1
|
Klotz DM, Kuhlmann JD, Link T, Goeckenjan M, Hofbauer LC, Göbel A, Rachner TD, Wimberger P. Clinical impact of soluble Neuropilin-1 in ovarian cancer patients and its association with its circulating ligands of the HGF/c-MET axis. Front Oncol 2022; 12:974885. [PMID: 36338759 PMCID: PMC9635484 DOI: 10.3389/fonc.2022.974885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Neuropilin (NRP) is a transmembrane protein, which has been shown to be a pro-angiogenic mediator and implicated as a potential driver of cancer progression. NRP-1 up-regulation in ovarian cancer tissue predicts poor prognosis. However, the clinical relevance of the soluble form of NRP-1 (sNRP-1) as a circulating biomarker in ovarian cancer patients is unknown. METHODS/PATIENTS COHORT sNRP-1 levels were quantified in a cohort of 88 clinically documented ovarian cancer patients by a commercially available sNRP-1 enzyme-linked immunosorbent assay (ELISA) kit (Biomedica, Vienna, Austria). Patients (81.8% with FIGOIII/IV) received primary cytoreductive surgery with the aim of macroscopic complete resection (achieved in 55.7% of patients) and the recommendation of adjuvant chemotherapy in line with national guidelines. RESULTS Higher levels of sNRP-1 reflected more advanced disease (FIGO III/IV) and indicated a trend towards suboptimal surgical outcome, i.e. any residual tumor. sNRP-1 was neither related to the patients' age nor the BRCA1/2 mutational status. Patients with higher sNRP-1 levels at primary diagnosis had a significantly reduced progression-free survival (PFS) (HR = 0.541, 95%CI: 0.304 - 0.963; p = 0.037) and overall survival (OS) (HR = 0.459, 95%CI: 0.225 - 0.936; p = 0.032). Principal component analysis showed that sNRP-1 levels were unrelated to the circulating hepatocyte growth factor (HGF) and the soluble ectodomain of its receptor the tyrosine kinase mesenchymal-epithelial transition (c-MET), suggesting that there is no proportional serological concentration gradient of soluble components of the NRP-1/HGF/c-MET signaling axis. CONCLUSIONS In line with the previously shown tissue-based prognostic role, we demonstrated for the first time that sNRP-1 can also act as a readily accessible, prognostic biomarker in the circulation of patients with ovarian cancer at primary diagnosis. Given its known role in angiogenesis and conferring resistance to the poly ADP-ribose polymerase (PARP) inhibitor olaparib in vitro, our results encourage more detailed investigation into sNRP-1 as a potential predictive biomarker for bevacizumab and/or PARP-inhibitor treatment.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Maren Goeckenjan
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Lorenz C. Hofbauer
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Andy Göbel
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Tilman D. Rachner
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
2
|
Chuckran CA, Liu C, Bruno TC, Workman CJ, Vignali DA. Neuropilin-1: a checkpoint target with unique implications for cancer immunology and immunotherapy. J Immunother Cancer 2021; 8:jitc-2020-000967. [PMID: 32675311 PMCID: PMC7368550 DOI: 10.1136/jitc-2020-000967] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Checkpoint blockade immunotherapy established a new paradigm in cancer treatment: for certain patients curative treatment requires immune reinvigoration. Despite this monumental advance, only 20%–30% of patients achieve an objective response to standard of care immunotherapy, necessitating the consideration of alternative targets. Optimal strategies will not only stimulate CD8+ T cells, but concomitantly modulate immunosuppressive cells in the tumor microenvironment (TME), most notably regulatory T cells (Treg cells). In this context, the immunoregulatory receptor Neuropilin-1 (NRP1) is garnering renewed attention as it reinforces intratumoral Treg cell function amidst inflammation in the TME. Loss of NRP1 on Treg cells in mouse models restores antitumor immunity without sacrificing peripheral tolerance. Enrichment of NRP1+ Treg cells is observed in patients across multiple malignancies with cancer, both intratumorally and in peripheral sites. Thus, targeting NRP1 may safely undermine intratumoral Treg cell fitness, permitting enhanced inflammatory responses with existing immunotherapies. Furthermore, NRP1 has been recently found to modulate tumor-specific CD8+ T cell responses. Emerging data suggest that NRP1 restricts CD8+ T cell reinvigoration in response to checkpoint inhibitors, and more importantly, acts as a barrier to the long-term durability of CD8+ T cell-mediated tumor immunosurveillance. These novel and distinct regulatory mechanisms present an exciting therapeutic opportunity. This review will discuss the growing literature on NRP1-mediated immune modulation which provides a strong rationale for categorizing NRP1 as both a key checkpoint in the TME as well as an immunotherapeutic target with promise either alone or in combination with current standard of care therapeutic regimens.
