1
|
Wu H, Pang M, Chen H, Zhuang K, Zhang H, Zhao Y, Ding X. Serum proteomic profiling reveals potential predictive indicators for coronary artery calcification in stable ischemic heart disease. J Mol Histol 2025; 56:110. [PMID: 40106019 PMCID: PMC11923027 DOI: 10.1007/s10735-025-10388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Coronary artery calcification (CAC) is a common complication in patients with stable ischemic heart disease (SIHD). However, the early diagnosis and understanding of the pathogenesis of CAC in SIHD patients remain underdeveloped. This study aimed to analyze aberrant alterations in the serum proteome of SIHD patients, as well as SIHD patients with severe CAC (CAC_SIHD), and to explore the potential risk factors of CAC in SIHD patients. Serum proteomic profiles were obtained from individuals with SIHD (n = 6), CAC_SIHD (n = 6), and healthy controls (n = 9), and were analyzed using nano liquid chromatography tandem mass spectrometry (LC-MS/MS). The aberrant alterations in proteins and immune cells in the serum of SIHD and CAC_SIHD patients were characterized through differential protein expression analysis and single-sample gene set enrichment analysis analysis, respectively. Differentially expressed proteins (DEPs) were further subjected to gene ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Finally, Receiver Operating Characteristic analysis was performed on the DEPs between SIHD and CAC_SIHD to identify potential predictive factors of CAC. Abnormalities in multiple complement pathways and lipid metabolism were observed in SIHD and CAC_SIHD patients. Moreover, SIHD and CAC_SIHD were characterized by an increased presence of T cells and natural killer cells, along with a reduced presence of B cells. Subsequent analysis of serum proteins revealed that RNASE1 and MSLN may be potential predictive indicators for the early detection and diagnosis of CAC in SIHD patients. In conclusion, our research extensively examined the variations in serum proteins in patients with SIHD and CAC_SIHD, identifying key indicators and metabolic pathways associated with these conditions. These findings not only provide new insights into the pathological mechanisms of SIHD and CAC_SIHD, but also suggest potential factors for the early diagnosis of CAC in SIHD patients, which imply potential clinical applications.
Collapse
Affiliation(s)
- Haiyan Wu
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Rd, Kunming, 650021, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mingjie Pang
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Rd, Kunming, 650021, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Haoqiang Chen
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Rd, Kunming, 650021, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ke Zhuang
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Rd, Kunming, 650021, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hong Zhang
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Rd, Kunming, 650021, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan Zhao
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Rd, Kunming, 650021, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoxue Ding
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Rd, Kunming, 650021, Yunnan, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Zou C, Tang X, Guo T, Jiang T, Zhang W, Zhang J. CTRP3 attenuates inflammation, oxidative and cell death in cisplatin induced HK-2 cells. PeerJ 2023; 11:e15890. [PMID: 37637169 PMCID: PMC10460153 DOI: 10.7717/peerj.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Cisplatin has been widely studied and found to be a highly effective anti-tumor drug. It has several side effects, including acute kidney injury (AKI). Cisplatin-induced AKI can be primarily attributed to oxidative stress, inflammation, and apoptosis. The CTRP3 adipokine is a new adipokine that exhibits antioxidant, anti-inflammatory, and antiapoptotic properties. Despite this, the role of CTRP3 in AKI remain unclear. In cisplatin-induced AKI models, our findings demonstrated that CTRP3 expression was decreased in human proximal tubule epithelial cells (HK-2). In the in vitro experiments, HK-2 cells were first transfected with an overexpression plasmid of CTRP3 (pcDNA-CTRP3) or a small interfering RNA for CTRP3 (si-CTRP3) and induced by cisplatin; and cell oxidative stress, inflammation, proliferation, and apoptosis were found to be present. Overexpressing CTRP3 inhibited oxidative stress through decreasing malondialdehyde (MDA) levels and increasing the activity of SOD and CAT. The mRNA levels of SOD1 and SOD2 were increased in response to CTRP3 overexpression. Additionally, CTRP3 decreased TNF-α and MCP-1 levels. Moreover, CTRP3 overexpression increased cisplatin-induced cell activity and decreased cell apoptosis, as indicated by the elevated numbers of EdU positive cells and decreased numbers of apoptotic cells. Consistent with these results, the overexpression of CTRP3 effectively elevated the mRNA levels of Bcl-2 and reduced the mRNA levels of Bax. In contrast, inhibition of CTRP3 expression by si-CTRP3 reversed the cisplatin-induced indices. Mechanistically, we found that the overexpression of CTRP3 can increase expression of Nrf2 and inhibit the activation of MAPK phosphorylation (ERK, JNK, and p38). Furthermore, inhibition of ERK, JNK and p38 activity eliminated aggravation of cisplatin-induced inflammation and apoptosis caused by CTRP3 knockdown. Additionally, the cisplatin-induced oxidative stress and activation of MAPK phosphorylation (ERK, JNK, and p38) in HK-2 cells were reversed by Nrf2 suppression by siRNA. Collectively, these results indicated that CTRP3 may identify as a novel target for AKI treatment and protect against cisplatin-induced AKI through the Nrf2/MAPK pathway.
Collapse
Affiliation(s)
- Chenglin Zou
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, The Second People’s Hospital of Jingzhou, Jingzhou, China
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Jiang
- Department of Nephrology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenying Zhang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
4
|
Repression of the antiporter SLC7A11/glutathione/glutathione peroxidase 4 axis drives ferroptosis of vascular smooth muscle cells to facilitate vascular calcification. Kidney Int 2022; 102:1259-1275. [PMID: 36063875 DOI: 10.1016/j.kint.2022.07.034] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Vascular calcification is a common pathologic condition in patients with chronic kidney disease (CKD). Cell death such as apoptosis plays a critical role in vascular calcification. Ferroptosis is a type of iron-catalyzed and regulated cell death resulting from excessive iron-dependent reactive oxygen species and lipid peroxidation. However, it is unclear whether ferroptosis of vascular smooth muscle cells (VSMCs) regulates vascular calcification in CKD. Our results showed that high calcium and phosphate concentrations induced ferroptosis in rat VSMCs in vitro. Inhibition of ferroptosis by ferrostatin-1 dose-dependently reduced mineral deposition in rat VSMCs under pro-osteogenic conditions, as indicated by alizarin red staining and quantification of calcium content. In addition, gene expression analysis revealed that ferrostatin-1 inhibited osteogenic differentiation of rat VSMCs. Similarly, ferrostatin-1 remarkably attenuated calcification of rat and human arterial rings ex vivo and aortic calcification in vitamin D3-overloaded mice in vivo. Moreover, inhibition of ferroptosis by either ferrostatin-1 or deferoxamine attenuated aortic calcification in rats with CKD. Mechanistically, high calcium and phosphate downregulated expression of SLC7A11 (a cystine-glutamate antiporter), and reduced glutathione (GSH) content in VSMCs. Additionally, GSH depletion induced by erastin (a small molecule initiating ferroptotic cell death) significantly promoted calcification of VSMCs under pro-osteogenic conditions, whereas GSH supplement by N-acetylcysteine reduced calcification of VSMCs. Consistently, knockdown of SLC7A11 by siRNA markedly promoted VSMC calcification. Furthermore, high calcium and phosphate downregulated glutathione peroxidase 4 (GPX4) expression, and reduced glutathione peroxidase activity. Inhibition of GPX4 by RSL3 promoted VSMC calcification. Thus, repression of the SLC7A11/GSH/GPX4 axis triggers ferroptosis of VSMCs to promote vascular calcification under CKD conditions, providing a novel targeting strategy for vascular calcification.
Collapse
|
5
|
Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease. Cell Death Dis 2022; 13:283. [PMID: 35354793 PMCID: PMC8967887 DOI: 10.1038/s41419-022-04735-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 01/18/2023]
Abstract
Irisin protects the cardiovascular system against vascular diseases. However, its role in chronic kidney disease (CKD) -associated vascular calcification (VC) and the underlying mechanisms remain unclear. In the present study, we investigated the potential link among Irisin, pyroptosis, and VC under CKD conditions. During mouse vascular smooth muscle cell (VSMC) calcification induced by β-glycerophosphate (β-GP), the pyroptosis level was increased, as evidenced by the upregulated expression of pyroptosis-related proteins (cleaved CASP1, GSDMD-N, and IL1B) and pyroptotic cell death (increased numbers of PI-positive cells and LDH release). Reducing the pyroptosis levels by a CASP1 inhibitor remarkably decreased calcium deposition in β-GP-treated VSMCs. Further experiments revealed that the pyroptosis pathway was activated by excessive reactive oxygen species (ROS) production and subsequent NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in calcified VSMCs. Importantly, Irisin effectively inhibited β-GP-induced calcium deposition in VSMCs in vitro and in mice aortic rings ex vivo. Overexpression of Nlrp3 attenuated the suppressive effect of Irisin on VSMC calcification. In addition, Irisin could induce autophagy and restore autophagic flux in calcified VSMCs. Adding the autophagy inhibitor 3-methyladenine or chloroquine attenuated the inhibitory effect of Irisin on β-GP-induced ROS production, NLRP3 inflammasome activation, pyroptosis, and calcification in VSMCs. Finally, our in vivo study showed that Irisin treatment promoted autophagy, downregulated ROS level and thereby suppressed pyroptosis and medial calcification in aortic tissues of adenine-induced CKD mice. Together, our findings for the first time demonstrated that Irisin protected against VC via inducing autophagy and inhibiting VSMC pyroptosis in CKD, and Irisin might serve as an effective therapeutic agent for CKD-associated VC.
