1
|
Baude JK, Mottaghy FM, Derlin T, Fischer A, Heinzel A, Bucerius J. PSMA - Targeted Clinical Molecular Imaging of Atherosclerosis: Correlation with Cardiovascular Risk Factors. Nuklearmedizin 2025; 64:13-21. [PMID: 39638325 DOI: 10.1055/a-2390-2829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The early diagnosis of atherosclerotic changes to prevent ischemic events represents a clinical challenge.Prostate-specific membrane antigen (PSMA) as an established diagnostic in the field of prostate cancer also appears to detect neovascularization and inflammation in other diseases. We hypothesized that it might be also suited for detection of inflammation in atherosclerosis.We analyzed data of 78 prostate cancer patients who received a PSMA ligand PET/CT for re-staging. The cardiovascular risk factors (CVRF) of each patient were documented. Target-to-background-ratios (TBR) were calculated from the individual uptake values for three different sections of thoracic aorta [ascending (AA) and descending aorta (AD), aortic arch (AoAC)]. Statistical analyses included a linear regression analysis with the PSMA ligand uptake values of the different arterial segments versus different CVRF as independent variables.The meanTBRmax was measured highest in the AoAC (1.66 ± 0.33) compared to both other vessel sections (AA: 1.46 ± 0.21, p=0.001; AD: 1.59 ± 0.41, p=0.371). There was a correlation between the PSMA ligand uptake in all measured segments of the aorta and BMI, but only a significant correlation in the ascending aorta (r=0.347, p=0.001). This was confirmed in a subgroup analysis, which showed significantly higher uptake values in preadiposity (BMI >25) and obesity (BMI >30) patients in the ascending aorta (p=0.048).PSMA ligand uptake in the ascending aorta was linked to BMI. PET detection of vascular PSMA ligand uptake may be indicative of vessel wall inflammation to some extent. However, PSMA ligands appear to be less suitable than other tracers for this purpose, given their absent correlation with most established CVRFs.
Collapse
Affiliation(s)
- Julia K Baude
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Alexander Fischer
- Philips GmbH Innovative Technologies, Research Laboratories, Aachen, Germany
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital, Martin-Luther-Universität, Halle-Wittenberg, Halle, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Bucerius
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
- Department of Nuclear Medicine, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| |
Collapse
|
2
|
Maes L, Versweyveld L, Evans NR, McCabe JJ, Kelly P, Van Laere K, Lemmens R. Novel Targets for Molecular Imaging of Inflammatory Processes of Carotid Atherosclerosis: A Systematic Review. Semin Nucl Med 2024; 54:658-673. [PMID: 37996309 DOI: 10.1053/j.semnuclmed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Computed tomography angiography (CTA), magnetic resonance angiography (MRA) and 18F-FDG-PET have proven clinical value when evaluating patients with carotid atherosclerosis. In this systematic review, we will focus on the role of novel molecular imaging tracers in that assessment and their potential strengths to stratify stroke risk. We systematically searched PubMed, Embase, the Web of Science Core Collection, and Cochrane Library for articles reporting on molecular imaging to noninvasively detect or characterize inflammation in carotid atherosclerosis. As our focus was on nonclassical novel targets, we omitted reports solely on 18F-FDG and 18F-NaF. We summarized and mapped the selected studies to provide an overview of the current clinical development in molecular imaging in relation to risk factors, imaging and histological findings, diagnostic and prognostic performance. We identified 20 articles in which the utilized tracers to visualize carotid wall inflammation were somatostatin subtype-2- (SST2-) (n = 5), CXC-motif chemokine receptor 4- (CXCR4-) (n = 3), translocator protein- (TSPO-) (n = 2) and aVβ3 integrin-ligands (n = 2) and choline-tracers (n = 2). Tracer uptake correlated with traditional cardiovascular risk factors, that is, age, gender, diabetes, hypercholesterolemia, and hypertension as well as prior cardiovascular disease. We identified discrepancies between tracer uptake and grade of stenosis, plaque calcification, and 18F-FDG uptake, suggesting the importance of alternative characterization of atherosclerosis beyond classical neuroimaging features. Immunohistochemical analysis linked tracer uptake to markers of macrophage infiltration and neovascularization. Symptomatic carotid arteries showed higher uptake compared to asymptomatic (including contralateral, nonculprit) arteries. Some studies demonstrated a potential role of these novel molecular imaging as a specific intermediary (bio)marker for outcome. Several novel tracers show promise for identification of high-risk plaque inflammation. Based on the current evidence we cautiously propose the SST2-ligands and the choline radiotracers as viable candidates for larger prospective longitudinal outcome studies to evaluate their predictive use in clinical practice.
