1
|
Zhang D, Xing Y, Liu L, Zhang X, Ma C, Xu M, Li R, Wei H, Zhao Y, Xu B, Mei S. Prognostic signature based on mitochondria- and angiogenesis-related genes associated with immune microenvironment of multiple myeloma. Hematology 2025; 30:2456649. [PMID: 39873160 DOI: 10.1080/16078454.2025.2456649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Mitochondria and angiogenesis play key roles in multiple myeloma (MM) development, but their interrelated genes affecting MM prognosis are under-studied. METHODS We analyzed TCGA_MMRF and GSE4581 datasets to identify four genes - CCNB1, CDC25C, HSP90AA1, and PARP1 - that significantly correlate with MM prognosis, with high expression indicating poor outcomes. RESULTS A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the latter showing better survival. The signature was validated as an independent prognostic factor. Biological function analysis revealed differences in cell cycle processes between risk groups, and immune microenvironment analysis showed distinct immune cell infiltration patterns. CONCLUSION This mitochondria- and angiogenesis-related prognostic signature could enhance MM prognosis assessment and offer new therapeutic insights.
Collapse
Affiliation(s)
- Dai Zhang
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Yu Xing
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Lu Liu
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Xiaoqing Zhang
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Cong Ma
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - MengYao Xu
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Ruiqi Li
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - HanJing Wei
- Research Center for Clinical Medical Sciences, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
| | - Yan Zhao
- Research Center for Clinical Medical Sciences, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
| | - Bingxin Xu
- Research Center for Clinical Medical Sciences, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
| | - Shuhao Mei
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
- XuChang Key Laboratory of Hematology, XuChang, People's Republic of China
| |
Collapse
|
2
|
Martin J, Falaise A, Faour S, Terryn C, Hachet C, Thiébault É, Huber L, Nizet P, Rioult D, Jaffiol R, Salesse S, Dedieu S, Langlois B. Differential Modulation of Endothelial Cell Functionality by LRP1 Expression in Fibroblasts and Cancer-Associated Fibroblasts via Paracrine signals and Matrix Remodeling. Matrix Biol 2025:S0945-053X(25)00048-4. [PMID: 40379110 DOI: 10.1016/j.matbio.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
LRP1 is a multifunctional endocytosis receptor involved in the regulation of cancer cell aggressiveness, fibroblast phenotype and angiogenesis. In breast cancer microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and tumor niche composition. LRP1 expression was described in fibroblasts and CAFs but remains poorly understood regarding its impact on endothelial cell behavior and angiocrine signaling. We analyzed the angio-modulatory effect of LRP1 expression in murine embryonic fibroblasts (MEFs) and breast cancer-educated CAF2 cells. We employed conditioned media and fibroblast-derived matrices to model fibroblastic cells angiogenic effects on human umbilical vein endothelial cells (HUVEC). Neither the extracellular matrix assembled by MEFs knock-out for LRP1 (PEA-13) nor their secretome modify the migration of HUVEC as compared to wild-type. Conversely, LRP1-deficient CAF2 secretome and matrices stimulate endothelial cell migration. Using spheroids, we demonstrate that PEA-13 secretome does not affect HUVEC angio-invasion. By contrast, CAF2 secretome invalidated for LRP1 stimulates endothelial sprouting as compared to controls. In addition, it specifically stabilized peripheral VE-cadherin-mediated endothelial cell junctions. A global proteomic analysis revealed that LRP1 expression in CAFs orchestrates a specific mobilization of secreted matricial components, surface receptors and membrane-associated proteins at the endothelial cell surface, thereby illustrating the deep influence exerted by LRP1 in angiogenic signals emitted by activated fibroblasts.
Collapse
Affiliation(s)
- Julie Martin
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Auréana Falaise
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Sara Faour
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France; Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Christine Terryn
- Plate-Forme Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne-Ardenne, UFR Médecine, Reims, France
| | - Cathy Hachet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Émilie Thiébault
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Louise Huber
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Pierre Nizet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Damien Rioult
- Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, Université de Reims Champagne-Ardenne/INERIS, Reims, France
| | - Rodolphe Jaffiol
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Stéphanie Salesse
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| | - Stéphane Dedieu
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| | - Benoit Langlois
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| |
Collapse
|
3
|
Alhashmi M, Gremida AME, Maharana SK, Antonaci M, Kerr A, Fu S, Lunn S, Turner DA, Al-Maslamani NA, Liu K, Meschis MM, Sutherland H, Wilson P, Clegg P, Wheeler GN, van 't Hof RJ, Bou-Gharios G, Yamamoto K. Skeletal progenitor LRP1 deficiency causes severe and persistent skeletal defects with Wnt pathway dysregulation. Bone Res 2025; 13:17. [PMID: 39865089 PMCID: PMC11770177 DOI: 10.1038/s41413-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 01/28/2025] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.5 and onwards, especially in the perichondrium, the stem cell layer surrounding developing limbs essential for bone formation. Lrp1 deficiency in these stem cells causes joint fusion, malformation of cartilage/bone template and markedly delayed or lack of primary ossification. These abnormalities, which resemble phenotypes associated with Wnt signalling pathways, result in severe and persistent skeletal defects including a severe deficit in hip joint and patella, and markedly deformed and low-density long bones leading to dwarfism and impaired mobility. Mechanistically, we show that LRP1 regulates core non-canonical Wnt/planar cell polarity (PCP) components that may explain the malformation of long bones. LRP1 directly binds to Wnt5a, facilitates its cell-association and endocytic degradation and recycling. In the developing limbs, LRP1 partially colocalises with Wnt5a and its deficiency alters abundance and distribution of Wnt5a and Vangl2. Finally, using Xenopus as a model system, we show the regulatory role for LRP1 in Wnt/PCP signalling. We propose that in skeletal progenitors, LRP1 plays a critical role in formation and maturity of multiple bones and joints by regulating Wnt signalling, providing novel insights into the fundamental processes of morphogenesis and the emergence of skeletal pathologies.