Collapse
|
6
|
Alhakbany M, Al-Ayadhi L, El-Ansary A. CTRP3 as a novel biomarker in the plasma of Saudi children with autism. PeerJ 2022; 10:e12630. [PMID: 35047232 PMCID: PMC8759357 DOI: 10.7717/peerj.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND C1q/tumor necrosis factor-related protein-3 (CTRP3) has diverse functions: anti-inflammation, metabolic regulation, and protection against endothelial dysfunction. METHODS The plasma level of CTRP3 in autistic patients (n = 32) was compared to that in controls (n = 37) using ELISA. RESULTS CTRP3 was higher (24.7% with P < 0.05) in autistic patients than in controls. No association was observed between CTRP3 and the severity of the disorder using the Childhood Autism Rating Scale (CARS). A positive correlation between CARs and the age of patients was reported. Receiver operating characteristic (ROC) analysis demonstrated a low area under the curve (AUC) for all patients (0.636). Low AUCs were also found in the case of severe patients (0.659) compared to controls, but both values were statistically significant (P ≤ 0.05). Despite the small sample size, we are the first to find an association between CTRP3 and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Manan Alhakbany
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia,Autism Research and Treatment Center, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh, Saudi Arabia,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia,Central Laboratory, Female Center for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
CTRP3 is a coronary artery calcification biomarker and protects against vascular calcification by inhibiting β-catenin nuclear translocation to prevent vascular smooth muscle cell osteogenic differentiation. J Cardiol 2021; 79:551-558. [PMID: 34774387 DOI: 10.1016/j.jjcc.2021.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Coronary artery calcification (CAC) is an important risk factor for cardiovascular events and has been shown to be correlated with serum adiponectin levels. However, it remains unknown whether C1 tumor necrosis factor-related protein 3 (CTRP3) (homologous to adiponectin) is associated with CAC, and whether CTRP3 affects the osteoblastic differentiation of vascular smooth muscle cells. Here, we analyzed the association between CTRP3 expression and CAC. METHODS A case-control study was conducted involving 119 patients with coronary heart disease to identify the predictive value of CTRP3 for CAC. Additionally, mouse aortic smooth muscle cells transfected for β-catenin overexpression were subjected to treatment with CTRP3 and the β-catenin inhibitor JW74. The calcium content in smooth muscle cells was determined. Western blotting was performed to measure the expression levels of different osteoblastogenic proteins in vascular smooth muscle cells obtained from different treatment groups. RESULTS The serum CTRP3 levels were significantly lower in patients with CAC than in those without CAC, and even lower in patients with both CAC and diabetes mellitus. CTRP3 played roles as a protective factor and potential predictor in CAC. CTRP3 inhibited the osteogenic differentiation of vascular smooth muscle cells induced under high glucose and lipid conditions by inhibiting the nuclear translocation of β-catenin. CONCLUSIONS CTRP3 may serve as a valuable screening biomarker and a novel therapeutic target in CAC, particularly in diabetes patients.
Collapse
|
8
|
Procyanidin B2 Reduces Vascular Calcification through Inactivation of ERK1/2-RUNX2 Pathway. Antioxidants (Basel) 2021; 10:antiox10060916. [PMID: 34198832 PMCID: PMC8228429 DOI: 10.3390/antiox10060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
Vascular calcification is strongly associated with atherosclerotic plaque burden and plaque instability. The activation of extracellular signal-regulated kinase 1/2 (ERK1/2) increases runt related transcription factor 2 (RUNX2) expression to promote vascular calcification. Procyanidin B2 (PB2), a potent antioxidant, can inhibit ERK1/2 activation in human aortic smooth muscle cells (HASMCs). However, the effects and involved mechanisms of PB2 on atherosclerotic calcification remain unknown. In current study, we fed apoE-deficient (apoE−/−) mice a high-fat diet (HFD) while treating the animals with PB2 for 18 weeks. At the end of the study, we collected blood and aorta samples to determine atherosclerosis and vascular calcification. We found PB2 treatment decreased lesions in en face aorta, thoracic, and abdominal aortas by 21.4, 24.6, and 33.5%, respectively, and reduced sinus lesions in the aortic root by 17.1%. PB2 also increased α-smooth muscle actin expression and collagen content in lesion areas. In the aortic root, PB2 reduced atherosclerotic calcification areas by 75.8%. In vitro, PB2 inhibited inorganic phosphate-induced osteogenesis in HASMCs and aortic rings. Mechanistically, the expression of bone morphogenetic protein 2 and RUNX2 were markedly downregulated by PB2 treatment. Additionally, PB2 inhibited ERK1/2 phosphorylation in the aortic root plaques of apoE−/− mice and calcified HASMCs. Reciprocally, the activation of ERK1/2 phosphorylation by C2-MEK1-mut or epidermal growth factor can partially restore the PB2-inhibited RUNX2 expression or HASMC calcification. In conclusion, our study demonstrates that PB2 inhibits vascular calcification through the inactivation of the ERK1/2-RUNX2 pathway. Our study also suggests that PB2 can be a potential option for vascular calcification treatment.
Collapse
|
9
|
CTRP3 promotes TNF-α-induced apoptosis and barrier dysfunction in salivary epithelial cells. Cell Signal 2021; 85:110042. [PMID: 33991612 DOI: 10.1016/j.cellsig.2021.110042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/17/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND C1q/tumour necrosis factor-related protein 3 (CTRP3) plays important roles in metabolism and inflammatory responses in various cells and tissues. However, the expression and function of CTRP3 in salivary glands have not been explored. METHODS The expression and distribution of CTRP3 were detected by western blot, polymerase chain reaction, immunohistochemical and immunofluorescence staining. The effects of CTRP3 on tumour necrosis factor (TNF)-α-induced apoptosis and barrier dysfunction were detected by flow cytometry, western blot, co-immunoprecipitation, and measurement of transepithelial resistance and paracellular tracer flux. RESULTS CTRP3 was distributed in both acinar and ductal cells of human submandibular gland (SMG) and was primarily located in the ducts of rat and mouse SMGs. TNF-α increased the apoptotic rate, elevated expression of cleaved caspase 3 and cytochrome C, and reduced B cell lymphoma-2 (Bcl-2) levels in cultured human SMG tissue and SMG-C6 cells, and CTRP3 further enhanced TNF-α-induced apoptosis response. Additionally, CTRP3 aggravated TNF-α-increased paracellular permeability. Mechanistically, CTRP3 promoted TNF-α-enhanced TNF type I receptor (TNFR1) expression, inhibited the expression of cellular Fas-associated death domain (FADD)-like interleukin-1β converting enzyme inhibitory protein (c-FLIP), and increased the recruitment of FADD with receptor-interacting protein kinase 1 and caspase 8. Moreover, CTRP3 was significantly increased in the labial gland of Sjögren's syndrome patients and in the serum and SMG of nonobese diabetic mice. CONCLUSIONS These findings suggest that the salivary glands are a novel source of CTRP3 synthesis and secretion. CTRP3 might promote TNF-α-induced cell apoptosis through the TNFR1-mediated complex II pathway.
Collapse
|
10
|
Hui X, Wang M, Zhang L, Liu J, Wang M, Hu W, Zhang T, Zhao S, Geng S, Wang X, Zheng Z. Conditioned Media of Choroid Plexus Epithelium Cells Attenuates High Pi-Induced Calcification of MOVAS Cells by Inhibiting ROS-Mediated Signal Pathways. Front Physiol 2021; 12:607739. [PMID: 33613308 PMCID: PMC7892975 DOI: 10.3389/fphys.2021.607739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
Vascular calcification was an independent risk of cardiovascular and cerebrovascular diseases (CCDs). Studies reported that conditioned media of choroid plexus epithelium cells (CPECs-CM) showed potential neuroprotective effects. However, the protective effect of CPECs-CM against vascular calcification (VC) has not been reported yet. Herein, high phosphate (HPi)-induced calcification model in mouse aortic vascular smooth muscle cells (MOVAS) was established, and the protective effects and underlying mechanism of CPECs-CM against HPi-induced calcification were explored. The results indicated that CPEC cells were successfully isolated and cultured, and CPECs-CM co-treatment significantly inhibited HPi-induced calcification of MOVAS cells through blocking alkaline phosphatase activity and expression. CPECs-CM co-treatment also suppressed reactive oxide species-mediated DNA damage in HPi-treated MOVAS cells. Moreover, dysfunction of MAPKs and PI3K/AKT pathways both contributed to HPi-induced calcification of MOVAS cells, and CPECs-CM co-treatment attenuated HPi-induced calcification by normalizing MAPKs and PI3K/AKT expression. Taken together, our findings provide evidence that CPECs-CM had the potential to inhibit vascular calcification with potent application in chemoprevention and chemotherapy of human CCD.
