1
|
Nornes S, Bruche S, Adak N, McCracken IR, De Val S. Evaluating the transcriptional regulators of arterial gene expression via a catalogue of characterized arterial enhancers. eLife 2025; 14:e102440. [PMID: 39819837 PMCID: PMC11896612 DOI: 10.7554/elife.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025] Open
Abstract
The establishment and growth of the arterial endothelium require the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1, and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4, or venous-enriched NR2F2. This cohort of well-characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signaling pathways with arterial gene expression.
Collapse
Affiliation(s)
- Svanhild Nornes
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
| | - Susann Bruche
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
| | - Niharika Adak
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
- University Medical Centre GroningenGroningenNetherlands
| | - Ian R McCracken
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
| | - Sarah De Val
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
2
|
Zheng Y, Mayourian J, King JS, Li Y, Bezzerides VJ, Pu WT, VanDusen NJ. Cardiac Applications of CRISPR/AAV-Mediated Precise Genome Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626493. [PMID: 39677651 PMCID: PMC11642850 DOI: 10.1101/2024.12.03.626493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The ability to efficiently make precise genome edits in somatic tissues will have profound implications for gene therapy and basic science. CRISPR/Cas9 mediated homology-directed repair (HDR) is one approach that is commonly used to achieve precise and efficient editing in cultured cells. Previously, we developed a platform capable of delivering CRISPR/Cas9 gRNAs and donor templates via adeno-associated virus to induce HDR (CASAAV-HDR). We demonstrated that CASAAV-HDR is capable of creating precise genome edits in vivo within mouse cardiomyocytes at the neonatal and adult stages. Here, we report several applications of CASAAV-HDR in cardiomyocytes. First, we show the utility of CASAAV-HDR for disease modeling applications by using CASAAV-HDR to create and precisely tag two pathological variants of the titin gene observed in cardiomyopathy patients. We used this approach to monitor the cellular localization of the variants, resulting in mechanistic insights into their pathological functions. Next, we utilized CASAAV-HDR to create another mutation associated with human cardiomyopathy, arginine 14 deletion (R14Del) within the N-terminus of Phospholamban (PLN). We assessed the localization of PLN-R14Del and quantified cardiomyocyte phenotypes associated with cardiomyopathy, including cell morphology, activation of PLN via phosphorylation, and calcium handling. After demonstrating CASAAV-HDR utility for disease modeling we next tested its utility for functional genomics, by targeted genomic insertion of a library of enhancers for a massively parallel reporter assay (MPRA). We show that MPRAs with genomically integrated enhancers are feasible, and can yield superior assay sensitivity compared to tests of the same enhancers in an AAV/episomal context. Collectively, our study showcases multiple applications for in vivo precise editing of cardiomyocyte genomes via CASAAV-HDR.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Joshua Mayourian
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Justin S. King
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Huang J, Liao C, Yang J, Zhang L. The role of vascular and lymphatic networks in bone and joint homeostasis and pathology. Front Endocrinol (Lausanne) 2024; 15:1465816. [PMID: 39324127 PMCID: PMC11422228 DOI: 10.3389/fendo.2024.1465816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
The vascular and lymphatic systems are integral to maintaining skeletal homeostasis and responding to pathological conditions in bone and joint tissues. This review explores the interplay between blood vessels and lymphatic vessels in bones and joints, focusing on their roles in homeostasis, regeneration, and disease progression. Type H blood vessels, characterized by high expression of CD31 and endomucin, are crucial for coupling angiogenesis with osteogenesis, thus supporting bone homeostasis and repair. These vessels facilitate nutrient delivery and waste removal, and their dysfunction can lead to conditions such as ischemia and arthritis. Recent discoveries have highlighted the presence and significance of lymphatic vessels within bone tissue, challenging the traditional view that bones are devoid of lymphatics. Lymphatic vessels contribute to interstitial fluid regulation, immune cell trafficking, and tissue repair through lymphangiocrine signaling. The pathological alterations in these networks are closely linked to inflammatory joint diseases, emphasizing the need for further research into their co-regulatory mechanisms. This comprehensive review summarizes the current understanding of the structural and functional aspects of vascular and lymphatic networks in bone and joint tissues, their roles in homeostasis, and the implications of their dysfunction in disease. By elucidating the dynamic interactions between these systems, we aim to enhance the understanding of their contributions to skeletal health and disease, potentially informing the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jingxiong