Collapse
Affiliation(s)
- Mohammad Alhashmi
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman M E Gremida
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Santosh K Maharana
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Marco Antonaci
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Amy Kerr
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Shijian Fu
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Sharna Lunn
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - David A Turner
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Noor A Al-Maslamani
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Ke Liu
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Maria M Meschis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Hazel Sutherland
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Peter Wilson
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Peter Clegg
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Robert J van 't Hof
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- VANTHOF SCIENTIFIC, Torun, Poland
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Zhou J, Zhang L, Peng J, Zhang X, Zhang F, Wu Y, Huang A, Du F, Liao Y, He Y, Xie Y, Gu L, Kuang C, Ou W, Xie M, Tu T, Pang J, Zhang D, Guo K, Feng Y, Yin S, Cao Y, Li T, Jiang Y. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab 2024; 36:2054-2068.e14. [PMID: 38906140 DOI: 10.1016/j.cmet.2024.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/11/2023] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fan Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuanyuan Wu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - An Huang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fengling Du
- Department of Neonatology, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuyan Liao
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yijing He
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuke Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long Gu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chenghao Kuang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wei Ou
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianqi Tu
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kecheng Guo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shigang Yin
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Cao
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Kim SY, Cheon J. Senescence-associated microvascular endothelial dysfunction: A focus on the blood-brain and blood-retinal barriers. Ageing Res Rev 2024; 100:102446. [PMID: 39111407 DOI: 10.1016/j.arr.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The blood-brain barrier (BBB) and blood-retinal barrier (BRB) constitute critical physiochemical interfaces, precisely orchestrating the bidirectional communication between the brain/retina and blood. Increased permeability or leakage of these barriers has been demonstrably linked to age-related vascular and parenchymal damage. While it has been suggested that the gradual aging process may coincide with disruptions in these barriers, this phenomenon is significantly exacerbated in individuals with age-related neurodegenerative disorders (ARND). This review focuses on the microvascular endothelium, a key constituent of BBB and BRB, highlighting the impact of endothelial senescence on barrier dysfunction and exploring recent discoveries regarding core pathways implicated in its breakdown. Subsequently, we address the "vascular senescence hypothesis" for ARND, with a particular emphasis on Alzheimer's disease and age-related macular degeneration, centered on endothelial senescence. Finally, we discuss potential senotherapeutic strategies targeting barrier dysfunction.
Collapse
Affiliation(s)
- Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea; Research Institute of Medical Science, Konkuk University, Republic of Korea; IBST, Konkuk University, Republic of Korea.
| | - Jaejoung Cheon
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea
| |
Collapse
|
6
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Leal AF, Inci OK, Seyrantepe V, Rintz E, Celik B, Ago Y, León D, Suarez DA, Alméciga-Díaz CJ, Tomatsu S. Molecular Trojan Horses for treating lysosomal storage diseases. Mol Genet Metab 2023; 140:107648. [PMID: 37598508 DOI: 10.1016/j.ymgme.2023.107648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Orhan Kerim Inci
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Betul Celik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Yasuhiko Ago
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Daniel León
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland; Faculty of Arts and Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Velmurugan GV, Hubbard WB, Prajapati P, Vekaria HJ, Patel SP, Rabchevsky AG, Sullivan PG. LRP1 Deficiency Promotes Mitostasis in Response to Oxidative Stress: Implications for Mitochondrial Targeting after Traumatic Brain Injury. Cells 2023; 12:1445. [PMID: 37408279 PMCID: PMC10217498 DOI: 10.3390/cells12101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
The brain undergoes oxidative stress and mitochondrial dysfunction following physiological insults such as Traumatic brain injury (TBI), ischemia-reperfusion, and stroke. Pharmacotherapeutics targeting mitochondria (mitoceuticals) against oxidative stress include antioxidants, mild uncouplers, and enhancers of mitochondrial biogenesis, which have been shown to improve pathophysiological outcomes after TBI. However, to date, there is no effective treatment for TBI. Studies have suggested that the deletion of LDL receptor-related protein 1 (LRP1) in adult neurons or glial cells could be beneficial and promote neuronal health. In this study, we used WT and LRP1 knockout (LKO) mouse embryonic fibroblast cells to examine mitochondrial outcomes following exogenous oxidative stress. Furthermore, we developed a novel technique to measure mitochondrial morphometric dynamics using transgenic mitochondrial reporter mice mtD2g (mitochondrial-specific Dendra2 green) in a TBI model. We found that oxidative stress increased the quantity of fragmented and spherical-shaped mitochondria in the injury core of the ipsilateral cortex following TBI, whereas rod-like elongated mitochondria were seen in the corresponding contralateral cortex. Critically, LRP1 deficiency significantly decreased mitochondrial fragmentation, preserving mitochondrial function and cell growth following exogenous oxidative stress. Collectively, our results show that targeting LRP1 to improve mitochondrial function is a potential pharmacotherapeutic strategy against oxidative damage in TBI and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Samir P. Patel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Alexander G. Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
9
|
Endothelial LRP1-ICD Accelerates Cognition-Associated Alpha-Synuclein Pathology and Neurodegeneration through PARP1 Activation in a Mouse Model of Parkinson's Disease. Mol Neurobiol 2023; 60:979-1003. [PMID: 36394710 DOI: 10.1007/s12035-022-03119-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons and accumulation of misfolded alpha-synuclein (αSyn) into Lewy bodies. In addition to motor impairment, PD commonly presents with cognitive impairment, a non-motor symptom with poor outcome. Cortical αSyn pathology correlates closely with vascular risk factors and vascular degeneration in cognitive impairment. However, how the brain microvasculature regulates αSyn pathology and neurodegeneration remains unclear. Here, we constructed a rapidly progressive PD model by injecting alpha-synuclein preformed fibrils (αSyn PFFs) into the cerebral cortex and striatum. Brain capillaries in mice with cognitive impairment showed a reduction in diameter and length after 6 months, along with string vessel formation. The intracellular domain of low-density lipoprotein receptor-related protein-1 (LRP1-ICD) was upregulated in brain microvascular endothelium. LRP1-ICD promoted αSyn PFF uptake and exacerbated endothelial damage and neuronal apoptosis. Then, we overexpressed LRP1-ICD in brain capillaries using an adeno-associated virus carrying an endothelial-specific promoter. Endothelial LRP1-ICD worsened αSyn PFF-induced vascular damage, αSyn pathology, or neuron death in the cortex and hippocampus, resulting in severe motor and cognitive impairment. LRP1-ICD increased the synthesis of poly(adenosine 5'-diphosphate-ribose) (PAR) in the presence of αSyn PFFs. Inhibition of PAR polymerase 1 (PARP1) prevented vascular-derived injury, as did loss of PARP1 in the endothelium, which was further implicated in endothelial cell proliferation and inflammation. Together, we demonstrate a novel vascular mechanism of cognitive impairment in PD. These findings support a role for endothelial LRP1-ICD/PARP1 in αSyn pathology and neurodegeneration, and provide evidence for vascular protection strategies in PD therapy.
