1
|
Zhang Y, Guan Z, Gong H, Ni Z, Xiao Q, Guo X, Xu Q. The Role of Progenitor Cells in the Pathogenesis of Arteriosclerosis. CARDIOLOGY DISCOVERY 2024; 4:231-244. [DOI: 10.1097/cd9.0000000000000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The increasing incidence of arteriosclerosis has become a significant global health burden. Arteriosclerosis is characterized by the thickening and hardening of arterial walls, which can lead to the narrowing or complete blockage of blood vessels. However, the pathogenesis of the disease remains incompletely understood. Recent research has shown that stem and progenitor cells found in the bone marrow and local vessel walls play a role in the development of arteriosclerosis by differentiating into various types of vascular cells, including endothelial cells, smooth muscle cells, fibroblasts, and inflammatory cells. This review aims to provide a comprehensive understanding of the role of stem and progenitor cells in the pathogenesis of arteriosclerosis, shedding light on the underlying mechanisms and potential therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ziyin Guan
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Hui Gong
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Zhichao Ni
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
2
|
Zhang F, Tao H, Gluck JM, Wang L, Daneshmand MA, King MW. A textile-reinforced composite vascular graft that modulates macrophage polarization and enhances endothelial cell migration, adhesion and proliferation in vitro. SOFT MATTER 2023; 19:1624-1641. [PMID: 36752696 DOI: 10.1039/d2sm01190e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
At the present time, there is no successful off-the-shelf small-caliber vascular graft (<6 mm) for the repair or bypass of the coronary or carotid arteries. In this study, we engineer a textile-reinforced hydrogel vascular graft. The textile fibers are circularly knitted into a flexible yet robust conduit to serve as the backbone of the composite vascular graft and provide the primary mechanical support. It is embedded in the hydrogel matrix which seals the open structure of the knitted reinforcement and mediates cellular response toward a faster reendothelialization. The mechanical properties of the composite vascular graft, including bursting strength, suture retention strength and radial compliance, significantly surpass the requirement for the vascular graft application and can be adjusted by altering the structure of the textile reinforcement. The addition of hydrogel matrix, on the other hand, improves the survival, adhesion and proliferation of endothelial cells in vitro. The composite vascular graft also enhances macrophage activation and upregulates M1 and M2 related gene expression, which further improves the endothelial cell migration that might favor the reendothelialization of the vascular graft. Taken together, the textile-reinforced hydrogel shows it potential to be a promising scaffold material to fabricate a tissue engineered vascular graft.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
| | - Hui Tao
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jessica M Gluck
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
| | - Lu Wang
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mani A Daneshmand
- Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
- College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Zhang F, King MW. Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft. Adv Healthc Mater 2022; 11:e2200045. [PMID: 35286778 PMCID: PMC11468936 DOI: 10.1002/adhm.202200045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease leads to the highest morbidity worldwide. There is an urgent need to solve the lack of a viable arterial graft for patients requiring coronary artery bypass surgery. The current gold standard is to use the patient's own blood vessel, such as a saphenous vein graft. However, some patients do not have appropriate vessels to use because of systemic disease or secondary surgery. On the other hand, there is no commercially available synthetic vascular graft available on the market for small diameter (<6 mm) blood vessels like coronary, carotid, and peripheral popliteal arteries. Tissue-engineered vascular grafts (TEVGs) are studied in recent decades as a promising alternative to synthetic arterial prostheses. Yet only a few studies have proceeded to a clinical trial. Recent studies have uncovered that the host immune response can be directed toward increasing the success of a TEVG by shedding light on ways to modulate the macrophage response and improve the tissue regeneration outcome. In this review, the basic concepts of vascular tissue engineering and immunoengineering are considered. The state-of-art of TEVGs is summarized and the role of macrophages in TEVG regeneration is analyzed. Current immunomodulatory strategies based on biomaterials are also discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| |
Collapse
|
4
|
Wang H, Xing M, Deng W, Qian M, Wang F, Wang K, Midgley AC, Zhao Q. Anti-Sca-1 antibody-functionalized vascular grafts improve vascular regeneration via selective capture of endogenous vascular stem/progenitor cells. Bioact Mater 2022; 16:433-450. [PMID: 35415291 PMCID: PMC8965769 DOI: 10.1016/j.bioactmat.2022.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
|
5
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
6
|
Dierick F, Solinc J, Bignard J, Soubrier F, Nadaud S. Progenitor/Stem Cells in Vascular Remodeling during Pulmonary Arterial Hypertension. Cells 2021; 10:cells10061338. [PMID: 34071347 PMCID: PMC8226806 DOI: 10.3390/cells10061338] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by an important occlusive vascular remodeling with the production of new endothelial cells, smooth muscle cells, myofibroblasts, and fibroblasts. Identifying the cellular processes leading to vascular proliferation and dysfunction is a major goal in order to decipher the mechanisms leading to PAH development. In addition to in situ proliferation of vascular cells, studies from the past 20 years have unveiled the role of circulating and resident vascular in pulmonary vascular remodeling. This review aims at summarizing the current knowledge on the different progenitor and stem cells that have been shown to participate in pulmonary vascular lesions and on the pathways regulating their recruitment during PAH. Finally, this review also addresses the therapeutic potential of circulating endothelial progenitor cells and mesenchymal stem cells.
