pulmonary artery tissues had up-regulated ACLY expression during vascular remodeling in coronary artery disease and pulmonary arterial hypertension. Pharmacological and genetic inhibition of ACLY in human primary cultured VSMCs isolated from the coronary arteries of patients with coronary artery diseases and from the distal pulmonary arteries of patients with pulmonary arterial hypertension resulted in reduced cellular proliferation and migration and increased susceptibility to apoptosis. These cellular changes were linked to diminished glycolysis, reduced lipid synthesis, impairment in general control nonrepressed protein 5 (GCN5)-dependent histone acetylation and suppression of the transcription factor FOXM1. In vivo studies using a pharmacological inhibitor and VSMC-specific Acly knockout mice showed that ACLY inhibition alleviated vascular remodeling. ACLY inhibition alleviated remodeling in carotid injury and ligation models in rodents and attenuated pulmonary arterial hypertension in Sugen/hypoxia rat and mouse models. Moreover, ACLY inhibition showed improvements in vascular remodeling in human ex vivo models, which included cultured human coronary artery and saphenous vein rings as well as precision-cut lung slices. Our results propose ACLY as a novel therapeutic target for treating complex vascular diseases, offering promising avenues for future clinical intervention.
Collapse
Affiliation(s)
- Yann Grobs
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Charlotte Romanet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Pierre Voisine
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Charlie Theberge
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Melanie Sauvaget
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Reem El Kabbout
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Chanil Valasarajan
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Prakash Chelladurai
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Andreanne Pelletier
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Manon Mougin
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Elizabeth Dumais
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec Heart and Lung Institute Research Centre (G1V 4G5), Department of Medicine, Faculty of Medicine, Québec City, QC G1V 0A6, Canada
| | - Jean Perron
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Nicolas Flamand
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec Heart and Lung Institute Research Centre (G1V 4G5), Department of Medicine, Faculty of Medicine, Québec City, QC G1V 0A6, Canada
| | - François Potus
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Soni Savai Pullamsetti
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| |
Collapse
|
2
|
Zhai Y, Morihara R, Feng T, Hu X, Fukui Y, Bian Z, Bian Y, Yu H, Sun H, Takemoto M, Nakano Y, Yunoki T, Tang Y, Ishiura H, Yamashita T. Protective effect of scallop-derived plasmalogen against vascular dysfunction, via the pSTAT3/PIM1/NFATc1 axis, in a novel mouse model of Alzheimer's disease with cerebral hypoperfusion. Brain Res 2024; 1828:148790. [PMID: 38272156 DOI: 10.1016/j.brainres.2024.148790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/23/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
A strong relationship between Alzheimer's disease (AD) and vascular dysfunction has been the focus of increasing attention in aging societies. In the present study, we examined the long-term effect of scallop-derived plasmalogen (sPlas) on vascular remodeling-related proteins in the brain of an AD with cerebral hypoperfusion (HP) mouse model. We demonstrated, for the first time, that cerebral HP activated the axis of the receptor for advanced glycation endproducts (RAGE)/phosphorylated signal transducer and activator of transcription 3 (pSTAT3)/provirus integration site for Moloney murine leukemia virus 1 (PIM1)/nuclear factor of activated T cells 1 (NFATc1), accounting for such cerebral vascular remodeling. Moreover, we also found that cerebral HP accelerated pSTAT3-mediated astrogliosis and activation of the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, probably leading to cognitive decline. On the other hand, sPlas treatment attenuated the activation of the pSTAT3/PIM1/NFATc1 axis independent of RAGE and significantly suppressed NLRP3 inflammasome activation, demonstrating the beneficial effect on AD.
Collapse
Affiliation(s)
- Yun Zhai
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan; Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Taijun Yunoki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
3
|
Sun Z, Zhang L, Yin K, Zang G, Qian Y, Mao X, Li L, Jing Q, Wang Z. SIRT3-and FAK-mediated acetylation-phosphorylation crosstalk of NFATc1 regulates N ε-carboxymethyl-lysine-induced vascular calcification in diabetes mellitus. Atherosclerosis 2023; 377:43-59. [PMID: 37392543 DOI: 10.1016/j.atherosclerosis.2023.06.969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND AND AIMS Arterial calcification is the predictor of cardiovascular risk in diabetic patients. Nε-carboxymethyl-lysine (CML), a toxic metabolite, is associated with accelerated vascular calcification in diabetes mellitus (DM). However, the mechanism remains elusive. This study aims to explore the key regulators involved in CML-induced vascular calcification in DM. METHODS We used Western blot and immuno-staining to test the expression and localization of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) in human samples, a diabetic apolipoprotein E-deficient (ApoE-/-) mouse model, and a vascular smooth muscle cells (VSMC) model. Further, we confirmed the regulator of NFATc1 phosphorylation and acetylation induced by CML. The role of NFATc1 in VSMCs calcification and osteogenic differentiation was explored in vivo and in vitro. RESULTS In diabetic patients, CML and NFATc1 levels increased in the severe calcified anterior tibial arteries. CML significantly promoted NFATc1 expression and nuclear translocation in VSMCs and mouse aorta. Knockdown of NFATc1 significantly inhibited CML-induced calcification. CML promoted NFATc1 acetylation at K549 by downregulating sirtuin 3 (SIRT3), which antagonized the focal adhesion kinase (FAK) induced NFATc1 phosphorylation at the Y270 site. FAK and SIRT3 affected the nuclear translocation of NFATc1 by regulating the acetylation-phosphorylation crosstalk. NFATc1 dephosphorylation mutant Y270F and deacetylation mutant K549R had opposite effects on VSMC calcification. SIRT3 overexpression and FAK inhibitor could reverse CML-promoted VSMC calcification. CONCLUSIONS CML enhances vascular calcification in DM through NFATc1. In this process, CML increases NFATc1 acetylation by downregulating SIRT3 to antagonize FAK-induced NFATc1 phosphorylation.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
4
|
Wu X, Shi X, Chen X, Yin Z. Advanced glycation end products regulate the receptor of AGEs epigenetically. Front Cell Dev Biol 2023; 11:1062229. [PMID: 36866277 PMCID: PMC9971228 DOI: 10.3389/fcell.2023.1062229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Advanced glycation end-products (AGEs) can boost their receptor of AGE (RAGE) expression through the downstream signaling pathway to facilitate AGE-RAGE interaction. In this regulation process, the primary signaling pathways are NF-κB and STAT3. However, the inhibition of these transcription factors cannot completely block the upregulation of RAGE, which indicates AGEs may also impact RAGE expression via other pathways. In this study, we revealed that AGEs can exhibit epigenetic impacts on RAGE expression. Here, we used carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL) to treat liver cells and discovered that AGEs can promote the demethylation of the RAGE promoter region. To verify this epigenetic modification, we employed dCAS9-DNMT3a with sgRNA to specifically modify the RAGE promoter region against the effect of carboxymethyl-lysine and carboxyethyl-lysine. The elevated RAGE expressions were partially repressed after AGE-induced hypomethylation statuses were reversed. Additionally, TET1 were also upregulated in AGE-treated cells, indicating AGEs may epigenetically modulate RAGE through the elevating TET1 level.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, China
| | - Xuanren Shi
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen, China
| | - Xiaoyong Chen
- Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Zhanhai Yin,
| |
Collapse
|
5
|
Nε-Carboxymethyl-Lysine Mediates Vascular Calcification in Diabetes Caused by Impaired Osteoclastic Resorption Activity Through NFATc1-GNPTAB. J Cardiovasc Transl Res 2023; 16:233-243. [PMID: 35972719 DOI: 10.1007/s12265-022-10300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Nε-carboxymethyl-lysine (CML) is closely associated with vascular calcification in diabetes. Osteoclasts are the only cells with bone resorption activity that have the potential to reverse calcification. This study aimed to investigate the mechanism of CML in the bone resorption activity of macrophage-derived osteoclasts in diabetic calcified plaques. Macrophage-derived osteoclasts were found to be present in calcified plaques of the anterior tibial artery in patients with diabetic amputation. Furthermore, in vitro studies showed that CML induced the differentiation of macrophages into osteoclasts, although, the bone resorption activity of these macrophage-derived osteoclasts was impaired. CML significantly increased the levels of NFATc1and GNPTAB. In vivo studies showed that there was more calcium deposition and less TRAP was less in the CML group while this effect was reversed after silencing of NFATc1. In conclusion, CML mediates NFATc1-GNPTAB to regulate bone resorption activity of osteoclasts in diabetic calcified plaques. CML promotes macrophage differentiation into osteoclasts, but their function is impaired in diabetic calcified plaques through NFATc1-GNPTAB, which eventually leads to the further progression of vascular calcification in diabetes.
Collapse
|
6
|
Ai H, Meng F, Ai Y. PathwayKO: An integrated platform for deciphering the systems-level signaling pathways. Front Immunol 2023; 14:1103392. [PMID: 37033947 PMCID: PMC10080220 DOI: 10.3389/fimmu.2023.1103392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Systems characterization of immune landscapes in health, disease and clinical intervention cases is a priority in modern medicine. High-throughput transcriptomes accumulated from gene-knockout (KO) experiments are crucial for deciphering target KO signaling pathways that are impaired by KO genes at the systems-level. There is a demand for integrative platforms. This article describes the PathwayKO platform, which has integrated state-of-the-art methods of pathway enrichment analysis, statistics analysis, and visualizing analysis to conduct cutting-edge integrative pathway analysis in a pipeline fashion and decipher target KO signaling pathways at the systems-level. We focus on describing the methodology, principles and application features of PathwayKO. First, we demonstrate that the PathwayKO platform can be utilized to comprehensively analyze real-world mouse KO transcriptomes (GSE22873 and GSE24327), which reveal systemic mechanisms underlying the innate immune responses triggered by non-infectious extensive hepatectomy (2 hours after 85% liver resection surgery) and infectious CASP-model sepsis (12 hours after CASP-model surgery). Strikingly, our results indicate that both cases hit the same core set of 21 KO MyD88-associated signaling pathways, including the Toll-like receptor signaling pathway, the NFκB signaling pathway, the MAPK signaling pathway, and the PD-L1 expression and PD-1 checkpoint pathway in cancer, alongside the pathways of bacterial, viral and parasitic infections. These findings suggest common fundamental mechanisms between these immune responses and offer informative cues that warrant future experimental validation. Such mechanisms in mice may serve as models for humans and ultimately guide formulating the research paradigms and composite strategies to reduce the high mortality rates of patients in intensive care units who have undergone successful traumatic surgical treatments. Second, we demonstrate that the PathwayKO platform model-based assessments can effectively evaluate the performance difference of pathway analysis methods when benchmarked with a collection of proper transcriptomes. Together, such advances in methods for deciphering biological insights at the systems-level may benefit the fields of bioinformatics, systems immunology and beyond.
