1
|
Atici AE, Noval Rivas M, Arditi M. The Central Role of Interleukin-1 Signalling in the Pathogenesis of Kawasaki Disease Vasculitis: Path to Translation. Can J Cardiol 2024; 40:2305-2320. [PMID: 39084253 PMCID: PMC11646188 DOI: 10.1016/j.cjca.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Kawasaki disease (KD) manifests as an acute febrile condition and systemic vasculitis, the etiology of which remains elusive. Primarily affecting children under 5 years of age, if untreated KD can lead to a significant risk of coronary artery aneurysms and subsequent long-term cardiovascular sequelae, including myocardial ischemia and myocardial infarction. Intravenous immunoglobulin therapy mitigates the risk of aneurysm formation, but a subset of patients exhibit resistance to this treatment, increasing the susceptibility of coronary artery lesions. Furthermore, the absence of a KD-specific diagnostic test or biomarkers complicates early detection and appropriate treatment. Experimental murine models of KD vasculitis have substantially improved our understanding of the disease pathophysiology, revealing the key roles of the NLRP3 inflammasome and interleukin-1 (IL-1) signalling pathway. This review aims to delineate the pathophysiologic findings of KD while summarising the findings for the emerging key role of IL-1β in its pathogenesis, derived from both human data and experimental murine models, and the translational potential of these findings for anti-IL-1 therapies for children with KD.
Collapse
Affiliation(s)
- Asli Ekin Atici
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, California, USA; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Magali Noval Rivas
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, California, USA; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, California, USA; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
2
|
Motoji Y, Fukazawa R, Matsui R, Abe Y, Uehara I, Watanabe M, Hashimoto Y, Miyagi Y, Nagi-Miura N, Tanaka N, Ishii Y. Statins Show Anti-Atherosclerotic Effects by Improving Endothelial Cell Function in a Kawasaki Disease-like Vasculitis Mouse Model. Int J Mol Sci 2022; 23:ijms232416108. [PMID: 36555746 PMCID: PMC9780952 DOI: 10.3390/ijms232416108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Kawasaki disease (KD) is an acute inflammatory syndrome of unknown etiology that is complicated by cardiovascular sequelae. Chronic inflammation (vasculitis) due to KD might cause vascular cellular senescence and vascular endothelial cell damage, and is a potential cause of atherosclerosis in young adults. This study examined the effect of KD and HMG-CoA inhibitors (statins) on vascular cellular senescence and vascular endothelial cells. Candida albicans water-soluble fraction (CAWS) was administered intraperitoneally to 5-week-old male apolipoprotein E-deficient (ApoE-) mice to induce KD-like vasculitis. The mice were then divided into three groups: control, CAWS, and CAWS+statin groups. Ten weeks after injection, the mice were sacrificed and whole aortic tissue specimens were collected. Endothelial nitric oxide synthase (eNOS) expression in the ascending aortic intima epithelium was evaluated using immunostaining. In addition, eNOS expression and levels of cellular senescence markers were measured in RNA and proteins extracted from whole aortic tissue. KD-like vasculitis impaired vascular endothelial cells that produce eNOS, which maintains vascular homeostasis, and promoted macrophage infiltration into the tissue. Statins also restored vascular endothelial cell function by promoting eNOS expression. Statins may be used to prevent secondary cardiovascular events during the chronic phase of KD.
Collapse
Affiliation(s)
- Yusuke Motoji
- Department of Cardiovascular Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Ryuji Fukazawa
- Department of Pediatrics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
- Correspondence: ; Tel.: +81-3-3822-2131
| | - Ryosuke Matsui
- Department of Pediatrics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yoshinori Abe
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Makoto Watanabe
- Department of Pediatrics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yoshiaki Hashimoto
- Department of Pediatrics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yasuo Miyagi
- Department of Cardiovascular Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Noriko Nagi-Miura
- Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yosuke Ishii
- Department of Cardiovascular Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| |
Collapse
|
3
|
Yang XY, Yu H, Fu J, Guo HH, Han P, Ma SR, Pan LB, Zhang ZW, Xu H, Hu JC, Zhang HJ, Bu MM, Zhang XF, Yang W, Wang JY, Jin JY, Zhang HC, Li DR, Lu JY, Lin Y, Jiang JD, Tong Q, Wang Y. Hydroxyurea ameliorates atherosclerosis in ApoE -/- mice by potentially modulating Niemann-Pick C1-like 1 protein through the gut microbiota. Theranostics 2022; 12:7775-7787. [PMID: 36451858 PMCID: PMC9706578 DOI: 10.7150/thno.76805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/28/2022] [Indexed: 12/02/2022] Open
Abstract
Rationale: The efficacy and mechanism of hydroxyurea in the treatment of atherosclerosis have rarely been reported. The goal of this study was to investigate the efficacy of hydroxyurea in high-fat diet-fed ApoE-/- mice against atherosclerosis and examine the possible mechanism underlying treatment outcomes. Methods: ApoE-/- mice were fed a high-fat diet for 1 month and then administered hydroxyurea by gavage continuously for 2 months. Aortic root hematoxylin-eosin (H&E) staining and oil red O staining were used to verify the efficacy of hydroxyurea; biochemical methods and ELISA were used to detect changes in relevant metabolites in serum. 16S rRNA was used to detect composition changes in the intestinal bacterial community of animals after treatment with hydroxyurea. Metabolomics methods were used to identify fecal metabolites and their changes. Immunohistochemical staining and ELISA were used for the localization and quantification of intestinal NPC1L1. Results: We showed that aortic root HE staining and oil red O staining determined the therapeutic efficacy of hydroxyurea in the treatment of atherosclerosis in high-fat diet-fed ApoE-/- mice. Serological tests verified the ability of hydroxyurea to lower total serum cholesterol and LDL cholesterol. The gut microbiota was significantly altered after HU treatment and was significantly different from that after antiplatelet and statin therapy. Meanwhile, a metabolomic study revealed that metabolites, including stearic acid, palmitic acid and cholesterol, were significantly enriched in mouse feces. Further histological and ELISAs verified that the protein responsible for intestinal absorption of cholesterol in mice, NPC1L1, was significantly reduced after hydroxyurea treatment. Conclusions: In high-fat diet-fed ApoE-/- mice, hydroxyurea effectively treated atherosclerosis, lowered serum cholesterol, modulated the gut microbiota at multiple levels and affected cholesterol absorption by reducing NPC1L1 in small intestinal epithelial cells.