Collapse
|
10
|
Sanchez MC, Chiabrando GA. Multitarget Activities of Müller Glial Cells and Low-Density Lipoprotein Receptor-Related Protein 1 in Proliferative Retinopathies. ASN Neuro 2022; 14:17590914221136365. [PMID: 36317314 PMCID: PMC9629547 DOI: 10.1177/17590914221136365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Müller glial cells (MGCs), the main glial component of the retina, play an active role in retinal homeostasis during development and pathological processes. They strongly monitor retinal environment and, in response to retinal imbalance, activate neuroprotective mechanisms mainly characterized by the increase of glial fibrillary acidic protein (GFAP). Under these circumstances, if homeostasis is not reestablished, the retina can be severely injured and GFAP contributes to neuronal degeneration, as they occur in several proliferative retinopathies such as diabetic retinopathy, sickle cell retinopathy and retinopathy of prematurity. In addition, MGCs have an active participation in inflammatory responses releasing proinflammatory mediators and metalloproteinases to the extracellular space and vitreous cavity. MGCs are also involved in the retinal neovascularization and matrix extracellular remodeling during the proliferative stage of retinopathies. Interestingly, low-density lipoprotein receptor-related protein 1 (LRP1) and its ligand α2-macroglobulin (α2M) are highly expressed in MGCs and they have been established to participate in multiple cellular and molecular activities with relevance in retinopathies. However, the exact mechanism of regulation of retinal LRP1 in MGCs is still unclear. Thus, the active participation of MGCs and LRP1 in these diseases, strongly supports the potential interest of them for the design of novel therapeutic approaches. In this review, we discuss the role of LRP1 in the multiple MGCs activities involved in the development and progression of proliferative retinopathies, identifying opportunities in the field that beg further research in this topic area.Summary StatementMGCs and LRP1 are active players in injured retinas, participating in key features such as gliosis and neurotoxicity, neovascularization, inflammation, and glucose control homeostasis during the progression of ischemic diseases, such as proliferative retinopathies.
Collapse
Affiliation(s)
- María C. Sanchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Gustavo A. Chiabrando
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui (CIMETSA), G.V. al Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Córdoba, Argentina,María C. Sanchez Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina.
.
Gustavo A. Chiabrando Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui (CIMETSA). Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ – Córdoba, Argentina.
| |
Collapse
|
11
|
Yamamoto K, Scavenius C, Meschis MM, Gremida AME, Mogensen EH, Thøgersen IB, Bonelli S, Scilabra SD, Jensen A, Santamaria S, Ahnström J, Bou-Gharios G, Enghild JJ, Nagase H. A top-down approach to uncover the hidden ligandome of low-density lipoprotein receptor-related protein 1 in cartilage. Matrix Biol 2022; 112:190-218. [PMID: 36028175 DOI: 10.1016/j.matbio.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a cell-surface receptor ubiquitously expressed in various tissues. It plays tissue-specific roles by mediating endocytosis of a diverse range of extracellular molecules. Dysregulation of LRP1 is involved in multiple conditions including osteoarthritis (OA) but little information is available about the specific profile of direct binding partners of LRP1 (ligandome) for each tissue, which would lead to a better understanding of its role in disease states. Here, we investigated adult articular cartilage where impaired LRP1-mediated endocytosis leads to tissue destruction. We used a top-down approach involving proteomic analysis of the LRP1 interactome in human chondrocytes, direct binding assays using purified LRP1 and ligand candidates, and validation in LRP1-deficient fibroblasts and human chondrocytes, as well as a novel Lrp1 conditional knockout (KO) mouse model. We found that inhibition of LRP1 and ligand interaction results in cell death, alteration of the entire secretome and transcriptional modulations in human chondrocytes. We identified a chondrocyte-specific LRP1 ligandome consisting of more than 50 novel ligand candidates. Surprisingly, 23 previously reported LRP1 ligands were not regulated by LRP1-mediated endocytosis in human chondrocytes. We confirmed direct LRP1 binding of HGFAC, HMGB1, HMGB2, CEMIP, SLIT2, ADAMTS1, TSG6, IGFBP7, SPARC and LIF, correlation between their affinity for LRP1 and the rate of endocytosis, and some of their intracellular localization. Moreover, a conditional LRP1 KO mouse model demonstrated a critical role of LRP1 in regulating the high-affinity ligands in cartilage in vivo. This systematic approach revealed the specificity and the extent of the chondrocyte LRP1 ligandome and identified potential novel therapeutic targets for OA.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom.