Collapse
Affiliation(s)
- Hannan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- National Center for Quality Supervision and Inspection of Automatic Equipment, National Center for Testing and Evaluation of Robots (Guangzhou), CRAT, SINOMACH-IT, Guangzhou, China
- *Correspondence: Hannan Ai, ; Yuncan Ai, .cn
| | - Fanmei Meng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuncan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunity & Immune-mediated Disease, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Hannan Ai, ; Yuncan Ai, .cn
| |
Collapse
|
7
|
Aftermath of AGE-RAGE Cascade in the pathophysiology of cardiovascular ailments. Life Sci 2022; 307:120860. [PMID: 35940220 DOI: 10.1016/j.lfs.2022.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
|
8
|
Singh S, Siva BV, Ravichandiran V. Advanced Glycation End Products: key player of the pathogenesis of atherosclerosis. Glycoconj J 2022; 39:547-563. [PMID: 35579827 DOI: 10.1007/s10719-022-10063-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is the most common type of cardiovascular disease, and it causes intima thickening, plaque development, and ultimate blockage of the artery lumen. Advanced glycation end products (AGEs) are thought to have a role in the development and progression of atherosclerosis. there is developing an enthusiasm for AGEs as a potential remedial target. AGES mainly induce arterial damage and exacerbate the development of atherosclerotic plaques by triggering cell receptor-dependent signalling. The interplay of AGEs with RAGE, a transmembrane signalling receptor present across all cells important to atherosclerosis, changes cell activity, boosts expression of genes, and increases the outflow of inflammatory compounds, resulting in arterial wall injury and plaque formation. Here in this review, function of AGEs in the genesis, progression, and instability of atherosclerosis is discussed. In endothelial and smooth muscle cells, as well as platelets, the interaction of AGEs with their transmembrane cell receptor, RAGE, triggers intracellular signalling, resulting in endothelial damage, vascular smooth muscle cell function modification, and changed platelet activity.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India.
| | - Boddu Veerabadra Siva
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India
| |
Collapse
|
9
|
Pham TX, Lee J, Guan J, Caporarello N, Meridew JA, Jones DL, Tan Q, Huang SK, Tschumperlin DJ, Ligresti G. Transcriptional analysis of lung fibroblasts identifies PIM1 signaling as a driver of aging-associated persistent fibrosis. JCI Insight 2022; 7:153672. [PMID: 35167499 PMCID: PMC8986080 DOI: 10.1172/jci.insight.153672] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/09/2022] [Indexed: 01/18/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by myofibroblast accumulation and progressive lung scarring. To identify transcriptional gene programs driving persistent lung fibrosis in aging, we performed RNA-Seq on lung fibroblasts isolated from young and aged mice during the early resolution phase after bleomycin injury. We discovered that, relative to injured young fibroblasts, injured aged fibroblasts exhibited a profibrotic state characterized by elevated expression of genes implicated in inflammation, matrix remodeling, and cell survival. We identified the proviral integration site for Moloney murine leukemia virus 1 (PIM1) and its target nuclear factor of activated T cells-1 (NFATc1) as putative drivers of the sustained profibrotic gene signatures in injured aged fibroblasts. PIM1 and NFATc1 transcripts were enriched in a pathogenic fibroblast population recently discovered in IPF lungs, and their protein expression was abundant in fibroblastic foci. Overexpression of PIM1 in normal human lung fibroblasts potentiated their fibrogenic activation, and this effect was attenuated by NFATc1 inhibition. Pharmacological inhibition of PIM1 attenuated IPF fibroblast activation and sensitized them to apoptotic stimuli. Interruption of PIM1 signaling in IPF lung explants ex vivo inhibited prosurvival gene expression and collagen secretion, suggesting that targeting this pathway may represent a therapeutic strategy to block IPF progression.
Collapse
Affiliation(s)
- Tho X. Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jisu Lee
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jiazhen Guan
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey A. Meridew
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Dakota L. Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Qi Tan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven K. Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel J. Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Bisserier M, Sun XQ, Fazal S, Turnbull IC, Bonnet S, Hadri L. Novel Insights into the Therapeutic Potential of Lung-Targeted Gene Transfer in the Most Common Respiratory Diseases. Cells 2022; 11:984. [PMID: 35326434 PMCID: PMC8947048 DOI: 10.3390/cells11060984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past decades, a better understanding of the genetic and molecular alterations underlying several respiratory diseases has encouraged the development of new therapeutic strategies. Gene therapy offers new therapeutic alternatives for inherited and acquired diseases by delivering exogenous genetic materials into cells or tissues to restore physiological protein expression and/or activity. In this review, we review (1) different types of viral and non-viral vectors as well as gene-editing techniques; and (2) the application of gene therapy for the treatment of respiratory diseases and disorders, including pulmonary arterial hypertension, idiopathic pulmonary fibrosis, cystic fibrosis, asthma, alpha-1 antitrypsin deficiency, chronic obstructive pulmonary disease, non-small-cell lung cancer, and COVID-19. Further, we also provide specific examples of lung-targeted therapies and discuss the major limitations of gene therapy.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Xiao-Qing Sun
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Shahood Fazal
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Irene C. Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec, QC G1V4G5, Canada;
- Department of Medicine, Laval University, Québec, QC G1V4G5, Canada
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| |
Collapse
|
11
|
Hasegawa T, Ito M, Hasegawa S, Teranishi M, Takeda K, Negishi S, Nishiwaki H, Takeda JI, LeBaron TW, Ohno K. Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein Response. Int J Mol Sci 2022; 23:ijms23052888. [PMID: 35270030 PMCID: PMC8910898 DOI: 10.3390/ijms23052888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular hydrogen ameliorates pathological states in a variety of human diseases, animal models, and cell models, but the effects of hydrogen on cancer have been rarely reported. In addition, the molecular mechanisms underlying the effects of hydrogen remain mostly unelucidated. We found that hydrogen enhances proliferation of four out of seven human cancer cell lines (the responders). The proliferation-promoting effects were not correlated with basal levels of cellular reactive oxygen species. Expression profiling of the seven cells showed that the responders have higher gene expression of mitochondrial electron transport chain (ETC) molecules than the non-responders. In addition, the responders have higher mitochondrial mass, higher mitochondrial superoxide, higher mitochondrial membrane potential, and higher mitochondrial spare respiratory capacity than the non-responders. In the responders, hydrogen provoked mitochondrial unfolded protein response (mtUPR). Suppression of cell proliferation by rotenone, an inhibitor of mitochondrial ETC complex I, was rescued by hydrogen in the responders. Hydrogen triggers mtUPR and induces cell proliferation in cancer cells that have high basal and spare mitochondrial ETC activities.
Collapse
Affiliation(s)
- Tomoya Hasegawa
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Satoru Hasegawa
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Masaki Teranishi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Koki Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Shuto Negishi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Tyler W. LeBaron
- Molecular Hydrogen Institute, Enoch City, UT 84721, USA;
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
- Correspondence: ; Tel.: +81-52-744-2447
| |
Collapse
|
12
|
Bisserier M, Boucherat O, Bonnet S, Hadri L. Intra-Airway Gene Delivery for Pulmonary Hypertension in Rodent Models. Methods Mol Biol 2022; 2573:263-278. [PMID: 36040601 DOI: 10.1007/978-1-0716-2707-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a severe and progressive cardiopulmonary disease characterized by pathological remodeling of the resistance pulmonary arteries (PA), ultimately leading to right ventricular (RV) failure and death. Animal models have been particularly useful for unraveling the pathogenesis of PAH by providing incisive experimental strategies that were impossible in human studies. Over the past decade, gene therapy has been making considerable progress as an alternative strategy for treating PAH disease. Animal models mimicking PAH disease are essential at preclinical stages for assessing the therapeutic potential of gene therapy and determining genome viral vectors transduction, safety, dosage, and localization of transgene expression. The most commonly used PAH rat models in gene therapy studies are the monocrotaline (MCT), the chronic hypoxia-Sugen 5416, and the pneumonectomy (PNT)-MCT models. Here, we provide detailed protocols for creating these preclinical rodent models of PAH commonly used to assess the efficiency of lung gene therapy in PAH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
- Department of Medicine, Laval University, Québec City, QC, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
- Department of Medicine, Laval University, Québec City, QC, Canada
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Mao L, Yin R, Yang L, Zhao D. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:983723. [PMID: 36120471 PMCID: PMC9470882 DOI: 10.3389/fendo.2022.983723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease and leading cause of cardiovascular diseases. The progression of AS is a multi-step process leading to high morbidity and mortality. Hyperglycemia, dyslipidemia, advanced glycation end products (AGEs), inflammation and insulin resistance which strictly involved in diabetes are closely related to the pathogenesis of AS. A growing number of studies have linked AGEs to AS. As one of the risk factors of cardiac metabolic diseases, dysfunction of VSMCs plays an important role in AS pathogenesis. AGEs are increased in diabetes, participate in the occurrence and progression of AS through multiple molecular mechanisms of vascular cell injury. As the main functional cells of vascular, vascular smooth muscle cells (VSMCs) play different roles in each stage of atherosclerotic lesions. The interaction between AGEs and receptor for AGEs (RAGE) accelerates AS by affecting the proliferation and migration of VSMCs. In addition, increasing researches have reported that AGEs promote osteogenic transformation and macrophage-like transformation of VSMCs, and affect the progression of AS through other aspects such as autophagy and cell cycle. In this review, we summarize the effect of AGEs on VSMCs in atherosclerotic plaque development and progression. We also discuss the AGEs that link AS and diabetes mellitus, including oxidative stress, inflammation, RAGE ligands, small noncoding RNAs.
Collapse
Affiliation(s)
| | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
14
|
Dozio E, Massaccesi L, Corsi Romanelli MM. Glycation and Glycosylation in Cardiovascular Remodeling: Focus on Advanced Glycation End Products and O-Linked Glycosylations as Glucose-Related Pathogenetic Factors and Disease Markers. J Clin Med 2021; 10:jcm10204792. [PMID: 34682915 PMCID: PMC8539574 DOI: 10.3390/jcm10204792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
Glycation and glycosylation are non-enzymatic and enzymatic reactions, respectively, of glucose, glucose metabolites, and other reducing sugars with different substrates, such as proteins, lipids, and nucleic acids. Increased availability of glucose is a recognized risk factor for the onset and progression of diabetes-mellitus-associated disorders, among which cardiovascular diseases have a great impact on patient mortality. Both advanced glycation end products, the result of non-enzymatic glycation of substrates, and O-linked-N-Acetylglucosaminylation, a glycosylation reaction that is controlled by O-N-AcetylGlucosamine (GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), have been shown to play a role in cardiovascular remodeling. In this review, we aim (1) to summarize the most recent data regarding the role of glycation and O-linked-N-Acetylglucosaminylation as glucose-related pathogenetic factors and disease markers in cardiovascular remodeling, and (2) to discuss potential common mechanisms linking these pathways to the dysregulation and/or loss of function of different biomolecules involved in this field.