Collapse
Affiliation(s)
- Xin-Yu Yang
- The First Hospital of Jilin University, Changchun, 130021, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hao-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xian-Feng Zhang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Yang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Yue Wang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Yu Jin
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Hui-Cong Zhang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Dong-Rui Li
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| | - Qian Tong
- The First Hospital of Jilin University, Changchun, 130021, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| |
Collapse
|
4
|
Gallego DF, Ruiz MEZ, Marshall DA. Oblivion: autopsy findings of a 31-year-old man with sudden cardiac arrest, a case report of a sequalae of Kawasaki disease. Autops Case Rep 2022; 12:e2021404. [PMID: 36312877 PMCID: PMC9613377 DOI: 10.4322/acr.2021.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
A 31-year-old man presented to the hospital after suffering a sudden cardiac arrest. Despite optimal therapy, the patient passed away. His medical history included febrile rash at age 2. At autopsy, there was aneurysmal dilation and severe coronary artery stenosis by atherosclerotic plaques and myocardial fibrosis. These findings were presumed to be due to complications of Kawasaki disease, given the remote history of severe febrile rash as a toddler and the presence of chronic coronary artery injury, recanalization, and thrombosis with ischemic heart disease leading to sudden cardiac collapse and death.
Collapse
Affiliation(s)
| | - Maria Eugenia Zuluaga Ruiz
- Universidad del Valle, Grupo de Investigación en Rehabilitación de la Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Desiree Ann Marshall
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, Washington, United States
| |
Collapse
|
5
|
Kawasaki Disease-like Vasculitis Facilitates Atherosclerosis, and Statin Shows a Significant Antiatherosclerosis and Anti-Inflammatory Effect in a Kawasaki Disease Model Mouse. Biomedicines 2022; 10:biomedicines10081794. [PMID: 35892695 PMCID: PMC9330289 DOI: 10.3390/biomedicines10081794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Kawasaki disease (KD) is an acute form of systemic vasculitis that may promote atherosclerosis in adulthood. This study examined the relationships between KD, atherosclerosis, and the long-term effects of HMG-CoA inhibitors (statins). Candida albicans water-soluble fraction (CAWS) was injected intraperitoneally into 5-week-old male apolipoprotein-E-deficient (Apo E-/-) mice to create KD-like vasculitis. Mice were divided into 4 groups: the control, CAWS, CAWS+statin, and late-statin groups. They were sacrificed at 6 or 10 weeks after injection. Statin was started after CAWS injection in all groups except the late-statin group, which was administered statin internally 6 weeks after injection. Lipid plaque lesions on the aorta were evaluated with Oil Red O. The aortic root and abdominal aorta were evaluated with hematoxylin and eosin staining and immunostaining. CAWS vasculitis significantly enhanced aortic atherosclerosis and inflammatory cell invasion into the aortic root and abdominal aorta. Statins significantly inhibited atherosclerosis and inflammatory cell invasion, including macrophages. CAWS vasculitis, a KD-like vasculitis, promoted atherosclerosis in Apo E-/- mice. The long-term oral administration of statin significantly suppressed not only atherosclerosis but also inflammatory cell infiltration. Therefore, statin treatment may be used for the secondary prevention of cardiovascular events during the chronic phase of KD.
