1
|
Kotewitsch M, Heimer M, Schmitz B, Mooren FC. Non-coding RNAs in exercise immunology: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:311-338. [PMID: 37925072 PMCID: PMC11116971 DOI: 10.1016/j.jshs.2023.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
Regular physical exercise has been recognized as a potent modulator of immune function, with its effects including enhanced immune surveillance, reduced inflammation, and improved overall health. While strong evidence exists that physical exercise affects the specific expression and activity of non-coding RNAs (ncRNAs) also involved in immune system regulation, heterogeneity in individual study designs and analyzed exercise protocols exists, and a condensed list of functional, exercise-dependent ncRNAs with known targets in the immune system is missing from the literature. A systematic review and qualitative analysis was used to identify and categorize ncRNAs participating in immune modulation by physical exercise. Two combined approaches were used: (a) a systematic literature search for "ncRNA and exercise immunology", (b) and a database search for microRNAs (miRNAs) (miRTarBase and DIANA-Tarbase v8) aligned with known target genes in the immune system based on the Reactome database, combined with a systematic literature search for "ncRNA and exercise". Literature searches were based on PubMed, Web of Science, and SPORTDiscus; and miRNA databases were filtered for targets validated by in vitro experimental data. Studies were eligible if they reported on exercise-based interventions in healthy humans. After duplicate removal, 95 studies were included reporting on 164 miRNAs, which were used for the qualitative synthesis. Six studies reporting on long-noncoding RNAs (lncRNAs) or circular RNAs were also identified. Results were analyzed using ordering tables that included exercise modality (endurance/resistance exercise), acute or chronic interventions, as well as the consistency in reported change between studies. Evaluation criteria were defined as "validated" with 100% of ≥3 independent studies showing identical direction of regulation, "plausible" (≥80%), or "suggestive" (≥70%). For resistance exercise, upregulation of miR-206 was validated while downregulation of miR-133a appeared plausible. For endurance exercise, 15 miRNAs were categorized as validated, with 12 miRNAs being consistently elevated and 3 miRNAs being downregulated, most of them after acute exercise training. In conclusion, our approach provides evidence that miRNAs play a major role in exercise-induced effects on the innate and adaptive immune system by targeting different pathways affecting immune cell distribution, function, and trafficking as well as production of (anti-)inflammatory cytokines. miRNAs miR-15, miR-29c, miR-30a, miR-142/3, miR-181a, and miR-338 emerged as key players in mediating the immunomodulatory effects of exercise predominantly after acute bouts of endurance exercise.
Collapse
Affiliation(s)
- Mona Kotewitsch
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Melina Heimer
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany.
| | - Frank C Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| |
Collapse
|
2
|
Meester JAN, De Kinderen P, Verstraeten A, Loeys BL. The role of biglycan in the healthy and thoracic aneurysmal aorta. Am J Physiol Cell Physiol 2022; 322:C1214-C1222. [PMID: 35476501 DOI: 10.1152/ajpcell.00036.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The class I small leucine-rich proteoglycan biglycan is a crucial structural extracellular matrix component that interacts with a wide range of extracellular matrix molecules. In addition, biglycan is involved in sequestering growth factors such as TGF-β and BMPs and thereby regulating pathway activity. Biglycan consists of a 42-kDa core protein linked to two glycosaminoglycan side chains and both are involved in protein interactions. Biglycan is encoded by the BGN gene located on the X-chromosome and is expressed in various tissues, including vascular tissue, skin, brain, kidney lung, the immune system and the musculoskeletal system. Although an increasing amount of data on the biological function of biglycan in the vasculature has been produced, its role in thoracic aortic aneurysms is still not fully elucidated. This review focusses on the role of biglycan in the healthy thoracic aorta and the development of thoracic aortic aneurysm and dissections in both mice and humans.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Pauline De Kinderen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Christensen AH, Andersen CB, Wassilew K, Svendsen JH, Bundgaard H, Brand SM, Schmitz B. Rare non-coding Desmoglein-2 variant contributes to Arrhythmogenic right ventricular cardiomyopathy. J Mol Cell Cardiol 2019; 131:164-170. [PMID: 31051180 DOI: 10.1016/j.yjmcc.2019.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to variants in the coding sequence of desmosomal genes. The potential contribution of non-coding desmoglein-2 (DSG2) variants for development of ARVC is undescribed. We sequenced 1450 base pairs upstream of ATG in the DSG2 gene in 65 unrelated patients diagnosed with ARVC (10 borderline cases). Identified variants was evaluated by cosegregation and allele population frequency analysis, in silico tools, immunohistological investigations of myocardial biopsies, gene reporter assays, electrophoretic mobility shift assays (EMSA), and chromatin immunoprecipitation. The genetic analysis identified one novel, rare heterozygous DSG2 upstream variant (-317G > A) in a genetically unexplained ARVC patient. The variant segregated with signs of disease, was absent in publicly available databases, and affected a predicted binding site for activating protein-1 (AP-1). Immunohistochemical analysis of a myocardial biopsy from the -317G > A patient showed a marked reduction in DSG2 protein levels compared to healthy controls. Luciferase reporter gene assays showed promoter activity of the identified DSG2 upstream region and a general reduction in transcriptional activity in the presence of the minor DSG2_A allele (p < .01). Moreover, the DSG2_A allele reduced DSG2 activation by TGF-beta1 and a protein kinase C pathway activator (PMA; all p < .001 vs. DSG2_G). EMSAs showed altered transcription factor binding in presence of the DSG2_A allele. Chromatin immunoprecipitation assays in wild type epithelial cells identified AP-1 components c-FOS and c-JUN at the -317 locus. In conclusion, the non-coding DSG2 promoter variant -317G > A reduces DSG2 transcription in vitro and reduced myocardial DSG2 protein levels were observed in vivo. Our data support a contribution of non-coding DSG2 variants to the pathogenesis of ARVC.