Collapse
Affiliation(s)
- Elena Dozio
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-02-50-315-342
| | - Luca Massaccesi
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
| | - Massimiliano Marco Corsi Romanelli
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
15
|
Bisserier M, Katz MG, Bueno-Beti C, Brojakowska A, Zhang S, Gubara S, Kohlbrenner E, Fazal S, Fargnoli A, Dorfmuller P, Humbert M, Hata A, Goukassian DA, Sassi Y, Hadri L. Combination Therapy with STAT3 Inhibitor Enhances SERCA2a-Induced BMPR2 Expression and Inhibits Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:9105. [PMID: 34502015 PMCID: PMC8431626 DOI: 10.3390/ijms22179105] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating lung disease characterized by the progressive obstruction of the distal pulmonary arteries (PA). Structural and functional alteration of pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) contributes to PA wall remodeling and vascular resistance, which may lead to maladaptive right ventricular (RV) failure and, ultimately, death. Here, we found that decreased expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in the lung samples of PAH patients was associated with the down-regulation of bone morphogenetic protein receptor type 2 (BMPR2) and the activation of signal transducer and activator of transcription 3 (STAT3). Our results showed that the antiproliferative properties of SERCA2a are mediated through the STAT3/BMPR2 pathway. At the molecular level, transcriptome analysis of PASMCs co-overexpressing SERCA2a and BMPR2 identified STAT3 amongst the most highly regulated transcription factors. Using a specific siRNA and a potent pharmacological STAT3 inhibitor (STAT3i, HJC0152), we found that SERCA2a potentiated BMPR2 expression by repressing STAT3 activity in PASMCs and PAECs. In vivo, we used a validated and efficient model of severe PAH induced by unilateral left pneumonectomy combined with monocrotaline (PNT/MCT) to further evaluate the therapeutic potential of single and combination therapies using adeno-associated virus (AAV) technology and a STAT3i. We found that intratracheal delivery of AAV1 encoding SERCA2 or BMPR2 alone or STAT3i was sufficient to reduce the mean PA pressure and vascular remodeling while improving RV systolic pressures, RV ejection fraction, and cardiac remodeling. Interestingly, we found that combined therapy of AAV1.hSERCA2a with AAV1.hBMPR2 or STAT3i enhanced the beneficial effects of SERCA2a. Finally, we used cardiac magnetic resonance imaging to measure RV function and found that therapies using AAV1.hSERCA2a alone or combined with STAT3i significantly inhibited RV structural and functional changes in PNT/MCT-induced PAH. In conclusion, our study demonstrated that combination therapies using SERCA2a gene transfer with a STAT3 inhibitor could represent a new promising therapeutic alternative to inhibit PAH and to restore BMPR2 expression by limiting STAT3 activity.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Michael G. Katz
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Carlos Bueno-Beti
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Sarah Gubara
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Erik Kohlbrenner
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Shahood Fazal
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Anthony Fargnoli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Peter Dorfmuller
- Department of Pathology, University Hospital of Giessen and Marburg (UKGM), Langhansstrasse 10, 35392 Giessen, Germany;
| | - Marc Humbert
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France;
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA;
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Yassine Sassi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.K.); (C.B.-B.); (A.B.); (S.Z.); (S.G.); (E.K.); (S.F.); (A.F.); (D.A.G.); (Y.S.)
| |
Collapse
|
16
|
Diekmann F, Chouvarine P, Sallmon H, Meyer-Kobbe L, Kieslich M, Plouffe BD, Murthy SK, Lichtinghagen R, Legchenko E, Hansmann G. Soluble Receptor for Advanced Glycation End Products (sRAGE) Is a Sensitive Biomarker in Human Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22168591. [PMID: 34445297 PMCID: PMC8395319 DOI: 10.3390/ijms22168591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/31/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive condition with an unmet need for early diagnosis, better monitoring, and risk stratification. The receptor for advanced glycation end products (RAGE) is activated in response to hypoxia and vascular injury, and is associated with inflammation, cell proliferation and migration in PAH. For the adult cohort, we recruited 120 patients with PAH, 83 with idiopathic PAH (IPAH) and 37 with connective tissue disease-associated PAH (CTD-PAH), and 48 controls, and determined potential plasma biomarkers by enzyme-linked immunoassay. The established heart failure marker NTproBNP and IL-6 plasma levels were several-fold higher in both adult IPAH and CTD-PAH patients versus controls. Plasma soluble RAGE (sRAGE) was elevated in IPAH patients (3044 ± 215.2 pg/mL) and was even higher in CTD-PAH patients (3332 ± 321.6 pg/mL) versus controls (1766 ± 121.9 pg/mL; p < 0.01). All three markers were increased in WHO functional class II+III PAH versus controls (p < 0.001). Receiver-operating characteristic analysis revealed that sRAGE has diagnostic accuracy comparable to prognostic NTproBNP, and even outperforms NTproBNP in the distinction of PAH FC I from controls. Lung tissue RAGE expression was increased in IPAH versus controls (mRNA) and was located predominantly in the PA intima, media, and inflammatory cells in the perivascular space (immunohistochemistry). In the pediatric cohort, plasma sRAGE concentrations were higher than in adults, but were similar in PH (n = 10) and non-PH controls (n = 10). Taken together, in the largest adult sRAGE PAH study to date, we identify plasma sRAGE as a sensitive and accurate PAH biomarker with better performance than NTproBNP in the distinction of mild PAH from controls.
Collapse
Affiliation(s)
- Franziska Diekmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Hannes Sallmon
- Department of Pediatric Cardiology, Charité University Medical Center, 13353 Berlin, Germany; (H.S.); (M.K.)
| | - Louisa Meyer-Kobbe
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Moritz Kieslich
- Department of Pediatric Cardiology, Charité University Medical Center, 13353 Berlin, Germany; (H.S.); (M.K.)
| | - Brian D. Plouffe
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (B.D.P.); (S.K.M.)
- Department of STEM, Regis College, Weston, MA 02493, USA
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (B.D.P.); (S.K.M.)
- Flaskworks, LLC, Boston, MA 02118, USA
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
- Correspondence: ; Tel.: +49-511-532-9594
| |
Collapse
|
17
|
Fazal S, Bisserier M, Hadri L. Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension. Cells 2021; 10:638. [PMID: 33805595 PMCID: PMC7999465 DOI: 10.3390/cells10030638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and chronic lung disease characterized by progressive occlusion of the small pulmonary arteries, which is associated with structural and functional alteration of the smooth muscle cells and endothelial cells within the pulmonary vasculature. Excessive vascular remodeling is, in part, responsible for high pulmonary vascular resistance and the mean pulmonary arterial pressure, increasing the transpulmonary gradient and the right ventricular "pressure overload", which may result in right ventricular (RV) dysfunction and failure. Current technological advances in multi-omics approaches, high-throughput sequencing, and computational methods have provided valuable tools in molecular profiling and led to the identification of numerous genetic variants in PAH patients. In this review, we summarized the pathogenesis, classification, and current treatments of the PAH disease. Additionally, we outlined the latest next-generation sequencing technologies and the consequences of common genetic variants underlying PAH susceptibility and disease progression. Finally, we discuss the importance of molecular genetic testing for precision medicine in PAH and the future of genomic medicines, including gene-editing technologies and gene therapies, as emerging alternative approaches to overcome genetic disorders in PAH.
Collapse
Affiliation(s)
| | | | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (S.F.); (M.B.)
| |
Collapse
|
18
|
Deng Y, Guo SL, Li JQ, Xie SS, Zhou YC, Wei B, Wang Q, Wang F. Interferon regulatory factor 7 inhibits rat vascular smooth muscle cell proliferation and inflammation in monocrotaline-induced pulmonary hypertension. Life Sci 2021; 264:118709. [PMID: 33152351 DOI: 10.1016/j.lfs.2020.118709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
AIMS Although interferon regulatory factor 7 (IRF7) has known roles in regulating the inflammatory response, vascular smooth muscle cell proliferation, and apoptosis, its role in the pathogenesis of pulmonary hypertension (PH) is unclear. We hypothesized that IRF7 overexpression could inhibit pulmonary vascular remodeling and slow the progression of PH. MAIN METHODS IRF7 mRNA and protein levels in the lung samples and pulmonary artery smooth muscle cells (PASMCs) isolated from monocrotaline (MCT)-induced PH rats were assessed. We evaluated the effects of IRF7 on inflammation, proliferation, and apoptosis using an in vivo MCT-induced PH rat model and in vitro methods. KEY FINDINGS We noted decreased IRF7 mRNA and protein levels in the pulmonary vasculature of MCT-induced PH rats. IRF7 upregulation attenuated pulmonary vascular remodeling, decreased the pulmonary artery systolic pressure, and improved the right ventricular (RV) structure and function. Our findings suggest that nuclear factor kappa-Bp65 (NF-κBp65) deactivation could confer pulmonary vasculature protection, reduce proinflammatory cytokine (tumor necrosis factor-α, interleukin 6) release, and decrease PASMC proliferation and resistance to apoptosis via deactivating transcription factor 3 (ATF3) signaling. ATF3 deactivation induced the downregulation of the proliferation-dependent genes proliferating cell nuclear antigen (PCNA), cyclin D1, and survivin, coupled with increased levels of B cell lymphoma-2-associated X protein (Bax)/B cell lymphoma-2 (Bcl2) ratio, and cleaved caspase-3 in PASMCs. SIGNIFICANCE Our findings showed that IRF7 downregulation could initiate inflammation via NF-κBp65 signaling, causing PASMC proliferation via ATF3 signaling pathway activation. Therefore, IRF7 could be a potential molecular target for PH therapy.
Collapse
MESH Headings
- Activating Transcription Factor 3/metabolism
- Animals
- Apoptosis
- Caspase 3/metabolism
- Cell Proliferation
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- Cyclin D1/metabolism
- Dependovirus/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Inflammation/complications
- Inflammation/pathology
- Interferon Regulatory Factor-7/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products/metabolism
- Signal Transduction
- Survivin/metabolism
- Up-Regulation
- Vascular Remodeling
- bcl-2-Associated X Protein/metabolism
- Rats
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Sheng-Lan Guo
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Quan Li
- The Experimental Center of Guangxi Medical University, Nanning, China
| | - Shan-Shan Xie
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying-Chuan Zhou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bin Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fen Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic Toxins and Vascular Calcification-Missing the Forest for All the Trees. Toxins (Basel) 2020; 12:E624. [PMID: 33003628 PMCID: PMC7599869 DOI: 10.3390/toxins12100624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
The cardiorenal syndrome relates to the detrimental interplay between the vascular system and the kidney. The uremic milieu induced by reduced kidney function alters the phenotype of vascular smooth muscle cells (VSMC) and promotes vascular calcification, a condition which is strongly linked to cardiovascular morbidity and mortality. Biological mechanisms involved include generation of reactive oxygen species, inflammation and accelerated senescence. A better understanding of the vasotoxic effects of uremic retention molecules may reveal novel avenues to reduce vascular calcification in CKD. The present review aims to present a state of the art on the role of uremic toxins in pathogenesis of vascular calcification. Evidence, so far, is fragmentary and limited with only a few uremic toxins being investigated, often by a single group of investigators. Experimental heterogeneity furthermore hampers comparison. There is a clear need for a concerted action harmonizing and standardizing experimental protocols and combining efforts of basic and clinical researchers to solve the complex puzzle of uremic vascular calcification.