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Maria M Meschis
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Abdulrahman M E Gremida
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Emilie H Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Simone Bonelli
- Fondazione RiMED - ISMETT via Ernesto Tricomi 5, 90127 Palermo, Italy
| | - Simone D Scilabra
- Fondazione RiMED - ISMETT via Ernesto Tricomi 5, 90127 Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Salvatore Santamaria
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
12
|
Liu Z, Andraska E, Akinbode D, Mars W, Alvidrez RIM. LRP1 in the Vascular Wall. CURRENT PATHOBIOLOGY REPORTS 2022. [DOI: 10.1007/s40139-022-00231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Cadé M, Muñoz-Garcia J, Babuty A, Paré L, Cochonneau D, Fekir K, Chatelais M, Heymann MF, Lokajczyk A, Boisson-Vidal C, Heymann D. FVIII regulates the molecular profile of endothelial cells: functional impact on the blood barrier and macrophage behavior. Cell Mol Life Sci 2022; 79:145. [PMID: 35190870 PMCID: PMC11072670 DOI: 10.1007/s00018-022-04178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Hemophilia A is an inherited X-linked recessive bleeding disorder caused by deficient activity of blood coagulation factor VIII (FVIII). In addition, hemophilia patients show associated diseases including osteopenia, altered inflammation and vascular fragility which may represent the consequence of recurrent bleeding or may be related to the direct FVIII deficiency. Nowadays, recombinant FVIII is proposed to treat hemophilia patients with no circulating FVIII inhibitor. Initially described as a coenzyme to factor IXa for initiating thrombin generation, there is emerging evidence that FVIII is involved in multiple biological systems, including bone, vascular and immune systems. The present study investigated: (i) the functional activities of recombinant human FVIII (rFVIII) on endothelial cells, and (ii) the impact of rFVIII activities on the functional interactions of human monocytes and endothelial cells. We then investigated whether rFVIII had a direct effect on the adhesion of monocytes to the endothelium under physiological flow conditions. We observed that direct biological activities for rFVIII in endothelial cells were characterized by: (i) a decrease in endothelial cell adhesion to the underlying extracellular matrix; (ii) regulation of the transcriptomic and protein profiles of endothelial cells; (iii) an increase in the vascular tubes formed and vascular permeability in vitro; and (iv) an increase in monocyte adhesion activated endothelium and transendothelial migration. By regulating vascular permeability plus leukocyte adhesion and transendothelial migration, the present work highlights new biological functions for FVIII.
Collapse
Affiliation(s)
- Marie Cadé
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Antoine Babuty
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Department of Hemostasis, CHU de Nantes, Nantes, France
| | - Louis Paré
- Université de Paris, CNRS, Institut Jacques Monod, UMR 7592, Paris, France
| | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Marie-Françoise Heymann
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France.
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France.
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| |
Collapse
|
14
|
The essential anti-angiogenic strategies in cartilage engineering and osteoarthritic cartilage repair. Cell Mol Life Sci 2022; 79:71. [PMID: 35029764 PMCID: PMC9805356 DOI: 10.1007/s00018-021-04105-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 01/16/2023]
Abstract
In the cartilage matrix, complex interactions occur between angiogenic and anti-angiogenic components, growth factors, and environmental stressors to maintain a proper cartilage phenotype that allows for effective load bearing and force distribution. However, as seen in both degenerative disease and tissue engineering, cartilage can lose its vascular resistance. This vascularization then leads to matrix breakdown, chondrocyte apoptosis, and ossification. Research has shown that articular cartilage inflammation leads to compromised joint function and decreased clinical potential for regeneration. Unfortunately, few articles comprehensively summarize what we have learned from previous investigations. In this review, we summarize our current understanding of the factors that stabilize chondrocytes to prevent terminal differentiation and applications of these factors to rescue the cartilage phenotype during cartilage engineering and osteoarthritis treatment. Inhibiting vascularization will allow for enhanced phenotypic stability so that we are able to develop more stable implants for cartilage repair and regeneration.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW LDL receptor-related protein 1 (LRP1) is a multifunctional protein with endocytic and signal transduction properties due to its interaction with numerous extracellular ligands and intracellular proteins. This brief review highlights key developments in identifying novel functions of LRP1 in liver, lung, and the central nervous system in disease pathogenesis. RECENT FINDINGS In hepatocytes, LRP1 complexes with phosphatidylinositol 4-phosphate 5-kinase-1 and its related protein to maintain intracellular levels of phosphatidylinositol (4,5) bisphosphate and preserve lysosome and mitochondria integrity. In contrast, in smooth muscle cells, macrophages, and endothelial cells, LRP1 interacts with various different extracellular ligands and intracellular proteins in a tissue-dependent and microenvironment-dependent manner to either enhance or suppress inflammation, disease progression or resolution. Similarly, LRP1 expression in astrocytes and oligodendrocyte progenitor cells regulates cell differentiation and maturation in a developmental-dependent manner to modulate neurogenesis, gliogenesis, and white matter repair after injury. SUMMARY LRP1 modulates metabolic disease manifestation, inflammation, and differentiation in a cell-dependent, time-dependent, and tissue-dependent manner. Whether LRP1 expression is protective or pathogenic is dependent on its interaction with specific ligands and intracellular proteins, which in turn is dependent on the cell type and the microenvironment where these cells reside.
Collapse
Affiliation(s)
- Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
16
|
Mao H, Li L, Fan Q, Angelini A, Saha PK, Coarfa C, Rajapakshe K, Perera D, Cheng J, Wu H, Ballantyne CM, Sun Z, Xie L, Pi X. Endothelium-specific depletion of LRP1 improves glucose homeostasis through inducing osteocalcin. Nat Commun 2021; 12:5296. [PMID: 34489478 PMCID: PMC8421392 DOI: 10.1038/s41467-021-25673-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
The vascular endothelium is present within metabolic organs and actively regulates energy metabolism. Here we show osteocalcin, recognized as a bone-secreted metabolic hormone, is expressed in mouse primary endothelial cells isolated from heart, lung and liver. In human osteocalcin promoter-driven green fluorescent protein transgenic mice, green fluorescent protein signals are enriched in endothelial cells lining aorta, small vessels and capillaries and abundant in aorta, skeletal muscle and eye of adult mice. The depletion of lipoprotein receptor-related protein 1 induces osteocalcin through a Forkhead box O -dependent pathway in endothelial cells. Whereas depletion of osteocalcin abolishes the glucose-lowering effect of low-density lipoprotein receptor-related protein 1 depletion, osteocalcin treatment normalizes hyperglycemia in multiple mouse models. Mechanistically, osteocalcin receptor-G protein-coupled receptor family C group 6 member A and insulin-like-growth-factor-1 receptor are in the same complex with osteocalcin and required for osteocalcin-promoted insulin signaling pathway. Therefore, our results reveal an endocrine/paracrine role of endothelial cells in regulating insulin sensitivity, which may have therapeutic implications in treating diabetes and insulin resistance through manipulating vascular endothelium.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qiying Fan
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kimal Rajapakshe
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dimuthu Perera
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jizhong Cheng
- Department of Medicine, Section of Nephrology, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Christie M Ballantyne
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA.,Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Extracellular Hsp90α Promotes Tumor Lymphangiogenesis and Lymph Node Metastasis in Breast Cancer. Int J Mol Sci 2021; 22:ijms22147747. [PMID: 34299365 PMCID: PMC8305043 DOI: 10.3390/ijms22147747] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
Early detection and discovery of new therapeutic targets are urgently needed to improve the breast cancer treatment outcome. Here we conducted an official clinical trial with cross-validation to corroborate human plasma Hsp90α as a novel breast cancer biomarker. Importantly, similar results were noticed in detecting early-stage breast cancer patients. Additionally, levels of plasma Hsp90α in breast cancer patients were gradually elevated as their clinical stages of regional lymph nodes advanced. In orthotopic breast cancer mouse models, administrating with recombinant Hsp90α protein increased both the primary tumor lymphatic vessel density and sentinel lymph node metastasis by 2 and 10 times, respectively. What is more, Hsp90α neutralizing antibody treatment approximately reduced 70% of lymphatic vessel density and 90% of sentinel lymph node metastasis. In the in vitro study, we demonstrated the role of extracellular Hsp90α (eHsp90α) as a pro-lymphangiogenic factor, which significantly enhanced migration and tube formation abilities of lymphatic endothelial cells (LECs). Mechanistically, eHsp90α signaled to the AKT pathway through low-density lipoprotein receptor-related protein 1 (LRP1) to upregulate the expression and secretion of CXCL8 in the lymphangiogenic process. Collectively, this study proves that plasma Hsp90α serves as an auxiliary diagnosis biomarker and eHsp90α as a molecular mediator promoting lymphangiogenesis in breast cancer.