Collapse
Affiliation(s)
- Xin Hui
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Mei Wang
- Department of Ultrasonography, Taian City Central Hospital, Tai’an, China
| | - Lijun Zhang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Ji Liu
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Mengen Wang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Weiwei Hu
- Department of Ultrasonography, Taian City Central Hospital, Tai’an, China
| | - Tongtong Zhang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Shijun Zhao
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Shangyong Geng
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Xianjun Wang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Zuncheng Zheng
- Department of Rehabilitation, Tai’an City Central Hospital, Tai’an, China
| |
Collapse
|
11
|
Guo B, Zhuang T, Xu F, Lin X, Li F, Shan SK, Wu F, Zhong JY, Wang Y, Zheng MH, Xu QS, Ehsan UMH, Yuan LQ. New Insights Into Implications of CTRP3 in Obesity, Metabolic Dysfunction, and Cardiovascular Diseases: Potential of Therapeutic Interventions. Front Physiol 2020; 11:570270. [PMID: 33343381 PMCID: PMC7744821 DOI: 10.3389/fphys.2020.570270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue, as the largest endocrine organ, secretes many biologically active molecules circulating in the bloodstream, collectively termed adipocytokines, which not only regulate the metabolism but also play a role in pathophysiological processes. C1q tumor necrosis factor (TNF)-related protein 3 (CTRP3) is a member of C1q tumor necrosis factor-related proteins (CTRPs), which is a paralog of adiponectin. CTRP3 has a wide range of effects on glucose/lipid metabolism, inflammation, and contributes to cardiovascular protection. In this review, we comprehensively discussed the latest research on CTRP3 in obesity, diabetes, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tongtian Zhuang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ullah Muhammad Hasnain Ehsan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Ghosh S, Luo D, He W, Chen J, Su X, Huang H. Diabetes and calcification: The potential role of anti-diabetic drugs on vascular calcification regression. Pharmacol Res 2020; 158:104861. [PMID: 32407954 DOI: 10.1016/j.phrs.2020.104861] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Vascular calcification (VC) has been well-established as an independent and strong predictor of cardiovascular diseases (CVD) as well as major cardiac adverse events (MACE). VC is associated with increased mortality in patients with CVD. Pathologically, VC is now believed to be a multi-directional active process ultimately resulting in ectopic calcium deposition in vascular beds. On the other hand, prevalence of diabetes mellitus (DM) is gradually increasing thus making the current population more prone to future CVD. Although the mechanisms involved in development and progression of VC in DM patients are not fully understood, a series of evidences demonstrated positive association between DM and VC. It has been highlighted that different cellular pathways are involved in this process. These intermediates such as tumor necrosis factor alpha (TNF-α), various interleukins (ILs) and different cell-signaling pathways are over-expressed in DM patients leading to development of VC. Thus, considering the burden and significance of VC it is of great importance to find a therapeutic approach to prevent or minimize the development of VC in DM patients. Over the past few years various anti diabetic drugs (ADDs) have been introduced and many of them showed desired glucose control. But no study demonstrated the effects of these medications on regression of VC. In this review, we will briefly discuss the current understanding on DM and VC and how commonly used ADDs modulate the development or progression of VC.
Collapse
Affiliation(s)
- Sounak Ghosh
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongling Luo
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wanbing He
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Su
- Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Hui Huang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Youngstrom DW, Zondervan RL, Doucet NR, Acevedo PK, Sexton HE, Gardner EA, Anderson JS, Kushwaha P, Little HC, Rodriguez S, Riddle RC, Kalajzic I, Wong GW, Hankenson KD. CTRP3 Regulates Endochondral Ossification and Bone Remodeling During Fracture Healing. J Orthop Res 2020; 38:996-1006. [PMID: 31808575 PMCID: PMC7162724 DOI: 10.1002/jor.24553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/24/2019] [Indexed: 02/04/2023]
Abstract
C1q/TNF-related protein 3 (CTRP3) is a cytokine known to regulate a variety of metabolic processes. Though previously undescribed in the context of bone regeneration, high throughput gene expression experiments in mice identified CTRP3 as one of the most highly upregulated genes in fracture callus tissue. Hypothesizing a positive regulatory role for CTRP3 in bone regeneration, we phenotyped skeletal development and fracture healing in CTRP3 knockout (KO) and CTRP3 overexpressing transgenic (TG) mice relative to wild-type (WT) control animals. CTRP3 KO mice experienced delayed endochondral fracture healing, resulting in abnormal mineral distribution, the presence of periosteal marrow compartments, and a nonunion-like state. Decreased osteoclast number was also observed in CTRP3 KO mice, whereas CTRP3 TG mice underwent accelerated callus remodeling. Gene expression profiling revealed a broad impact on osteoblast/osteoclast lineage commitment and metabolism, including arrested progression toward mature skeletal lineages in the KO group. A single systemic injection of CTRP3 protein at the time of fracture was insufficient to phenocopy the chronic TG healing response in WT mice. By associating CTRP3 levels with fracture healing progression, these data identify a novel protein family with potential therapeutic and diagnostic value. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:00-19966, 2020.
Collapse
Affiliation(s)
- Daniel W. Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA;,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA;,Correspondence should be addressed to Dr. Daniel W. Youngstrom:
| | - Robert L. Zondervan
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA;,Department of Physiology, Michigan State University College of Osteopathic Medicine, East Lansing, Michigan, USA
| | - Nicole R. Doucet
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Parker K. Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hannah E. Sexton
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily A. Gardner
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - JonCarlos S. Anderson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah C. Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Gayrard N, Muyor K, Notarnicola C, Duranton F, Jover B, Argilés À. Optimisation of cell and ex vivo culture conditions to study vascular calcification. PLoS One 2020; 15:e0230201. [PMID: 32143215 PMCID: PMC7060075 DOI: 10.1371/journal.pone.0230201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/24/2020] [Indexed: 01/28/2023] Open
Abstract
Medial vascular calcification (MVC) is a highly prevalent disease associated with a high risk of severe, potentially lethal, complications. While animal studies may not systematically be circumvented, in vitro systems have been proven useful to study disease physiopathology. In the context of MVC, the absence of a clinically relevant standardized in vitro method prevents the appropriate comparison and overall interpretation of results originating from different experiments. The aim of our study is to establish in vitro models mimicking in vivo vascular calcification and to select the best methods to unravel the mechanisms involved in MVC. Human aortic smooth muscle cells and rat aortic rings were cultured in different conditions. The influence of fetal calf serum (FCS), alkaline phosphatase, phosphate and calcium concentrations in the medium were evaluated. We identified culture conditions, including the herein reported Aorta Calcifying Medium (ACM), which allowed a reproducible and specific medial calcification of aortic explants. Studying cells and aortic explants cultured, the involvement of bone morphogenetic protein 2 (BMP2) pathway, fibrosis and apoptosis processes in in vitro MVC were demonstrated. Expression of osteoblastic markers was also observed suggesting the occurrence of transdifferentiation of smooth muscle cells to osteoblasts in our models. The use of these models will help researchers in the field of vascular calcification to achieve reproducible results and allow result comparison in a more consistent way.
Collapse
Affiliation(s)
- Nathalie Gayrard
- RD – Néphrologie 2, rue de Mûriers, Montpellier, France
- RD – Néphrologie, EA - 7288 BC2M BatD-RDC UFR - Pharmacie, Montpellier, France
- * E-mail:
| | - Karen Muyor
- RD – Néphrologie 2, rue de Mûriers, Montpellier, France
- RD – Néphrologie, EA - 7288 BC2M BatD-RDC UFR - Pharmacie, Montpellier, France
| | - Cécile Notarnicola
- PhyMedExp (Physiologie et Médecine Expérimentale Cœur Muscles), INSERM-CNRS-Université Montpellier, IURC, Montpellier, France
| | - Flore Duranton
- RD – Néphrologie 2, rue de Mûriers, Montpellier, France
- RD – Néphrologie, EA - 7288 BC2M BatD-RDC UFR - Pharmacie, Montpellier, France
| | - Bernard Jover
- PhyMedExp (Physiologie et Médecine Expérimentale Cœur Muscles), INSERM-CNRS-Université Montpellier, IURC, Montpellier, France
| | - Àngel Argilés
- RD – Néphrologie 2, rue de Mûriers, Montpellier, France
- RD – Néphrologie, EA - 7288 BC2M BatD-RDC UFR - Pharmacie, Montpellier, France
- Néphrologie Dialyse Saint Guilhem (NDSG), CS 40 339, Sete, France
| |
Collapse
|
15
|
Han L, Zhang Y, Zhang M, Guo L, Wang J, Zeng F, Xu D, Yin Z, Xu Y, Wang D, Zhou H. Interleukin-1β-Induced Senescence Promotes Osteoblastic Transition of Vascular Smooth Muscle Cells. Kidney Blood Press Res 2020; 45:314-330. [PMID: 32126555 DOI: 10.1159/000504298] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/21/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Interleukin (IL)-1β, as a key biomarker and mediator of vascular calcification in patients with end-stage renal disease (ESRD), may be involved in the process of premature senescence of vascular smooth muscle cells (VSMCs). This work sought to investigate whether IL-1β-induced premature senescence contributes to the process of osteoblastic transition and vascular calcification in VSMCs. METHODS Eighty-eight patients with ESRD (aged 25-81 years), 11 healthy individuals, and 15 cases of lesion-free distal radial arteries from dialysis ESRD patients with angiostomy were collected in this study. Immunohistochemical analysis was performed to detect expression of IL-1β, p21, and bone morphogenetic protein-2 (BMP2) in the distal radial arteries. Primary human VSMCs from healthy neonatal umbilical cords were incubated with test agents for 1-3 days. Intracellular levels of reactive oxygen species (ROS) and senescence-associated-β-galactosidase (SA-β-gal) staining were used to detect senescent cells. Alizarin red staining and the calcium content of the cell layer were used to detect mineral deposition in VSMCs. RESULTS Coincident with positive staining of IL-1β, p21, and BMP2 in the lesion-free distal radial arteries, 66.67% patients showed mineral deposition. Serum IL-1β was 0.24 ± 0.57, 1.20 ± 2.95, and 9.41 ± 40.52 pg/mL in 11 healthy individuals, 20 patients without calcification, and 53 patients with calcification, respectively. Analysis of the cross-table chi-square test showed cardiovascular calcification is not correlated with levels of serum IL-1β in patients with ESRD (p = 0.533). In response to IL-1β, VSMCs showed a senescence-like phenotype, such as flat and enlarged morphology, increased expression of p21, an increased activity of SA-β-gal, and increased levels of ROS. IL-1β-induced senescence of VSMCs was required for the activation of IL-1β/NF-κB/p53/p21 signaling pathway. IL-1β-induced senescent VSMCs underwent calcification due to osteoblastic transition mainly depending upon the upregulation of BMP2. Resveratrol, an activator of sirtuin-1, postponed the IL-1β-induced senescence through blocking the NF-κB/p53/p21 pathway and attenuated the osteoblastic transition and calcification in VSMCs. CONCLUSIONS High levels of IL-1β in medial smooth muscles of arteries may play roles in inducing senescence-associated calcification. IL-1β-induced senescence depending on the activation of the NF-κB/p53/p21 signaling pathway and contributing to osteoblastic transition of VSMCs.