Collapse
|
6
|
Jiang C, Xie S, Yang G, Wang N. Spotlight on NLRP3 Inflammasome: Role in Pathogenesis and Therapies of Atherosclerosis. J Inflamm Res 2022; 14:7143-7172. [PMID: 34992411 PMCID: PMC8711145 DOI: 10.2147/jir.s344730] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an intricate biological response of body tissues to detrimental stimuli. Cardiovascular disease (CVD) is the leading cause of death worldwide, and inflammation is well documented to play a role in the development of CVD, especially atherosclerosis (AS). Emerging evidence suggests that activation of the NOD-like receptor (NLR) family and the pyridine-containing domain 3 (NLRP3) inflammasome is instrumental in inflammation and may result in AS. The NLRP3 inflammasome acts as a molecular platform that triggers the activation of caspase-1 and the cleavage of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin D (GSDMD). The cleaved GSDMD forms pores in the cell membrane and initiates pyroptosis, inducing cell death and the discharge of intracellular pro-inflammatory factors. Hence, the NLRP3 inflammasome is a promising target for anti-inflammatory therapy against AS. In this review, we systematically summarized the current understanding of the activation mechanism of NLRP3 inflammasome, and the pathological changes in AS involving NLRP3. We also discussed potential therapeutic strategies targeting NLRP3 inflammasome to combat AS.
Collapse
Affiliation(s)
- Chunteng Jiang
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China.,Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Santuan Xie
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Guang Yang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Ningning Wang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Vajpeyee A, Chauhan PS, Pandey S, Tiwari S, Yadav LB, Shroti AK, Vajpeyee M. Metagenomics Analysis of Thrombus Samples Retrieved from Mechanical Thrombectomy. Neurointervention 2021; 16:39-45. [PMID: 33530675 PMCID: PMC7946554 DOI: 10.5469/neuroint.2020.00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose The purpose of this study was to assess the microbiota in middle cerebral artery thrombi retrieved in mechanical thrombectomy arising out of symptomatic carotid plaque within 6 hours of acute ischemic stroke. Thrombi were subjected to next-generation sequencing for a bacterial signature to determine their role in atherosclerosis. Materials and Methods We included 4 human middle cerebral artery thrombus samples (all patients were male). The median age for the patients was 51±13.6 years. Patients enrolled in the study from Pacific Medical University and Hospital underwent mechanical thrombectomy in the stroke window period. All patients underwent brain magnetic resonance angiography (MRA) and circle of Willis and neck vessel MRA along with the standard stroke workup to establish stroke etiology. Only patients with symptomatic carotid stenosis and tandem lesions with ipsilateral middle cerebral artery occlusion were included in the study. Thrombus samples were collected, stored at –80 degrees, and subjected to metagenomics analysis. Results Of the 4 patients undergoing thrombectomy for diagnosis with ischemic stroke, all thrombi recovered for bacterial DNA in qPCR were positive. More than 27 bacteria were present in the 4 thrombus samples. The majority of bacteria were Lactobacillus, Stenotrophomonas, Pseudomonas, Staphylococcus, and Finegoldia. Conclusion Genesis of symptomatic atherosclerotic carotid plaque leading to thromboembolism could be either due to direct mechanisms like acidification and local inflammation of plaque milieu with lactobacillus, biofilm dispersion leading to inflammation like with pseudomonas fluorescence, or enterococci or indirect mechanisms like Toll 2 like signaling by gut microbiota.
Collapse
Affiliation(s)
- Atulabh Vajpeyee
- Department of Neurology, Pacific Medical College & Hospital, Pacific Medical University, Udaipur, India
| | | | - Swapnil Pandey
- CSIR National Botanical Research Institute, Lucknow, India
| | - Shivam Tiwari
- Department of Neurology, Pacific Medical College & Hospital, Pacific Medical University, Udaipur, India
| | - Lokendra Bahadur Yadav
- Department of Neurology, Pacific Medical College & Hospital, Pacific Medical University, Udaipur, India
| | - Akhilesh Kumar Shroti
- Department of Neurology, Pacific Medical College & Hospital, Pacific Medical University, Udaipur, India
| | - Manisha Vajpeyee
- Department of Neurology, Pacific Medical College & Hospital, Pacific Medical University, Udaipur, India
| |
Collapse
|
8
|
Hsieh LE, Tremoulet AH, Burns JC, Noval Rivas M, Arditi M, Franco A. Characterization of the T Cell Response to Lactobacillus casei Cell Wall Extract in Children With Kawasaki Disease and Its Potential Role in Vascular Inflammation. Front Pediatr 2021; 9:633244. [PMID: 33681107 PMCID: PMC7933244 DOI: 10.3389/fped.2021.633244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
KD is an acute febrile illness and systemic vasculitis of unknown etiology among young children, which can cause coronary artery abnormalities and aneurysms (CAA) and is the leading cause of acquired heart disease among children in the US. Lactobacillus casei cell wall extract (LCWE) induces in mice a vasculitis following intraperitoneal injection defined by the activation of macrophages, dendritic cells and CD8+ cytotoxic T cells leading to aortitis, coronary arteritis, aneurysms and myocarditis that strongly mimic the immunopathology and the cardiac lesions observed in children with Kawasaki disease (KD). To address a potential pathogenic role of LCWE-specific T cells in human vascular inflammation, we studied the activation of circulating CD4+ and CD8+ T cells ex vivo in response to LCWE in 3 cohorts: (1) KD children 2-3 weeks after fever onset, (2) age-similar healthy children controls, (3) healthy adult controls. In all subjects studied, pro-inflammatory CD4+ and CD8+T cells responded to LCWE with no significant differences. Peripherally-induced regulatory T cells (iTreg) also responded to LCWE and potentially reverted to Th17, as suggested by the detection of IL-17 in culture supernatants. Central memory T cells were also detectable and were more abundant in adults. The potential homing to the vessels of LCWE-specific T cells was suggested by the expression of CCR6 and CD31. In conclusion, a non-pathogenic, LCWE-specific T cell repertoire could lead to KD depending upon priming conditions, genetic factors and immune activation by other antigens.
