1
|
Muley A, Kim Uh M, Salazar-De Simone G, Swaminathan B, James JM, Murtomaki A, Youn SW, McCarron JD, Kitajewski C, Gnarra Buethe M, Riitano G, Mukouyama YS, Kitajewski J, Shawber CJ. Unique functions for Notch4 in murine embryonic lymphangiogenesis. Angiogenesis 2021; 25:205-224. [PMID: 34665379 PMCID: PMC9054879 DOI: 10.1007/s10456-021-09822-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
In mice, embryonic dermal lymphatic development is well understood and used to study gene functions in lymphangiogenesis. Notch signaling is an evolutionarily conserved pathway that modulates cell fate decisions, which has been shown to both inhibit and promote dermal lymphangiogenesis. Here, we demonstrate distinct roles for Notch4 signaling versus canonical Notch signaling in embryonic dermal lymphangiogenesis. Actively growing embryonic dermal lymphatics expressed NOTCH1, NOTCH4, and DLL4 which correlated with Notch activity. In lymphatic endothelial cells (LECs), DLL4 activation of Notch induced a subset of Notch effectors and lymphatic genes, which were distinctly regulated by Notch1 and Notch4 activation. Treatment of LECs with VEGF-A or VEGF-C upregulated Dll4 transcripts and differentially and temporally regulated the expression of Notch1 and Hes/Hey genes. Mice nullizygous for Notch4 had an increase in the closure of the lymphangiogenic fronts which correlated with reduced vessel caliber in the maturing lymphatic plexus at E14.5 and reduced branching at E16.5. Activation of Notch4 suppressed LEC migration in a wounding assay significantly more than Notch1, suggesting a dominant role for Notch4 in regulating LEC migration. Unlike Notch4 nulls, inhibition of canonical Notch signaling by expressing a dominant negative form of MAML1 (DNMAML) in Prox1+ LECs led to increased lymphatic density consistent with an increase in LEC proliferation, described for the loss of LEC Notch1. Moreover, loss of Notch4 did not affect LEC canonical Notch signaling. Thus, we propose that Notch4 signaling and canonical Notch signaling have distinct functions in the coordination of embryonic dermal lymphangiogenesis.
Collapse
Affiliation(s)
- Ajit Muley
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Minji Kim Uh
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Pharmacology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | - Bhairavi Swaminathan
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jennifer M James
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aino Murtomaki
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, 10032, USA.,Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu, 8, 00290, Helsinki, Finland.,Translational Cancer Medicine Program, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Seock Won Youn
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Joseph D McCarron
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chris Kitajewski
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Maria Gnarra Buethe
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gloria Riitano
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, 10032, USA.,Departments of Molecular Medicine and Experimental Medicine, Sapienza University, 00185, Rome, Italy
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, 10032, USA. .,Department of Surgery, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The Lymphatic Vasculature in the 21 st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020; 182:270-296. [PMID: 32707093 PMCID: PMC7392116 DOI: 10.1016/j.cell.2020.06.039] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Mammals have two specialized vascular circulatory systems: the blood vasculature and the lymphatic vasculature. The lymphatic vasculature is a unidirectional conduit that returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular characterization of lymphatic vascular development and our understanding of this vasculature's role in pathophysiological conditions has greatly improved in recent years, changing conventional views about the roles of the lymphatic vasculature in health and disease. Morphological or functional defects in the lymphatic vasculature have now been uncovered in several pathological conditions. We propose that subtle asymptomatic alterations in lymphatic vascular function could underlie the variability seen in the body's response to a wide range of human diseases.
Collapse
Affiliation(s)
- Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
3
|
Zhu C, Guo Z, Zhang Y, Liu M, Chen B, Cao K, Wu Y, Yang M, Yin W, Zhao H, Tai H, Ou Y, Yu X, Liu C, Li S, Su B, Feng Y, Huang S. Aplnra/b Sequentially Regulate Organ Left-Right Patterning via Distinct Mechanisms. Int J Biol Sci 2019; 15:1225-1239. [PMID: 31223282 PMCID: PMC6567806 DOI: 10.7150/ijbs.30100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
The G protein-coupled receptor APJ/Aplnr has been widely reported to be involved in heart and vascular development and disease, but whether it contributes to organ left-right patterning is largely unknown. Here, we show that in zebrafish, aplnra/b coordinates organ LR patterning in an apela/apln ligand-dependent manner using distinct mechanisms at different stages. During gastrulation and early somitogenesis, aplnra/b loss of function results in heart and liver LR asymmetry defects, accompanied by disturbed KV/cilia morphogenesis and disrupted left-sided Nodal/spaw expression in the LPM. In this process, only aplnra loss of function results in KV/cilia morphogenesis defect. In addition, only apela works as the early endogenous ligand to regulate KV morphogenesis, which then contributes to left-sided Nodal/spaw expression and subsequent organ LR patterning. The aplnra-apela cascade regulates KV morphogenesis by enhancing the expression of foxj1a, but not fgf8 or dnh9, during KV development. At the late somite stage, both aplnra and aplnrb contribute to the expression of lft1 in the trunk midline but do not regulate KV formation, and this role is possibly mediated by both endogenous ligands, apela and apln. In conclusion, our study is the first to identify a role for aplnra/b and their endogenous ligands apela/apln in LR patterning, and it clarifies the distinct roles of aplnra-apela and aplnra/b-apela/apln in orchestrating organ LR patterning.