Collapse
Affiliation(s)
- Linzi Han
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuying Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingming Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liyu Guo
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Jun Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fanjun Zeng
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Deping Xu
- Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongzhi Yin
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China,
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
- The Center for Scientific Research of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Röhl S, Rykaczewska U, Seime T, Suur BE, Diez MG, Gådin JR, Gainullina A, Sergushichev AA, Wirka R, Lengquist M, Kronqvist M, Bergman O, Odeberg J, Lindeman JHN, Quertermous T, Hamsten A, Eriksson P, Hedin U, Razuvaev A, Matic LP. Transcriptomic profiling of experimental arterial injury reveals new mechanisms and temporal dynamics in vascular healing response. JVS Vasc Sci 2020; 1:13-27. [PMID: 34617037 PMCID: PMC8489224 DOI: 10.1016/j.jvssci.2020.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
Objective Endovascular interventions cause arterial injury and induce a healing response to restore vessel wall homeostasis. Complications of defective or excessive healing are common and result in increased morbidity and repeated interventions. Experimental models of intimal hyperplasia are vital for understanding the vascular healing mechanisms and resolving the clinical problems of restenosis, vein graft stenosis, and dialysis access failure. Our aim was to systematically investigate the transcriptional, histologic, and systemic reaction to vascular injury during a prolonged time. Methods Balloon injury of the left common carotid artery was performed in male rats. Animals (n = 69) were euthanized before or after injury, either directly or after 2 hours, 20 hours, 2 days, 5 days, 2 weeks, 6 weeks, and 12 weeks. Both injured and contralateral arteries were subjected to microarray profiling, followed by bioinformatic exploration, histologic characterization of the biopsy specimens, and plasma lipid analyses. Results Immune activation and coagulation were key mechanisms in the early response, followed by cytokine release, tissue remodeling, and smooth muscle cell modulation several days after injury, with reacquisition of contractile features in later phases. Novel pathways related to clonal expansion, inflammatory transformation, and chondro-osteogenic differentiation were identified and immunolocalized to neointimal smooth muscle cells. Analysis of uninjured arteries revealed a systemic component of the reaction after local injury, underlined by altered endothelial signaling, changes in overall tissue bioenergy metabolism, and plasma high-density lipoprotein levels. Conclusions We demonstrate that vascular injury induces dynamic transcriptional landscape and metabolic changes identifiable as early, intermediate, and late response phases, reaching homeostasis after several weeks. This study provides a temporal “roadmap” of vascular healing as a publicly available resource for the research community. Endovascular intervention causes an injury to the arterial wall that subsequently induces a healing response to restore the vessel wall homeostasis. Complications after vascular interventions related to defective or excessive healing response, such as thrombosis or restenosis, are common and result in increased morbidity, suffering of the patient, need for repeated interventions, and possibly death. Thus, there is a need for better understanding of the underlying molecular mechanisms during vascular injury and healing response to identify and to assess the risk of complications in patients. Using an experimental model of vascular injury, this study demonstrates the full landscape of dynamic transcriptional changes in the resolution of vascular injury, accompanied also by systemic variations in plasma lipid levels and reaching homeostasis several weeks after injury. These results can guide the development of new strategies and molecular targets for modulation of the intimal response on endovascular interventions.
Collapse
Affiliation(s)
- Samuel Röhl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Urszula Rykaczewska
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Till Seime
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Bianca E Suur
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | | | - Jesper R Gådin
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | | | | | - Robert Wirka
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Otto Bergman
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Jacob Odeberg
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Science for Life Laboratory, Sweden and the Department of Haematology, Coagulation Unit, Karolinska University Hospital, Stockholm, Sweden
| | | | - Thomas Quertermous
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Anders Hamsten
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Per Eriksson
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Anton Razuvaev
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | | |
Collapse
|
17
|
Coates BA, McKenzie JA, Buettmann EG, Liu X, Gontarz PM, Zhang B, Silva MJ. Transcriptional profiling of intramembranous and endochondral ossification after fracture in mice. Bone 2019; 127:577-591. [PMID: 31369916 PMCID: PMC6708791 DOI: 10.1016/j.bone.2019.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Bone fracture repair represents an important clinical challenge with nearly 1 million non-union fractures occurring annually in the U.S. Gene expression differs between non-union and healthy repair, suggesting there is a pattern of gene expression that is indicative of optimal repair. Despite this, the gene expression profile of fracture repair remains incompletely understood. In this work, we used RNA-seq of two well-established murine fracture models to describe gene expression of intramembranous and endochondral bone formation. We used top differentially expressed genes, enriched gene ontology terms and pathways, callus cellular phenotyping, and histology to describe and contrast these bone formation processes across time. Intramembranous repair, as modeled by ulnar stress fracture, and endochondral repair, as modeled by femur full fracture, exhibited vastly different transcriptional profiles throughout repair. Stress fracture healing had enriched differentially expressed genes associated with bone repair and osteoblasts, highlighting the strong osteogenic repair process of this model. Interestingly, the PI3K-Akt signaling pathway was one of only a few pathways uniquely enriched in stress fracture repair. Full fracture repair involved a higher level of inflammatory and immune cell related genes than did stress fracture repair. Full fracture repair also differed from stress fracture in a robust downregulation of ion channel genes following injury, the role of which in fracture repair is unclear. This study offers a broad description of gene expression in intramembranous and endochondral ossification across several time points throughout repair and suggests several potentially intriguing genes, pathways, and cells whose role in fracture repair requires further study.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America.
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| | - Xiaochen Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Paul M Gontarz
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| |
Collapse
|
18
|
Feng H, Wang JY, Yu B, Cong X, Zhang WG, Li L, Liu LM, Zhou Y, Zhang CL, Gu PL, Wu LL. Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α Inhibits Vascular Calcification Through Sirtuin 3-Mediated Reduction of Mitochondrial Oxidative Stress. Antioxid Redox Signal 2019; 31:75-91. [PMID: 30829051 DOI: 10.1089/ars.2018.7620] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aims: Vascular calcification is associated with cardiovascular death in patients with chronic kidney disease (CKD). Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) plays an important role in various cardiovascular diseases. However, its role in vascular calcification remains unknown. Results: Adenine-induced rat CKD model was used to induce arterial medial calcification. The level of PGC-1α decreased in abdominal aorta of CKD rats. Overexpression of PGC-1α significantly ameliorated calcium deposition in rat abdominal aorta, isolated carotid rings, and cultured vascular smooth muscle cells (VSMCs). Mitochondrial reactive oxygen species (mtROS) increased in calcifying aorta and VSMCs. Upregulation of PGC-1α inhibited, whereas PGC-1α depletion promoted β-glycerophosphate-induced mtROS production and calcium deposition. Moreover, PGC-1α increased superoxide dismutase 1 (SOD1) and SOD2 contents in vivo and in vitro, whereas SOD2 deletion eliminated PGC-1α-mediated mtROS change and promoted calcium deposition. Mechanistically, sirtuin 3 (SIRT3) expression declined in calcifying aorta and VSMCs, while PGC-1α overexpression restored SIRT3 expression. Inhibition of SIRT3 by 3-TYP or siRNA (small interfering RNA) reduced PGC-1α-induced upregulation of SOD1 and SOD2, and abolished the protective effect of PGC-1α on calcification of VSMCs. Importantly, PGC-1α was reduced in calcified femoral arteries in CKD patients. In phosphate-induced human umbilical arterial calcification, upregulation of PGC-1α attenuated calcium nodule formation, while this protective effect was abolished by SIRT3 inhibitor. Innovation: We showed for the first time that PGC-1α is an important endogenous regulator against vascular calcification. Induction of PGC-1α could be a potential strategy to treat vascular calcification in CKD patients. Conclusions: PGC-1α protected against vascular calcification by SIRT3-mediated mtROS reduction.
Collapse
Affiliation(s)
- Han Feng
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jin-Yu Wang
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Bo Yu
- 2 Division of Constitutive and Regenerative Sciences, School of Dentistry, University of California, Los Angeles, California
| | - Xin Cong
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Wei-Guang Zhang
- 3 Department of Human Anatomy, Peking University School of Basic Medical Sciences, Beijing, China
| | - Li Li
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Li-Mei Liu
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yun Zhou
- 4 Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Cheng-Lin Zhang
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Pei-Liang Gu
- 3 Department of Human Anatomy, Peking University School of Basic Medical Sciences, Beijing, China
| | - Li-Ling Wu
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
19
|
Li Y, Wang W, Chao Y, Zhang F, Wang C. CTRP13 attenuates vascular calcification by regulating Runx2. FASEB J 2019; 33:9627-9637. [PMID: 31145871 DOI: 10.1096/fj.201900293rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular calcification is strongly associated with increased cardiovascular mortality and morbidity. C1q/TNF-related protein-13 (CTRP13) is a secreted adipokine that plays important roles in the cardiovascular system. However, the functional role of CTRP13 in the development of vascular calcification has yet to be explored. In this study, we collected blood samples from patients with chronic renal failure (CRF) and from rats with adenine-induced CRF. We found that the serum CTRP13 levels were decreased in patients and rats with CRF and were negatively associated with calcium deposition in the abdominal aorta. Compared to those of the controls, ectopic CTRP13 treatment significantly attenuated the calcium accumulation and alkaline phosphatase activity in the abdominal aorta of CRF rats, and β-glycerophosphate induced the formation of arterial rings and of vascular smooth muscle cells (VSMCs) and decreased the number of VSMCs that transitioned from a contractile to an osteogenic phenotype. The overexpression of Runx2 blocked CTRP13-reduced VSMC calcification. Mechanistically, CTRP13 repressed the phosphorylation of tristetraprolin (TTP), thereby activating TTP and increasing the TTP binding to the 3'untranslated region of the Runx2 mRNA, accelerating the Runx2 mRNA destabilization and degradation. In summary, these findings reveal that CTRP13 regulation is a novel method for the prevention of vascular calcification, representing a novel mechanism of the regulation of Runx2 expression in VSMCs.-Li, Y., Wang, W., Chao, Y., Zhang, F., Wang, C. CTRP13 attenuates vascular calcification by regulating Runx2.