Collapse
Affiliation(s)
- Li-En Hsieh
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, La Jolla, CA, United States
| | - Adriana H Tremoulet
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, La Jolla, CA, United States
| | - Jane C Burns
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, La Jolla, CA, United States
| | - Magali Noval Rivas
- Division of Infectious Diseases and Immunology, Departments of Pediatrics, Infectious and Immunologic Diseases Research Center (IIDRC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Departments of Pediatrics, Infectious and Immunologic Diseases Research Center (IIDRC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Alessandra Franco
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, La Jolla, CA, United States
| |
Collapse
|
9
|
Hicar MD. Antibodies and Immunity During Kawasaki Disease. Front Cardiovasc Med 2020; 7:94. [PMID: 32671098 PMCID: PMC7326051 DOI: 10.3389/fcvm.2020.00094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
The cause of Kawasaki disease (KD), the leading cause of acquired heart disease in children, is currently unknown. Epidemiology studies support that an infectious disease is involved in at least starting the inflammatory cascade set off during KD. Clues from epidemiology support that humoral immunity can have a protective effect. However, the role of the immune system, particularly of B cells and antibodies, in pathogenesis of KD is still unclear. Intravenous immunoglobulin (IVIG) and other therapies targeted at modulating inflammation can prevent development of coronary aneurysms. A number of autoantibody responses have been reported in children with KD and antibodies have been generated from aneurysmal plasma cell infiltrates. Recent reports show that children with KD have similar plasmablast responses as other children with infectious diseases, further supporting an infectious starting point. As ongoing studies are attempting to identify the etiology of KD through study of antibody responses, we sought to review the role of humoral immunity in KD pathogenesis, treatment, and recovery.
Collapse
Affiliation(s)
- Mark Daniel Hicar
- University at Buffalo, Buffalo, NY, United States.,John R. Oishei Children's Hospital, Buffalo, NY, United States.,Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
10
|
Huang SM, Huang SH, Weng KP, Chien KJ, Lin CC, Huang YF. Update on association between Kawasaki disease and infection. J Chin Med Assoc 2019; 82:172-174. [PMID: 30913113 DOI: 10.1097/jcma.0000000000000025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The relationship between infection and Kawasaki disease (KD) remains unclear. Infection has long been considered a key predisposing factor for KD. Bacterial and viral agents may be related to the onset of KD because of superantigen and cytokine production. Various bacterial and viral infections have been reported to be associated with KD, but the actual mechanism remains unknown. The higher association between KD and enterovirus has been well documented by using Taiwan National Health Insurance Research Database. However, no evidence has been obtained that various bacterial and viral infections induce KD. Comprehensive research, including infectious agents, should be conducted to elucidate the pathogenesis of KD.
Collapse
Affiliation(s)
- Shih-Ming Huang
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Department of Pediatrics, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan, ROC
| | - Shih-Hui Huang
- Department of Nursing, Fooyin University, Kaohsiung, Taiwan, ROC
| | - Ken-Pen Weng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Physical Therapy, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan, ROC
| | - Kuang-Jen Chien
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Chu-Chuan Lin
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Yung-Feng Huang
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| |
Collapse
|
11
|
Ehrhardt N, Doche ME, Chen S, Mao HZ, Walsh MT, Bedoya C, Guindi M, Xiong W, Ignatius Irudayam J, Iqbal J, Fuchs S, French SW, Mahmood Hussain M, Arditi M, Arumugaswami V, Péterfy M. Hepatic Tm6sf2 overexpression affects cellular ApoB-trafficking, plasma lipid levels, hepatic steatosis and atherosclerosis. Hum Mol Genet 2018; 26:2719-2731. [PMID: 28449094 DOI: 10.1093/hmg/ddx159] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
The human transmembrane 6 superfamily member 2 (TM6SF2) gene has been implicated in plasma lipoprotein metabolism, alcoholic and non-alcoholic fatty liver disease and myocardial infarction in multiple genome-wide association studies. To investigate the role of Tm6sf2 in metabolic homeostasis, we generated mice with elevated expression using adeno-associated virus (AAV)-mediated gene delivery. Hepatic overexpression of mouse Tm6sf2 resulted in phenotypes previously observed in Tm6sf2-deficient mice including reduced plasma lipid levels, diminished hepatic triglycerides secretion and increased hepatosteatosis. Furthermore, increased hepatic Tm6sf2 expression protected against the development of atherosclerosis in LDL-receptor/ApoB48-deficient mice. In cultured human hepatocytes, Tm6sf2 overexpression reduced apolipoprotein B secretion and resulted in its accumulation within the endoplasmic reticulum (ER) suggesting impaired ER-to-Golgi trafficking of pre-very low-density lipoprotein (VLDL) particles. Analysis of two metabolic trait-associated coding polymorphisms in the human TM6SF2 gene (rs58542926 and rs187429064) revealed that both variants impact TM6SF2 expression by affecting the rate of protein turnover. These data demonstrate that rs58542926 (E167K) and rs187429064 (L156P) are functional variants and suggest that they influence metabolic traits through altered TM6SF2 protein stability. Taken together, our results indicate that cellular Tm6sf2 level is an important determinant of VLDL metabolism and further implicate TM6SF2 as a causative gene underlying metabolic disease and trait associations at the 19p13.11 locus.