Collapse
MESH Headings
- Animals
- Cardio-Renal Syndrome/metabolism
- Cardio-Renal Syndrome/pathology
- Cardio-Renal Syndrome/physiopathology
- Cardio-Renal Syndrome/therapy
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Toxins, Biological/metabolism
- Uremia/metabolism
- Uremia/pathology
- Uremia/physiopathology
- Uremia/therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Vascular Calcification/therapy
Collapse
Affiliation(s)
- Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, 141 86 Stockholm, Sweden;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
20
|
Boucherat O, Paulin R, Provencher S, Bonnet S. New Insights Into HIMF (Hypoxia-Induced Mitogenic Factor)-Mediated Signaling Pathways in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:2451-2453. [PMID: 31770028 DOI: 10.1161/atvbaha.119.313535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Olivier Boucherat
- From the Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Canada
| | - Roxane Paulin
- From the Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Canada
| | - Steeve Provencher
- From the Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Canada
| | - Sébastien Bonnet
- From the Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Canada
| |
Collapse
|
21
|
Lin Q, Fan C, Gomez-Arroyo J, Van Raemdonck K, Meuchel LW, Skinner JT, Everett AD, Fang X, Macdonald AA, Yamaji-Kegan K, Johns RA. HIMF (Hypoxia-Induced Mitogenic Factor) Signaling Mediates the HMGB1 (High Mobility Group Box 1)-Dependent Endothelial and Smooth Muscle Cell Crosstalk in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:2505-2519. [PMID: 31597444 DOI: 10.1161/atvbaha.119.312907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE HIMF (hypoxia-induced mitogenic factor; also known as FIZZ1 [found in inflammatory zone-1] or RELM [resistin-like molecule-α]) is an etiological factor of pulmonary hypertension (PH) in rodents, but its underlying mechanism is unclear. We investigated the immunomodulatory properties of HIMF signaling in PH pathogenesis. Approach and Results: Gene-modified mice that lacked HIMF (KO [knockout]) or overexpressed HIMF human homolog resistin (hResistin) were used for in vivo experiments. The pro-PH role of HIMF was verified in HIMF-KO mice exposed to chronic hypoxia or sugen/hypoxia. Mechanistically, HIMF/hResistin activation triggered the HMGB1 (high mobility group box 1) pathway and RAGE (receptor for advanced glycation end products) in pulmonary endothelial cells (ECs) of hypoxic mouse lungs in vivo and in human pulmonary microvascular ECs in vitro. Treatment with conditioned medium from hResistin-stimulated human pulmonary microvascular ECs induced an autophagic response, BMPR2 (bone morphogenetic protein receptor 2) defects, and subsequent apoptosis-resistant proliferation in human pulmonary artery (vascular) smooth muscle cells in an HMGB1-dependent manner. These effects were confirmed in ECs and smooth muscle cells isolated from pulmonary arteries of patients with idiopathic PH. HIMF/HMGB1/RAGE-mediated autophagy and BMPR2 impairment were also observed in pulmonary artery (vascular) smooth muscle cells of hypoxic mice, effects perhaps related to FoxO1 (forkhead box O1) dampening by HIMF. Experiments in EC-specific hResistin-overexpressing transgenic mice confirmed that EC-derived HMGB1 mediated the hResistin-driven pulmonary vascular remodeling and PH. CONCLUSIONS In HIMF-induced PH, HMGB1-RAGE signaling is pivotal for mediating EC-smooth muscle cell crosstalk. The humanized mouse data further support clinical implications for the HIMF/HMGB1 signaling axis and indicate that hResistin and its downstream pathway may constitute targets for the development of novel anti-PH therapeutics in humans.
Collapse
Affiliation(s)
- Qing Lin
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chunling Fan
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jose Gomez-Arroyo
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katrien Van Raemdonck
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lucas W Meuchel
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - John T Skinner
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allen D Everett
- Division of Pediatric Cardiology, Department of Pediatrics (A.D.E.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xia Fang
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew A Macdonald
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kazuyo Yamaji-Kegan
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roger A Johns
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
22
|
Fu R, Xia Y, Li M, Mao R, Guo C, Zhou M, Tan H, Liu M, Wang S, Yang N, Zhao J. Pim-1 as a Therapeutic Target in Lupus Nephritis. Arthritis Rheumatol 2019; 71:1308-1318. [PMID: 30791224 DOI: 10.1002/art.40863] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Lupus nephritis (LN) is a major determinant of morbidity and mortality in systemic lupus erythematosus (SLE). Pim-1 regulates lymphocyte proliferation and activation. The role of Pim-1 in autoimmune disease remains unclear. This study was undertaken to test the hypothesis that inhibition of Pim-1 would have therapeutic potential in patients with LN. METHODS Pim-1 expression was analyzed in lupus-prone (NZB × NZW)F1 mice (n = 6), human peripheral blood mononuclear cells (PBMCs) from SLE patients (n = 10), and glomeruli from patients with LN (n = 8). The therapeutic effect of the Pim-1 inhibitor AZD1208 was assessed in the same murine lupus model (n = 10 mice per group). In vitro analysis was conducted to explore the mechanisms of action of Pim-1 in mouse and human podocytes after Pim-1 expression had been induced by anti-double-stranded DNA (anti-dsDNA) antibody-positive serum. Finally, MRL/lpr mice were used to confirm the therapeutic effects of Pim-1 inhibition in vivo (n = 10 mice per group). RESULTS Up-regulation of Pim-1 was seen in renal lysates from diseased (NZB × NZW)F1 mice and in PBMCs from patients with SLE and renal biopsy tissue from patients with LN, relative to their control counterparts (each P < 0.05). The Pim-1 inhibitor AZD1208 reduced the severity of proteinuria, glomerulonephritis, renal immune complex deposits, and serum anti-dsDNA antibody levels, concomitant with the suppression of NFATc1 expression and NLRP3 inflammasome activation, in diseased (NZB × NZW)F1 mice (each P < 0.05 versus controls). Moreover, in mouse and human podocytes, Pim-1 knockdown with targeted small interfering RNA (siRNA) suppressed NFATc1 and NLRP3 inflammasome signaling in the presence of anti-dsDNA-positive serum (each P < 0.05 versus control siRNA). Mechanistically, Pim-1 modulated NLRP3 inflammasome activation through intracellular Ca2+ (P < 0.05 versus normal controls). The therapeutic effect of Pim-1 blockade was replicated in MRL/lpr mice. CONCLUSION These data identify Pim-1 as a critical regulator of LN pathogenesis in patients with SLE. Targeting of the Pim-1/NFATc1/NLRP3 pathway might therefore have therapeutic potential in human LN.
Collapse
Affiliation(s)
- Rong Fu
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Xia
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meirong Li
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Renxiang Mao
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaohuan Guo
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hechang Tan
- Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Meiling Liu
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Wang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jijun Zhao
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Zhu T, Luo J, Wang Y, Xiong X, Sheng B, Yang X, Ndongala NAMT, Li J. Elevated plasma Pim-1 and its clinical significance in patients with pulmonary arterial hypertension. Clin Exp Pharmacol Physiol 2019; 46:752-760. [PMID: 31066078 DOI: 10.1111/1440-1681.13102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 11/28/2022]
Abstract
This study was aimed to determine plasma Pim-1 levels in patients with pulmonary arterial hypertension (PAH) and to estimate the clinical value of Pim-1 as a biomarker of PAH. This was a single-centre retrospective study in 111 patients with congenital heart disease (CHD) and idiopathic PAH (IPAH). Those CHD patients were divided into two groups: PAH associated with CHD (PAH-CHD) and CHD without PAH (nPAH-CHD). Plasma Pim-1 levels were measured by enzyme-linked immunosorbent assay. (a) Plasma Pim-1 levels were significantly increased in patients with PAH-CHD and IPAH compared with the healthy control group (27.81 ± 11.34 ng/mL vs 13.02 ± 5.30 ng/mL; 32.81 ± 12.28 ng/mL vs 13.02 ± 5.30 ng/mL, P < 0.05) and nPAH-CHD (27.81 ± 11.34 ng/mL vs 17.33 ± 7.99 ng/mL; 32.81 ± 12.28 ng/mL vs 17.33 ± 7.99 ng/mL, P < 0.05). Pim-1 levels were substantially increased in patients with severe PAH-CHD compared with mild-to-moderate PAH-CHD (19.12 ± 6.70 ng/mL vs 8.54 ± 3.71 ng/mL, P < 0.05). (b) Pim-1 levels were correlated positively with the mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) (r = 0.582, 0.516; P < 0.001, respectively), while negatively with tricuspid annular plane systolic excursion (TAPSE), tricuspid annular plane systolic velocity (S') and right ventricular fractional area changes (RVFAC) (r = -0.375, -0.354, -0.507; P < 0.05, respectively). (c) PAH-CHD and severe PAH-CHD was identified by plasma Pim-1 with a cutoff value of 16.8 ng/mL (P < 0.001) with a sensitivity of 87.3% and a specificity of 65%, and a cutoff value of 20.53 ng/mL (P < 0.001) with a sensitivity of 87.3% and a specificity of 52%, respectively. Plasma Pim-1 levels were significantly higher in patients with PAH-CHD and IPAH. Plasma Pim-1 may represent an effectively biomarker in patients with PAH.
Collapse
Affiliation(s)
- Tengteng Zhu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jun Luo
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Wang
- Department of Cardiology, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan, China
| | - Xianliang Xiong
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bin Sheng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaojie Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | - Jiang Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Kosmopoulos M, Drekolias D, Zavras PD, Piperi C, Papavassiliou AG. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:611-619. [PMID: 30611860 DOI: 10.1016/j.bbadis.2019.01.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023]
Abstract
Coronary artery disease remains the leading cause of mortality in adult diabetic population with however, a high predominance also in non-diabetic subjects. In search of common molecular mechanisms and metabolic by-products with potential pathogenic role, increased advanced glycation end products (AGEs) present a critical biomarker for CAD development in both cases. Interaction of AGEs with their transmembrane cell receptor, RAGE in endothelial and smooth muscle cells as well as in platelets, activates intracellular signaling that leads to endothelial injury, modulation of vascular smooth muscle cell function and altered platelet activity. Furthermore, tissue accumulation of AGEs affects current treatment approaches being involved in stent restenosis. The present review provides an update of AGE-induced molecular mechanisms involved in CAD pathophysiology while it discusses emerging therapeutic interventions targeting AGE reduction and AGE-RAGE signaling with beneficial clinical outcome.