Collapse
Affiliation(s)
- Yongxia Li
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhe Wang
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fengxao Zhang
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Liu Y, Lin F, Fu Y, Chen W, Liu W, Chi J, Zhang X, Yin X. Cortistatin inhibits arterial calcification in rats via GSK3β/β-catenin and protein kinase C signalling but not c-Jun N-terminal kinase signalling. Acta Physiol (Oxf) 2018; 223:e13055. [PMID: 29436118 DOI: 10.1111/apha.13055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/27/2022]
Abstract
AIM Cortistatin (CST) is a newly discovered endogenous active peptide that exerts protective effects on the cardiovascular system. However, the relationship between CST and aortic calcification and the underlying mechanism remain obscure. Therefore, we investigated effects of CST on aortic calcification and its signalling pathways. METHODS Calcium content and alkaline phosphatase (ALP) activity were measured using the o-cresolphthalein colorimetric method and ALP assay kit respectively. Protein expression of smooth muscle (SM)-ɑ-actin, osteocalcin (OCN), β-catenin, glycogen synthase kinase 3β (GSK3β), p-GSK3β, protein kinase C (PKC), p-PKC, c-Jun N-terminal kinase (JNK) and p-JNK was determined using Western blotting. RESULTS In aorta from a rat vitamin D3 calcification model, CST abrogated calcium deposition and pathological damage, decreased the protein expression of OCN and β-catenin and increased SM-ɑ-actin expression. In a rat cultured vascular smooth muscular cell (VSMC) calcification model induced by β-glycerophosphate (β-GP), CST inhibited the increase in ALP activity, calcium content and OCN protein and the decrease in SM-α-actin expression. CST also inhibited the β-GP-induced increase in p-GSK3β and β-catenin protein (both P < .05). The inhibitory effects of CST on ALP activity, calcium deposition and β-catenin protein were abolished by pretreatment with lithium chloride, a GSK3β inhibitor. CST promoted the protein expression of p-PKC by 68.5% (P < .01), but not p-JNK. The ability of CST to attenuate β-GP-induced increase in ALP activity, calcium content and OCN expression in the VSMC model was abolished by pretreatment with the PKC inhibitor Go6976. CONCLUSION These results indicate that CST inhibits aortic calcification and osteogenic differentiation of VSMCs likely via the GSK3β/β-catenin and PKC signalling pathways, but not JNK signalling pathway.
Collapse
Affiliation(s)
- Y. Liu
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - F. Lin
- Department of Comprehensive Geriatric; Mianyang Central Hospital; Mianyang China
| | - Y. Fu
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - W. Chen
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - W. Liu
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - J. Chi
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - X. Zhang
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - X. Yin
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| |
Collapse
|
21
|
Feng W, Zhang K, Liu Y, Chen J, Cai Q, Zhang Y, Wang M, Wang J, Huang H. Apocynin attenuates angiotensin II-induced vascular smooth muscle cells osteogenic switching via suppressing extracellular signal-regulated kinase 1/2. Oncotarget 2018; 7:83588-83600. [PMID: 27835878 PMCID: PMC5347790 DOI: 10.18632/oncotarget.13193] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/19/2016] [Indexed: 01/28/2023] Open
Abstract
Vascular calcification (VC) is a significant risk factor for cardiovascular morbidity and mortality. We recently reported that apocynin had benefits for preventing cardiovascular diseases. However, whether apocynin could attenuate VC is unknown. Here, we investigated the role of apocynin in VC and its underlying mechanisms. 163 participants with high or normal ankle–brachial index (ABI) were enrolled in this study for analyzing the demographic and biochemical data. In vitro, vascular smooth muscle cells (VSMCs) were exposed to calcification medium containing b-glycerophosphate and angiotensin II (Ang II) for 24 hours. The results showed that serum level of Ang II was significantly increased in patients with high ABI (P<0.05). In cultured VSMCs, Ang II significantly exacerbated osteogenic switching. The expression of osteogenic phenotype markers, including bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (Runx2) and osteopontin (OPN), were significantly upregulated, whereas contractile markers expression, including alpha smooth muscle actin (a-SMA) and smooth muscle 22 alpha (SM22a) were simultaneously downregulated. However, these effects were greatly attenuated by apocynin. Apocynin enhanced expression of a-SMA by 5.3%, and reduced expression of BMP2, Runx2, OPN by 3.37%, 0.61% and 3.07%, respectively. Furthermore, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation was upregulated by Ang II, and this effect was also reversed by apocynin. Intriguingly, pretreatment with U0126, an inhibitor of ERK1/2, had similar effects with apocynin. Apocynin may act as a novel molecular candidate to protect against VSMCs osteogenic switching through suppressing ERK1/2 pathway.
Collapse
Affiliation(s)
- Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yinyin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mongheng Wang
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Zhang D, Bi X, Liu Y, Huang Y, Xiong J, Xu X, Xiao T, Yu Y, Jiang W, Huang Y, Zhang J, Zhang B, Zhao J. High Phosphate-Induced Calcification of Vascular Smooth Muscle Cells is Associated with the TLR4/NF-κb Signaling Pathway. Kidney Blood Press Res 2017; 42:1205-1215. [PMID: 29227975 DOI: 10.1159/000485874] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Hyperphosphatemia is one of the most notable features of chronic kidney disease (CKD). Numerous epidemiological and clinical studies have found that high serum phosphate concentrations are associated with calcification in the coronary arteries. However, the mechanisms underlying the vascular calcification induced by high phosphate have not been understood fully. METHODS Vascular smooth muscle cells (VSMCs) were cultured in high-phosphate media to induce vascular calcification, which was detected by Alizarin red S staining. Gene expression and protein levels of differentiation markers were determined by real-time RT-PCR and western blotting, respectively. Protein levels of phosphorylated NF-κB and TLR4 were detected by western blotting, and the role of NF-κB/TLR4 was further confirmed by using an NF-κB inhibitor or TLR4 siRNA. RESULTS Our results showed that high-phosphate media induced obvious calcification of VSMCs. Simultaneously, VSMC differentiation was confirmed by the increased expression of bone morphogenetic protein-2 and Runt-related transcription factor 2 and decreased expression of the VSMC-specific marker SM22α, which was accompanied by the increased expression of inflammatory cytokines. Moreover, a significant upregulation of TLR4 and phosphorylated NF-κB was also detected in VSMCs with high-phosphate media. In contrast, VSMC calcification and the increased expression of inflammatory cytokines were markedly attenuated by pretreatment with TLR4 siRNA and pyrrolidine dithiocarbamic acid, an NF-κB inhibitor. CONCLUSION These data suggest that high-phosphate conditions directly induce vascular calcification via the activation of TLR4/NF-κB signaling in VSMCs. Moreover, inhibition of the TLR4/NF-κB signaling pathway might be a key intervention to prevent vascular calcification in patients with CKD.
Collapse
|
23
|
Zhang CL, Chen ZJ, Feng H, Zhao Q, Cao YP, Li L, Wang JY, Zhang Y, Wu LL. C1q/tumor necrosis factor-related protein-3 enhances the contractility of cardiomyocyte by increasing calcium sensitivity. Cell Calcium 2017; 66:90-97. [PMID: 28807153 DOI: 10.1016/j.ceca.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/15/2017] [Accepted: 06/25/2017] [Indexed: 01/24/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine that protects against myocardial infarction-induced cardiac dysfunction through its pro-angiogenic, anti-apoptotic, and anti-fibrotic effects. However, whether CTRP3 can directly affect the systolic and diastolic function of cardiomyocytes remains unknown. Adult rat cardiomyocytes were isolated and loaded with Fura-2AM. The contraction and Ca2+ transient data was collected and analyzed by IonOptix system. 1 and 2μg/ml CTRP3 significantly increased the contraction of cardiomyocytes. However, CTRP3 did not alter the diastolic Ca2+ content, systolic Ca2+ content, Ca2+ transient amplitude, and L-type Ca2+ channel current. To reveal whether CTRP3 affects the Ca2+ sensitivity of cardiomyocytes, the typical phase-plane diagrams of sarcomere length vs. Fura-2 ratio was performed. We observed a left-ward shifting of the late relaxation trajectory after CTRP3 perfusion, as quantified by decreased Ca2+ content at 50% sarcomere relaxation, and increased mean gradient (μm/Fura-2 ratio) during 500-600ms (-0.163 vs. -0.279), 500-700ms (-0.159 vs. -0.248), and 500-800ms (-0.148 vs. -0.243). Consistently, the phosphorylation level of cardiac troponin I at Ser23/24 was reduced by CTRP3, which could be eliminated by preincubation of okadaic acid, a type 2A protein phosphatase inhibitor. In summary, CTRP3 increases the contraction of cardiomyocytes by increasing the myofilament Ca2+ sensitivity. CTRP3 might be a potential endogenous Ca2+ sensitizer that modulates the contractility of cardiomyocytes.