Collapse
Affiliation(s)
- Nicole Ehrhardt
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | - Shuang Chen
- Department of Biomedical Sciences.,Department of Pediatrics.,Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hui Z Mao
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Meghan T Walsh
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Candy Bedoya
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine
| | - Weidong Xiong
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph Ignatius Irudayam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Sebastien Fuchs
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Samuel W French
- Department of Pathology and Laboratory Medicine.,Jonsson Comprehensive Cancer Center.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.,Winthrop-University Hospital, Mineola, NY 11501, USA
| | - Moshe Arditi
- Department of Biomedical Sciences.,Department of Pediatrics.,Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Pediatrics
| | - Vaithilingaraja Arumugaswami
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery
| | - Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.,Department of Biomedical Sciences.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Wang JJ, Fan SJ, Wang LL, Gao YZ, Liu XJ. Clinical relevance of gemstone spectral CT in the diagnosis of carotid atherosclerosis. Exp Ther Med 2017; 13:2629-2636. [PMID: 28587323 PMCID: PMC5450728 DOI: 10.3892/etm.2017.4342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/23/2016] [Indexed: 11/05/2022] Open
|
13
|
Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacol Res 2017; 120:226-241. [PMID: 28408314 DOI: 10.1016/j.phrs.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
Abstract
The association of obesity and diabetes, termed "diabesity", defines a combination of primarily metabolic disorders with insulin resistance as the underlying common pathophysiology. Cardiovascular disorders associated with diabesity represent the leading cause of morbidity and mortality in the Western world. This makes diabesity, with its rising impacts on both health and economics, one of the most challenging biomedical and social threats of present century. The emerging comprehension of the genes whose alteration confers inter-individual differences on risk factors for diabetes or obesity, together with the potential role of genetically determined variants on mechanisms controlling responsiveness, effectiveness and safety of anti-diabetic therapy underlines the need of additional knowledge on molecular mechanisms involved in the pathophysiology of diabesity. Endothelial cell dysfunction, resulting from the unbalanced production of endothelial-derived vascular mediators, is known to be present at the earliest stages of insulin resistance and obesity, and may precede the clinical diagnosis of diabetes by several years. Once considered as a mere consequence of metabolic abnormalities, it is now clear that endothelial dysfunctional activity may play a pivotal role in the progression of diabesity. In the vicious circle where vascular defects and metabolic disturbances worsen and reinforce each other, a low-grade, chronic, and 'cold' inflammation (metaflammation) has been suggested to serve as the pathophysiological link that binds endothelial and metabolic dysfunctions. In this paradigm, it is important to consider how traditional antidiabetic treatments (specifically addressing metabolic dysregulation) may directly impact on inflammatory processes or cardiovascular function. Indeed, not all drugs currently available to treat diabetes possess the same anti-inflammatory potential, or target endothelial cell function equally. Perspective strategies pointing at reducing metaflammation or directly addressing endothelial dysfunction may disclose beneficial consequences on metabolic regulation. This review focuses on existing and potential new approaches ameliorating endothelial dysfunction and vascular inflammation in the context of diabesity.
Collapse
|
14
|
Hara T, Nakashima Y, Sakai Y, Nishio H, Motomura Y, Yamasaki S. Kawasaki disease: a matter of innate immunity. Clin Exp Immunol 2016; 186:134-143. [PMID: 27342882 PMCID: PMC5054572 DOI: 10.1111/cei.12832] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 12/26/2022] Open
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis of childhood that does not have a known cause or aetiology. The epidemiological features (existence of epidemics, community outbreaks and seasonality), unique age distribution and clinical symptoms and signs of KD suggest that the disease is caused by one or more infectious environmental triggers. However, KD is not transmitted person-to-person and does not occur in clusters within households, schools or nurseries. KD is a self-limited illness that is not associated with the production of autoantibodies or the deposition of immune complexes, and it rarely recurs. Regarding the underlying pathophysiology of KD, innate immune activity (the inflammasome) is believed to play a role in the development of KD vasculitis, based on the results of studies with animal models and the clinical and laboratory findings of KD patients. Animal studies have demonstrated that innate immune pathogen-associated molecular patterns (PAMPs) can cause vasculitis independently of acquired immunity and have provided valuable insights regarding the underlying mechanisms of this phenomenon. To validate this concept, we recently searched for KD-specific PAMPs and identified such molecules with high specificity and sensitivity. These molecules have structures similar to those of microbe-associated molecular patterns (MAMPs), as shown by liquid chromatography-tandem mass spectrometry. We propose herein that KD is an innate immune disorder resulting from the exposure of a genetically predisposed individual to microbe-derived innate immune stimulants and that it is not a typical infectious disease.