Collapse
Affiliation(s)
- Christopher A Chuckran
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center and the Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chang Liu
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center and the Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center and the Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Creg J Workman
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center and the Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Dario Aa Vignali
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Eble JA. Structurally Robust and Functionally Highly Versatile-C-Type Lectin (-Related) Proteins in Snake Venoms. Toxins (Basel) 2019; 11:toxins11030136. [PMID: 30823637 PMCID: PMC6468738 DOI: 10.3390/toxins11030136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Snake venoms contain an astounding variety of different proteins. Among them are numerous C-type lectin family members, which are grouped into classical Ca2+- and sugar-binding lectins and the non-sugar-binding snake venom C-type lectin-related proteins (SV-CLRPs), also called snaclecs. Both groups share the robust C-type lectin domain (CTLD) fold but differ in a long loop, which either contributes to a sugar-binding site or is expanded into a loop-swapping heterodimerization domain between two CLRP subunits. Most C-type lectin (-related) proteins assemble in ordered supramolecular complexes with a high versatility of subunit numbers and geometric arrays. Similarly versatile is their ability to inhibit or block their target molecules as well as to agonistically stimulate or antagonistically blunt a cellular reaction triggered by their target receptor. By utilizing distinct interaction sites differentially, SV-CLRPs target a plethora of molecules, such as distinct coagulation factors and receptors of platelets and endothelial cells that are involved in hemostasis, thrombus formation, inflammation and hematogenous metastasis. Because of their robust structure and their high affinity towards their clinically relevant targets, SV-CLRPs are and will potentially be valuable prototypes to develop new diagnostic and therapeutic tools in medicine, provided that the molecular mechanisms underlying their versatility are disclosed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
7
|
Rhodocetin-αβ selectively breaks the endothelial barrier of the tumor vasculature in HT1080 fibrosarcoma and A431 epidermoid carcinoma tumor models. Oncotarget 2018; 9:22406-22422. [PMID: 29854288 PMCID: PMC5976474 DOI: 10.18632/oncotarget.25032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
The tumor vasculature differs from normal blood vessels in morphology, composition and stability. Here, we describe a novel tumor vessel-disrupting mechanism. In an HT1080/mouse xenograft tumor model rhodocetin-αβ was highly effective in disrupting the tumor endothelial barrier. Mechanistically, rhodocetin-αβ triggered MET signaling via neuropilin-1. As both neuropilin-1 and MET were only lumen-exposed in a subset of abnormal tumor vessels, but not in normal vessels, the prime target of rhodocetin-αβ were these abnormal tumor vessels. Consequently, cells lining such tumor vessels became increasingly motile which compromised the vessel wall tightness. After this initial leakage, rhodocetin-αβ could leave the bloodstream and reach the as yet inaccessible neuropilin-1 on the basolateral side of endothelial cells and thus disrupt nearby vessels. Due to the specific neuropilin-1/MET co-distribution on cells lining such abnormal tumor vessels in contrast to normal endothelial cells, rhodocetin-αβ formed the necessary trimeric signaling complex of rhodocetin-αβ-MET-neuropilin-1 only in these abnormal tumor vessels. This selective attack of tumor vessels, sparing endothelial cell-lined vessels of normal tissues, suggests that the neuropilin-1-MET signaling axis may be a promising drugable target for anti-tumor therapy, and that rhodocetin-αβ may serve as a lead structure to develop novel anti-tumor drugs that target such vessels.
Collapse
|
8
|
Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation. eNeuro 2016; 3:eN-NWR-0074-16. [PMID: 27595133 PMCID: PMC5002983 DOI: 10.1523/eneuro.0074-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023] Open
Abstract
MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine142 (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex.
Collapse
|