Huang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Guizhou, Zunyi, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Aurigemma I, Lanzetta O, Cirino A, Allegretti S, Lania G, Ferrentino R, Poondi Krishnan V, Angelini C, Illingworth E, Baldini A. Endothelial gene regulatory elements associated with cardiopharyngeal lineage differentiation. Commun Biol 2024; 7:351. [PMID: 38514806 PMCID: PMC10957928 DOI: 10.1038/s42003-024-06017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Endothelial cells (EC) differentiate from multiple sources, including the cardiopharyngeal mesoderm, which gives rise also to cardiac and branchiomeric muscles. The enhancers activated during endothelial differentiation within the cardiopharyngeal mesoderm are not completely known. Here, we use a cardiogenic mesoderm differentiation model that activates an endothelial transcription program to identify endothelial regulatory elements activated in early cardiogenic mesoderm. Integrating chromatin remodeling and gene expression data with available single-cell RNA-seq data from mouse embryos, we identify 101 putative regulatory elements of EC genes. We then apply a machine-learning strategy, trained on validated enhancers, to predict enhancers. Using this computational assay, we determine that 50% of these sequences are likely enhancers, some of which are already reported. We also identify a smaller set of regulatory elements of well-known EC genes and validate them using genetic and epigenetic perturbation. Finally, we integrate multiple data sources and computational tools to search for transcriptional factor binding motifs. In conclusion, we show EC regulatory sequences with a high likelihood to be enhancers, and we validate a subset of them using computational and cell culture models. Motif analyses show that the core EC transcription factors GATA/ETS/FOS is a likely driver of EC regulation in cardiopharyngeal mesoderm.
Collapse
Affiliation(s)
- Ilaria Aurigemma
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Olga Lanzetta
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Andrea Cirino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Sara Allegretti
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosa Ferrentino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Varsha Poondi Krishnan
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Claudia Angelini
- Istituto Applicazioni del Calcolo, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Elizabeth Illingworth
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Antonio Baldini
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
5
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
6
|
McCracken IR, Baker AH, Smart N, De Val S. Transcriptional regulators of arterial and venous identity in the developing mammalian embryo. CURRENT OPINION IN PHYSIOLOGY 2023; 35:None. [PMID: 38328689 PMCID: PMC10844100 DOI: 10.1016/j.cophys.2023.100691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The complex and hierarchical vascular network of arteries, veins, and capillaries features considerable endothelial heterogeneity, yet the regulatory pathways directing arteriovenous specification, differentiation, and identity are still not fully understood. Recent advances in analysis of endothelial-specific gene-regulatory elements, single-cell RNA sequencing, and cell lineage tracing have both emphasized the importance of transcriptional regulation in this process and shed considerable light on the mechanism and regulation of specification within the endothelium. In this review, we discuss recent advances in our understanding of how endothelial cells acquire arterial and venous identity and the role different transcription factors play in this process.
Collapse
Affiliation(s)
- Ian R McCracken
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| | - Sarah De Val
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| |
Collapse
|
7
|
Marzoog BA. Tree of life: endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023; 56:166-178. [PMID: 36879408 PMCID: PMC10319484 DOI: 10.5115/acb.22.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
Undeniably, endothelial cells (EC) contribute to the maintenance of the homeostasis of the organism through modulating cellular physiology, including signaling pathways, through the release of highly active molecules as well as the response to a myriad of extrinsic and intrinsic signaling factors. Review the data from the current literature on the EC role in norm and disease. Endothelium maintains a precise balance between the released molecules, where EC dysfunction arises when the endothelium actions shift toward vasoconstriction, the proinflammatory, prothrombic properties after the alteration of nitric oxide (NO) production and oxidative stress. The functions of the EC are regulated by the negative/positive feedback from the organism, through EC surface receptors, and the crosstalk between NO, adrenergic receptors, and oxidative stress. More than a hundred substances can interact with EC. The EC dysfunction is a hallmark in the emergence and progression of vascular-related pathologies. The paper concisely reviews recent advances in EC (patho) physiology. Grasping EC physiology is crucial to gauge their potential clinical utility and optimize the current therapies as well as to establish novel nanotherapeutic molecular targets include; endothelial receptors, cell adhesion molecules, integrins, signaling pathways, enzymes; peptidases.