Collapse
Affiliation(s)
- T Hara
- Fukuoka Children's Hospital.
- Department of Pediatrics, Graduate School of Medical Sciences.
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Y Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences
| | - Y Sakai
- Department of Pediatrics, Graduate School of Medical Sciences
| | - H Nishio
- Department of Pediatrics, Graduate School of Medical Sciences
| | - Y Motomura
- Department of Pediatrics, Graduate School of Medical Sciences
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - S Yamasaki
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Nabi XH, Ma CY, Manaer T, Heizati M, Wulazibieke B, Aierken L. Anti-atherosclerotic effect of traditional fermented cheese whey in atherosclerotic rabbits and identification of probiotics. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:309. [PMID: 27553960 PMCID: PMC4995647 DOI: 10.1186/s12906-016-1285-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
Abstract
Background Traditional fermented cheese whey (TFCW), containing probiotics, has been used both as a dairy food with ethnic flavor and a medicine for cardiovascular disease, especially regulating blood lipid among Kazakh. We therefore investigated anti-atherosclerotic effects of TFCW in atherosclerotic rabbits and identified lactic acid bacteria (LAB) and yeasts in TFCW. Methods Atherosclerotic rabbits were induced by administration of atherosclerotic diet for 12 weeks and divided randomly into three groups and treated for 4 weeks with Simvastatin (20 mg/kg) or TFCW (25 mg/kg) and (50 mg/kg). In addition, a normal control group and an atherosclerotic group were used for comparison. All drugs were intragastrical administered once daily 10 mL/kg for 4 weeks. Body weight (BW), lipid profiles, C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) were tested and theromatous plaques and the number of foam cells and infiltrating fibroblast cells in the thoracic aorta endothelium was evaluated by hematoxylin and eosin stainin. LAB and yeasts were isolated and purified by conventional techniques and identified using morphological and biochemical properties as well as gene sequences analysis. Results After 4 weeks of treatment, high and low dose TFCW decreased serum TC, TG, LDLC, CRP, VCAM-1 and ICAM-1 (P < 0.05) compared to atherosclerotic group, and increased HDL-C (P < 0.05) compared to normal controls. Histological analysis showed TFCW reduced VCAM-1 expression and formation of atheromatous plaques on the aortic endothelium of atherosclerotic rabbits. Conclusion Seven classes of LBA from two different genera including Lactobacillus brevis, Lactobacillus kefianofaciens, Lactobacillus helveticus, Lactobacillus Casei, Lactobacillus plantarum, Lactobacillus kefiri and Lactococcus lactic as well as 2 classes of yeasts from two different genera including Saccharomyces unisporus and Issatchenkia orientalis were isolated and identified from TFCW. In summary, TFCW, containing 7 classes of LBA and 2 classes of yeasts, has significant anti-atherosclerotic potential in atherosclerotic rabbits and may modulate lipid metabolism and protect aorta in the atherosclerotic condition, which might be related to various probiotics acting through reducing the CRP, VCAM-1 and ICAM-1 levels and protecting the aortic endothelium.
Collapse
|
16
|
Predisposing factors, pathogenesis and therapeutic intervention of Kawasaki disease. Drug Discov Today 2016; 21:1850-1857. [PMID: 27506874 PMCID: PMC7185772 DOI: 10.1016/j.drudis.2016.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/21/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
Kawasaki disease (KD) is an acute febrile childhood inflammatory disease, associated with coronary artery abnormalities. The disease is believed to result from an aberrant inflammatory response to an infectious trigger in a genetically predisposed individual. KD is associated with an endothelial cell injury as a consequence of T cell activation and cytotoxic effects of various proinflammatory cytokines. Intravenous immunoglobulin (IVIG) infusion and aspirin are the standard treatment of acute KD. However, 10-20% of patients show resistance to IVIG therapy and present higher risk of coronary vasculitis. The relative roles of second IVIG infusion, corticosteroids, calcineurin inhibitors, interleukin-1 antagonists and anti-tumor necrosis factor agents remain uncertain. In this review, we highlight the predisposing factors, pathogenesis and therapeutic intervention of KD, particularly new therapeutics for IVIG-resistant patients.