Collapse
Affiliation(s)
- France Dierick
- Lady Davis Institute for Medical Research, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Julien Solinc
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Juliette Bignard
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Florent Soubrier
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Sophie Nadaud
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
- Correspondence:
| |
Collapse
|
7
|
Adventitial Progenitor Cells of Human Great Saphenous Vein Enhance the Resolution of Venous Thrombosis via Neovascularization. Stem Cells Int 2021; 2021:8816763. [PMID: 33679991 PMCID: PMC7926266 DOI: 10.1155/2021/8816763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/20/2021] [Accepted: 02/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background Vascular adventitia contains progenitor cells and is shown to participate in vascular remolding. Progenitor cells are recruited into the venous thrombi in mice to promote neovascularization. We hypothesized that the adventitial progenitor cells of human great saphenous vein (HGSV-AdPC) enhance the resolution of venous thrombosis via neovascularization. Methods Human great saphenous vein (HGSV) was harvested from the patients with great saphenous vein varicose and sectioned for immunohistochemistry, or minced for progenitor cell primary culture, or placed in sodium dodecyl sulfate solution for decellularization. Human venous thrombi were collected from patients with great saphenous vein varicose and superficial thrombophlebitis. Infrarenal abdominal aorta of New Zealand white rabbits was replaced with interposing decellularized vessel, and the patency of the grafts was confirmed by ultrasonic examination. Animal venous thrombi in the left infrarenal vena cava of mice were produced with Prolene suture ligation and ophthalmic force clipping of this portion. After HGSVs were digested by collagenase, the CD34+CD117+ HGSV-AdPC were isolated on FACS system, labelled with CM-Dil, and transplanted into the adventitia of infrarenal vena cava of nude mice. The percentage of thrombus organization area to the thrombus area was calculated as the organization rate. The thrombus cell, endothelial cells, and macrophages in the thrombi were counted in sections. Cell smears and frozen sections of human saphenous veins and venous thrombi were labeled with Sca1, CD34, CD117, Flk1, CD31, and F4/80 antibodies. The CD34+CD117+ HGSV-AdPC were cultured in endothelial growth medium with vascular endothelial growth factor (VEGF) to induce endothelial cell differentiation and analyzed with real time-PCR, Western blotting, and tube formation assays. Results Immunohistochemical staining showed that the CD34+CD117+ cells were located within the adventitia of HGSVs, and many CD34+ and CD117+ cells have emerged in the human venous thrombi. The number of progenitor cells within the marginal area of 7 days mice thrombi was shown to be Sca1+ ≈21%, CD34+ ≈12%, CD117+ ≈9%, and Flk1+ ≈5%. Many CD34+adventitial progenitor cells have migrated into the decellularized vessels. FACS showed that the number of CD34+CD117+ HGSV-AdPC in primary cultured cells as 1.2 ± 0.07%. After CD34+CD117+HGSV-AdPC were transplanted into the adventitia of nude mice vena cava with venous thrombi, the organization rate, nucleate cell count, endothelial cells, and macrophage cells of thrombi were shown to be significantly increased. The transplanted CD34+CD117+ HGSV-AdPC at the adventitia have crossed the vein wall, entered the venous thrombi, and differentiated into endothelial cells. The CD34+CD117+ HGSV-AdPC in the culture medium in the presence of VEGF-promoted gene and protein expression of endothelial cell markers in vitro and induced tube formation. Conclusions HGSV-AdPC could cross the vein wall and migrate from the adventitia into the venous thrombi. Increased HGSV-AdPC in the adventitia has enhanced the resolution of venous thrombi via differentiating into endothelial cells of neovascularization.