Collapse
Affiliation(s)
- Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zheng-Ju Chen
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Han Feng
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yang-Po Cao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jin-Yu Wang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
24
|
Abstract
As the largest endocrine organ, adipose tissue secretes many bioactive molecules that circulate in blood, collectively termed adipokines. Efforts to identify such metabolic regulators have led to the discovery of a family of secreted proteins, designated as C1q tumor necrosis factor (TNF)-related proteins (CTRPs). The CTRP proteins, adiponectin, TNF-alpha, as well as other proteins with the distinct C1q domain are collectively grouped together as the C1q/TNF superfamily. Reflecting profound biological potency, the initial characterization of these adipose tissue-derived CTRP factors finds wide-ranging effects upon metabolism, inflammation, and survival-signaling in multiple tissue types. CTRP3 (also known as CORS26, cartducin, or cartonectin) is a unique member of this adipokine family. In this review we provide a comprehensive overview of the research concerning the expression, regulation, and physiological function of CTRP3. © 2017 American Physiological Society. Compr Physiol 7:863-878, 2017.
Collapse
Affiliation(s)
- Ying Li
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Gary L Wright
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jonathan M Peterson
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA.,College of Public Health, Department of Health Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
25
|
Ouyang L, Zhang K, Chen J, Wang J, Huang H. Roles of platelet-derived growth factor in vascular calcification. J Cell Physiol 2017; 233:2804-2814. [PMID: 28467642 DOI: 10.1002/jcp.25985] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is prevalent in aging, and patients with hypertension, chronic kidney disease (CKD), or diabetes. VC is regarded as an active and complex process that involves multiple mechanisms responsible for calcium deposition in vessel wall. In light of the complicated pathogenesis of VC, effective therapy for ameliorating VC is limited. Thus, it is urgent to explore the potential mechanisms and find new targets for the therapy of VC. Platelet-derived growth factor (PDGF), a potent mitogen, and chemoattractant have been found to disturb the vascular homeostasis by inducing inflammation, oxidative stress, and phenotype transition, all of which accelerate the process of VC. The aim of current review is to present a review about the roles of PDGF in affecting VC and to establish a potential target for treating VC.
Collapse
Affiliation(s)
- Liu Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China.,Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong Province, China
| |
Collapse
|
26
|
Petersen PS, Wolf RM, Lei X, Peterson JM, Wong GW. Immunomodulatory roles of CTRP3 in endotoxemia and metabolic stress. Physiol Rep 2016; 4:4/5/e12735. [PMID: 26997632 PMCID: PMC4823594 DOI: 10.14814/phy2.12735] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
C1q/TNF‐related protein 3 (CTRP3) is a secreted hormone that modulates hepatic glucose and lipid metabolism. Its circulating levels are reduced in human and rodent models of obesity, a metabolic state accompanied by chronic low‐grade inflammation. Recent studies have demonstrated an anti‐inflammatory role for recombinant CTRP3 in attenuating LPS‐induced systemic inflammation, and its deficiency markedly exacerbates inflammation in a mouse model of rheumatoid arthritis. We used genetic mouse models to explore the immunomodulatory function of CTRP3 in response to acute (LPS challenge) and chronic (high‐fat diet) inflammatory stimuli. In a sublethal dose of LPS challenge, neither CTRP3 deficiency nor its overexpression in transgenic mice had an impact on IL‐1β, IL‐6, TNF‐α, or MIP‐2 induction at the serum protein or mRNA levels, contrary to previous findings based on recombinant CTRP3 administration. In a metabolic context, we measured 71 serum cytokine levels in wild‐type and CTRP3 transgenic mice fed a high‐fat diet or a matched control low‐fat diet. On a low‐fat diet, CTRP3 transgenic mice had elevated circulating levels of multiple chemokines (CCL11, CXCL9, CXCL10, CCL17, CX3CL1, CCL22 and sCD30). However, when obesity was induced with a high‐fat diet, CTRP3 transgenic mice had lower circulating levels of IL‐5, TNF‐α, sVEGF2, and sVEGFR3, and a higher level of soluble gp130. Contingent upon the metabolic state, CTRP3 overexpression altered chemokine levels in lean mice, and attenuated systemic inflammation in the setting of obesity and insulin resistance. These results highlight a context‐dependent immunomodulatory role for CTRP3.
Collapse
Affiliation(s)
- Pia S Petersen
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Risa M Wolf
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xia Lei
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan M Peterson
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
St Hilaire C, Liberman M, Miller JD. Bidirectional Translation in Cardiovascular Calcification. Arterioscler Thromb Vasc Biol 2016; 36:e19-24. [PMID: 26912744 DOI: 10.1161/atvbaha.115.307056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Cynthia St Hilaire
- From the Department of Medicine, Division of Cardiology & Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (C.S.H.); Departments of Critical Care Medicine and Cardiology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil (M.L.); and Departments of Surgery and Physiology & BME, Mayo Clinic, Rochester, MN (J.D.M)
| | - Marcel Liberman
- From the Department of Medicine, Division of Cardiology & Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (C.S.H.); Departments of Critical Care Medicine and Cardiology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil (M.L.); and Departments of Surgery and Physiology & BME, Mayo Clinic, Rochester, MN (J.D.M)
| | - Jordan D Miller
- From the Department of Medicine, Division of Cardiology & Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (C.S.H.); Departments of Critical Care Medicine and Cardiology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil (M.L.); and Departments of Surgery and Physiology & BME, Mayo Clinic, Rochester, MN (J.D.M)
| | | |
Collapse
|
28
|
Wolf RM, Lei X, Yang ZC, Nyandjo M, Tan SY, Wong GW. CTRP3 deficiency reduces liver size and alters IL-6 and TGFβ levels in obese mice. Am J Physiol Endocrinol Metab 2016; 310:E332-45. [PMID: 26670485 PMCID: PMC4773650 DOI: 10.1152/ajpendo.00248.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022]
Abstract
C1q/TNF-related protein 3 (CTRP3) is a secreted metabolic regulator whose circulating levels are reduced in human and rodent models of obesity and diabetes. Previously, we showed that CTRP3 infusion lowers blood glucose by suppressing gluconeogenesis and that transgenic overexpression of CTRP3 protects mice against diet-induced hepatic steatosis. Here, we used a genetic loss-of-function mouse model to further address whether CTRP3 is indeed required for metabolic homeostasis under normal and obese states. Both male and female mice lacking CTRP3 had similar weight gain when fed a control low-fat (LFD) or high-fat diet (HFD). Regardless of diet, no differences were observed in adiposity, food intake, metabolic rate, energy expenditure, or physical activity levels between wild-type (WT) and Ctrp3-knockout (KO) animals of either sex. Contrary to expectations, loss of CTRP3 in LFD- or HFD-fed male and female mice also had minimal or no impact on whole body glucose metabolism, insulin sensitivity, and fasting-induced hepatic gluconeogenesis. Unexpectedly, the liver sizes of HFD-fed Ctrp3-KO male mice were markedly reduced despite a modest increase in triglyceride content. Furthermore, liver expression of fat oxidation genes was upregulated in the Ctrp3-KO mice. Whereas the liver and adipose expression of profibrotic TGFβ1, as well as its serum levels, was suppressed in HFD-fed KO mice, circulating proinflammatory IL-6 levels were markedly increased; these changes, however, were insufficient to affect systemic metabolic outcome. We conclude that, although it is dispensable for physiological control of energy balance, CTRP3 plays a previously unsuspected role in modulating liver size and circulating cytokine levels in response to obesity.
Collapse
Affiliation(s)
- Risa M Wolf
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xia Lei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhi-Chun Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China; and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maeva Nyandjo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Feng H, Wang JY, Zheng M, Zhang CL, An YM, Li L, Wu LL. CTRP3 promotes energy production by inducing mitochondrial ROS and up-expression of PGC-1α in vascular smooth muscle cells. Exp Cell Res 2016; 341:177-86. [PMID: 26844631 DOI: 10.1016/j.yexcr.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 11/25/2022]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine with modulation effects on metabolism and inflammation. Adenosine triphosphate (ATP) exerts multiple biological effects in vascular smooth muscle cells (VSMCs) and energy imbalance is involved in vascular diseases. This study aimed to explore the effect of CTRP3 on energy production and its underlying mechanism in VSMCs. Our results indicated that exogenous CTRP3 increased ATP synthesis and the protein expression of oxidative phosphorylation (OXPHOS)-related molecules, including peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, sirtuin-3 (SIRT3), complex I, II, III, and V in cultured VSMCs. Depletion of endogenous CTRP3 by small interfering RNA (siRNA) reduced ATP synthesis and the expression of those molecules. PGC-1α knockdown abrogated CTRP3-induced ATP production and OXPHOS-related protein expression. Furthermore, CTRP3 increased mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential level. Pretreatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, and cyanidem-chlorophenylhydrazone, an uncoupler of OXPHOS, suppressed CTRP3-induced ROS production, PGC-1α expression and ATP synthesis. In conclusion, CTRP3 modulates mitochondrial energy production through targets of ROS and PGC-1α in VSMCs.
Collapse
Affiliation(s)
- Han Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Jin-Yu Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Yuan-Ming An
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China.