Collapse
|
8
|
Chong-Morrison V, Mayes S, Simões FC, Senanayake U, Carroll DS, Riley PR, Wilson SW, Sauka-Spengler T. Ac/Ds transposition for CRISPR/dCas9-SID4x epigenome modulation in zebrafish. Biol Open 2023; 12:bio059995. [PMID: 37367831 PMCID: PMC10320716 DOI: 10.1242/bio.059995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Due to its genetic amenability coupled with advances in genome editing, zebrafish is an excellent model to examine the function of (epi)genomic elements. Here, we repurposed the Ac/Ds maize transposition system to efficiently characterise zebrafish cis-regulated elements, also known as enhancers, in F0-microinjected embryos. We further used the system to stably express guide RNAs enabling CRISPR/dCas9-interference (CRISPRi) perturbation of enhancers without disrupting the underlying genetic sequence. In addition, we probed the phenomenon of antisense transcription at two neural crest gene loci. Our study highlights the utility of Ac/Ds transposition as a new tool for transient epigenome modulation in zebrafish.
Collapse
Affiliation(s)
- Vanessa Chong-Morrison
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Sarah Mayes
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Filipa C. Simões
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Upeka Senanayake
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Dervla S. Carroll
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Paul R. Riley
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Stephen W. Wilson
- University College London, Department of Cell & Developmental Biology, London WC1E 6BT, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
9
|
Zhang C, Yan Y, Zhou B, Wang Y, Tian X, Hao S, Ma P, Zheng L, Zhang Q, Hui L, Wang Y, Cao Z, Ma X. Identification of deep intronic variants of PAH in phenylketonuria using full-length gene sequencing. Orphanet J Rare Dis 2023; 18:128. [PMID: 37237386 PMCID: PMC10214626 DOI: 10.1186/s13023-023-02742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Phenylketonuria (PKU) is an autosomal recessive congenital metabolic disorder caused by PAH variants. Previously, approximately 5% of PKU patients remained undiagnosed after Sanger sequencing and multiplex ligation-dependent probe amplification. To date, increasing numbers of pathogenic deep intronic variants have been reported in more than 100 disease-associated genes. METHODS In this study, we performed full-length sequencing of PAH to investigate the deep intronic variants in PAH of PKU patients without definite genetic diagnosis. RESULTS We identified five deep intronic variants (c.1199+502A>T, c.1065+241C>A, c.706+368T>C, c.706+531>C, and c.706+608A>C). Of these, the c.1199+502A>T variant was found at high frequency and may be a hotspot PAH variant in Chinese PKU. c.706+531T>C and c.706+608A>C are two novel variants that extend the deep intronic variant spectrum of PAH. CONCLUSION Deep intronic variant pathogenicity analysis can further improve the genetic diagnosis of PKU patients. In silico prediction and minigene analysis are powerful approaches for studying the functions and effects of deep intronic variants. Targeted sequencing after full-length gene amplification is an economical and effective tool for the detection of deep intron variation in genes with small fragments.
Collapse
Affiliation(s)
- Chuan Zhang
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
- National Research Institute for Health and Family Planning, National Human Genetic Resources Center, Beijing, China
- Graduate School of Peking, Union Medical College, Beijing, China
| | - Yousheng Yan
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Bingbo Zhou
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Yupei Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xinyuan Tian
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Shengju Hao
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Panpan Ma
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Lei Zheng
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Qinghua Zhang
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Ling Hui
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Yan Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Zongfu Cao
- National Research Institute for Health and Family Planning, National Human Genetic Resources Center, Beijing, China.
| | - Xu Ma
- National Research Institute for Health and Family Planning, National Human Genetic Resources Center, Beijing, China.
- Graduate School of Peking, Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Li X, Souilhol C, Canham L, Jia X, Diagbouga M, Ayllon BT, Serbanovic-Canic J, Evans PC. DLL4 promotes partial endothelial-to-mesenchymal transition at atherosclerosis-prone regions of arteries. Vascul Pharmacol 2023; 150:107178. [PMID: 37137436 DOI: 10.1016/j.vph.2023.107178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Flowing blood regulates vascular development, homeostasis and disease by generating wall shear stress which has major effects on endothelial cell (EC) physiology. Low oscillatory shear stress (LOSS) induces a form of cell plasticity called endothelial-to-mesenchymal transition (EndMT). This process has divergent effects; in embryos LOSS-induced EndMT drives the development of atrioventricular valves, whereas in adult arteries it is associated with inflammation and atherosclerosis. The Notch ligand DLL4 is essential for LOSS-dependent valve development; here we investigated whether DLL4 is required for responses to LOSS in adult arteries. Analysis of cultured human coronary artery EC revealed that DLL4 regulates the transcriptome to induce markers of EndMT and inflammation under LOSS conditions. Consistently, genetic deletion of Dll4 from murine EC reduced SNAIL (EndMT marker) and VCAM-1 (inflammation marker) at a LOSS region of the murine aorta. We hypothesized that endothelial Dll4 is pro-atherogenic but this analysis was confounded because endothelial Dll4 negatively regulated plasma cholesterol levels in hyperlipidemic mice. We conclude that endothelial DLL4 is required for LOSS-induction of EndMT and inflammation regulators at atheroprone regions of arteries, and is also a regulator of plasma cholesterol.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; School of Pharmacy, Southwest Medical University, LuZhou, Sichuan 646000, PR China; Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK.