Collapse
Affiliation(s)
- Louise Maes
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium.
| | - Louis Versweyveld
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium
| | - Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John J McCabe
- Health Research Board (HRB), Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland; School of Medicine, University College Dublin (UCD), Dublin, Ireland; Department of Geriatric Medicine, Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - Peter Kelly
- Health Research Board (HRB), Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland; School of Medicine, University College Dublin (UCD), Dublin, Ireland; Mater Misericordiae University Hospital Dublin, Stroke Service, Dublin, Ireland
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, KULeuven - University of Leuven - Nuclear Medicine and Molecular Imaging, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Kosmala A, Serfling SE, Michalski K, Lindner T, Schirbel A, Higuchi T, Hartrampf PE, Derlin T, Buck AK, Weich A, Werner RA. Molecular imaging of arterial fibroblast activation protein: association with calcified plaque burden and cardiovascular risk factors. Eur J Nucl Med Mol Imaging 2023; 50:3011-3021. [PMID: 37147478 PMCID: PMC10382401 DOI: 10.1007/s00259-023-06245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE We aimed to assess prevalence, distribution, and intensity of in-vivo arterial wall fibroblast activation protein (FAP) uptake, and its association with calcified plaque burden, cardiovascular risk factors (CVRFs), and FAP-avid tumor burden. METHODS We analyzed 69 oncologic patients who underwent [68 Ga]Ga-FAPI-04 PET/CT. Arterial wall FAP inhibitor (FAPI) uptake in major vessel segments was evaluated. We then investigated the associations of arterial wall uptake with calcified plaque burden (including number of plaques, plaque thickness, and calcification circumference), CVRFs, FAP-positive total tumor burden, and image noise (coefficient of variation, from normal liver parenchyma). RESULTS High focal arterial FAPI uptake (FAPI +) was recorded in 64/69 (92.8%) scans in 800 sites, of which 377 (47.1%) exhibited concordant vessel wall calcification. The number of FAPI + sites per patient and (FAPI +)-derived target-to-background ratio (TBR) correlated significantly with the number of calcified plaques (FAPI + number: r = 0.45, P < 0.01; TBR: r = - 0.26, P = 0.04), calcified plaque thickness (FAPI + number: r = 0.33, P < 0.01; TBR: r = - 0.29, P = 0.02), and calcification circumference (FAPI + number: r = 0.34, P < 0.01; TBR: r = - 0.26, P = 0.04). In univariate analysis, only body mass index was significantly associated with the number of FAPI + sites (OR 1.06; 95% CI, 1.02 - 1.12, P < 0.01). The numbers of FAPI + sites and FAPI + TBR, however, were not associated with other investigated CVRFs in univariate and multivariate regression analyses. Image noise, however, showed significant correlations with FAPI + TBR (r = 0.30) and the number of FAPI + sites (r = 0.28; P = 0.02, respectively). In addition, there was no significant interaction between FAP-positive tumor burden and arterial wall FAPI uptake (P ≥ 0.13). CONCLUSION [68 Ga]Ga-FAPI-04 PET identifies arterial wall lesions and is linked to marked calcification and overall calcified plaque burden, but is not consistently associated with cardiovascular risk. Apparent wall uptake may be partially explained by image noise.
Collapse
Affiliation(s)
- Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Kerstin Michalski
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Thomas Lindner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Alexander Weich
- Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence (ENETS CoE), University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence (ENETS CoE), University Hospital Würzburg, Würzburg, Germany
- The Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Derlin T, Riethdorf S, Schumacher U, Lafos M, Peine S, Coith C, Ross TL, Pantel K, Bengel FM. PSMA-heterogeneity in metastatic castration-resistant prostate cancer: Circulating tumor cells, metastatic tumor burden, and response to targeted radioligand therapy. Prostate 2023. [PMID: 37147881 DOI: 10.1002/pros.24549] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND We explored the interrelation between prostate-specific membrane antigen (PSMA) expression on circulating tumor cells (CTCs) and that of solid metastatic lesions as determined by whole-body PSMA-targeted positron emission tomography (PET) to refine the prediction of response to subsequent PSMA-targeted radioligand therapy (RLT). METHODS A prospective study was performed in 20 patients with advanced mCRPC. Of these, 16 underwent subsequent RLT with [177 Lu]Lu-PSMA-617 at a dose of 7.4 GBq every 6-8 weeks. PSMA expression on CTCs using the CellSearch system was compared to clinical and serological results, and to marker expression in targeted imaging and available histological sections of prostatectomy specimens (19% of RLT patients). Clinical outcome was obtained after two cycles of RLT. RESULTS Marked heterogeneity of PSMA expression was observed already at first diagnosis in available histological specimens. Targeted whole-body imaging also showed heterogeneous inter- and intra-patient PSMA expression between metastases. Heterogeneity of CTC PSMA expression was partially paralleled by heterogeneity of whole-body tumor burden PSMA expression. Twenty percent of CTC samples showed no PSMA expression, despite unequivocal PSMA expression of solid metastases at PET. A high fraction of PSMA-negative CTCs emerged as the sole predictor of poor RLT response (odds ratio [OR]: 0.9379 [95% confidence interval, CI, 0.8558-0.9902]; p = 0.0160), and was prognostic for both shorter progression-free survival (OR: 1.236 [95% CI, 1.035-2.587]; p = 0.0043) and overall survival (OR: 1.056 [95% CI, 1.008-1.141]; p = 0.0182). CONCLUSION This proof-of-principle study suggests that liquid biopsy for CTC PSMA expression is complementary to PET for individual PSMA phenotyping of mCRPC.