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China.
| |
Collapse
|
30
|
Chen NN, He JR, Li WD, Kuang YS, Yuan MY, Liu XD, Zhang HZ, Hu SP, Xia HM, Qiu X. C1q and tumor necrosis factor-related protein 3 is present in human cord blood and is associated with fetal growth. Clin Chim Acta 2015; 453:67-70. [PMID: 26656444 DOI: 10.1016/j.cca.2015.11.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND To determine the presence of C1q and tumor necrosis factor-related protein 3 (CTRP3) in cord blood and its relationship with fetal growth among Chinese newborns. METHODS This pilot study recruited 126 infants (small for gestational age [SGA], n=34; appropriate for gestational age [AGA], n=60; large for gestational age [LGA], n=32); cord blood CTRP3 levels were measured, and fetal growth parameters were collected. RESULTS Median (25-75th percentile) CTRP3 levels in the SGA, AGA, and LGA groups were 297.2 (236.4-360.2), 297.5 (261.0-369.9), and 368.6 (298.5-507.1) ng/ml, respectively (P=0.01). LGA infants had higher CTRP3 levels than AGA infants (multiple linear regression analysis; P=0.01). The CTRP3 levels were positively correlated with birth weight (r=0.25, P<0.01), Ponderal index (r=0.28, P<0.01), and placental weight (r=0.20, P=0.03) in the total study population. In the subgroup analysis, CTRP3 levels were negatively correlated with birth length z scores (r=-0.39, P=0.03) and were positively correlated with the Ponderal index (r=0.43, P=0.02) only in the SGA group; no other significant correlations were observed. The CTRP3 levels were similar between the sexes (P=NS). CONCLUSIONS CTRP3 is present in cord blood and might be involved in fetal growth.
Collapse
Affiliation(s)
- Nian-Nian Chen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jian-Rong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei-Dong Li
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ya-Shu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ming-Yang Yuan
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Dan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hui-Zhu Zhang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shun-Ping Hu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hui-Min Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Tang Y, Xu Q, Peng H, Liu Z, Yang T, Yu Z, Cheng G, Li X, Zhang G, Shi R. The role of vascular peroxidase 1 in ox-LDL-induced vascular smooth muscle cell calcification. Atherosclerosis 2015; 243:357-63. [DOI: 10.1016/j.atherosclerosis.2015.08.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/19/2015] [Accepted: 08/31/2015] [Indexed: 12/18/2022]
|
32
|
Hénaut L, Sanchez-Nino MD, Aldamiz-Echevarría Castillo G, Sanz AB, Ortiz A. Targeting local vascular and systemic consequences of inflammation on vascular and cardiac valve calcification. Expert Opin Ther Targets 2015; 20:89-105. [PMID: 26788590 DOI: 10.1517/14728222.2015.1081685] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Cardiac valve calcification and vascular calcification (VC) are associated with cardiovascular mortality in the general population and in patients with chronic kidney disease (CKD). CKD, diabetes mellitus, and atherosclerosis are among the causes of systemic inflammation that are associated with VC. AREAS COVERED This review collates clinical and experimental evidence that inflammation accelerates VC progression. Specifically, we review the actions of key pro-inflammatory cytokines and inflammation-related transcription factors on VC, and the role played by senescence. Inflammatory cytokines, such as the TNF superfamily and IL-6 superfamily, and inflammation-related transcription factor NF-κB promote calcification in cultured vascular smooth muscle cells, valvular interstitial cells, or experimental animal models through direct effects, but also indirectly by decreasing circulating Fetuin A or Klotho levels. EXPERT OPINION Experimental evidence suggests a causal link between inflammation and VC that would change the clinical approach to prevention and treatment of VC. However, the molecular basis remains unclear and little is known about VC in humans treated with drugs targeting inflammatory cytokines. The effect of biologicals targeting TNF-α, RANKL, IL-6, and other inflammatory mediators on VC, in addition to the impact of dietary phosphate in patients with chronic systemic inflammation, requires study.
Collapse
Affiliation(s)
- Lucie Hénaut
- a 1 Universidad Autónoma de Madrid, School of Medicine, Nephrology, IIS-Fundación Jiménez Díaz , Madrid, Spain
| | - Maria Dolores Sanchez-Nino
- b 2Universidad Autónoma de Madrid, School of Medicine, IIS-Fundación Jiménez Díaz, Madrid, Spain.,c 3 REDINREN , Madrid, Spain
| | | | - Ana B Sanz
- b 2Universidad Autónoma de Madrid, School of Medicine, IIS-Fundación Jiménez Díaz, Madrid, Spain.,c 3 REDINREN , Madrid, Spain
| | - Alberto Ortiz
- c 3 REDINREN , Madrid, Spain.,e 5 Chief of nephrology, Universidad Autónoma de Madrid, School of Medicine, IIS-Fundación Jiménez Díaz , Madrid, Spain .,f 6 Fundación Renal Iñigo Alvarez de Toledo-IRSIN , Madrid, Spain
| |
Collapse
|
33
|
Wu D, Lei H, Wang JY, Zhang CL, Feng H, Fu FY, Li L, Wu LL. CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation. J Mol Med (Berl) 2015; 93:1311-25. [PMID: 26138247 DOI: 10.1007/s00109-015-1309-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/31/2015] [Accepted: 06/03/2015] [Indexed: 01/19/2023]
Abstract
UNLABELLED C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel adipokine with modulation effects on metabolism, inflammation, and cardiovascular system. This study aimed to investigate the effect of CTRP3 on cardiac fibrosis and its underlying mechanism. The myocardial expression of CTRP3 was significantly decreased after myocardial infarction (MI). Adenovirus-delivered CTRP3 supplement attenuated myocardial hypertrophy, improved cardiac function, inhibited interstitial fibrosis, and decreased the number of myofibroblasts post-MI. In cultured adult rat cardiac fibroblasts (CFs), CTRP3 attenuated cell proliferation; migration; and the expression of connective tissue growth factor, collagen I, and collagen III induced by transforming growth factor (TGF)-β1. Moreover, CTRP3 inhibited whereas CTRP3 small interfering RNA (siRNA) facilitated the expression of α-SMA and profibrotic molecules induced by TGF-β1. CTRP3 also attenuated TGF-β1-induced Smad3 phosphorylation, nuclear translocation, and interaction with p300. CTRP3 increased the phosphorylation of AMP-activated protein kinase (AMPK) and Akt in both rat hearts and CFs. Adenine 9-β-D-arabinofuranoside (AraA), an AMPK inhibitor, abolished the protective effect of CTRP3 against TGF-β1-induced profibrotic response and Smad3 activation. Taken together, CTRP3 attenuates cardiac fibrosis by inhibiting myofibroblast differentiation and the subsequent extracellular matrix production. AMPK is required for the anti-fibrotic effect of CTRP3 through targeting Smad3 activation and inhibiting myofibroblast differentiation. KEY MESSAGE CTRP3 alleviates cardiac fibrosis in a rat post-MI model and in cardiac fibroblasts. CTRP3 inhibits fibroblast-to-myofibroblast differentiation. CTRP3 exerts anti-fibrotic effect through targeting Smad3 activation. AMPK mediates the anti-fibrotic effect of CTRP3 by inhibition of Smad3 activation.
Collapse
Affiliation(s)
- Dan Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Hong Lei
- Department of Physiology and Pathophysiology, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Jin-Yu Wang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Han Feng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Feng-Ying Fu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
34
|
Lee J, Lee KI, Chung HM. Investigation of Transcriptional Gene Profiling in Normal Murine Hair Follicular Substructures Using Next-Generation Sequencing to Provide Potential Insights Into Skin Disease. Cell Transplant 2015; 25:377-99. [PMID: 25995029 DOI: 10.3727/096368915x688227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Skin diseases, including hair-related diseases and neoplasia, are a major public health problem. While their prevalence is increasing, their treatment options are limited. Researchers have tried to investigate the genes and signal pathways underlying hair follicles (HFs) to develop genetically targeted therapies through microarrays, which represent an appropriate modality for the analysis of small genomes. To enable the comprehensive transcriptome analysis of large and/or complex transcriptomes, we performed RNA-seq using next-generation sequencing (NGS). We isolated interfollicular keratinocytes (IFKs), HFs, and dermal fibroblasts including dermal papilla cells (DFs-DPCs) from normal C57BL/6 murine skin, transplanted combinations of these samples into nude mice, and followed the mice over time. Sustained hair growth was supported by HFs and DFs-DPCs. We then investigated the pathways and the relevant gene ontology associated with any identified differentially expressed genes (DEGs). In addition, in the culture and flow cytometry (FCM), the HFs had a more quiescent cell cycle pattern than did the IFKs and DFs-DPCs. Therefore, the representative cell cycle-related gene expression of IFKs, HFs, and DFs-DPCs was analyzed by NGS. Our study will allow researchers to further investigate the potential interactions and signaling pathways that are active in HF-related diseases and cancer and may aid in future bioengineering applications.