| | - Lindsay Canham
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Xueqi Jia
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Mannekomba Diagbouga
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Blanca Tardajos Ayllon
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK; Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts and The London, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
11
|
Dong K, He X, Hu G, Yao Y, Zhou J. Coronary Artery Disease Risk Gene PRDM16 is Preferentially Expressed in Vascular Smooth Muscle Cells and a Potential Novel Regulator of Smooth Muscle Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535461. [PMID: 37066230 PMCID: PMC10104006 DOI: 10.1101/2023.04.03.535461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Objective Vascular smooth muscle cells (VSMCs) are the primary contractile component of blood vessels and can undergo phenotypic switching from a contractile to a synthetic phenotype in vascular diseases such as coronary artery disease (CAD). This process leads to decreased expression of SMC lineage genes and increased proliferative, migratory and secretory abilities that drive disease progression. Super-enhancers (SE) and occupied transcription factors are believed to drive expression of genes that maintain cell identify and homeostasis. The goal of this study is to identify novel regulator of VSMC homeostasis by screening for SE-regulated transcription factors in arterial tissues. Approach and Results We characterized human artery SEs by analyzing the enhancer histone mark H3K27ac ChIP-seq data of multiple arterial tissues. We unexpectedly discovered the transcription factor PRDM16, a GWAS identified CAD risk gene with previously well-documented roles in brown adipocytes but with an unknown function in vascular disease progression, is enriched with artery-specific SEs. Further analysis of public bulk RNA-seq and scRNA-seq datasets, as well as qRT-PCR and Western blotting analysis, demonstrated that PRDM16 is preferentially expressed in arterial tissues and in contractile VSMCs but not in visceral SMCs, and down-regulated in phenotypically modulated VSMCs. To explore the function of Prdm16 in vivo, we generated Prdm16 SMC-specific knockout mice and performed histological and bulk RNA-Seq analysis of aortic tissues. SMC-deficiency of Prdm16 does not affect the aortic morphology but significantly alters expression of many CAD risk genes and genes involved in VSMC phenotypic modulation. Specifically, Prdm16 negatively regulates the expression of Tgfb2 that encodes for an upstream ligand of TGF-β signaling pathway, potentially through binding to the promoter region of Tgfb2 . These transcriptomic changes likely disrupt VSMC homeostasis and predispose VSMCs to a disease state. Conclusions Our results suggest that the CAD risk gene PRDM16 is preferentially expressed in VSMCs and is a novel regulator of VSMC homeostasis. Future studies are warranted to investigate its role in VSMCs under pathological conditions such as atherosclerosis.
Collapse
|
12
|
Marzoog BA. Endothelial cell autophagy in the context of disease development. Anat Cell Biol 2023; 56:16-24. [PMID: 36267005 PMCID: PMC9989784 DOI: 10.5115/acb.22.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
Endothelial cells (EC) are the anatomical boundaries between the intravascular and extravascular space. Damage to ECs is catastrophic and induces endothelial cell dysfunction. The pathogenesis is multifactorial and involves dysregulation in the signaling pathways, membrane lipids ratio disturbance, cell-cell adhesion disturbance, unfolded protein response, lysosomal and mitochondrial stress, autophagy dysregulation, and oxidative stress. Autophagy is a lysosomal-dependent turnover of intracellular components. Autophagy was recognized early in the pathogenesis of endothelial dysfunction. Autophagy is a remarkable patho (physiological) process in the cell homeostasis regulation including EC. Regulation of autophagy rate is disease-dependent and impaired with aging. Up-regulation of autophagy induces endothelial cell regeneration/differentiation and improves the function of impaired ones. The paper scrutinizes the molecular mechanisms and triggers of EC dysregulation and current perspectives for future therapeutic strategies by autophagy targeting.