Collapse
Affiliation(s)
- Marinos Kosmopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Drekolias
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Phaedon D Zavras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
25
|
Kuebler WM, Bonnet S, Tabuchi A. Inflammation and autoimmunity in pulmonary hypertension: is there a role for endothelial adhesion molecules? (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893218757596. [PMID: 29480134 PMCID: PMC5865459 DOI: 10.1177/2045893218757596] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While pulmonary hypertension (PH) has traditionally not been considered as a disease that is directly linked to or, potentially, even caused by inflammation, a rapidly growing body of evidence has demonstrated the accumulation of a variety of inflammatory and immune cells in PH lungs, in and around the wall of remodeled pulmonary resistance vessels and in the vicinity of plexiform lesions, respectively. Concomitantly, abundant production and release of various inflammatory mediators has been documented in both PH patients and experimental models of PH. While these findings unequivocally demonstrate an inflammatory component in PH, they have fueled an intense and presently ongoing debate as to the nature of this inflammatory aspect: is it a mere bystander of or response to the actual disease process, or is it a pathomechanistic contributor or potentially even a trigger of endothelial injury, smooth muscle hypertrophy and hyperplasia, and the resulting lung vascular remodeling? In this review, we will discuss the present evidence for an inflammatory component in PH disease with a specific focus on the potential role of the endothelium in this scenario and highlight future avenues of experimental investigation which may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| | | | - Arata Tabuchi
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| |
Collapse
|
26
|
Fasting blood soluble RAGE may be causally implicated in impaired glucose metabolism in Chinese patients with primary hypertension. Gene 2018; 639:11-17. [DOI: 10.1016/j.gene.2017.09.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/22/2022]
|
27
|
Genetic Variants of the Receptor for Advanced Glycation End-products in Susceptibility to Type 2 Diabetes Mellitus in Primary Hypertensive Patients. Sci Rep 2017; 7:17207. [PMID: 29222432 PMCID: PMC5722821 DOI: 10.1038/s41598-017-17068-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/16/2017] [Indexed: 01/21/2023] Open
Abstract
Diabetes mellitus is frequently comorbid with hypertension, which is approximately twice as common as diabetes mellitus in China. We designed a case-control association study to inspect the susceptibility of the receptor for advanced glycation end-products (RAGE) gene 6 variants to type 2 diabetes mellitus (T2DM) in 2199 patients with primary hypertension (1252 diabetic cases and 947 nondiabetic controls). The genotypes/alleles of −429T > C and 82Gly > Ser variants differed significantly between the two groups, and their associations with T2DM were significant after Bonferroni correction. Two variants, −374T > A and I/D, showed only marginal associations with T2DM. Haplotype analysis of above 4 significant variants indicated that a low-penetrance haplotype simultaneously bearing −429C and 82Ser alleles was overrepresented in cases relative to controls (4.75% vs. 1.72%, P < 0.001). Moreover, the predictive capability of 6 variants was significantly superior to available risk factors, with better goodness-of-fit. A predictive nomogram of 4 baseline risk factors and 2 variants of statistical significance was structured, with a good predictive accuracy (C-index = 0.761, P < 0.001). Taken together, our findings highlighted a contributory role of the RAGE gene, especially its two functional variants −429T > C and 82Gly > Ser, in susceptibility to T2DM in primary hypertensive patients, which may aid early detection and risk assessment for high-risk individuals.
Collapse
|
28
|
Katakami N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J Atheroscler Thromb 2017; 25:27-39. [PMID: 28966336 PMCID: PMC5770221 DOI: 10.5551/jat.rv17014] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic macroangiopathy, atherosclerosis secondary to diabetes mellitus (DM), causes cerebro-cardiovascular diseases, which are major causes of death in patients with DM and significantly reduce their quality of life. The alterations in vascular homeostasis due to endothelial and vascular smooth muscle cell dysfunction are the main features of diabetic macroangiopathy. Although multiple metabolic abnormalities that characterize diabetes are involved in the progression of atherosclerosis in patients with DM, it may be said that prolonged exposure to hyperglycemia and insulin resistance clustering with other risk factors such as obesity, arterial hypertension, and dyslipidemia play crucial roles. Laboratory and clinical researches in the past decades have revealed that major biochemical pathways involved in the development of diabetic macroangiopathy are as follows: overproduction of reactive oxygen species, increased formation of advanced glycation end-products (AGEs) and activation of the AGEs-receptor for AGE axis, polyol and hexosamine flux, protein kinase C activation, and chronic vascular inflammation. Among them, oxidative stress is considered to be a key factor.
Collapse
Affiliation(s)
- Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine.,Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine
| |
Collapse
|
29
|
Meloche J, Lampron MC, Nadeau V, Maltais M, Potus F, Lambert C, Tremblay E, Vitry G, Breuils-Bonnet S, Boucherat O, Charbonneau E, Provencher S, Paulin R, Bonnet S. Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2017; 37:1513-1523. [DOI: 10.1161/atvbaha.117.309156] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
Objective—
Pulmonary arterial hypertension (PAH) is a vascular disease not restricted to the lungs. Many signaling pathways described in PAH are also of importance in other vascular remodeling diseases, such as coronary artery disease (CAD). Intriguingly, CAD is 4× more prevalent in PAH compared with the global population, suggesting a link between these 2 diseases. Both PAH and CAD are associated with sustained inflammation and smooth muscle cell proliferation/apoptosis imbalance and we demonstrated in PAH that this phenotype is, in part, because of the miR-223/DNA damage/Poly[ADP-ribose] polymerase 1/miR-204 axis activation and subsequent bromodomain protein 4 (BRD4) overexpression. Interestingly, BRD4 is also a trigger for calcification and remodeling processes, both of which are important in CAD. Thus, we hypothesize that BRD4 activation in PAH influences the development of CAD.
Approach and Results—
PAH was associated with significant remodeling of the coronary arteries in both human and experimental models of the disease. As observed in PAH distal pulmonary arteries, coronary arteries of patients with PAH also exhibited increased DNA damage, inflammation, and BRD4 overexpression. In vitro, using human coronary artery smooth muscle cells from PAH, CAD and non-PAH–non-CAD patients, we showed that both PAH and CAD smooth muscle cells exhibited increased proliferation and suppressed apoptosis in a BRD4-dependent manner. In vivo, improvement of PAH by BRD4 inhibitor was associated with a reduction in coronary remodeling and interleukin-6 expression.
Conclusions—
Overall, this study demonstrates that increased BRD4 expression in coronary arteries of patient with PAH contributes to vascular remodeling and comorbidity development.
Collapse
Affiliation(s)
- Jolyane Meloche
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Marie-Claude Lampron
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Valérie Nadeau
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Mélanie Maltais
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - François Potus
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Caroline Lambert
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Eve Tremblay
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Géraldine Vitry
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Sandra Breuils-Bonnet
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Olivier Boucherat
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Eric Charbonneau
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Steeve Provencher
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Roxane Paulin
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Sébastien Bonnet
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| |
Collapse
|
30
|
Wei JY, Liu CC, Ouyang HD, Ma C, Xie MX, Liu M, Lei WL, Ding HH, Wu SL, Xin WJ. Activation of RAGE/STAT3 pathway by methylglyoxal contributes to spinal central sensitization and persistent pain induced by bortezomib. Exp Neurol 2017; 296:74-82. [PMID: 28729113 DOI: 10.1016/j.expneurol.2017.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
Bortezomib is a first-line chemotherapeutic drug widely used for multiple myeloma and other nonsolid malignancies. Although bortezomib-induced persistent pain is easily diagnosed in clinic, the pathogenic mechanism remains unclear. Here, we studied this issue with use of a rat model of systemic intraperitoneal administration of bortezomib for consecutive 5days. Consisted with our previous study, we found that bortezomib treatment markedly induced mechanical allodynia in rats. Furthermore, we first found that bortezomib treatment significantly induced the upregulation of methylglyoxal in spinal dorsal horn of rats. Spinal local application of methylglyoxal also induced mechanical allodynia and central sensitization in normal rats. Moreover, administration of bortezomib upregulated the expression of receptors for advanced glycation end products (RAGE) and phosphorylated STAT3 (p-STAT3) in dorsal horn. Importantly, intrathecal injection of metformin, a known scavenger of methylglyoxal, significantly attenuated the upregulation of methylglyoxal and RAGE in dorsal horn, central sensitization and mechanical allodynia induced by bortezomib treatment, and blockage of RAGE also prevented the upregulation of p-STAT3, central sensitization and mechanical allodynia induced by bortezomib treatment. In addition, inhibition of STAT3 activity by S3I-201 attenuated bortezomib-induced mechanical allodynia and central sensitization. Local knockdown of STAT3 also ameliorated the mechanical allodynia induced by bortezomib administration. Our results suggest that accumulation of methylglyoxal may activate the RAGE/STAT3 signaling pathway in dorsal horn, and contributes to the spinal central sensitization and persistent pain induced by bortezomib treatment.
Collapse
Affiliation(s)
- Jia-You Wei
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Han-Dong Ouyang
- Department of Anesthesiology, Cancer Center, Sun Yat-sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chao Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Man-Xiu Xie
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Liu
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wan-Long Lei
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Huan-Huan Ding
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shao-Ling Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
Ping S, Liu S, Zhou Y, Li Z, Li Y, Liu K, Bardeesi AS, Wang L, Chen J, Deng L, Wang J, Wang H, Chen D, Zhang Z, Sheng P, Li C. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis. Cell Death Dis 2017; 8:e2818. [PMID: 28542133 PMCID: PMC5520728 DOI: 10.1038/cddis.2017.213] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/12/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Protein disulfide isomerase (PDI) involves cell survival and death. Whether PDI mediates mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs) -triggered simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) is unknown. Here, we hypothesized that different expression levels of PDI trigger completely opposite cell fates among the different VSMC subtypes. Mouse veins were grafted into carotid arteries of non-diabetic and diabetic mice for 8 weeks; the grafted veins underwent simultaneous increases in proliferation and apoptosis, which triggered vein graft arterializations in non-diabetic or atherosclerosis in diabetic mice. A higher rate of proliferation and apoptosis was seen in the diabetic group. SS and/or AGEs stimulated the quiescent cultured VSMCs, resulting in simultaneous increases in proliferation and apoptosis; they could induce increased PDI activation and expression. Both in vivo and in vitro, the proliferating VSMCs indicated weak co-expression of PDI and SM-α-actin while apoptotic or dead cells showed strong co-expression of both. Either SS or AGEs rapidly upregulated the expression of PDI, NOX1 and ROS, and their combination had synergistic effects. Inhibiting PDI simultaneously suppressed the proliferation and apoptosis of VSMCs, while inhibition of SM-α-actin with cytochalasin D led to increased apoptosis and cleaved caspases-3 but had no effect on proliferation. In conclusion, different expression levels of PDI in VSMCs induced by SS and/or AGEs triggered a simultaneous increase in proliferation and apoptosis, accelerated vein graft arterializations or atherosclerosis, leading us to propose PDI as a novel target for the treatment of vascular remodeling and diseases.