Collapse
|
17
|
Abstract
Kawasaki disease (KD) is an acute childhood febrile disease of unknown etiology. It exhibits not only coronary artery aneurysms in some cases but also systemic vasculitis. Whether KD is associated with accelerated atherosclerosis remains debatable. The measurement of pulse wave velocity (PWV) is useful as a simple, noninvasive measurement of arterial stiffness, an atherosclerotic manifestation. We herein present a systematic review of clinical studies that focused on PWV in patients with KD. A PubMed-based search identified 8 eligible studies published until June 2015. The PWV of patients with KD, regardless of antecedent coronary artery lesions, was high relative to controls, even though their blood pressure appeared to be similar. Although definitive conclusions cannot be made with the limited information, patients with KD may be at risk of systemic atherosclerosis in association with arterial stiffness. Further research, including longitudinal and outcome studies, is needed to determine the clinical significance of a potential increase in PWV in patients with KD.
Collapse
Affiliation(s)
- Yoshitaka Iwazu
- Department of Clinical Laboratory Medicine, Jichi Medical University, Tochigi, Japan
| | - Takaomi Minami
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Kazuhiko Kotani
- Department of Clinical Laboratory Medicine, Jichi Medical University, Tochigi, Japan
- Division of Community and Family Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
18
|
Fujii M, Tanaka H, Nakamura A, Suzuki C, Harada Y, Takamatsu T, Hamaoka K. Histopathological Characteristics of Post-inflamed Coronary Arteries in Kawasaki Disease-like Vasculitis of Rabbits. Acta Histochem Cytochem 2016; 49:29-36. [PMID: 27006519 PMCID: PMC4794552 DOI: 10.1267/ahc.15028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/25/2015] [Indexed: 12/15/2022] Open
Abstract
Kawasaki disease (KD) is a systemic vasculitis in infants that develops predominantly in the coronary arteries. Despite the clinically transient nature of active inflammation in childhood albeit rare complications (e.g., coronary artery aneurysm), KD has recently been suggested to increase the incidence of ischemic heart diseases in young adulthood. However, little is known about the histopathology of the coronary artery long after development of the acute KD vasculitis. To address this, we conducted histological studies of rabbit coronary arteries in adolescent phase after induction of the KD-like vasculitis induced by horse serum administration. After a transmural infiltration of inflammatory cells in acute phase at day 7, the artery exhibited a gradual decrease in the number of inflammatory cells and thickening of the intima during the chronic phase up to day 90, where proteoglycans were distinctly accumulated in the intima with abundant involvement of α-smooth muscle actin (α-SMA)-positive cells, most of which accompanied expression of VCAM-1 and NF-κB. Distinct from classical atherosclerosis, inflammatory cells, e.g., macrophages, were barely detected during the chronic phase. These observations indicate that the KD-like coronary arteritis is followed by intimal thickening via accumulation of proteoglycans and proliferation of α-SMA-positive cells, reflecting aberrant coronary artery remodeling.
Collapse
Affiliation(s)
- Maiko Fujii
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Akihiro Nakamura
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Chinatsu Suzuki
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Kenji Hamaoka
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| |
Collapse
|
19
|
Noto N, Kato M, Abe Y, Kamiyama H, Karasawa K, Ayusawa M, Takahashi S. Reassessment of carotid intima-media thickness by standard deviation score in children and adolescents after Kawasaki disease. SPRINGERPLUS 2015; 4:479. [PMID: 26361580 PMCID: PMC4559555 DOI: 10.1186/s40064-015-1275-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/25/2015] [Indexed: 11/10/2022]
Abstract
Previous studies that used carotid ultrasound have been largely conflicting in regards to whether or not patients after Kawasaki disease (KD) have a greater carotid intima-media thickness (CIMT) than controls. To test the hypothesis that there are significant differences between the values of CIMT expressed as absolute values and standard deviation scores (SDS) in children and adolescents after KD and controls, we reviewed 12 published articles regarding CIMT on KD patients and controls. The mean ± SD of absolute CIMT (mm) in the KD patients and controls obtained from each article was transformed to SDS (CIMT-SDS) using age-specific reference values established by Jourdan et al. (J: n = 247) and our own data (N: n = 175), and the results among these 12 articles were compared between the two groups and the references for comparison of racial disparities. There were no significant differences in mean absolute CIMT and mean CIMT-SDS for J between KD patients and controls (0.46 ± 0.06 mm vs. 0.44 ± 0.04 mm, p = 0.133, and 1.80 ± 0.84 vs. 1.25 ± 0.12, p = 0.159, respectively). However, there were significant differences in mean CIMT-SDS for N between KD patients and controls (0.60 ± 0.71 vs. 0.01 ± 0.65, p = 0.042). When we assessed the nine articles on Asian subjects, the difference of CIMT-SDS between the two groups was invariably significant only for N (p = 0.015). Compared with the reference values, CIMT-SDS of controls was within the normal range at a rate of 41.6 % for J and 91.6 % for N. These results indicate that age- and race-specific reference values for CIMT are mandatory for performing accurate assessment of the vascular status in healthy children and adolescents, particularly in those after KD considered at increased long-term cardiovascular risk.