Collapse
|
13
|
Souilhol C, Tardajos Ayllon B, Li X, Diagbouga MR, Zhou Z, Canham L, Roddie H, Pirri D, Chambers EV, Dunning MJ, Ariaans M, Li J, Fang Y, Jørgensen HF, Simons M, Krams R, Waltenberger J, Fragiadaki M, Ridger V, De Val S, Francis SE, Chico TJA, Serbanovic-Canic J, Evans PC. JAG1-NOTCH4 mechanosensing drives atherosclerosis. SCIENCE ADVANCES 2022; 8:eabo7958. [PMID: 36044575 PMCID: PMC9432841 DOI: 10.1126/sciadv.abo7958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.
Collapse
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Blanca Tardajos Ayllon
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Xiuying Li
- School of Pharmacy, Southwest Medical University, LuZhou, Sichuan 646000, P.R. China
| | - Mannekomba R. Diagbouga
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Ziqi Zhou
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Lindsay Canham
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Daniela Pirri
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily V. Chambers
- Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mark J. Dunning
- Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mark Ariaans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Jin Li
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Helle F. Jørgensen
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Centre for Clinical Investigation, Addenbrooke’s Hospital, Cambridge, UK
| | - Michael Simons
- Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, CT, USA
| | - Rob Krams
- Department of Bioengineering, Queen Mary University of London, London, UK
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany
- Hirslanden Klinik im Park, Cardiovascular Medicine, Diagnostic and Therapeutic Heart Center AG, 8002 Zürich, Switzerland
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Sarah De Val
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sheila E. Francis
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Timothy JA Chico
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C. Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Panara V, Monteiro R, Koltowska K. Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances. Front Cell Dev Biol 2022; 10:891538. [PMID: 35615697 PMCID: PMC9125237 DOI: 10.3389/fcell.2022.891538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network.
Collapse
Affiliation(s)
- Virginia Panara
- Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre of Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
15
|
Parisi C, Vashisht S, Winata CL. Fish-Ing for Enhancers in the Heart. Int J Mol Sci 2021; 22:3914. [PMID: 33920121 PMCID: PMC8069060 DOI: 10.3390/ijms22083914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precise control of gene expression is crucial to ensure proper development and biological functioning of an organism. Enhancers are non-coding DNA elements which play an essential role in regulating gene expression. They contain specific sequence motifs serving as binding sites for transcription factors which interact with the basal transcription machinery at their target genes. Heart development is regulated by intricate gene regulatory network ensuring precise spatiotemporal gene expression program. Mutations affecting enhancers have been shown to result in devastating forms of congenital heart defect. Therefore, identifying enhancers implicated in heart biology and understanding their mechanism is key to improve diagnosis and therapeutic options. Despite their crucial role, enhancers are poorly studied, mainly due to a lack of reliable way to identify them and determine their function. Nevertheless, recent technological advances have allowed rapid progress in enhancer discovery. Model organisms such as the zebrafish have contributed significant insights into the genetics of heart development through enabling functional analyses of genes and their regulatory elements in vivo. Here, we summarize the current state of knowledge on heart enhancers gained through studies in model organisms, discuss various approaches to discover and study their function, and finally suggest methods that could further advance research in this field.
Collapse
Affiliation(s)
- Costantino Parisi
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Shikha Vashisht
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
16
|
Neal A, Nornes S, Louphrasitthiphol P, Sacilotto N, Preston MD, Fleisinger L, Payne S, De Val S. ETS factors are required but not sufficient for specific patterns of enhancer activity in different endothelial subtypes. Dev Biol 2021; 473:1-14. [PMID: 33453264 PMCID: PMC8026812 DOI: 10.1016/j.ydbio.2021.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Correct vascular differentiation requires distinct patterns of gene expression in different subtypes of endothelial cells. Members of the ETS transcription factor family are essential for the transcriptional activation of arterial and angiogenesis-specific gene regulatory elements, leading to the hypothesis that they play lineage-defining roles in arterial and angiogenic differentiation directly downstream of VEGFA signalling. However, an alternative explanation is that ETS binding at enhancers and promoters is a general requirement for activation of many endothelial genes regardless of expression pattern, with subtype-specificity provided by additional factors. Here we use analysis of Ephb4 and Coup-TFII (Nr2f2) vein-specific enhancers to demonstrate that ETS factors are equally essential for vein, arterial and angiogenic-specific enhancer activity patterns. Further, we show that ETS factor binding at these vein-specific enhancers is enriched by VEGFA signalling, similar to that seen at arterial and angiogenic enhancers. However, while arterial and angiogenic enhancers can be activated by VEGFA in vivo, the Ephb4 and Coup-TFII venous enhancers are not, suggesting that the specificity of VEGFA-induced arterial and angiogenic enhancer activity occurs via non-ETS transcription factors. These results support a model in which ETS factors are not the primary regulators of specific patterns of gene expression in different endothelial subtypes. Vein-specific enhancers can contain essential ETS motifs. VEGFA induced an increase in ETS binding at vein, arterial and angiogenic enhancers. VEGFA stimulation cannot induce vein-specific enhancer activity.