Collapse
|
8
|
Colás-Algora N, García-Weber D, Cacho-Navas C, Barroso S, Caballero A, Ribas C, Correas I, Millán J. Compensatory increase of VE-cadherin expression through ETS1 regulates endothelial barrier function in response to TNFα. Cell Mol Life Sci 2020; 77:2125-2140. [PMID: 31396656 PMCID: PMC11105044 DOI: 10.1007/s00018-019-03260-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
VE-cadherin plays a central role in controlling endothelial barrier function, which is transiently disrupted by proinflammatory cytokines such as tumor necrosis factor (TNFα). Here we show that human endothelial cells compensate VE-cadherin degradation in response to TNFα by inducing VE-cadherin de novo synthesis. This compensation increases adherens junction turnover but maintains surface VE-cadherin levels constant. NF-κB inhibition strongly reduced VE-cadherin expression and provoked endothelial barrier collapse. Bacterial lipopolysaccharide and TNFα upregulated the transcription factor ETS1, in vivo and in vitro, in an NF-κB dependent manner. ETS1 gene silencing specifically reduced VE-cadherin protein expression in response to TNFα and exacerbated TNFα-induced barrier disruption. We propose that TNFα induces not only the expression of genes involved in increasing permeability to small molecules and immune cells, but also a homeostatic transcriptional program in which NF-κB- and ETS1-regulated VE-cadherin expression prevents the irreversible damage of endothelial barriers.
Collapse
Affiliation(s)
| | - Diego García-Weber
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
- INSERM, U1016, Institut Cochin, Paris, France.
| | | | - Susana Barroso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | - Alvaro Caballero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
| | - Catalina Ribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| |
Collapse
|
9
|
Cao M, Yuan W, Peng M, Mao Z, Zhao Q, Sun X, Yan J. Role of CyPA in cardiac hypertrophy and remodeling. Biosci Rep 2019; 39:BSR20193190. [PMID: 31825469 PMCID: PMC6928530 DOI: 10.1042/bsr20193190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Pathological cardiac hypertrophy is a complex process and eventually develops into heart failure, in which the heart responds to various intrinsic or external stress, involving increased interstitial fibrosis, cell death and cardiac dysfunction. Studies have shown that oxidative stress is an important mechanism for this maladaptation. Cyclophilin A (CyPA) is a member of the cyclophilin (CyPs) family. Many cells secrete CyPA to the outside of the cells in response to oxidative stress. CyPA from blood vessels and the heart itself participate in a variety of signaling pathways to regulate the production of reactive oxygen species (ROS) and mediate inflammation, promote cardiomyocyte hypertrophy and proliferation of cardiac fibroblasts, stimulate endothelial injury and vascular smooth muscle hyperplasia, and promote the dissolution of extracellular matrix (ECM) by activating matrix metalloproteinases (MMPs). The events triggered by CyPA cause a decline of diastolic and systolic function and finally lead to the occurrence of heart failure. This article aims to introduce the role and mechanism of CyPA in cardiac hypertrophy and remodeling, and highlights its potential role as a disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Mengfei Cao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Meiling Peng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Ziqi Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Qianru Zhao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Xia Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| |
Collapse
|
10
|
Han S, Xu S, Zhou J, Qiao A, Boriboun C, Ma W, Li H, Biyashev D, Yang L, Zhang E, Liu Q, Jiang S, Zhao TC, Krishnamurthy P, Zhang C, Richard S, Qiu H, Zhang J, Qin G. Sam68 impedes the recovery of arterial injury by augmenting inflammatory response. J Mol Cell Cardiol 2019; 137:82-92. [PMID: 31639388 DOI: 10.1016/j.yjmcc.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The role of Src-associated-in-mitosis-68-kDa (Sam68) in cardiovascular biology has not been studied. A recent report suggests that Sam68 promotes TNF-α-induced NF-κB activation in fibroblasts. Here we sought to dissect the molecular mechanism by which Sam68 regulates NF-κB signaling and its functional significance in vascular injury. APPROACH AND RESULTS The endothelial denudation injury was induced in the carotid artery of Sam68-null (Sam68-/-) and WT mice. Sam68-/- mice displayed an accelerated re-endothelialization and attenuated neointima hyperplasia, which was associated with a reduced macrophage infiltration and lowered expression of pro-inflammatory cytokines in the injured vessels. Remarkably, the ameliorated vascular remodeling was recapitulated in WT mice after receiving transplantation of bone marrow (BM) from Sam68-/- mice, suggesting the effect was attributable to BM-derived inflammatory cells. In cultured Raw264.7 macrophages, knockdown of Sam68 resulted in a significant reduction in the TNF-α-induced expression of TNF-α, IL-1β, and IL-6 and in the level of nuclear phospho-p65, indicating attenuated NF-κB activation; and these results were confirmed in peritoneal and BM-derived macrophages of Sam68-/- vs. WT mice. Furthermore, co-immunoprecipitation and mass-spectrometry identified Filamin A (FLNA) as a novel Sam68-interacting protein upon TNF-α treatment. Loss- and gain-of-function experiments suggest that Sam68 and FLNA are mutually dependent for NF-κB activation and pro-inflammatory cytokine expression, and that the N-terminus of Sam68 is required for TRAF2-FLNA interaction. CONCLUSIONS Sam68 promotes pro-inflammatory response in injured arteries and impedes recovery by interacting with FLNA to stabilize TRAF2 on the cytoskeleton and consequently potentiate NF-κB signaling.