Collapse
|
18
|
Storck SE, Kurtyka M, Pietrzik CU. Brain endothelial LRP1 maintains blood-brain barrier integrity. Fluids Barriers CNS 2021; 18:27. [PMID: 34147102 PMCID: PMC8214794 DOI: 10.1186/s12987-021-00260-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022] Open
Abstract
The entry of blood-borne molecules into the brain is restricted by the blood–brain barrier (BBB). Various physical, transport and immune properties tightly regulate molecule movement between the blood and the brain to maintain brain homeostasis. A recent study utilizing a pan-endothelial, constitutive Tie2-Cre showed that paracellular passage of blood proteins into the brain is governed by endocytic and cell signaling protein low-density lipoprotein receptor–related protein 1 (LRP1). Taking advantage of conditional Slco1c1-CreERT2 specific to CNS endothelial cells and choroid plexus epithelial cells we now supplement previous results and show that brain endothelial Lrp1 ablation results in protease-mediated tight junction degradation, P-glycoprotein (P-gp) reduction and a loss of BBB integrity.
Collapse
Affiliation(s)
- Steffen E Storck
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099, Mainz, Germany.
| | - Magdalena Kurtyka
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
19
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
21
|
Mao H, Li L, Fan Q, Angelini A, Saha PK, Wu H, Ballantyne CM, Hartig SM, Xie L, Pi X. Loss of bone morphogenetic protein-binding endothelial regulator causes insulin resistance. Nat Commun 2021; 12:1927. [PMID: 33772019 PMCID: PMC7997910 DOI: 10.1038/s41467-021-22130-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that chronic inflammation of metabolic tissues plays a causal role in obesity-induced insulin resistance. Yet, how specific endothelial factors impact metabolic tissues remains undefined. Bone morphogenetic protein (BMP)-binding endothelial regulator (BMPER) adapts endothelial cells to inflammatory stress in diverse organ microenvironments. Here, we demonstrate that BMPER is a driver of insulin sensitivity. Both global and endothelial cell-specific inducible knockout of BMPER cause hyperinsulinemia, glucose intolerance and insulin resistance without increasing inflammation in metabolic tissues in mice. BMPER can directly activate insulin signaling, which requires its internalization and interaction with Niemann-Pick C1 (NPC1), an integral membrane protein that transports intracellular cholesterol. These results suggest that the endocrine function of the vascular endothelium maintains glucose homeostasis. Of potential translational significance, the delivery of BMPER recombinant protein or its overexpression alleviates insulin resistance and hyperglycemia in high-fat diet-fed mice and Leprdb/db (db/db) diabetic mice. We conclude that BMPER exhibits therapeutic potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qiying Fan
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Christie M Ballantyne
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
23
|
Nikolakopoulou AM, Wang Y, Ma Q, Sagare AP, Montagne A, Huuskonen MT, Rege SV, Kisler K, Dai Z, Körbelin J, Herz J, Zhao Z, Zlokovic BV. Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. J Exp Med 2021; 218:211750. [PMID: 33533918 PMCID: PMC7863706 DOI: 10.1084/jem.20202207] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 (LRP1) is an endocytic and cell signaling transmembrane protein. Endothelial LRP1 clears proteinaceous toxins at the blood–brain barrier (BBB), regulates angiogenesis, and is increasingly reduced in Alzheimer’s disease associated with BBB breakdown and neurodegeneration. Whether loss of endothelial LRP1 plays a direct causative role in BBB breakdown and neurodegenerative changes remains elusive. Here, we show that LRP1 inactivation from the mouse endothelium results in progressive BBB breakdown, followed by neuron loss and cognitive deficits, which is reversible by endothelial-specific LRP1 gene therapy. LRP1 endothelial knockout led to a self-autonomous activation of the cyclophilin A–matrix metalloproteinase-9 pathway in the endothelium, causing loss of tight junctions underlying structural BBB impairment. Cyclophilin A inhibition in mice with endothelial-specific LRP1 knockout restored BBB integrity and reversed and prevented neuronal loss and behavioral deficits. Thus, endothelial LRP1 protects against neurodegeneration by inhibiting cyclophilin A, which has implications for the pathophysiology and treatment of neurodegeneration linked to vascular dysfunction.