Collapse
Affiliation(s)
- Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Sabine Riethdorf
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Hamburg, Germany
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Medical School Berlin, Berlin, Germany
| | - Marcel Lafos
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | - Sven Peine
- University Medical Center Hamburg-Eppendorf, Institute of Transfusion Medicine, Hamburg, Germany
| | - Cornelia Coith
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Hamburg, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Hamburg, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Dietz M, Kamani CH, Dunet V, Fournier S, Rubimbura V, Testart Dardel N, Schaefer A, Jreige M, Boughdad S, Nicod Lalonde M, Schaefer N, Mewton N, Prior JO, Treglia G. Overview of the RGD-Based PET Agents Use in Patients With Cardiovascular Diseases: A Systematic Review. Front Med (Lausanne) 2022; 9:887508. [PMID: 35602497 PMCID: PMC9120643 DOI: 10.3389/fmed.2022.887508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 01/02/2023] Open
Abstract
Studies using arginine–glycine–aspartate (RGD)-PET agents in cardiovascular diseases have been recently published. The aim of this systematic review was to perform an updated, evidence-based summary about the role of RGD-based PET agents in patients with cardiovascular diseases to better address future research in this setting. Original articles within the field of interest reporting the role of RGD-based PET agents in patients with cardiovascular diseases were eligible for inclusion in this systematic review. A systematic literature search of PubMed/MEDLINE and Cochrane library databases was performed until October 26, 2021. Literature shows an increasing role of RGD-based PET agents in patients with cardiovascular diseases. Overall, two main topics emerged: the infarcted myocardium and atherosclerosis. The existing studies support that αvβ3 integrin expression in the infarcted myocardium is well evident in RGD PET/CT scans. RGD-based PET radiotracers accumulate at the site of infarction as early as 3 days and seem to be peaking at 1–3 weeks post myocardial infarction before decreasing, but only 1 study assessed serial changes of myocardial RGD-based PET uptake after ischemic events. RGD-based PET uptake in large vessels showed correlation with CT plaque burden, and increased signal was found in patients with prior cardiovascular events. In human atherosclerotic carotid plaques, increased PET signal was observed in stenotic compared with non-stenotic areas based on MR or CT angiography data. Histopathological analysis found a co-localization between tracer accumulation and areas of αvβ3 expression. Promising applications using RGD-based PET agents are emerging, such as prediction of remodeling processes in the infarcted myocardium or detection of active atherosclerosis, with potentially significant clinical impact.
Collapse
Affiliation(s)
- Matthieu Dietz
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- INSERM U1060, CarMeN Laboratory, University of Lyon, Lyon, France
| | - Christel H. Kamani
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- Cardiology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Stephane Fournier
- Cardiology Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Vladimir Rubimbura
- Cardiology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Nathalie Testart Dardel
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Ana Schaefer
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Mario Jreige
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sarah Boughdad
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Marie Nicod Lalonde
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Niklaus Schaefer
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Nathan Mewton
- INSERM U1060, CarMeN Laboratory, University of Lyon, Lyon, France
- Cardiovascular Hospital Louis Pradel, Department of Heart Failure, Hospices Civils de Lyon, Lyon, France
- Clinical Investigation Center Inserm 1407, Lyon, France
| | - John O. Prior
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
- *Correspondence: John O. Prior
| | - Giorgio Treglia
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
6
|
Werner RA, Derlin T, Bengel FM. Personalized prediction of mode of cardiac death in heart failure using supervised machine learning in the context of cardiac innervation imaging. J Nucl Cardiol 2022; 29:202-203. [PMID: 32557155 PMCID: PMC8873136 DOI: 10.1007/s12350-020-02215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 10/26/2022]
Affiliation(s)
- Rudolf A Werner
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany.