Collapse
Affiliation(s)
- Shuling Han
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiyue Xu
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aijun Qiao
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chan Boriboun
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wenxia Ma
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huadong Li
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dauren Biyashev
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Liu Yang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qinghua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, Hubei, China
| | - Shayi Jiang
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 20062, China
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, RI 02908, USA
| | - Prasanna Krishnamurthy
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chunxiang Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stéphane Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Hongyu Qiu
- Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA
| | - Jianyi Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
He H, Yu B, Liu Z, Ye G, You W, Hong Y, Lian Q, Zhang Y, Li X. Vascular progenitor cell senescence in patients with Marfan syndrome. J Cell Mol Med 2019; 23:4139-4152. [PMID: 30920150 PMCID: PMC6533473 DOI: 10.1111/jcmm.14301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular progenitor cells (VPCs) present in the adventitia of the vessel wall play a critical role in the regulation of vascular repair following injury. This study aimed to assess the function of VPCs isolated from patients with Marfan syndrome (MFS). VPCs were isolated from control and MFS donors and characterized. Compared with control‐VPCs, MFS‐VPCs exhibited cellular senescence as demonstrated by increased cell size, higher SA‐β‐gal activity and elevated levels of p53 and p21. RNA sequencing showed that several cellular process‐related pathways including cell cycle and cellular senescence were significantly enriched in MFP‐VPCs. Notably, the expression level of TGF‐β1 was much higher in MFS‐VPCs than control‐VPCs. Treatment of control‐VPCs with TGF‐β1 significantly enhanced mitochondrial reactive oxidative species (ROS) and induced cellular senescence whereas inhibition of ROS reversed these effects. MFS‐VPCs displayed increased mitochondrial fusion and decreased mitochondrial fission. Treatment of control‐VPCs with TGF‐β1 increased mitochondrial fusion and reduced mitochondrial fission. Nonetheless, treatment of mitofusin2 (Mfn2)‐siRNA inhibited TGF‐β1‐induced mitochondrial fusion and cellular senescence. Furthermore, TGF‐β1‐induced mitochondrial fusion was mediated by the AMPK signalling pathway. Our study shows that TGF‐β1 induces VPC senescence in patients with MFS by mediating mitochondrial dynamics via the AMPK signalling pathway.
Collapse
Affiliation(s)
- Haiwei He
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baoqi Yu
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Zipeng Liu
- Center for Genomic Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Gen Ye
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei You
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yimei Hong
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qizhou Lian
- Department of Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
12
|
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (L.Z.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Q.X.); and Cardiovascular Division, King's College London BHF Centre, United Kingdom (Q.X.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (L.Z.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Q.X.); and Cardiovascular Division, King's College London BHF Centre, United Kingdom (Q.X.).
| |
Collapse
|
13
|
Affiliation(s)
- Yao Xie
- From the Cardiovascular Division, King's College London BHF Centre, London, UK (Y.X., Q.X.); and Institute of Respiratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.)
| | - Ye Fan
- From the Cardiovascular Division, King's College London BHF Centre, London, UK (Y.X., Q.X.); and Institute of Respiratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.)