Collapse
Affiliation(s)
- Angeliki Maria Nikolakopoulou
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Yaoming Wang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Qingyi Ma
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Mikko T Huuskonen
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Sanket V Rege
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Zhonghua Dai
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Jakob Körbelin
- Hubertus Wald Cancer Center, Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Herz
- Departments of Neuroscience, Molecular Genetics, and Neurology, University of Texas Southwestern Medical Center, Dallas, TX.,Center for Neuroscience, University of Freiburg, Freiburg, Germany
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| |
Collapse
|
24
|
Auderset L, Pitman KA, Cullen CL, Pepper RE, Taylor BV, Foa L, Young KM. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Is a Negative Regulator of Oligodendrocyte Progenitor Cell Differentiation in the Adult Mouse Brain. Front Cell Dev Biol 2020; 8:564351. [PMID: 33282858 PMCID: PMC7691426 DOI: 10.3389/fcell.2020.564351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a large, endocytic cell surface receptor that is highly expressed by oligodendrocyte progenitor cells (OPCs) and LRP1 expression is rapidly downregulated as OPCs differentiate into oligodendrocytes (OLs). We report that the conditional deletion of Lrp1 from adult mouse OPCs (Pdgfrα-CreER :: Lrp1fl/fl) increases the number of newborn, mature myelinating OLs added to the corpus callosum and motor cortex. As these additional OLs extend a normal number of internodes that are of a normal length, Lrp1-deletion increases adult myelination. OPC proliferation is also elevated following Lrp1 deletion in vivo, however, this may be a secondary, homeostatic response to increased OPC differentiation, as our in vitro experiments show that LRP1 is a direct negative regulator of OPC differentiation, not proliferation. Deleting Lrp1 from adult OPCs also increases the number of newborn mature OLs added to the corpus callosum in response to cuprizone-induced demyelination. These data suggest that the selective blockade of LRP1 function on adult OPCs may enhance myelin repair in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Lisa Foa
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
25
|
Campion O, Al Khalifa T, Langlois B, Thevenard-Devy J, Salesse S, Savary K, Schneider C, Etique N, Dedieu S, Devy J. Contribution of the Low-Density Lipoprotein Receptor Family to Breast Cancer Progression. Front Oncol 2020; 10:882. [PMID: 32850302 PMCID: PMC7406569 DOI: 10.3389/fonc.2020.00882] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) family comprises 14 single-transmembrane receptors sharing structural homology and common repeats. These receptors specifically recognize and internalize various extracellular ligands either alone or complexed with membrane-spanning co-receptors that are then sorted for lysosomal degradation or cell-surface recovery. As multifunctional endocytic receptors, some LDLR members from the core family were first considered as potential tumor suppressors due to their clearance activity against extracellular matrix-degrading enzymes. LDLRs are also involved in pleiotropic functions including growth factor signaling, matricellular proteins, and cell matrix adhesion turnover and chemoattraction, thereby affecting both tumor cells and their surrounding microenvironment. Therefore, their roles could appear controversial and dependent on the malignancy state. In this review, recent advances highlighting the contribution of LDLR members to breast cancer progression are discussed with focus on (1) specific expression patterns of these receptors in primary cancers or distant metastasis and (2) emerging mechanisms and signaling pathways. In addition, potential diagnosis and therapeutic options are proposed.
Collapse
Affiliation(s)
- Océane Campion
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Tesnim Al Khalifa
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jessica Thevenard-Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphanie Salesse
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Katia Savary
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Christophe Schneider
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Nicolas Etique
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jérôme Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
26
|
Galardi A, Colletti M, Lavarello C, Di Paolo V, Mascio P, Russo I, Cozza R, Romanzo A, Valente P, De Vito R, Pascucci L, Peinado H, Carcaboso AM, Petretto A, Locatelli F, Di Giannatale A. Proteomic Profiling of Retinoblastoma-Derived Exosomes Reveals Potential Biomarkers of Vitreous Seeding. Cancers (Basel) 2020; 12:cancers12061555. [PMID: 32545553 PMCID: PMC7352325 DOI: 10.3390/cancers12061555] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma (RB) is the most common tumor of the eye in early childhood. Although recent advances in conservative treatment have greatly improved the visual outcome, local tumor control remains difficult in the presence of massive vitreous seeding. Traditional biopsy has long been considered unsafe in RB, due to the risk of extraocular spread. Thus, the identification of new biomarkers is crucial to design safer diagnostic and more effective therapeutic approaches. Exosomes, membrane-derived nanovesicles that are secreted abundantly by aggressive tumor cells and that can be isolated from several biological fluids, represent an interesting alternative for the detection of tumor-associated biomarkers. In this study, we defined the protein signature of exosomes released by RB tumors (RBT) and vitreous seeding (RBVS) primary cell lines by high resolution mass spectrometry. A total of 5666 proteins were identified. Among these, 5223 and 3637 were expressed in exosomes RBT and one RBVS group, respectively. Gene enrichment analysis of exclusively and differentially expressed proteins and network analysis identified in RBVS exosomes upregulated proteins specifically related to invasion and metastasis, such as proteins involved in extracellular matrix (ECM) remodeling and interaction, resistance to anoikis and the metabolism/catabolism of glucose and amino acids.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
- Correspondence: ; Tel.: +39-066859-3516
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (C.L.); (A.P.)
| | - Virginia Di Paolo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Paolo Mascio
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Ida Russo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Raffaele Cozza
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Antonino Romanzo
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’ Onofrio 4, 00165 Rome, Italy; (A.R.); (P.V.)
| | - Paola Valente
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’ Onofrio 4, 00165 Rome, Italy; (A.R.); (P.V.)
| | - Rita De Vito
- Department of Pathology, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy;
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, 28029 Madrid, Spain;
| | - Angel M. Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, 08950 Esplugues de Llobregat, Spain;
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (C.L.); (A.P.)