Collapse
Affiliation(s)
- Nobutaka Noto
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchikami-machi, Itabashi-ku, Tokyo, 173-8610 Japan ; Noto Children's Clinic, 4-12-6 Heiwadai, Nerima-ku, Tokyo, 179-0083 Japan
| | - Masataka Kato
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchikami-machi, Itabashi-ku, Tokyo, 173-8610 Japan
| | - Yuriko Abe
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchikami-machi, Itabashi-ku, Tokyo, 173-8610 Japan
| | - Hiroshi Kamiyama
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchikami-machi, Itabashi-ku, Tokyo, 173-8610 Japan
| | - Kensuke Karasawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchikami-machi, Itabashi-ku, Tokyo, 173-8610 Japan
| | - Mamoru Ayusawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchikami-machi, Itabashi-ku, Tokyo, 173-8610 Japan
| | - Shori Takahashi
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchikami-machi, Itabashi-ku, Tokyo, 173-8610 Japan
| |
Collapse
|
20
|
Orenstein JM, Rowley AH. An evaluation of the validity of the animal models of Kawasaki disease vasculopathy. Ultrastruct Pathol 2015; 38:245-7. [PMID: 25054804 DOI: 10.3109/01913123.2014.932314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jan M Orenstein
- Department of Pathology, George Washington University , Washington, DC , United States and
| | | |
Collapse
|
21
|
Cheung YF. Vascular health late after Kawasaki disease: implications for accelerated atherosclerosis. KOREAN JOURNAL OF PEDIATRICS 2014; 57:472-8. [PMID: 25550701 PMCID: PMC4279007 DOI: 10.3345/kjp.2014.57.11.472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022]
Abstract
Kawasaki disease (KD), an acute vasculitis that primarily affects young children, is the most common acquired paediatric cardiovascular disease in developed countries. While sequelae of arterial inflammation in the acute phase of KD are well documented, its late effects on vascular health are increasingly unveiled. Late vascular dysfunction is characterized by structural alterations and functional impairment in term of arterial stiffening and endothelial dysfunction and shown to involve both coronary and systemic arteries. Further evidence suggests that continuous low grade inflammation and ongoing active remodeling of coronary arterial lesions occur late after acute illness and may play a role in structural and functional alterations of the arteries. Potential importance of genetic modulation on vascular health late after KD is implicated by associations between mannose binding lectin and inflammatory gene polymorphisms with severity of peripheral arterial stiffening and carotid intima-media thickening. The changes in cholesterol and lipoproteins levels late after KD further appear similar to those proposed to be atherogenic. While data on adverse vascular health are less controversial in patients with persistent or regressed coronary arterial aneurysms, data appear conflicting in individuals with no coronary arterial involvements or only transient coronary ectasia. Notwithstanding, concerns have been raised with regard to predisposition of KD in childhood to accelerated atherosclerosis in adulthood. Until further evidence-based data are available, however, it remains important to assess and monitor cardiovascular risk factors and to promote cardiovascular health in children with a history of KD in the long term.
Collapse
Affiliation(s)
- Yiu-Fai Cheung
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Chen Y, Li X, Boini KM, Pitzer AL, Gulbins E, Zhang Y, Li PL. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:396-408. [PMID: 25450976 DOI: 10.1016/j.bbamcr.2014.11.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 12/20/2022]
Abstract
Inflammasomes play a critical role in the development of vascular diseases. However, the molecular mechanisms activating the inflammasome in endothelial cells and the relevance of this inflammasome activation is far from clear. Here, we investigated the mechanisms by which an Nlrp3 inflammasome is activated to result in endothelial dysfunction during coronary arteritis by Lactobacillus casei (L. casei) cell wall fragments (LCWE) in a mouse model for Kawasaki disease. Endothelial dysfunction associated with increased vascular cell adhesion protein 1 (VCAM-1) expression and endothelial-leukocyte adhesion was observed during coronary arteritis in mice treated with LCWE. Accompanied with these changes, the inflammasome activation was also shown in coronary arterial endothelium, which was characterized by a marked increase in caspase-1 activity and IL-1β production. In cultured endothelial cells, LCWE induced Nlrp3 inflammasome formation, caspase-1 activation and IL-1β production, which were blocked by Nlrp3 gene silencing or lysosome membrane stabilizing agents such as colchicine, dexamethasone, and ceramide. However, a potassium channel blocker glibenclamide or an oxygen free radical scavenger N-acetyl-l-cysteine had no effects on LCWE-induced inflammasome activation. LCWE also increased endothelial cell lysosomal membrane permeability and triggered lysosomal cathepsin B release into cytosol. Silencing cathepsin B blocked LCWE-induced Nlrp3 inflammasome formation and activation in endothelial cells. In vivo, treatment of mice with cathepsin B inhibitor also abolished LCWE-induced inflammasome activation in coronary arterial endothelium. It is concluded that LCWE enhanced lysosomal membrane permeabilization and consequent release of lysosomal cathepsin B, resulting in activation of the endothelial Nlrp3 inflammasome, which may contribute to the development of coronary arteritis.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiang Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Krishna M Boini
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ashley L Pitzer
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Yang Zhang
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|