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, London, UK (Y.X., Q.X.); and Institute of Respiratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.).
| |
Collapse
|
14
|
Abstract
Vascular, resident stem cells are present in all 3 layers of the vessel wall; they play a role in vascular formation under physiological conditions and in remodeling in pathological situations. Throughout development and adult early life, resident stem cells participate in vessel formation through vasculogenesis and angiogenesis. In adults, the vascular stem cells are mostly quiescent in their niches but can be activated in response to injury and participate in endothelial repair and smooth muscle cell accumulation to form neointima. However, delineation of the characteristics and of the migration and differentiation behaviors of these stem cells is an area of ongoing investigation. A set of genetic mouse models for cell lineage tracing has been developed to specifically address the nature of these cells and both migration and differentiation processes during physiological angiogenesis and in vascular diseases. This review summarizes the current knowledge on resident stem cells, which has become more defined and refined in vascular biology research, thus contributing to the development of new potential therapeutic strategies to promote endothelial regeneration and ameliorate vascular disease development.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| | - Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences (B.Z.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| |
Collapse
|
15
|
de Vries MR, Quax PHA. Inflammation in Vein Graft Disease. Front Cardiovasc Med 2018; 5:3. [PMID: 29417051 PMCID: PMC5787541 DOI: 10.3389/fcvm.2018.00003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Bypass surgery is one of the most frequently used strategies to revascularize tissues downstream occlusive atherosclerotic lesions. For venous bypass surgery the great saphenous vein is the most commonly used vessel. Unfortunately, graft efficacy is low due to the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. Moreover, failure of grafts leads to significant adverse outcomes and even mortality. The last couple of decades not much has changed in the treatment of vein graft disease (VGD). However, insight is the cellular and molecular mechanisms of VGD has increased. In this review, we discuss the latest insights on VGD and the role of inflammation in this. We discuss vein graft pathophysiology including hemodynamic changes, the role of vessel wall constitutions and vascular remodeling. We show that profound systemic and local inflammatory responses, including inflammation of the perivascular fat, involve both the innate and adaptive immune system.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Wang D, Li LK, Dai T, Wang A, Li S. Adult Stem Cells in Vascular Remodeling. Am J Cancer Res 2018; 8:815-829. [PMID: 29344309 PMCID: PMC5771096 DOI: 10.7150/thno.19577] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/01/2017] [Indexed: 01/03/2023] Open
Abstract
Understanding the contribution of vascular cells to blood vessel remodeling is critical for the development of new therapeutic approaches to cure cardiovascular diseases (CVDs) and regenerate blood vessels. Recent findings suggest that neointimal formation and atherosclerotic lesions involve not only inflammatory cells, endothelial cells, and smooth muscle cells, but also several types of stem cells or progenitors in arterial walls and the circulation. Some of these stem cells also participate in the remodeling of vascular grafts, microvessel regeneration, and formation of fibrotic tissue around biomaterial implants. Here we review the recent findings on how adult stem cells participate in CVD development and regeneration as well as the current state of clinical trials in the field, which may lead to new approaches for cardiovascular therapies and tissue engineering.
Collapse
|
17
|
Tesfamariam B. Periadventitial local drug delivery to target restenosis. Vascul Pharmacol 2017; 107:S1537-1891(17)30235-5. [PMID: 29247786 DOI: 10.1016/j.vph.2017.12.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
The adventitia functions as a dynamic compartment for cell trafficking into and out of the artery wall, and communicates with medial and intimal cells. The resident cells in the tunica adventitia play an integral role in the regulation of vessel wall structure, repair, tone, and remodeling. Following injury to the vascular wall, adventitial fibroblasts are activated, which proliferate and differentiate into migratory myofibroblasts, and initiate inflammation through the secretion of soluble factors such as chemokines, cytokines, and adhesion molecules. The secreted factors subsequently promote leukocyte recruitment and extravasation into the media and intima. The adventitia generates reactive oxygen species and growth factors that participate in cell proliferation, migration, and hypertrophy, resulting in intimal thickening. The adventitial vasa vasorum undergoes neovascularization and serves as a port of entry for the delivery of inflammatory cells and resident stem/progenitor cells into the intima, and thus facilitates vascular remodeling. This review highlights the contribution of multilineage cells in the adventitia along with de-differentiated smooth muscle-like cells to the formation of neointimal hyperplasia, and discusses the potential of periadventitial local drug delivery for the prevention of vascular restenosis.