Collapse
Affiliation(s)
- Alice Neal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| | - Svanhild Nornes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Natalia Sacilotto
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Mark D Preston
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QG, United Kingdom
| | - Lucija Fleisinger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Sophie Payne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom.
| |
Collapse
|
17
|
Watanabe Y, Seya D, Ihara D, Ishii S, Uemoto T, Kubo A, Arai Y, Isomoto Y, Nakano A, Abe T, Shigeta M, Kawamura T, Saito Y, Ogura T, Nakagawa O. Importance of endothelial Hey1 expression for thoracic great vessel development and its distal enhancer for Notch-dependent endothelial transcription. J Biol Chem 2020; 295:17632-17645. [PMID: 33454003 PMCID: PMC7762959 DOI: 10.1074/jbc.ra120.015003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Thoracic great vessels such as the aorta and subclavian arteries are formed through dynamic remodeling of embryonic pharyngeal arch arteries (PAAs). Previous work has shown that loss of a basic helix-loop-helix transcription factor Hey1 in mice causes abnormal fourth PAA development and lethal great vessel anomalies resembling congenital malformations in humans. However, how Hey1 mediates vascular formation remains unclear. In this study, we revealed that Hey1 in vascular endothelial cells, but not in smooth muscle cells, played essential roles for PAA development and great vessel morphogenesis in mouse embryos. Tek-Cre-mediated Hey1 deletion in endothelial cells affected endothelial tube formation and smooth muscle differentiation in embryonic fourth PAAs and resulted in interruption of the aortic arch and other great vessel malformations. Cell specificity and signal responsiveness of Hey1 expression were controlled through multiple cis-regulatory regions. We found two distal genomic regions that had enhancer activity in endothelial cells and in the pharyngeal epithelium and somites, respectively. The novel endothelial enhancer was conserved across species and was specific to large-caliber arteries. Its transcriptional activity was regulated by Notch signaling in vitro and in vivo, but not by ALK1 signaling and other transcription factors implicated in endothelial cell specificity. The distal endothelial enhancer was not essential for basal Hey1 expression in mouse embryos but may likely serve for Notch-dependent transcriptional control in endothelial cells together with the proximal regulatory region. These findings help in understanding the significance and regulation of endothelial Hey1 as a mediator of multiple signaling pathways in embryonic vascular formation.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan.
| | - Daiki Seya
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Dai Ihara
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Laboratory of Stem Cell and Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shuhei Ishii
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan
| | - Taiki Uemoto
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan
| | - Atsushi Kubo
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yuji Arai
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yoshie Isomoto
- Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Atsushi Nakano
- Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell and Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yoshihiko Saito
- Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan; Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
18
|
Endocardium differentiation through Sox17 expression in endocardium precursor cells regulates heart development in mice. Sci Rep 2019; 9:11953. [PMID: 31420575 PMCID: PMC6697751 DOI: 10.1038/s41598-019-48321-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
The endocardium is the endothelial component of the vertebrate heart and plays a key role in heart development. Where, when, and how the endocardium segregates during embryogenesis have remained largely unknown, however. We now show that Nkx2-5+ cardiac progenitor cells (CPCs) that express the Sry-type HMG box gene Sox17 from embryonic day (E) 7.5 to E8.5 specifically differentiate into the endocardium in mouse embryos. Although Sox17 is not essential or sufficient for endocardium fate, it can bias the fate of CPCs toward the endocardium. On the other hand, Sox17 expression in the endocardium is required for heart development. Deletion of Sox17 specifically in the mesoderm markedly impaired endocardium development with regard to cell proliferation and behavior. The proliferation of cardiomyocytes, ventricular trabeculation, and myocardium thickening were also impaired in a non-cell-autonomous manner in the Sox17 mutant, likely as a consequence of down-regulation of NOTCH signaling. An unknown signal, regulated by Sox17 and required for nurturing of the myocardium, is responsible for the reduction in NOTCH-related genes in the mutant embryos. Our results thus provide insight into differentiation of the endocardium and its role in heart development.