Collapse
Affiliation(s)
- Jaein Lee
- Department of Laboratory Medicine, CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Republic of Korea
| | | | | |
Collapse
|
35
|
Lei H, Wu D, Wang JY, Li L, Zhang CL, Feng H, Fu FY, Wu LL. C1q/tumor necrosis factor-related protein-6 attenuates post-infarct cardiac fibrosis by targeting RhoA/MRTF-A pathway and inhibiting myofibroblast differentiation. Basic Res Cardiol 2015; 110:35. [PMID: 25962701 DOI: 10.1007/s00395-015-0492-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
C1q/tumor necrosis factor-related protein-6 (CTRP6) is a newly identified adiponectin paralog with modulation effects on metabolism and inflammation. However, the cardiovascular function of CTRP6 remains unknown. This study aimed to determine its role in cardiac fibrosis and explore the possible mechanism. Myocardial infarction (MI) was induced by left anterior descending coronary artery ligation in rats. CTRP6 was mainly expressed in the cytoplasm of adult rat cardiomyocytes and significantly decreased in the border and infarct zones post-MI. Adenovirus-mediated CTRP6 delivery improved cardiac function, attenuated cardiac hypertrophy, alleviated cardiac fibrosis, and inhibited myofibroblast differentiation as well as the expression of collagen I, collagen III, and connective tissue growth factor post-MI. In cultured adult rat cardiac fibroblasts (CFs), exogenous or cardiomyocyte-secreted CTRP6 inhibited, whereas knockdown of CTRP6 facilitated transforming growth factor-β1 (TGF-β1)-induced expression of α-smooth muscle actin, smooth muscle 22α, and profibrotic molecules. CTRP6 had no effect on CFs proliferation but attenuated CFs migration induced by TGF-β1. CTRP6 increased the phosphorylation of AMP-activated protein kinase (AMPK) and Akt in CFs and post-MI hearts. Pretreatment with adenine 9-β-D-arabinofuranoside (AraA), an AMPK inhibitor, or LY294002, a phosphatidylinositol-3-kinase (PI3 K) inhibitor, abolished the protective effect of CTRP6 on TGF-β1-induced profibrotic response. Furthermore, CTRP6 had no effect on TGF-β1-induced Smad3 phosphorylation and nuclear translocation, whereas significantly decreased TGF-β1-induced RhoA activation and myocardin-related transcription factor-A (MRTF-A) nuclear translocation, and these effects were blocked by AMPK or Akt inhibition. In conclusion, CTRP6 attenuates cardiac fibrosis via inhibiting myofibroblast differentiation. AMPK and Akt activation are responsible for the CTRP6-mediated anti-fibrotic effect by targeting RhoA/MRTF-A pathway.
Collapse
Affiliation(s)
- Hong Lei
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Schlieper G, Schurgers L, Brandenburg V, Reutelingsperger C, Floege J. Vascular calcification in chronic kidney disease: an update. Nephrol Dial Transplant 2015; 31:31-9. [PMID: 25916871 DOI: 10.1093/ndt/gfv111] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular calcification is both a risk factor and contributor to morbidity and mortality. Patients with chronic kidney disease (and/or diabetes) exhibit accelerated calcification of the intima, media, heart valves and likely the myocardium as well as the rare condition of calcific uraemic arteriolopathy (calciphylaxis). Pathomechanistically, an imbalance of promoters (e.g. calcium and phosphate) and inhibitors (e.g. fetuin-A and matrix Gla protein) is central in the development of calcification. Next to biochemical and proteinacous alterations, cellular processes are also involved in the pathogenesis. Vascular smooth muscle cells undergo osteochondrogenesis, excrete vesicles and show signs of senescence. Therapeutically, measures to prevent the initiation of calcification by correcting the imbalance of promoters and inhibitors appear to be essential. In contrast to prevention, therapeutic regression of cardiovascular calcification in humans has been rarely reported. Measures to enhance secondary prevention in patients with established cardiovascular calcifications are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Georg Schlieper
- Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Leon Schurgers
- Department of Biochemistry, Faculty of Medicine, Health and Life Science, Maastricht, The Netherlands
| | | | - Chris Reutelingsperger
- Department of Biochemistry, Faculty of Medicine, Health and Life Science, Maastricht, The Netherlands
| | - Jürgen Floege
- Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| |
Collapse
|
37
|
Nahar-Gohad P, Gohad N, Tsai CC, Bordia R, Vyavahare N. Rat aortic smooth muscle cells cultured on hydroxyapatite differentiate into osteoblast-like cells via BMP-2-SMAD-5 pathway. Calcif Tissue Int 2015; 96:359-69. [PMID: 25725805 PMCID: PMC4393885 DOI: 10.1007/s00223-015-9962-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 02/03/2015] [Indexed: 01/24/2023]
Abstract
Vascular calcification is an important pathological condition associated with increased risk of cardiovascular mortality. Hydroxyapatite (HA) found in such deposits is the same polymorph of calcium (Ca) found in bone, indicating calcification may involve mechanisms akin to bone formation. Vascular smooth muscle cells (Vsmcs) have been shown to undergo phenotypic change to osteoblast-like cells. However, the mechanisms underlying this phenotypic change are unclear, and whether the stimulus to become osteogenic is a result of loss of mineralization inhibitors or early mineral deposits is not known. Our aim in this study is to identify mechanisms and signal transduction pathways that cause differentiation of Vsmcs into osteoblast-like cells in the presence of HA. We first characterized vascular origin of Vsmcs by studying the expression of smooth muscle cell markers: myosin heavy chain and smooth muscle actin along with SM22α at both mRNA and protein levels. Vsmcs grown on HA exhibited progressive change in cellular morphology at 3-, 7-, and 14-day time points. Culturing of Vsmcs on HA disc resulted in decrease in media Ca levels and increased expression of Ca-sensing receptor (CaSR) on Vsmcs resulting in upregulation of intracellular CaSR signaling leading to increased BMP-2 secretion. BMP-2 pathway mediated differentiation of Vsmcs to osteoblast-like cells shown by expression of osteogenic markers like runt-related transcription factor 2, osteocalcin, and alkaline phosphatase at mRNA and protein levels. Blocking CaSR by NPS-2143 reduced BMP-2 secretion and blocking the BMP-2 pathway by LDN-193189, a BMP inhibitor, modulated expression of osteogenic markers confirming their role in osteogenesis of Vsmcs.
Collapse
Affiliation(s)
- Pranjal Nahar-Gohad
- Department of Bioengineering, 501 Rhodes Research Center, Clemson University, Clemson, SC 29634
| | - Neeraj Gohad
- Department of Biological Sciences, 132 long Hall, Clemson University, Clemson, SC 29634
| | - Chen-Chih Tsai
- Department of Material Sciences, 161 Sirrine Hall, Clemson University, Clemson, SC 29634
| | - Rajendra Bordia
- Department of Material Sciences, 161 Sirrine Hall, Clemson University, Clemson, SC 29634
| | - Naren Vyavahare
- Department of Bioengineering, 501 Rhodes Research Center, Clemson University, Clemson, SC 29634
| |
Collapse
|
38
|
Ban B, Bai B, Zhang M, Hu J, Ramanjaneya M, Tan BK, Chen J. Low serum cartonectin/CTRP3 concentrations in newly diagnosed type 2 diabetes mellitus: in vivo regulation of cartonectin by glucose. PLoS One 2014; 9:e112931. [PMID: 25409499 PMCID: PMC4237345 DOI: 10.1371/journal.pone.0112931] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/16/2014] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Cartonectin is a novel adipokine of the C1q complement/TNF-related protein (CTRP) superfamily, with glucose lowering effects, anti-inflammatory and cardio-protective properties. We sought to investigate circulating cartonectin concentrations in subjects with type 2 diabetes mellitus (T2DM) as well as age and BMI matched control subjects. We also examined the effects of a 2 hour 75 g oral glucose tolerance test (OGTT) on serum cartonectin concentrations in T2DM subjects. DESIGN Cross-sectional study [newly diagnosed (first discovery, not on any treatments) T2DM (n = 47) and control (n = 63) subjects]. Serum cartonectin was measured by ELISA. RESULTS Serum cartonectin concentrations were significantly lower in patients with T2DM compared to controls (P<0.05). Furthermore, serum cartonectin was significantly negatively correlated with glucose and CRP, and significantly positively correlated with leptin, in all subjects (n = 110). When subjected to multiple regression analysis, none of these variables were predictive of serum cartonectin (P>0.05). There were no significant correlations in T2DM subjects (n = 47). In control subjects (n = 63), serum cartonectin was significantly negatively correlated with CRP, and significantly positively correlated with insulin, HOMA-IR and leptin. However, when subjected to multiple regression analysis, none of these variables were predictive of serum cartonectin (P>0.05). Finally, serum cartonectin concentrations were significantly lower in T2DM subjects after a 2 hour 75 g OGTT (P<0.01). CONCLUSIONS Cartonectin may serve as a novel biomarker for the prediction and early diagnosis of T2DM patients. Furthermore, cartonectin and/or pharmacological agents that increase circulating cartonectin levels can represent a new therapeutic field in the treatment of T2DM patients. Further research is needed to clarify these points.
Collapse
Affiliation(s)
- Bo Ban
- Department of Endocrine and Metabolic Diseases, Jining Medical College Affiliated Hospital, Jining Medical University, Jining, Shandong, P.R. of China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong, P.R. of China
| | - Manman Zhang
- Department of Endocrine and Metabolic Diseases, Jining Medical College Affiliated Hospital, Jining Medical University, Jining, Shandong, P.R. of China
- School of Medicine, Shandong University, Jinan, Shandong, P.R. of China
| | - Jiamiao Hu
- Warwick Medical School, University of Warwick, Coventry, West Midlands, United Kingdom
| | - Manjunath Ramanjaneya
- Warwick Medical School, University of Warwick, Coventry, West Midlands, United Kingdom
| | - Bee K. Tan
- Warwick Medical School, University of Warwick, Coventry, West Midlands, United Kingdom
- Department of Obstetrics and Gynaecology, Birmingham Heartlands and Solihull Hospitals, Heart of England NHS Foundation Trust, Birmingham, West Midlands, United Kingdom
- * E-mail: (BKT); (JC)
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong, P.R. of China
- Warwick Medical School, University of Warwick, Coventry, West Midlands, United Kingdom
- * E-mail: (BKT); (JC)
| |
Collapse
|
39
|
Skeletal analysis and differential gene expression in Runx2/Osterix double heterozygous embryos. Biochem Biophys Res Commun 2014; 451:442-8. [DOI: 10.1016/j.bbrc.2014.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/02/2014] [Indexed: 11/17/2022]
|