Collapse
Affiliation(s)
- Belay Tesfamariam
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Bldg 22, Rm 4176, Silver Spring, MD, United States.
| |
Collapse
|
18
|
Mikirova NA, Kesari S, Ichim TE, Riordan NH. Effect of Infla-Kine supplementation on the gene expression of inflammatory markers in peripheral mononuclear cells and on C-reactive protein in blood. J Transl Med 2017; 15:213. [PMID: 29058588 PMCID: PMC5651612 DOI: 10.1186/s12967-017-1315-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022] Open
Abstract
Background Chronic inflammation is a predisposing factor to numerous degenerative diseases including cancer, heart failure and Alzheimer’s disease. Infla-Kine is a natural supplement comprised of a proprietary blend of Lactobacillus fermentum extract, burdock seed (arctigenin), zinc, alpha lipoic acid, papaya enzyme and an enhanced absorption bio-curcumin complex (BCM-95®). Methods Infla-Kine was administered twice daily to 24 health volunteers for 4 weeks. Quantitative RT-PCR was used to assess mRNA transcripts of IL-1b, IL8, IL-6, NF-κB, and TNF-α from peripheral blood mononuclear cells (PBMC). C reactive protein (CRP) was measured from serum. Additionally, quality of life questionnaires were employed to assess general feeling of well-being. Assessments were made before treatment and at conclusion of treatment (4 weeks). Results As compared to pre-treatment, after 4 weeks, a statistically significant reduction of IL8, IL-6, NF-κB, and TNF-α transcripts was observed in PBMC. Furthermore, reduction of IL-1b transcript and serum CRP was observed but did not reach statistical significance. Quality of life improvements were most prevalent in muscle and joint pains. Conclusions Overall, our data demonstrate that twice daily administration of Infla-Kine for 4 weeks reduces inflammatory markers and quality of life in healthy volunteers.
Collapse
Affiliation(s)
| | - Santosh Kesari
- Department of Translational Neuro-Oncology and Neuro-therapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | | | | |
Collapse
|
19
|
Xie Y, Potter CMF, Le Bras A, Nowak WN, Gu W, Bhaloo SI, Zhang Z, Hu Y, Zhang L, Xu Q. Leptin Induces Sca-1 + Progenitor Cell Migration Enhancing Neointimal Lesions in Vessel-Injury Mouse Models. Arterioscler Thromb Vasc Biol 2017; 37:2114-2127. [PMID: 28935755 PMCID: PMC5671780 DOI: 10.1161/atvbaha.117.309852] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Leptin is an adipokine initially thought to be a metabolic factor. Recent publications have shown its roles in inflammation and vascular disease, to which Sca-1+ vascular progenitor cells within the vessel wall may contribute. We sought to elucidate the effects of leptin on Sca-1+ progenitor cells migration and neointimal formation and to understand the underlying mechanisms. Approach and Results— Sca-1+ progenitor cells from the vessel wall of Lepr+/+ and Lepr−/− mice were cultured and purified. The migration of Lepr+/+ Sca-1+ progenitor cells in vitro was markedly induced by leptin. Western blotting and kinase assays revealed that leptin induced the activation of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal–regulated kinases 1/2, pFAK (phosphorylated focal adhesion kinase), and Rac1 (ras-related C3 botulinum toxin substrate 1)/Cdc42 (cell division control protein 42 homolog). In a mouse femoral artery guidewire injury model, an increased expression of leptin in both injured vessels and serum was observed 24 hours post-surgery. RFP (red fluorescent protein)-Sca-1+ progenitor cells in Matrigel were applied to the adventitia of the injured femoral artery. RFP+ cells were observed in the intima 24 hours post-surgery, subsequently increasing neointimal lesions at 2 weeks when compared with the arteries without seeded cells. This increase was reduced by pre-treatment of Sca-1+ cells with a leptin antagonist. Guidewire injury could only induce minor neointima in Lepr−/− mice 2 weeks post-surgery. However, transplantation of Lepr+/+ Sca-1+ progenitor cells into the adventitial side of injured artery in Lepr−/− mice significantly enhanced neointimal formation. Conclusions— Upregulation of leptin levels in both the vessel wall and the circulation after vessel injury promoted the migration of Sca-1+ progenitor cells via leptin receptor–dependent signal transducer and activator of transcription 3- Rac1/Cdc42-ERK (extracellular signal–regulated kinase)-FAK pathways, which enhanced neointimal formation.
Collapse
Affiliation(s)
- Yao Xie
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Claire M F Potter
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Alexandra Le Bras
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Witold N Nowak
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Wenduo Gu
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Shirin Issa Bhaloo
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Zhongyi Zhang
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Yanhua Hu
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Li Zhang
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.)