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Abstract
An 81-year-old man with prostate adenocarcinoma (Gleason 4 + 3 = 7) treated with brachytherapy and intermittent androgen deprivation therapy was referred for serial Ga-prostate-specific membrane antigen (PSMA-HBED-CC) PET/CT scans for rising prostate-specific antigen. Findings were suggestive of local prostatic recurrence and nodal metastases. An incidental PSMA-avid focus was noted in the anterior wall of an infrarenal aortic aneurysm, with a contrast-enhanced hyperdense region surrounded by a semilunar hypodense region anteriorly, consistent with enlarging dissecting thrombus. Increased PSMA avidity in atherosclerotic hypertensive lesions may relate to active plaque instability, indicating a need for further evaluation.
Collapse
|
8
|
Vigne J, Hyafil F. Inflammation imaging to define vulnerable plaque or vulnerable patient. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2020; 64:21-34. [PMID: 32077668 DOI: 10.23736/s1824-4785.20.03231-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The role of nuclear imaging in the characterization of high-risk atherosclerotic plaque is increasing thanks to its high sensitivity to detect radiopharmaceuticals signal in tissues. Currently, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most studied and widely used radiopharmaceutical for the molecular imaging of atherosclerotic plaques with positron emission tomography (PET). [18F]FDG PET is a valuable tool to non-invasively detect, monitor and quantify inflammatory processes occurring in atherosclerotic plaques. The aim of this review is to gather insights provided by [18F]FDG PET to better understand the role of inflammation in the definitions of the vulnerable plaque and the vulnerable patient. Alternatives radiopharmaceuticals targeting inflammation and other potential high-risk plaque related processed are also discussed.
Collapse
Affiliation(s)
- Jonathan Vigne
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie University (UNICAEN), Caen, France -
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University of Paris, Paris, France -
- Department of Pharmacy, CHU de Caen Normandie, Normandie University (UNICAEN), Caen, France -
| | - Fabien Hyafil
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University of Paris, Paris, France
- Department of Nuclear Medicine, Bichat University Hospital, Paris, France
| |
Collapse
|
9
|
Kircher M, Tran-Gia J, Kemmer L, Zhang X, Schirbel A, Werner RA, Buck AK, Wester HJ, Hacker M, Lapa C, Li X. Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: Correlation with 18F-FDG PET/CT. J Nucl Med 2019; 61:751-756. [PMID: 31653710 DOI: 10.2967/jnumed.119.234484] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) is expressed on the surface of various cell types involved in atherosclerosis, with a particularly rich receptor expression on macrophages and T cells. First pilot studies with 68Ga-pentixafor, a novel CXCR4-directed PET tracer, have shown promise to noninvasively image inflammation within atherosclerotic plaques. The aim of this retrospective study was to investigate the performance of 68Ga-pentixafor PET/CT for imaging atherosclerosis in comparison to 18F-FDG PET/CT. Methods: Ninety-two patients (37 women and 55 men; mean age, 62 ± 10 y) underwent 68Ga-pentixafor and 18F-FDG PET/CT for staging of oncologic diseases. In these subjects, lesions in the walls of large arteries were identified using morphologic and PET criteria for atherosclerosis (n = 652). Tracer uptake was measured and adjusted for vascular lumen (background) signal by calculation of target-to-background ratios (TBRs) by 2 investigators masked to the other PET scan. On a lesion-to-lesion and patient basis, the TBRs of both PET tracers were compared and additionally correlated to the degree of arterial calcification as quantified in CT. Results: On a lesion-to-lesion basis, 68Ga-pentixafor and 18F-FDG uptake showed a weak correlation (r = 0.28; P < 0.01). 68Ga-pentixafor PET identified more lesions (n = 290; TBR ≥ 1.6, P < 0.01) and demonstrated higher uptake than 18F-FDG PET (1.8 ± 0.5 vs. 1.4 ± 0.4; P < 0.01). The degree of plaque calcification correlated negatively with both 68Ga-pentixafor and 18F-FDG uptake (r = -0.38 vs. -0.31, both P < 0.00001). Conclusion: CXCR4-directed imaging of the arterial wall with 68Ga-pentixafor PET/CT identified more lesions than 18F-FDG PET/CT, with only a weak correlation between tracers. Further studies to elucidate the underlying biologic mechanisms and sources of CXCR4 positivity, and to investigate the clinical utility of chemokine receptor-directed imaging of atherosclerosis, are highly warranted.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Luisa Kemmer
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany; and
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Xiang Li
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Backhaus P, Noto B, Avramovic N, Grubert LS, Huss S, Bögemann M, Stegger L, Weckesser M, Schäfers M, Rahbar K. Targeting PSMA by radioligands in non-prostate disease—current status and future perspectives. Eur J Nucl Med Mol Imaging 2018; 45:860-877. [DOI: 10.1007/s00259-017-3922-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/25/2017] [Indexed: 12/11/2022]