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
- Department of Ginecology/Obstetrics & Pediatrics, Sapienza University of Rome, 00185 Roma, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| |
Collapse
|
27
|
Au DT, Arai AL, Fondrie WE, Muratoglu SC, Strickland DK. Role of the LDL Receptor-Related Protein 1 in Regulating Protease Activity and Signaling Pathways in the Vasculature. Curr Drug Targets 2019; 19:1276-1288. [PMID: 29749311 DOI: 10.2174/1389450119666180511162048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Aortic aneurysms represent a significant clinical problem as they largely go undetected until a rupture occurs. Currently, an understanding of mechanisms leading to aneurysm formation is limited. Numerous studies clearly indicate that vascular smooth muscle cells play a major role in the development and response of the vasculature to hemodynamic changes and defects in these responses can lead to aneurysm formation. The LDL receptor-related protein 1 (LRP1) is major smooth muscle cell receptor that has the capacity to mediate the endocytosis of numerous ligands and to initiate and regulate signaling pathways. Genetic evidence in humans and mouse models reveal a critical role for LRP1 in maintaining the integrity of the vasculature. Understanding the mechanisms by which this is accomplished represents an important area of research, and likely involves LRP1's ability to regulate levels of proteases known to degrade the extracellular matrix as well as its ability to modulate signaling events.
Collapse
Affiliation(s)
- Dianaly T Au
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Allison L Arai
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - William E Fondrie
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Selen C Muratoglu
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| |
Collapse
|
28
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
29
|
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front Cardiovasc Med 2019; 6:51. [PMID: 31080804 PMCID: PMC6497734 DOI: 10.3389/fcvm.2019.00051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing.
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
30
|
Fan Q, Mao H, Xie L, Pi X. Prolyl Hydroxylase Domain-2 Protein Regulates Lipopolysaccharide-Induced Vascular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:200-213. [PMID: 30339838 DOI: 10.1016/j.ajpath.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Acute lung injury and its more severe form, acute respiratory distress syndrome, are life-threatening respiratory disorders. Overwhelming pulmonary inflammation and endothelium disruption are commonly observed. Endothelial cells (ECs) are well recognized as key regulators in leukocyte adhesion and migration in response to bacterial infection. Prolyl hydroxylase domain (PHD)-2 protein, a major PHD in ECs, plays a critical role in intracellular oxygen homeostasis, angiogenesis, and pulmonary hypertension. However, its role in endothelial inflammatory response is unclear. We investigated the role of PHD2 in ECs during endotoxin-induced lung inflammatory responses with EC-specific PHD2 inducible knockout mice. On lipopolysaccharide challenge, PHD2 depletion in ECs attenuates lipopolysaccharide-induced increases of lung vascular permeability, edema, and inflammatory cell infiltration. Moreover, EC-specific PHD2 inducible knockout mice exhibit improved adherens junction integrity and endothelial barrier function. Mechanistically, PHD2 knockdown induces vascular endothelial cadherin in mouse lung microvascular primary endothelial cells. Moreover, PHD2 knockdown can increase hypoxia-inducible factor/vascular endothelial protein tyrosine phosphatase signaling and reactive oxygen species-dependent p38 activation, leading to the induction of vascular endothelial cadherin. Data indicate that PHD2 depletion prevents the formation of leaky vessels and edema by regulating endothelial barrier function. It provides direct in vivo evidence to suggest that PHD2 plays a pivotal role in vascular inflammation. The inhibition of endothelial PHD2 activity may be a new therapeutic strategy for acute inflammatory diseases.
Collapse
Affiliation(s)
- Qiying Fan
- Cardiovascular Research Institute, Section of Athero and Lipo, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Hua Mao
- Cardiovascular Research Institute, Section of Athero and Lipo, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Liang Xie
- Cardiovascular Research Institute, Section of Athero and Lipo, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| | - Xinchun Pi
- Cardiovascular Research Institute, Section of Athero and Lipo, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
31
|
Lockyer P, Mao H, Fan Q, Li L, Yu-Lee LY, Eissa NT, Patterson C, Xie L, Pi X. LRP1-Dependent BMPER Signaling Regulates Lipopolysaccharide-Induced Vascular Inflammation. Arterioscler Thromb Vasc Biol 2017; 37:1524-1535. [PMID: 28596374 DOI: 10.1161/atvbaha.117.309521] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/30/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS Mice missing 1 allele of BMPER (BMPER+/- mice used in the place of BMPER-/- mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER+/- mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1β-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis.
Collapse
Affiliation(s)
- Pamela Lockyer
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Hua Mao
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Qiying Fan
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Luge Li
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Li-Yuan Yu-Lee
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - N Tony Eissa
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Cam Patterson
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Liang Xie
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Xinchun Pi
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.).
| |
Collapse
|
32
|
Mao H, Xie L, Pi X. Low-Density Lipoprotein Receptor-Related Protein-1 Signaling in Angiogenesis. Front Cardiovasc Med 2017; 4:34. [PMID: 28589128 PMCID: PMC5438976 DOI: 10.3389/fcvm.2017.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) plays multifunctional roles in lipid homeostasis, signaling transduction, and endocytosis. It has been recognized as an endocytic receptor for many ligands and is involved in the signaling pathways of many growth factors or cytokines. Dysregulation of LRP1-dependent signaling events contributes to the development of pathophysiologic processes such as Alzheimer’s disease, atherosclerosis, inflammation, and coagulation. Interestingly, recent studies have linked LRP1 with endothelial function and angiogenesis, which has been underappreciated for a long time. During zebrafish embryonic development, LRP1 is required for the formation of vascular network, especially for the venous development. LRP1 depletion in the mouse embryo proper leads to angiogenic defects and disruption of endothelial integrity. Moreover, in a mouse oxygen-induced retinopathy model, specific depletion of LRP1 in endothelial cells results in abnormal development of neovessels. These loss-of-function studies suggest that LRP1 plays a pivotal role in angiogenesis. The review addresses the recent advances in the roles of LRP1-dependent signaling during angiogenesis.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
33
|
Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. Nat Commun 2017; 8:14960. [PMID: 28393867 PMCID: PMC5394236 DOI: 10.1038/ncomms14960] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) regulates lipid and glucose metabolism in liver and adipose tissue. It is also involved in central nervous system regulation of food intake and leptin signalling. Here we demonstrate that endothelial Lrp1 regulates systemic energy homeostasis. Mice with endothelial-specific Lrp1 deletion display improved glucose sensitivity and lipid profiles combined with increased oxygen consumption during high-fat-diet-induced obesity. We show that the intracellular domain of Lrp1 interacts with the nuclear receptor Pparγ, a central regulator of lipid and glucose metabolism, acting as its transcriptional co-activator in endothelial cells. Therefore, Lrp1 not only acts as an endocytic receptor but also directly participates in gene transcription. Our findings indicate an underappreciated functional role of endothelium in maintaining systemic energy homeostasis.