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, United Kingdom (Y.X., C.M.F.P., W.N.N., A.L.B., W.G., S.I.B., Z.Z., Y.H., Q.X.); and Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z.).
| |
Collapse
|
20
|
Yu B, Kiechl S, Qi D, Wang X, Song Y, Weger S, Mayr A, Le Bras A, Karamariti E, Zhang Z, Barco Barrantes ID, Niehrs C, Schett G, Hu Y, Wang W, Willeit J, Qu A, Xu Q. A Cytokine-Like Protein Dickkopf-Related Protein 3 Is Atheroprotective. Circulation 2017; 136:1022-1036. [PMID: 28674110 PMCID: PMC5598907 DOI: 10.1161/circulationaha.117.027690] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 12/28/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Dickkopf-related protein 3 (DKK3) is a secreted protein that is involved in the regulation of cardiac remodeling and vascular smooth muscle cell differentiation, but little is known about its role in atherosclerosis. Methods: We tested the hypothesis that DKK3 is atheroprotective using both epidemiological and experimental approaches. Blood DKK3 levels were measured in the Bruneck Study in 2000 (n=684) and then in 2005 (n=574). DKK3-deficient mice were crossed with apolipoprotein E-/- mice to evaluate atherosclerosis development and vessel injury-induced neointimal formation. Endothelial cell migration and the underlying mechanisms were studied using in vitro cell culture models. Results: In the prospective population-based Bruneck Study, the level of plasma DKK3 was inversely related to carotid artery intima-media thickness and 5-year progression of carotid atherosclerosis independently from standard risk factors for atherosclerosis. Experimentally, we analyzed the area of atherosclerotic lesions, femoral artery injury-induced reendothelialization, and neointima formation in both DKK3-/-/apolipoprotein E-/- and DKK3+/+/apolipoprotein E-/- mice. It was demonstrated that DKK3 deficiency accelerated atherosclerosis and delayed reendothelialization with consequently exacerbated neointima formation. To explore the underlying mechanisms, we performed transwell and scratch migration assays using cultured human endothelial cells, which exhibited a significant induction in cell migration in response to DKK3 stimulation. This DKK3-induced migration activated ROR2 and DVL1, activated Rac1 GTPases, and upregulated JNK and c-jun phosphorylation in endothelial cells. Knockdown of the ROR2 receptor using specific siRNA or transfection of a dominant-negative form of Rac1 in endothelial cells markedly inhibited cell migration and downstream JNK and c-jun phosphorylation. Conclusions: This study provides the evidence for a role of DKK3 in the protection against atherosclerosis involving endothelial migration and repair, with great therapeutic potential implications against atherosclerosis.
Collapse
Affiliation(s)
- Baoqi Yu
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Stefan Kiechl
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Dan Qi
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Xiaocong Wang
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Yanting Song
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Siegfried Weger
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Agnes Mayr
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Alexandra Le Bras
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Eirini Karamariti
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Zhongyi Zhang
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Ivan Del Barco Barrantes
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Christof Niehrs
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Georg Schett
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Yanhua Hu
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Wen Wang
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Johann Willeit
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Aijuan Qu
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| | - Qingbo Xu
- From Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (B.Y., X.W., A.L.B., E.K., Z.Z., Y.H., Q.X.); Department of Neurology, Medical University of Innsbruck, Austria (S.K., J.W.); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (D.Q., Y.S., A.Q.); Department of Internal and Laboratory Medicine, Bruneck Hospital, Italy (S.W., A.M.); Division of Molecular Embryology, German Cancer Research Center (DKFZ) Heidelberg Germany and Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, Heidelberg, Germany (I.d.B.B., C.N.); Institute of Molecular Biology, Mainz, Germany (C.N.); Department of Internal Medicine, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (G.S.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (Y.H., Q.X.); and Institute of Bioengineering, Queen Mary University of London, United Kingdom (W.W.)