Collapse
Affiliation(s)
- Chengke Zhu
- College of Animal Science in Rongchang Campus, Southwest University, Key Laboratary of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 402460, China.,UoE Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Zhenghua Guo
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Yu Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Min Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Bingyu Chen
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Kang Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Yongmei Wu
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Min Yang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Wenqing Yin
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts. USA
| | - Haixia Zhao
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Haoran Tai
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Yu Ou
- School of Public Health, Chengdu Medical College , Chengdu 610500, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College , Chengdu 610500, China
| | - Chi Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Shurong Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Bingyin Su
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Yi Feng
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
4
|
Ge Y, Li Y, Chen Q, Zhu W, Zuo L, Guo Z, Gong J, Cao L, Gu L, Li J. Adipokine apelin ameliorates chronic colitis in Il-10 -/- mice by promoting intestinal lymphatic functions. Biochem Pharmacol 2018; 148:202-212. [PMID: 29309764 DOI: 10.1016/j.bcp.2018.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
Abstract
Both mesenteric adipose tissue (MAT) and lymphatic vessels (LVs) play important roles in the pathogenesis of Crohn's disease (CD), and adipokines have been implicated in the crosstalk between MAT and LVs. Apelin, a newly identified adipokine, has been demonstrated to be crucial in the development and stabilization of LVs. We aimed to identify the expression of apelin in MAT of CD patients and explore whether apelin influences the disease course in murine colitis and determine its contributions to LVs. Expression of apelin in MAT specimens from patients with CD (n = 24) and without CD (control, n = 12) was detected. Il-10 deficient (Il-10-/-) mice with established colitis were administered apelin, and untreated and wild-type mice served as controls (n = 8 for each group). Disease activity and colonic inflammation was evaluated. The LV density, lymphatic drainage function and related signaling pathways were also analyzed. We found that MAT from CD patients expressed a higher level of apelin compared with that from controls. Systemic delivery of apelin significantly ameliorated chronic colitis in Il-10-/- mice, demonstrated by decreased disease activity index and inflammatory scores, and lower levels of Tnf-α, Il-1β and Il-6. Increased LV density and podoplanin levels indicated that apelin promoted lymphangiogenesis. Evans blue dye and fluorescent lymphangiography revealed an enhanced lymphatic drainage function in apelin-treated mice. The role of apelin was found to be related to the activation of the Akt and Erk signaling pathways. These results indicate that the adipokine apelin was highly expressed in MAT of CD patients and has a promising role in ameliorating experimental colitis by promoting intestinal lymphatic functions, suggesting the potential crosstalk between adipokines and LVs in MAT in CD status. Therapies with adipokines, such as apelin, may be a novel approach for the treatment of CD.
Collapse
Affiliation(s)
- Yuanyuan Ge
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qin Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lei Cao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lili Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Blei F. Update September 2017. Lymphat Res Biol 2017; 15:297-313. [PMID: 28937924 DOI: 10.1089/lrb.2017.29030.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
6
|
Hao YZ, Li ML, Ning FL, Wang XW. APJ Is Associated with Treatment Response in Gastric Cancer Patients Receiving Concurrent Chemoradiotherapy and Endostar Therapy. Cancer Biother Radiopharm 2017; 32:133-138. [PMID: 28514205 DOI: 10.1089/cbr.2016.2138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yan-zhang Hao
- Oncology Center, Qilu Hospital of Shandong University, Jinan, PR China
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, PR China
| | - Mian-li Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, PR China
| | - Fang-ling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, PR China
| | - Xiu-wen Wang
- Oncology Center, Qilu Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
7
|
Kim JD, Jin SW. A tale of two models: mouse and zebrafish as complementary models for lymphatic studies. Mol Cells 2014; 37:503-10. [PMID: 24854860 PMCID: PMC4132301 DOI: 10.14348/molcells.2014.0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 11/27/2022] Open
Abstract
Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suk-Won Jin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Reichman-Fried M, Raz E. Small proteins, big roles: The signaling protein Apela extends the complexity of developmental pathways in the early zebrafish embryo. Bioessays 2014; 36:741-5. [DOI: 10.1002/bies.201400048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michal Reichman-Fried
- Institute of Cell Biology; Center for Molecular Biology of Inflammation; Münster Germany
| | - Erez Raz
- Institute of Cell Biology; Center for Molecular Biology of Inflammation; Münster Germany
| |
Collapse
|
9
|
Blei F. Update March 2014. Lymphat Res Biol 2014. [DOI: 10.1089/lrb.2014.1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|