Collapse
Affiliation(s)
- Suning Ping
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhuan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziqing Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhuang Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kefeng Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Adham Sa Bardeesi
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingjing Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhengyu Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Histology and Embryology, School of Basic Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Li F, Song R, Ao L, Reece TB, Cleveland JC, Dong N, Fullerton DA, Meng X. ADAMTS5 Deficiency in Calcified Aortic Valves Is Associated With Elevated Pro-Osteogenic Activity in Valvular Interstitial Cells. Arterioscler Thromb Vasc Biol 2017; 37:1339-1351. [PMID: 28546218 DOI: 10.1161/atvbaha.117.309021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Extracellular matrix proteinases are implicated in the pathogenesis of calcific aortic valve disease. The ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) enzyme is secreted, matrix-associated metalloendopeptidase, capable of degrading extracellular matrix proteins, particularly matrilin 2. We sought to determine the role of the ADAMTS5/matrilin 2 axis in mediating the phenotype transition of valvular interstitial cells (VICs) associated with calcific aortic valve disease. APPROACH AND RESULTS Levels of ADAMTS5, matrilin 2, and α-SMA (α-smooth muscle actin) were evaluated in calcified and normal human aortic valve tissues and VICs. Calcified aortic valves have reduced levels of ADAMTS5 and higher levels of matrilin 2 and α-SMA. Treatment of normal VICs with soluble matrilin 2 caused an increase in α-SMA level through Toll-like receptors 2 and 4, which was accompanied by upregulation of runt-related transcription factor 2 and alkaline phosphatase. In addition, ADAMTS5 knockdown in normal VICs enhanced the effect of matrilin 2. Matrilin 2 activated nuclear factor (NF) κB and NF of activated T cells complex 1 and induced the interaction of these 2 NFs. Inhibition of either NF-κB or NF of activated T cells complex 1 suppressed matrilin 2's effect on VIC phenotype change. Knockdown of α-SMA reduced and overexpression of α-SMA enhanced the expression of pro-osteogenic factors and calcium deposit formation in human VICs. CONCLUSIONS Matrilin 2 induces myofibroblastic transition and elevates pro-osteogenic activity in human VICs via activation of NF-κB and NF of activated T cells complex 1. Myofibroblastic transition in human VICs is an important mechanism of elevating the pro-osteogenic activity. Matrilin 2 accumulation associated with relative ADAMTS5 deficiency may contribute to the mechanism underlying calcific aortic valve disease progression.
Collapse
Affiliation(s)
- Fei Li
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Rui Song
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Lihua Ao
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - T Brett Reece
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Joseph C Cleveland
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Nianguo Dong
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - David A Fullerton
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Xianzhong Meng
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.).
| |
Collapse
|
33
|
Protein kinase C-mediated mu-opioid receptor phosphorylation and desensitization in rats, and its prevention during early diabetes. Pain 2017; 157:910-921. [PMID: 26713421 DOI: 10.1097/j.pain.0000000000000459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Painful diabetic neuropathy is associated with impaired opioid analgesia; however, the precise mechanism in sensory neurons remains unclear. This study aimed to identify putative mechanisms involved in modified opioid responsiveness during early streptozotocin-induced diabetes in rats. In this study, we demonstrate that in diabetic animals, impaired peripheral opioid analgesia is associated with a reduction in functional mu-opioid receptor (MOR) G protein coupling. Mu-opioid receptor immunoreactive neurons colocalized with activated forms of protein kinase C (PKC) and with the receptor for advanced glycation end products (RAGE) during streptozotocin-induced diabetes. Moreover, MOR phosphorylation at Thr370 in sensory neurons of diabetic rats, and thus desensitization, was due to RAGE-dependent PKC activation. Importantly, blocking PKC activation using PKC selective inhibitor, silencing RAGE with intrathecal RAGE siRNA, or inhibiting advanced glycation end product (AGE) formation prevented sensory neuron MOR phosphorylation and, consequently, restored MOR G protein coupling and analgesic efficacy. Thus, our findings give the first in vivo evidence of a RAGE-dependent PKC-mediated heterologous MOR phosphorylation and desensitization in sensory neurons under pathological conditions such as diabetic neuropathy. This may unravel putative mechanisms and suggest possible prevention strategies of impaired opioid responsiveness.
Collapse
|
34
|
Qian Z, Zhang L, Chen J, Li Y, Kang K, Qu J, Wang Z, Zhai Y, Li L, Gou D. MiR-328 targeting PIM-1 inhibits proliferation and migration of pulmonary arterial smooth muscle cells in PDGFBB signaling pathway. Oncotarget 2016; 7:54998-55011. [PMID: 27448984 PMCID: PMC5342397 DOI: 10.18632/oncotarget.10714] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been recognized to mediate PDGF-induced cell dysregulation, but their exact functions remain to be elucidated. By using a sensitive S-Poly(T) Plus qRT-PCR method, the expression profiling of 1,078 miRNAs were investigated in pulmonary artery smooth muscle cells (PASMCs) with or without PDGFBB stimulation. MiR-328 was found as a prominent down-regulated miRNA, displaying a specific dose- and time-dependent downregulation upon PDGFBB exposure. Functional analyses revealed that miR-328 could inhibit PASMCs proliferation and migration both with and without PDGFBB treatment. The Ser/Thr-protein kinase-1 (PIM-1) was identified as a direct target of miR-328, and functionally confirmed by a rescue experiment. In addition, the decrease of miR-328 by PDGFBB might be due to the increased expression of DNA methylation transferase 1 (DNMT1) and DNA methylation. Finally, serum miR-328 level was downregulated in PAH patients associated with congenital heart disease (CHD- PAH). Overall, this study provides critical insight into fundamental regulatory mechanism of miR-328 in PDGFBB-activited PASMCs via targeting PIM- 1, and implies the potential of serum miR-328 level as a circulating biomarker for CHD- PAH diagnosis.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Limin Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yanjiao Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Kang Kang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Yujia Zhai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
35
|
Park MJ, Lee SH, Lee SH, Kim EK, Lee EJ, Moon YM, La Cho M. GRIM19 ameliorates acute graft-versus-host disease (GVHD) by modulating Th17 and Treg cell balance through down-regulation of STAT3 and NF-AT activation. J Transl Med 2016; 14:206. [PMID: 27391226 PMCID: PMC4938933 DOI: 10.1186/s12967-016-0963-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/28/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND T helper (Th) 17 cells are a subset of T helper cells that express interleukin (IL)-17 and initiate the inflammatory response in autoimmune diseases. Regulatory T cells (Tregs) are a subpopulation of T cells that produce forkhead box P3 (FOXP3) and inhibit the immune response. Graft versus host disease (GVHD) is a complication of allogeneic tissue transplantation, and Th17 cells and their proinflammatory activity play a central role in the pathogenesis of GVHD. Gene associated with retinoid-interferon-induced mortality (GRIM) 19, originally identified as a nuclear protein, is expressed ubiquitously in various human tissues and regulate signal transducer and activator of transcription (STAT)3 activity. METHODS Splenoytes and bone marrow cells were transplanted into mice with GVHD. The alloresponse of T cells and GVHD clinical score was measured. Realtime-polymerase chain reaction (realtime-PCR) was used to examine mRNA level. Flow cytometry and enzyme linked immunosorbent assay (ELISA) was used to evaluate protein expression. RESULTS A GRIM19 transgenic cell transplant inhibited Th17 cell differentiation, alloreactive T cell responses, and STAT3 expression in mice with GVHD. On the other hand, the differentiation of Tregs and STAT5 production were enhanced by GRIM19. Overall, the severity of GVHD was decreased in mice that had received GRIM19 transgenic bone marrow and spleen transplants. Transplantation from GRIM19-overexpressing cells downregulated the expression of nuclear factor of activated T cells (NFATc1) but promoted the expression of regulator of calcineurin (RCAN)3 while downregulating NFAT-dependent cytokine gene expression. This complex mechanism underlies the therapeutic effect of GRIM19. CONCLUSIONS We observed that GRIM19 can reduce Th17 cell differentiation and alloreactive T cell responses in vitro and in vivo. Additionally, GRIM19 suppressed the severity of GVHD by modulating STAT3 activity and controlling Th17 and Treg cell differentiation. These results suggest that GRIM19 attenuates acute GVHD through the inhibition of the excessive inflammatory response mediated by T cell activation.
Collapse
Affiliation(s)
- Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hee Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Eun Jung Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Mi- La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea. .,Divison of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, 137-040, South Korea. .,Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Korea 505 Banpo-Dong, Seocho-Ku, Seoul, 137-040, Korea.
| |
Collapse
|
36
|
Cao L, Pan D, Li D, Zhang Y, Chen Q, Xu T, Li W, Wu W. Relation between anti-atherosclerotic effects of IRAK4 and modulation of vascular smooth muscle cell phenotype in diabetic rats. Am J Transl Res 2016; 8:899-910. [PMID: 27158377 PMCID: PMC4846934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Deregulation of phenotypic modulation in VSMCs is the initial stage of atherosclerosis, especially in diabetes. Functional deficiency of IRAK4 inhibits the formation of vascular lesions in ApoE-/- mice. Therefore, in this study, we examined the functions of IRAK4 in the regulation of VSMCs differentiation and phenotypic modulation at the levels of transcription and translation in T2D rats. The T2D rat model was generated by feeding a high-fat diet and injecting a low dose of streptozotocin intraperitoneally. VSMCs were isolated from the thoracic aortas of the T2D rats. VSMCs proliferation and migration were measured using water soluble tetrazolium salt-1 assay, 5-ethynyl-29-deoxyuridine staining and migration assay. IRAK4 was knocked down by siRNA and inhibited by an IRAK1/4 inhibitor. The mRNAs and proteins of signal molecules and phenotypic markers were detected by qRT-PCR and western blotting. The results demonstrated that LPS significantly increased viability, cell migration rate and amount of DNA in VSMCs. The IRAK4 inhibitor also reduced LPS-mediated protein expression of myosin heavy chain and nuclear factor κB p65 subunit and increased smooth muscle 22α expression. Moreover, IRAK4 knock-down reduced the LPS-mediated expression of mRNAs for myosin heavy chain, nuclear factor κB p65 subunit, and monocyte chemoattractant protein-1 (MCP-1), but increased the mRNA of smooth muscle 22α in VSMCs. The activation of IRAK4 phenotypically modulated VSMCs from differentiation to dedifferentiation. Inactivation of IRAK4 exerts a protective effect on VSMCs differentiation and inhibits inflammation. IRAK4 could therefore be a target for interventions to prevent and treat the initial phase of atherosclerosis.