Collapse
|
19
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
20
|
Payne S, Gunadasa-Rohling M, Neal A, Redpath AN, Patel J, Chouliaras KM, Ratnayaka I, Smart N, De Val S. Regulatory pathways governing murine coronary vessel formation are dysregulated in the injured adult heart. Nat Commun 2019; 10:3276. [PMID: 31332177 PMCID: PMC6646353 DOI: 10.1038/s41467-019-10710-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/21/2019] [Indexed: 01/01/2023] Open
Abstract
The survival of ischaemic cardiomyocytes after myocardial infarction (MI) depends on the formation of new blood vessels. However, endogenous neovascularization is inefficient and the regulatory pathways directing coronary vessel growth are not well understood. Here we describe three independent regulatory pathways active in coronary vessels during development through analysis of the expression patterns of differentially regulated endothelial enhancers in the heart. The angiogenic VEGFA-MEF2 regulatory pathway is predominantly active in endocardial-derived vessels, whilst SOXF/RBPJ and BMP-SMAD pathways are seen in sinus venosus-derived arterial and venous coronaries, respectively. Although all developmental pathways contribute to post-MI vessel growth in the neonate, none are active during neovascularization after MI in adult hearts. This was particularly notable for the angiogenic VEGFA-MEF2 pathway, otherwise active in adult hearts and during neoangiogenesis in other adult settings. Our results therefore demonstrate a fundamental divergence between the regulation of coronary vessel growth in healthy and ischemic adult hearts. How coronary vessels develop and respond to injury is not fully understood. Here, the authors use murine enhancer:reporter models to identify three transcriptional pathways active in different parts of coronary vasculature. These also contribute to neovascularization in the injured neonatal, but not adult, heart.
Collapse
Affiliation(s)
- Sophie Payne
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Mala Gunadasa-Rohling
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alice Neal
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andia N Redpath
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jyoti Patel
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Kira M Chouliaras
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola Smart
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Chai X, Yan J, Gao Y, Jin J. Endothelial HNF4α potentiates angiogenic dysfunction via enhancement of vascular endothelial growth factor resistance in T2DM. J Cell Biochem 2019; 120:12989-13000. [PMID: 30873661 DOI: 10.1002/jcb.28570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
Abstract
Although both hyperprocoagulant status, characterized by elevated thrombin levels, and vascular endothelial growth factor (VEGF) resistance, marked by attenuated expression of VEGFR2 (also called FLK1 or KDR), are known to contribute importantly to an increased risk of vascular events in diabetes mellitus type 2 (T2DM), it remains obscure whether these two biological events regulate angiogenic response in a coordinated manner. We show here that endothelial expression of hepatocyte nuclear factor 4α (HNF4α) was significantly upregulated in rodents and humans with T2DM, and HNF4α upregulation by thrombin was dependent on activation of multiple pathways, including protein kinase B, c-Jun N-terminal kinase, p38, oxidative stress, protein kinase C, and AMPK (5'-adenosine monophosphate (AMP)-activated protein kinase). Functionally, HNF4α inhibited VEGF-mediated endothelial proliferation and migration, and blunted VEGF-stimulated in vitro angiogenesis, thus rendering endothelial cells unresponsive to established angiogenic VEGF stimulation. Mechanistically, HNF4α potentiated the endothelial VEGF resistance through the direct transcriptional repression of FLK1 gene. From a therapeutic standpoint, overexpression of the exogenous FLK1 successfully rescued HNF4α-inhibited angiogenic response to VEGF and potentiated VEGF-stimulated in vitro tube formation. Considering a strong association between HNF4A deregulation and increased risk of T2DM, our findings suggest that HNF4α may act as a critical converging point linking hyperprocoagulant condition to VEGF resistance in diabetic ECs, and repression of FLK1 expression by thrombin-induced HNF4α mediates, at least partially, the vascular dysfunction caused by T2DM.