| |
Collapse
|
21
|
Pesce M, Santoro R. Feeling the right force: How to contextualize the cell mechanical behavior in physiologic turnover and pathologic evolution of the cardiovascular system. Pharmacol Ther 2017; 171:75-82. [DOI: 10.1016/j.pharmthera.2016.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
|
22
|
The vascular adventitia: An endogenous, omnipresent source of stem cells in the body. Pharmacol Ther 2017; 171:13-29. [DOI: 10.1016/j.pharmthera.2016.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022]
|
23
|
de Vries MR, Simons KH, Jukema JW, Braun J, Quax PHA. Vein graft failure: from pathophysiology to clinical outcomes. Nat Rev Cardiol 2016; 13:451-70. [PMID: 27194091 DOI: 10.1038/nrcardio.2016.76] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Occlusive arterial disease is a leading cause of morbidity and mortality worldwide. Aside from balloon angioplasty, bypass graft surgery is the most commonly performed revascularization technique for occlusive arterial disease. Coronary artery bypass graft surgery is performed in patients with left main coronary artery disease and three-vessel coronary disease, whereas peripheral artery bypass graft surgery is used to treat patients with late-stage peripheral artery occlusive disease. The great saphenous veins are commonly used conduits for surgical revascularization; however, they are associated with a high failure rate. Therefore, preservation of vein graft patency is essential for long-term surgical success. With the exception of 'no-touch' techniques and lipid-lowering and antiplatelet (aspirin) therapy, no intervention has hitherto unequivocally proven to be clinically effective in preventing vein graft failure. In this Review, we describe both preclinical and clinical studies evaluating the pathophysiology underlying vein graft failure, and the latest therapeutic options to improve patency for both coronary and peripheral grafts.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Karin H Simons
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - J Wouter Jukema
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
24
|
Wong MM, Hong X, Karamariti E, Hu Y, Xu Q. Generation and grafting of tissue-engineered vessels in a mouse model. J Vis Exp 2015. [PMID: 25867458 DOI: 10.3791/52565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The construction of vascular conduits is a fundamental strategy for surgical repair of damaged and injured vessels resulting from cardiovascular diseases. The current protocol presents an efficient and reproducible strategy in which functional tissue engineered vessel grafts can be generated using partially induced pluripotent stem cell (PiPSC) from human fibroblasts. We designed a decellularized vessel scaffold bioreactor, which closely mimics the matrix protein structure and blood flow that exists within a native vessel, for seeding of PiPSC-endothelial cells or smooth muscle cells prior to grafting into mice. This approach was demonstrated to be advantageous because immune-deficient mice engrafted with the PiPSC-derived grafts presented with markedly increased survival rate 3 weeks after surgery. This protocol represents a valuable tool for regenerative medicine, tissue engineering and potentially patient-specific cell-therapy in the near future.
Collapse
Affiliation(s)
- Mei M Wong
- Cardiovascular Division, King's College London BHF Centre
| | - Xuechong Hong
- Cardiovascular Division, King's College London BHF Centre
| | | | - Yanhua Hu
- Cardiovascular Division, King's College London BHF Centre
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre;
| |
Collapse
|
25
|
Abstract
A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (L.Z.); and Department of Cardiology, Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Qingbo Xu
- From the Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (L.Z.); and Department of Cardiology, Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.).
| |
Collapse
|
26
|
The modulation of cardiac progenitor cell function by hydrogel-dependent Notch1 activation. Biomaterials 2014; 35:8103-12. [PMID: 24974008 DOI: 10.1016/j.biomaterials.2014.05.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/28/2014] [Indexed: 11/24/2022]
Abstract
Myocardial infarction is the leading cause of death worldwide and phase I clinical trials utilizing cardiac progenitor cells (CPCs) have shown promising outcomes. Notch1 signaling plays a critical role in cardiac development and in the survival, cardiogenic lineage commitment, and differentiation of cardiac stem/progenitor cells. In this study, we functionalized self-assembling peptide (SAP) hydrogels with a peptide mimic of the Notch1 ligand Jagged1 (RJ) to evaluate the therapeutic benefit of CPC delivery in the hydrogels in a rat model of myocardial infarction. The behavior of CPCs cultured in the 3D hydrogels in vitro including gene expression, proliferation, and growth factor production was evaluated. Interestingly, we observed Notch1 activation to be dependent on hydrogel polymer density/stiffness with synergistic increase in presence of RJ. Our results show that RJ mediated Notch1 activation depending on hydrogel concentration differentially regulated cardiogenic gene expression, proliferation, and growth factor production in CPCs in vitro. In rats subjected to experimental myocardial infarction, improvement in acute retention and cardiac function was observed following cell therapy in RJ hydrogels compared to unmodified or scrambled peptide containing hydrogels. This study demonstrates the potential therapeutic benefit of functionalizing SAP hydrogels with RJ for CPC based cardiac repair.
Collapse
|