Collapse
Affiliation(s)
- Lijuan Cao
- Institute of Cardiovascular Disease Research, Xuzhou Medical College84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
| | - Defeng Pan
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Yanbin Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Qiuping Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical College84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
| | - Tongda Xu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Wenhua Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Wanling Wu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| |
Collapse
|
37
|
Maltais JS, Simard E, Froehlich U, Denault JB, Gendron L, Grandbois M. iRAGE as a novel carboxymethylated peptide that prevents advanced glycation end product-induced apoptosis and endoplasmic reticulum stress in vascular smooth muscle cells. Pharmacol Res 2015; 104:176-85. [PMID: 26707030 DOI: 10.1016/j.phrs.2015.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
Abstract
Advanced glycation end-products (AGE) and the receptor for AGE (RAGE) have been linked to numerous diabetic vascular complications. RAGE activation promotes a self-sustaining state of chronic inflammation and has been shown to induce apoptosis in various cell types. Although previous studies in vascular smooth muscle cells (VSMC) showed that RAGE activation increases vascular calcification and interferes with their contractile phenotype, little is known on the potential of RAGE to induce apoptosis in VSMC. Using a combination of apoptotic assays, we showed that RAGE stimulation with its ligand CML-HSA promotes apoptosis of VSMC. The formation of stress granules and the increase in the level of the associated protein HuR point toward RAGE-dependent endoplasmic reticulum (ER) stress, which is proposed as a key contributor of RAGE-induced apoptosis in VSMC as it has been shown to promote cell death via numerous mechanisms, including up-regulation of caspase-9. Chronic NF-κB activation and modulation of Bcl-2 homologs are also suspected to contribute to RAGE-dependent apoptosis in VSMC. With the goal of reducing RAGE signaling and its detrimental impact on VSMC, we designed a RAGE antagonist (iRAGE) derived from the primary amino acid sequence of HSA. The resulting CML peptide was selected for the high glycation frequency of the primary sequence in the native protein in vivo. Pretreatment with iRAGE blocked 69.6% of the increase in NF-κB signaling caused by RAGE activation with CML-HSA after 48h. Preincubation with iRAGE was successful in reducing RAGE-induced apoptosis, as seen through enhanced cell survival by SPR and reduced PARP cleavage. Activation of executioner caspases was 63.5% lower in cells treated with iRAGE before stimulation with CML-HSA. To our knowledge, iRAGE is the first antagonist shown to block AGE-RAGE interaction and we propose the molecule as an initial candidate for drug discovery.
Collapse
Affiliation(s)
- Jean-Sébastien Maltais
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Elie Simard
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Ulrike Froehlich
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Bernard Denault
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Gendron
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Michel Grandbois
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
38
|
Ashraf JM, Ahmad S, Choi I, Ahmad N, Farhan M, Tatyana G, Shahab U. Recent advances in detection of AGEs: Immunochemical, bioanalytical and biochemical approaches. IUBMB Life 2015; 67:897-913. [PMID: 26597014 DOI: 10.1002/iub.1450] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022]
Abstract
Advanced glycation end products (AGEs) are a cohort of heterogeneous compounds that are formed after the nonenzymatic glycation of proteins, lipids and nucleic acids. Accumulation of AGEs in the body is implicated in various pathophysiological conditions like diabetes, cardiovascular diseases and atherosclerosis. Numerous studies have reported the connecting link between AGEs and the various complications associated with diseases. Hence, detection and measurement of AGEs becomes centrally important to understand and manage the menace created by AGEs inside the body. In recent years, an increasing number of immunotechniques as well as bioanalytical techniques have been developed to efficiently measure the levels of AGEs, but most of them are still far away from being clinically consistent, as relative disparity and ambiguity masks their standardization. This article is designed to critically review the recent advances and the emerging techniques for detection of AGEs. It is an attempt to summarize the major techniques that exist currently for the detection of AGEs both qualitatively and quantitatively. This review primarily focuses on the detection and quantification of AGEs which are formed in vivo. Immunochemical approach though costly but most effective and accurate method to measure the level of AGEs. Literature review suggests that detection of autoantibody targeting AGEs is a promising way that can be utilized for detection of AGEs. Future research efforts should be dedicated to develop this method in order to push forward the clinical applications of detection of AGEs.
Collapse
Affiliation(s)
| | - Saheem Ahmad
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-Sciences, Integral University, Lucknow, UP, India
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Nashrah Ahmad
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-Sciences, Integral University, Lucknow, UP, India
| | - Mohd Farhan
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-Sciences, Integral University, Lucknow, UP, India
| | - Godovikova Tatyana
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| |
Collapse
|
39
|
Park YK, Hong VS, Lee TY, Lee J, Choi JS, Park DS, Park GY, Jang BC. The novel anti-adipogenic effect and mechanisms of action of SGI-1776, a Pim-specific inhibitor, in 3T3-L1 adipocytes. Int J Mol Med 2015; 37:157-64. [PMID: 26719859 DOI: 10.3892/ijmm.2015.2415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
The proviral integration site for moloney murine leukemia virus (Pim) kinases, consisting of Pim-1, Pim-2 and Pim-3, belongs to a family of serine/threonine kinases that are involved in controlling cell growth and differentiation. Pim kinases are emerging as important mediators of adipocyte differentiation. SGI-1776, an inhibitor of Pim kinases, is widely used to assess the physiological roles of Pim kinases, particularly cell functions. In the present study, we examined the effects of SGI-1776 on adipogenesis. The anti‑adipogenic effect of SGI‑1776 was measured by Oil Red O staining and AdipoRed assays. The effect of SGI‑1776 on the growth of 3T3‑L1 adipocytes was determined by cell count analysis. The effects of SGI‑1776 on the protein and mRNA expression of adipogenesis-related proteins and adipokines in 3T3‑L1 adipocytes were also evaluated by western blot analysis and RT‑PCR, respectively. Notably, SGI-1776 markedly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. On a mechanistic level, SGI-1776 inhibited not only the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ) and fatty acid synthase (FAS), but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3). Moreover, SGI-1776 decreased the expression of adipokines, including the expression of leptin and regulated on activation, normal T cell expressed and secreted (RANTES) during adipocyte differentiation. These findings demonstrate that SGI-1776 inhibits adipogenesis by downregulating the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS and STAT-3.
Collapse
Affiliation(s)
- Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | - Victor Sukbong Hong
- Department of Chemistry, College of Natural Sciences, Keimyung University, Daegu 704-701, Republic of Korea
| | - Tae-Yoon Lee
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu 705‑717, Republic of Korea
| | - Jinho Lee
- Department of Chemistry, College of Natural Sciences, Keimyung University, Daegu 704-701, Republic of Korea
| | - Jong-Soon Choi
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Dong-Soon Park
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Gi-Young Park
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| |
Collapse
|
40
|
Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F, Provencher S, Bonnet S. miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 2015; 309:C363-72. [DOI: 10.1152/ajpcell.00149.2015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 12/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease affecting lung vasculature. The pulmonary arteries become occluded due to increased proliferation and suppressed apoptosis of the pulmonary artery smooth muscle cells (PASMCs) within the vascular wall. It was recently shown that DNA damage could trigger this phenotype by upregulating poly(ADP-ribose)polymerase 1 (PARP-1) expression, although the exact mechanism remains unclear. In silico analyses and studies in cancer demonstrated that microRNA miR-223 targets PARP-1. We thus hypothesized that miR-223 downregulation triggers PARP-1 overexpression, as well as the proliferation/apoptosis imbalance observed in PAH. We provide evidence that miR-223 is downregulated in human PAH lungs, distal PAs, and isolated PASMCs. Furthermore, using a gain and loss of function approach, we showed that increased hypoxia-inducible factor 1α, which is observed in PAH, triggers this decrease in miR-223 expression and subsequent overexpression of PARP-1 allowing PAH-PASMC proliferation and resistance to apoptosis. Finally, we demonstrated that restoring the expression of miR-223 in lungs of rats with monocrotaline-induced PAH reversed established PAH and provided beneficial effects on vascular remodeling, pulmonary resistance, right ventricle hypertrophy, and survival. We provide evidence that miR-223 downregulation in PAH plays an important role in numerous pathways implicated in the disease and restoring its expression is able to reverse PAH.
Collapse
Affiliation(s)
- Jolyane Meloche
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Marie Le Guen
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - François Potus
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Jérôme Vinck
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Benoit Ranchoux
- University Paris-Sud, Faculté de médecine, Kremlin-Bicêtre, France; AP-HP, DHU TORINO, Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMR-S 999, Labex LERMIT, Hypertension Artérielle Pulmonaire: Physiopathologie et Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Ian Johnson
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Fabrice Antigny
- University Paris-Sud, Faculté de médecine, Kremlin-Bicêtre, France; AP-HP, DHU TORINO, Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMR-S 999, Labex LERMIT, Hypertension Artérielle Pulmonaire: Physiopathologie et Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Eve Tremblay
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Frederic Perros
- University Paris-Sud, Faculté de médecine, Kremlin-Bicêtre, France; AP-HP, DHU TORINO, Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMR-S 999, Labex LERMIT, Hypertension Artérielle Pulmonaire: Physiopathologie et Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| |
Collapse
|
41
|
Xia W, Xu Y, Mao Q, Dong G, Shi R, Wang J, Zheng Y, Xu L, Jiang F. Association of RAGE polymorphisms and cancer risk: a meta-analysis of 27 studies. Med Oncol 2015; 32:442. [PMID: 25603950 DOI: 10.1007/s12032-014-0442-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 12/16/2022]
Abstract
The receptor for advanced glycation end products (RAGE), a member of immunoglobulin superfamily, has been proved to stimulate survival, growth, and metastatic spread of cancers cells. Evidence suggested that the 82G/S, -374T/A, and -429T/C polymorphisms in RAGE promoter region might affect the risk of cancer; however, data from epidemiological studies showed conflicting results that remain to be further clarified. This meta-analysis was performed to derive a more precise estimation of 82G/S, -374T/A, and -429T/C polymorphisms and risk of cancer. A comprehensive electronic search was conducted for articles published up until December 2, 2014, in Medline (PubMed), Embase, the Cochrane Library and Google Scholar. A total of 12 case-control articles were included in this meta-analysis, providing 3,374 cases and 3,757 controls for 82G/S, 2,936 cases and 3,338 controls for -374T/A, and 2,882 cases and 3,279 controls for -429T/C specifically. The pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated to evaluate the associations with risk of cancer. Overall, we observed significantly increased risk of cancer in relation to 82G/S (A vs. G: OR 1.321, 95 % CI 1.164-1.499, P het 0.028; AA vs. GG: OR 1.823, 95 % CI 1.541-2.157, P het < 0.001; AG vs. GG: OR 1.399, 95 % CI 1.120-1.746, P het 0.002; GA+AA vs. GG: OR 1.470, 95 % CI 1.187-1.821, P het 0.002; AA vs. GG+AG: OR 1.416, 95 % CI 1.158-1.732, P het 0.107) and reduced risk of cancer in relation to -374T/A (AA vs. TT: OR 0.818, 95 % CI 0.686-0.976, P het 0.025; A vs. T: OR 0.908, 95 % CI 0.840-0.981, P het 0.014). In subgroup analysis for 82G/S, a significantly elevated cancer risk was indicated in the population of Asian and patients with lung cancer, and for -374T/A, reduced risk was indicated in population of Caucasian and patients with lung cancer and breast cancer. But no significant association was observed between -429T/C and risk of cancer. Thus, this meta-analysis revealed that 82G/S polymorphism is associated with a significantly increased risk of cancer, while -374T/A polymorphism is associated with a reduced risk of cancers.