|
11
|
Malik D, Sood A, Mittal BR, Singh H, Basher RK, Shukla J, Bhattacharya A, Singh SK. Nonspecific Uptake of 68Ga-Prostate-Specific Membrane Antigen in Diseases other than Prostate Malignancy on Positron Emission Tomography/Computed Tomography Imaging: A Pictorial Assay and Review of Literature. Indian J Nucl Med 2018; 33:317-325. [PMID: 30386054 PMCID: PMC6194764 DOI: 10.4103/ijnm.ijnm_81_18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
68Ga-labeled prostate-specific membrane antigen (PSMA) ligand positron emission tomography/computed tomography imaging (PET/CT) is a rapidly evolving imaging modality for prostate cancer. Many studies have proved its superiority in staging, restaging, and detecting the recurrent prostate cancer. However, case reports describing the incidental tracer uptake in benign and nonprostatic malignancies are also reported in the literature, thus questioning the specificity of the tracer. This pictorial assay illustrates the nonspecific tracer uptake encountered during PSMA PET/CT imaging, knowledge of which can increase the confidence of interpreting physicians and may also open a new path for peptide receptor radionuclide therapy in nonprostatic malignancies.
Collapse
Affiliation(s)
- Dharmender Malik
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Apurva Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harmandeep Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajender Kumar Basher
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaya Shukla
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anish Bhattacharya
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shrawan Kumar Singh
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Zupančič E, Fayad ZA, Mulder WJM. Cardiovascular Immunotherapy and the Role of Imaging. Arterioscler Thromb Vasc Biol 2017; 37:e167-e171. [PMID: 29070539 PMCID: PMC5743324 DOI: 10.1161/atvbaha.117.309227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Eva Zupančič
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (E.Z., Z.A.F., W.J.M.M.); and Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Zahi A Fayad
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (E.Z., Z.A.F., W.J.M.M.); and Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Willem J M Mulder
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (E.Z., Z.A.F., W.J.M.M.); and Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.).
| |
Collapse
|
13
|
Potential of α7 nicotinic acetylcholine receptor PET imaging in atherosclerosis. Methods 2017; 130:90-104. [PMID: 28602809 DOI: 10.1016/j.ymeth.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic events are usually acute and often strike otherwise asymptomatic patients. Although multiple clinical risk factors have been associated with atherosclerosis, as of yet no further individual prediction can be made as to who will suffer from its consequences based on biomarker analysis or traditional imaging methods like CT, MRI or angiography. Previously, non-invasive imaging with 18F-fluorodeoxyglucose (18F-FDG) PET was shown to potentially fill this niche as it offers high sensitive detection of metabolic processes associated with inflammatory changes in atherosclerotic plaques. However, 18F-FDG PET imaging of arterial vessels suffers from non-specificity and has still to be proven to reliably identify vulnerable plaques, carrying a high risk of rupture. Therefore, it may be regarded only as a secondary marker for monitoring treatment effects and it does not offer alternative treatment options or direct insight in treatment mechanisms. In this review, an overview is given of the current status and the potential of PET imaging of inflammation and angiogenesis in atherosclerosis in general and special emphasis is given to imaging of α7 nicotinic acetylcholine receptors (α7 nAChRs). Due to the gaps that still exist in our understanding of atherogenesis and the limitations of the available PET tracers, the search continues for a more specific radioligand, able to differentiate between stable atherosclerosis and plaques prone to rupture. The potential role of the α7 nAChR as imaging marker for plaque vulnerability is explored. Today, strong evidence exists that nAChRs are involved in the atherosclerotic disease process. They are suggested to mediate the deleterious effects of the major tobacco component, nicotine, a nAChR agonist. Mainly based on in vitro data, α7 nAChR stimulation might increase plaque burden via increased neovascularization. However, in animal studies, α7 nAChR manipulation appears to reduce plaque size due to its inhibitory effects on inflammatory cells. Thus, reliable identification of α7 nAChRs by in vivo imaging is crucial to investigate the exact role of α7 nAChR in atherosclerosis before any therapeutic approach in the human setting can be justified. In this review, we discuss the first experience with α7 nAChR PET tracers and developmental considerations regarding the "optimal" PET tracer to image vascular nAChRs.
Collapse
|