Collapse
Affiliation(s)
- Alex Hørby Christensen
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Denmark; Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Denmark.
| | - Claus B Andersen
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Katharina Wassilew
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Jesper Hastrup Svendsen
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Münster, 48149 Münster, Germany
| | - Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
7
|
Schmitz B, Nedele J, Guske K, Maase M, Lenders M, Schelleckes M, Kusche-Vihrog K, Brand SM, Brand E. Soluble Adenylyl Cyclase in Vascular Endothelium. Hypertension 2014; 63:753-61. [DOI: 10.1161/hypertensionaha.113.02061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Ca
2+
- and bicarbonate-activated soluble adenylyl cyclase (sAC) has been identified recently as an important mediator of aldosterone signaling in the kidney. Nuclear sAC has been reported to stimulate cAMP response element–binding protein 1 phosphorylation via protein kinase A, suggesting an alternative cAMP pathway in the nucleus. In this study, we analyzed the sAC as a potential modulator of endothelial stiffness in the vascular endothelium. We determined the contribution of sAC to cAMP response element–mediated transcriptional activation in vascular endothelial cells and kidney collecting duct cells. Inhibition of sAC by the specific inhibitor KH7 significantly reduced cAMP response element–mediated promoter activity and affected cAMP response element–binding protein 1 phosphorylation. Furthermore, KH7 and anti-sAC small interfering RNA significantly decreased mRNA and protein levels of epithelial sodium channel-α and Na
+
/K
+
-ATPase-α. Using atomic force microscopy, a nano-technique that measures stiffness and deformability of living cells, we detected significant endothelial cell softening after sAC inhibition. Our results suggest that the sAC is a regulator of gene expression involved in aldosterone signaling and an important regulator of endothelial stiffness. Additional studies are warranted to investigate the protective action of sAC inhibitors in humans for potential clinical use.
Collapse
Affiliation(s)
- Boris Schmitz
- From Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology (B.S., J.N., K.G., M.L., M.S., E.B.) and Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.), University Hospital Muenster, Muenster, Germany; and Institute of Physiology II, University of Muenster, Muenster, Germany (M.M., K.K.-V.)
| | - Johanna Nedele
- From Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology (B.S., J.N., K.G., M.L., M.S., E.B.) and Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.), University Hospital Muenster, Muenster, Germany; and Institute of Physiology II, University of Muenster, Muenster, Germany (M.M., K.K.-V.)
| | - Katrin Guske
- From Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology (B.S., J.N., K.G., M.L., M.S., E.B.) and Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.), University Hospital Muenster, Muenster, Germany; and Institute of Physiology II, University of Muenster, Muenster, Germany (M.M., K.K.-V.)
| | - Martina Maase
- From Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology (B.S., J.N., K.G., M.L., M.S., E.B.) and Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.), University Hospital Muenster, Muenster, Germany; and Institute of Physiology II, University of Muenster, Muenster, Germany (M.M., K.K.-V.)
| | - Malte Lenders
- From Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology (B.S., J.N., K.G., M.L., M.S., E.B.) and Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.), University Hospital Muenster, Muenster, Germany; and Institute of Physiology II, University of Muenster, Muenster, Germany (M.M., K.K.-V.)
| | - Michael Schelleckes
- From Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology (B.S., J.N., K.G., M.L., M.S., E.B.) and Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.), University Hospital Muenster, Muenster, Germany; and Institute of Physiology II, University of Muenster, Muenster, Germany (M.M., K.K.-V.)
| | - Kristina Kusche-Vihrog
- From Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology (B.S., J.N., K.G., M.L., M.S., E.B.) and Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.), University Hospital Muenster, Muenster, Germany; and Institute of Physiology II, University of Muenster, Muenster, Germany (M.M., K.K.-V.)
| | - Stefan-Martin Brand
- From Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology (B.S., J.N., K.G., M.L., M.S., E.B.) and Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.), University Hospital Muenster, Muenster, Germany; and Institute of Physiology II, University of Muenster, Muenster, Germany (M.M., K.K.-V.)
| | - Eva Brand
- From Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology (B.S., J.N., K.G., M.L., M.S., E.B.) and Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.), University Hospital Muenster, Muenster, Germany; and Institute of Physiology II, University of Muenster, Muenster, Germany (M.M., K.K.-V.)
| |
Collapse
|