Collapse
|
34
|
Dai Z. Invited commentary. J Vasc Surg 2017; 65:1170. [DOI: 10.1016/j.jvs.2016.12.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 10/19/2022]
|
35
|
Ali SO, Khan FA, Galindo-Campos MA, Yélamos J. Understanding specific functions of PARP-2: new lessons for cancer therapy. Am J Cancer Res 2016; 6:1842-1863. [PMID: 27725894 PMCID: PMC5043098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a widespread and highly conserved post-translational modification catalysed by a large family of enzymes called poly(ADP-ribose) polymerases (PARPs). PARylation plays an essential role in various cardinal processes of cellular physiology and recent approvals and breakthrough therapy designations for PARP inhibitors in cancer therapy have sparked great interest in pharmacological targeting of PARP proteins. Although, many PARP inhibitors have been developed, existing compounds display promiscuous inhibition across the PARP superfamily which could lead to unwanted off-target effects. Thus the prospect of isoform-selective inhibition is being increasingly explored and research is now focusing on understanding specific roles of PARP family members. PARP-2, alongside PARP-1 and PARP-3 are the only known DNA damage-dependent PARPs and play critical roles in the DNA damage response, DNA metabolism and chromatin architecture. However, growing evidence shows that PARP-2 plays specific and diverse regulatory roles in cellular physiology, ranging from genomic stability and epigenetics to proliferative signalling and inflammation. The emerging network of PARP-2 target proteins has uncovered wide-ranging functions of the molecule in many cellular processes commonly dysregulated in carcinogenesis. Here, we review novel PARP-2-specific functions in the hallmarks of cancer and consider the implications for the development of isoform-selective inhibitors in chemotherapy. By considering the roles of PARP-2 through the lens of tumorigenesis, we propose PARP-2-selective inhibition as a potentially multipronged attack on cancer physiology.
Collapse
Affiliation(s)
- Syed O Ali
- School of Clinical Medicine, University of CambridgeCambridge, UK
| | - Farhaan A Khan
- School of Clinical Medicine, University of CambridgeCambridge, UK
| | - Miguel A Galindo-Campos
- Department of Immunology, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM)Barcelona, Spain
| | - José Yélamos
- Department of Immunology, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM)Barcelona, Spain
- CIBERehdSpain
| |
Collapse
|
36
|
Hossain A, Tauhid L, Davenport I, Huckaba T, Graves R, Mandal T, Muniruzzaman S, Ahmed SA, Bhattacharjee PS. LRP-1 Pathway Targeted Inhibition of Vascular Abnormalities in the Retina of Diabetic Mice. Curr Eye Res 2016; 42:640-647. [PMID: 27442082 DOI: 10.1080/02713683.2016.1203441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE The cell surface LDL (low-density lipoprotein) receptor-related protein-1 (LRP-1) is important for lipid transport and several cell signaling processes. Human apolipoprotein E (apoE) is a ligand of LRP-1. We previously reported that a short peptide (apoEdp) mimicking the LRP-1 binding region of apoE prevents hyperglycemia-induced retinal endothelial cell dysfunction in vitro. The in-vivo outcome of apoE-based peptidomimetic inhibition of LRP-1 in the treatment of diabetic retinopathy is unknown. METHODS Six months after streptozotocin induction of diabetes, male C57Bl/6 mice were intravitreally inoculated with apoEdp in a controlled release formulation. On the 15th day post-apoEdp treatment, mouse retinas were harvested to examine (1) blood-retinal-barrier (BRB) permeability by Evans blue dye, inflammatory leukostasis by concanavalin staining of leukocytes and LRP-1 pathway-related protein expression by Western blot analysis and gelatin zymography. RESULTS Intravitreal apoEdp treatment of diabetic mice significantly reduced Evans blue extravasation and the number of adherent leukocytes in the diabetic mouse retinas. ApoEdp treatment inhibited the expression of extracellular matrix (ECM) degrading proteases heparanase and MMP-2, and restores the BRB tight junction proteins occludin and ZO-1. ApoEdp treatment also inhibited Wnt/β-catenin-related expression of pro-inflammatory molecules ICAM-1, HIF-1α, and VEGF through negative regulation by LRP-1. CONCLUSION Intravitreal apoEdp treatment of diabetic mice resulted a significant decrease in retinal vascular abnormalities through downregulation of LRP-1-related ECM protein degradation and Wnt/β-catenin-related pro-angiogenic molecules.
Collapse
Affiliation(s)
- Ahamed Hossain
- a Department of Biology , Xavier University of Louisiana , New Orleans , LA , USA
| | - Lamiya Tauhid
- b School of Science and Engineering , Tulane University , New Orleans , LA , USA
| | - Ian Davenport
- a Department of Biology , Xavier University of Louisiana , New Orleans , LA , USA
| | - Thomas Huckaba
- a Department of Biology , Xavier University of Louisiana , New Orleans , LA , USA
| | - Richard Graves
- c Division of Basic Pharmaceutical Sciences, College of Pharmacy , Xavier University of Louisiana , New Orleans , LA , USA
| | - Tarun Mandal
- c Division of Basic Pharmaceutical Sciences, College of Pharmacy , Xavier University of Louisiana , New Orleans , LA , USA
| | - Syed Muniruzzaman
- a Department of Biology , Xavier University of Louisiana , New Orleans , LA , USA
| | - Syed A Ahmed
- d Division of Business , Xavier University of Louisiana , New Orleans , LA , USA
| | | |
Collapse
|
37
|
Strickland DK, Muratoglu SC. LRP in Endothelial Cells: A Little Goes a Long Way. Arterioscler Thromb Vasc Biol 2016; 36:213-6. [PMID: 26819461 DOI: 10.1161/atvbaha.115.306895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease (D.K.S., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (D.K.S., S.C.M.), University of Maryland School of Medicine, Baltimore.
| | - Selen C Muratoglu
- From the Center for Vascular and Inflammatory Disease (D.K.S., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (D.K.S., S.C.M.), University of Maryland School of Medicine, Baltimore
| |
Collapse
|