Collapse
Affiliation(s)
- Wenjie Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status.
Collapse
|
43
|
Chen X, Zhang L, Zhang IY, Liang J, Wang H, Ouyang M, Wu S, da Fonseca ACC, Weng L, Yamamoto Y, Yamamoto H, Natarajan R, Badie B. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res 2014; 74:7285-7297. [PMID: 25326491 DOI: 10.1158/0008-5472.can-14-1240] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interaction of RAGE (the receptor for advanced glycation endproducts) with its ligands can promote tumor progression, invasion, and angiogenesis. Although blocking RAGE signaling has been proposed as a potential anticancer strategy, functional contributions of RAGE expression in the tumor microenvironment (TME) have not been investigated in detail. Here, we evaluated the effect of genetic depletion of RAGE in TME on the growth of gliomas. In both invasive and noninvasive glioma models, animal survival was prolonged in RAGE knockout (Ager(-/-)) mice. However, the improvement in survival in Ager(-/-) mice was not due to changes in tumor growth rate but rather to a reduction in tumor-associated inflammation. Furthermore, RAGE ablation in the TME abrogated angiogenesis by downregulating the expression of proangiogenic factors, which prevented normal vessel formation, thereby generating a leaky vasculature. These alterations were most prominent in noninvasive gliomas, in which the expression of VEGF and proinflammatory cytokines were also lower in tumor-associated macrophages (TAM) in Ager(-/-) mice. Interestingly, reconstitution of Ager(-/-) TAM with wild-type microglia or macrophages normalized tumor vascularity. Our results establish that RAGE signaling in glioma-associated microglia and TAM drives angiogenesis, underscoring the complex role of RAGE and its ligands in gliomagenesis.
Collapse
Affiliation(s)
- Xuebo Chen
- Department of General Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin Province, P.R.China
| | - Leying Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute
| | - Ian Y Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute
| | - Junling Liang
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Huaqing Wang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, P.R. China
| | - Mao Ouyang
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha Hunan, P.R. China
| | - Shihua Wu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Anna Carolina Carvalho da Fonseca
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, Bolsista do CNPq
| | - Lihong Weng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Beckman Research Institute
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University, Japan
| | - Rama Natarajan
- Division of Molecular Diabetes Research, City of Hope Beckman Research Institute
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute.,Department of Cancer Immunotherapeutics & Tumor Immunology, City of Hope Beckman Research Institute
| |
Collapse
|
44
|
Abstract
Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype requires the activation of pro-survival transcription factor like the signal transducers and activators of transcription-3 (STAT3). Using multidisciplinary and translational approaches, we and others have demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the modulation of the expression of several proteins already known as implicated in PAH pathogenesis, as well as for signal transduction to other transcription factors. Furthermore, recent data demonstrated that STAT3 could be therapeutically targeted in different animal models and some molecules are actually in clinical trials for cancer or PAH treatment.
Collapse
Affiliation(s)
- Roxane Paulin
- Vascular Biology Research Group; Department of Medicine; University of Alberta; Edmonton, AB Canada
| | | | | |
Collapse
|
45
|
Liu Y, Zhang J, Yi B, Chen M, Qi J, Yin Y, Lu X, Jasmin JF, Sun J. Nur77 suppresses pulmonary artery smooth muscle cell proliferation through inhibition of the STAT3/Pim-1/NFAT pathway. Am J Respir Cell Mol Biol 2014; 50:379-88. [PMID: 24047441 DOI: 10.1165/rcmb.2013-0198oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The orphan nuclear receptor 4A (NR4A) family plays critical roles in the regulation of cell proliferation, differentiation, and survival in the cardiovascular system. However, the molecular mechanisms underlying the regulation of NR4A receptor expression and its role in pulmonary artery smooth muscle cell (PASMC) function remain unclear. Here, we investigated whether the NR4A family regulates PASMC proliferation, and if so, which mechanisms are involved. By using quantitative real-time RT-PCR, we showed that the orphan nuclear receptor Nur77 was the most abundant member of NR4A family expressed in rat PASMCs, as compared with the two other members, NOR-1 and Nurr1. In rat PASMCs, expression of Nur77 was robustly induced in response to several pathologic stimuli of pulmonary arterial hypertension (PAH), such as hypoxia, 5-hydroxytryptamine (5-HT), platelet-derived growth factor, and endothelin-1. Importantly, Nur77 was also significantly increased in lungs of rats with monocrotaline-induced PAH. Furthermore, we demonstrated that 5-HT markedly up-regulated Nur77 expression through the mitogen-activated protein kinases/extracellular signal-regulated kinase 1/2 pathway. Overexpression of Nur77 inhibited 5-HT-induced PASMC proliferation, as well as the expression of cyclin D1 and proliferating cell nuclear antigen. Mechanistically, we demonstrated that Nur77 specifically interacts with signal transducer and activator of transcription 3, thus inhibiting its phosphorylation and expression of its target genes, such as Pim-1, nuclear factor of activated T cells c2, and survivin in PASMCs. These results indicate that Nur77 is a novel negative-feedback regulator of PASMC proliferation through inhibition of the signal transducer and activator of transcription 3/Pim-1/nuclear factor of activated T cells axis. Modulation of Nur77 activity may potentially represent a novel therapeutic strategy for the treatment of PAH.
Collapse
Affiliation(s)
- Yan Liu
- 1 Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Perera GK, Ainali C, Semenova E, Hundhausen C, Barinaga G, Kassen D, Williams AE, Mirza MM, Balazs M, Wang X, Rodriguez RS, Alendar A, Barker J, Tsoka S, Ouyang W, Nestle FO. Integrative biology approach identifies cytokine targeting strategies for psoriasis. Sci Transl Med 2014; 6:223ra22. [PMID: 24523322 DOI: 10.1126/scitranslmed.3007217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytokines are critical checkpoints of inflammation. The treatment of human autoimmune disease has been revolutionized by targeting inflammatory cytokines as key drivers of disease pathogenesis. Despite this, there exist numerous pitfalls when translating preclinical data into the clinic. We developed an integrative biology approach combining human disease transcriptome data sets with clinically relevant in vivo models in an attempt to bridge this translational gap. We chose interleukin-22 (IL-22) as a model cytokine because of its potentially important proinflammatory role in epithelial tissues. Injection of IL-22 into normal human skin grafts produced marked inflammatory skin changes resembling human psoriasis. Injection of anti-IL-22 monoclonal antibody in a human xenotransplant model of psoriasis, developed specifically to test potential therapeutic candidates, efficiently blocked skin inflammation. Bioinformatic analysis integrating both the IL-22 and anti-IL-22 cytokine transcriptomes and mapping them onto a psoriasis disease gene coexpression network identified key cytokine-dependent hub genes. Using knockout mice and small-molecule blockade, we show that one of these hub genes, the so far unexplored serine/threonine kinase PIM1, is a critical checkpoint for human skin inflammation and potential future therapeutic target in psoriasis. Using in silico integration of human data sets and biological models, we were able to identify a new target in the treatment of psoriasis.
Collapse
Affiliation(s)
- Gayathri K Perera
- Division of Genetics and Molecular Medicine, Guy's, King's and St. Thomas' School of Medicine, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol Metab 2013; 3:94-108. [PMID: 24634815 DOI: 10.1016/j.molmet.2013.11.006] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022] Open
Abstract
The enhanced generation and accumulation of advanced glycation endproducts (AGEs) have been linked to increased risk for macrovascular and microvascular complications associated with diabetes mellitus. AGEs result from the nonenzymatic reaction of reducing sugars with proteins, lipids, and nucleic acids, potentially altering their function by disrupting molecular conformation, promoting cross-linking, altering enzyme activity, reducing their clearance, and impairing receptor recognition. AGEs may also activate specific receptors, like the receptor for AGEs (RAGE), which is present on the surface of all cells relevant to atherosclerotic processes, triggering oxidative stress, inflammation and apoptosis. Understanding the pathogenic mechanisms of AGEs is paramount to develop strategies against diabetic and cardiovascular complications.
Collapse
Affiliation(s)
- Alin Stirban
- Profil Institut für Stoffwechselforschung GmbH, Hellersbergstrasse 9, 41460 Neuss, Germany
| | - Thomas Gawlowski
- University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany ; Division of Endocrinology and Diabetology, University Clinics Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
48
|
Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25:2185-97. [DOI: 10.1016/j.cellsig.2013.06.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/15/2013] [Accepted: 06/25/2013] [Indexed: 01/03/2023]
|
49
|
Chung TW, Choi HJ, Kim CH, Jeong HS, Ha KT. Lipocalin-2 elicited by advanced glycation end-products promotes the migration of vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3386-3395. [PMID: 24149112 DOI: 10.1016/j.bbamcr.2013.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/11/2022]
Abstract
Advanced glycation end-products (AGEs) play key roles in the development of diabetic vascular complications by activating the proliferation and migration of vascular smooth muscle cells. Here, we identified an increase of the migratory properties of human aortic smooth muscle cells (HASMC) through AGE-induced expression of lipocalin-2 (LCN2). Because the AGE-elicited expression of LCN2 was diminished by an antibody against the AGE receptor (RAGE), diphenylene iodonium (DPI), N-acetyl cysteine, LY294002, and SP600125, we suggest that AGEs enhance the expression of LCN2 via a RAGE-NADPH oxidase-reactive oxygen species pathway, leading to the phosphorylation of PI3K-Akt and JNK in HASMCs. In addition, a chromatin immunoprecipitation assay and promoter assay revealed that CCAAT/enhancer binding protein β is crucial for AGE-induced expression of LCN2. However, any other AGE-related signaling pathway, including ERK1/2, p38, NF-κB, and AP-1, did not affect the AGE- induced expression of LCN2. Knockdown of LCN2 expression by shRNA showed that AGE-elicited LCN2 expression enhanced the invasive and migratory properties of HASMCs, but showed no effect on cell proliferation. Considering the importance of HASMC migration in the development of atherosclerosis, our study provides a novel insight into diabetic vascular complications.
Collapse
MESH Headings
- Acute-Phase Proteins/genetics
- Acute-Phase Proteins/metabolism
- Base Sequence
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Chromatin Immunoprecipitation
- Gene Knockdown Techniques
- Glycation End Products, Advanced/pharmacology
- Humans
- JNK Mitogen-Activated Protein Kinases/metabolism
- Lipocalin-2
- Lipocalins/genetics
- Lipocalins/metabolism
- Models, Biological
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/metabolism
- Reactive Oxygen Species/metabolism
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/metabolism
- Signal Transduction/drug effects
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea; Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do 440-746, Republic of Korea
| | - Hee-Jung Choi
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do 440-746, Republic of Korea
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea.
| |
Collapse
|
50
|
von Gise A, Archer SL, Maclean MR, Hansmann G. The first Keystone Symposia Conference on pulmonary vascular isease and right ventricular dysfunction: Current concepts and future therapies. Pulm Circ 2013; 3:275-7. [PMID: 24015328 PMCID: PMC3757822 DOI: 10.4103/2045-8932.114751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|