Collapse
Affiliation(s)
- Xubing Chai
- Department of Endocrinology, Xi'an Institute of Rheumatolog, Xi'an No. 5 Hospital, Xi'an, Shaanxi, China
| | - Jun Yan
- Department of Endocrinology, Xi'an Institute of Rheumatolog, Xi'an No. 5 Hospital, Xi'an, Shaanxi, China
| | - Yaya Gao
- Department of Endocrinology, Xi'an Institute of Rheumatolog, Xi'an No. 5 Hospital, Xi'an, Shaanxi, China
| | - Jing Jin
- Department of Geriatric, Xi'an Institute of Rheumatolog, Xi'an No. 5 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol 2019; 38:e17-e24. [PMID: 29467221 DOI: 10.1161/atvbaha.118.310223] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain-containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor-dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.
Collapse
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
23
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Chiang IKN, Fritzsche M, Pichol-Thievend C, Neal A, Holmes K, Lagendijk A, Overman J, D'Angelo D, Omini A, Hermkens D, Lesieur E, Liu K, Ratnayaka I, Corada M, Bou-Gharios G, Carroll J, Dejana E, Schulte-Merker S, Hogan B, Beltrame M, De Val S, Francois M. SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development 2017; 144:2629-2639. [PMID: 28619820 PMCID: PMC5536923 DOI: 10.1242/dev.146241] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/07/2017] [Indexed: 12/30/2022]
Abstract
Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Arteries/embryology
- Arteries/metabolism
- Arteriovenous Malformations/embryology
- Arteriovenous Malformations/genetics
- Arteriovenous Malformations/metabolism
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Human Umbilical Vein Endothelial Cells
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Pregnancy
- Receptor, Notch1/deficiency
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- SOXF Transcription Factors/deficiency
- SOXF Transcription Factors/genetics
- SOXF Transcription Factors/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Zebrafish
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Ivy Kim-Ni Chiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin Fritzsche
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Cathy Pichol-Thievend
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alice Neal
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Kelly Holmes
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Anne Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Donatella D'Angelo
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Alice Omini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Dorien Hermkens
- University of Münster, 48149 Münster, Germany Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Westfälische Wilhelms-Universität Münster (WWU), Mendelstrasse 7, 48149 Münster and CiM Cluster of Excellence, Germany
| | - Emmanuelle Lesieur
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ke Liu
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Monica Corada
- IFOM, FIRC Institute of Molecular Oncology, 1620139 Milan, Italy
| | - George Bou-Gharios
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Jason Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Elisabetta Dejana
- IFOM, FIRC Institute of Molecular Oncology, 1620139 Milan, Italy
- Department of Immunology Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Stefan Schulte-Merker
- University of Münster, 48149 Münster, Germany Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Westfälische Wilhelms-Universität Münster (WWU), Mendelstrasse 7, 48149 Münster and CiM Cluster of Excellence, Germany
| | - Benjamin Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Deep intronic mutations and human disease. Hum Genet 2017; 136:1093-1111. [DOI: 10.1007/s00439-017-1809-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
|
26
|
Zhou P, Gu F, Zhang L, Akerberg BN, Ma Q, Li K, He A, Lin Z, Stevens SM, Zhou B, Pu WT. Mapping cell type-specific transcriptional enhancers using high affinity, lineage-specific Ep300 bioChIP-seq. eLife 2017; 6:22039. [PMID: 28121289 PMCID: PMC5295818 DOI: 10.7554/elife.22039] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanisms that regulate cell type-specific transcriptional programs requires developing a lexicon of their genomic regulatory elements. We developed a lineage-selective method to map transcriptional enhancers, regulatory genomic regions that activate transcription, in mice. Since most tissue-specific enhancers are bound by the transcriptional co-activator Ep300, we used Cre-directed, lineage-specific Ep300 biotinylation and pulldown on immobilized streptavidin followed by next generation sequencing of co-precipitated DNA to identify lineage-specific enhancers. By driving this system with lineage-specific Cre transgenes, we mapped enhancers active in embryonic endothelial cells/blood or skeletal muscle. Analysis of these enhancers identified new transcription factor heterodimer motifs that likely regulate transcription in these lineages. Furthermore, we identified candidate enhancers that regulate adult heart- or lung- specific endothelial cell specialization. Our strategy for tissue-specific protein biotinylation opens new avenues for studying lineage-specific protein-DNA and protein-protein interactions.
Collapse
Affiliation(s)
- Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Lina Zhang
- Department of Biochemistry, Institute of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Kai Li
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Aibin He
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Sean M Stevens
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States
| |
Collapse
|