1
|
Zhang X, Pu L, Pu C, He Q. Associations and mediators between vitiligo and cardiovascular diseases: a Mendelian randomization study. Sci Rep 2025; 15:11110. [PMID: 40169829 PMCID: PMC11961564 DOI: 10.1038/s41598-025-95638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Previous studies yielded conflicting results on the associations between vitiligo and cardiovascular diseases (CVD), and its underlying mechanisms remain unclear. This MR study aims to elucidate the underlying causal association between vitiligo and the risk of CVD, as well as the potential mediator. Using summary statistics from genome-wide association study (GWAS), we conducted a bidirectional two-sample Mendelian randomization (MR) analysis and mediation analysis to investigate the causal association between vitiligo and 13 CVD outcomes and potential mediators. The IVW method was the main MR analysis method, supplemented by MR-Egger, weighted median, and weighted mode methods. Multiple sensitivity analyses were applied to enhance the robustness of the results. Bioinformatics analysis involved Protein-Protein Interaction (PPI) network, Gene Ontology (GO) and GeneMANIA functional analysis analysis. MR analysis indicated that genetically predicted vitiligo was significantly associated with higher risk of coronary heart disease (CHD) (OR = 1.0199, 95% CI = 1.0024-1.0377, p = 0.026). There was no significant causal association between vitiligo and 12 other cardiovascular diseases. And reverse MR analysis found no causal effect of CVD on vitiligo. CCL11 was identified to partially mediate the association between vitiligo and CHD. GO and GeneMANIA suggested that CCL11 may mediate the association between vitiligo and CHD through chemokine-related functions and pathways. Our study revealed the potential causal association between vitiligo and CHD, with CCL11 as a potential mediator. Further studies are necessitated to elucidate the exact association and the mechanisms.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Lei Pu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Cheng Pu
- School of Martial Arts, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Qian He
- Preventive Medicine Department, Suzhou Wujiang District Second People's Hospital, 999 DaChun Road, Suzhou, 215221, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Tanaka T, Sasaki N, Krisnanda A, Shinohara M, Amin HZ, Horibe S, Ito K, Iwaya M, Fukunaga A, Hirata K, Rikitake Y. Novel UV-B Phototherapy With a Light-Emitting Diode Device Prevents Atherosclerosis by Augmenting Regulatory T-Cell Responses in Mice. J Am Heart Assoc 2024; 13:e031639. [PMID: 38214259 PMCID: PMC10926836 DOI: 10.1161/jaha.123.031639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Ultraviolet B (UV-B) irradiation is an effective treatment for human cutaneous disorders and was shown to reduce experimental atherosclerosis by attenuating immunoinflammatory responses. The aim of this study was to clarify the effect of specific wavelengths of UV-B on atherosclerosis and the underlying mechanisms focusing on immunoinflammatory responses. METHODS AND RESULTS Based on light-emitting diode technology, we developed novel devices that can emit 282 nm UV-B, which we do not receive from natural sunlight, 301 nm UV-B, and clinically available 312 nm UV-B. We irradiated 6-week-old male atherosclerosis-prone Apoe-/- (apolipoprotein E-deficient) mice with specific wavelengths of UV-B and evaluated atherosclerosis and immunoinflammatory responses by performing histological analysis, flow cytometry, biochemical assays, and liquid chromatography/mass spectrometry-based lipidomics. Irradiation of 282 nm UV-B but not 301 or 312 nm UV-B significantly reduced the development of aortic root atherosclerotic plaques and plaque inflammation. This atheroprotection was associated with specifically augmented immune responses of anti-inflammatory CD4+ Foxp3 (forkhead box P3)+ regulatory T cells in lymphoid tissues, whereas responses of other immune cells were not substantially affected. Analysis of various lipid mediators revealed that 282 nm UV-B markedly increased the ratio of proresolving to proinflammatory lipid mediators in the skin. CONCLUSIONS We demonstrated that 282 nm UV-B irradiation effectively reduces aortic inflammation and the development of atherosclerosis by systemically augmenting regulatory T-cell responses and modulating the balance between proresolving and proinflammatory lipid mediators in the skin. Our findings indicate that a novel 282 nm UV-B phototherapy could be an attractive approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Toru Tanaka
- Laboratory of Medical PharmaceuticsKobe Pharmaceutical UniversityKobeJapan
| | - Naoto Sasaki
- Laboratory of Medical PharmaceuticsKobe Pharmaceutical UniversityKobeJapan
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Aga Krisnanda
- Laboratory of Medical PharmaceuticsKobe Pharmaceutical UniversityKobeJapan
| | - Masakazu Shinohara
- Division of Molecular EpidemiologyKobe University Graduate School of MedicineKobeJapan
- The Integrated Center for Mass SpectrometryKobe University Graduate School of MedicineKobeJapan
| | - Hilman Zulkifli Amin
- Laboratory of Medical PharmaceuticsKobe Pharmaceutical UniversityKobeJapan
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular CenterOsakaJapan
- Faculty of MedicineUniversitas IndonesiaJakartaIndonesia
| | - Sayo Horibe
- Laboratory of Medical PharmaceuticsKobe Pharmaceutical UniversityKobeJapan
| | - Ken Ito
- Laboratory of Medical PharmaceuticsKobe Pharmaceutical UniversityKobeJapan
| | - Motoaki Iwaya
- Department of Materials Science and EngineeringMeijo UniversityNagoyaJapan
| | - Atsushi Fukunaga
- Department of Dermatology, Division of Medicine for Function and Morphology of Sensory Organs, Faculty of MedicineOsaka Medical and Pharmaceutical University, TakatsukiOsakaJapan
| | - Ken‐ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yoshiyuki Rikitake
- Laboratory of Medical PharmaceuticsKobe Pharmaceutical UniversityKobeJapan
| |
Collapse
|
4
|
Ju HJ, Kang H, Han JH, Lee JH, Lee S, Bae JM. All-Cause and Cause-Specific Mortality among Patients with Vitiligo: A Nationwide Population-Based Study in Korea. J Invest Dermatol 2024; 144:125-132.e3. [PMID: 37517513 DOI: 10.1016/j.jid.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Vitiligo is a common autoimmune skin disorder; however, there is limited information about risks of mortality among patients with vitiligo. Therefore, we aimed to investigate the mortality in patients with vitiligo. A population-based cohort study was conducted using the data linkage of the National Health Insurance Service database and the National Death Registry. Patients with incident vitiligo were matched with sociodemographic factors-matched controls without vitiligo in a 1:5 ratio. All-cause and cause-specific mortalities were compared between patients with vitiligo and controls. In total, 107,424 patients with incident vitiligo and 537,120 matched controls were included. The mortality rates were 34.8 and 45.3 per 10,000 person-years in patients and controls, respectively. Patients with vitiligo showed a significantly lower risk of mortality (adjusted hazard ratio = 0.75, 95% confidence interval = 0.72-0.78). The cause-specific mortality from infectious diseases, oncologic diseases, hematologic diseases, endocrine diseases, neurologic diseases, cardiovascular diseases, respiratory diseases, and renal/urogenital disease was significantly lower in patients with vitiligo. Patients with vitiligo were associated with a lower risk of mortality, suggesting that vitiligo-associated autoimmunity might contribute to reduced morbidity and mortality.
Collapse
Affiliation(s)
- Hyun Jeong Ju
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Kang
- Department of Dermatology, College of Medicine, Yonsei University, Wonju, Korea
| | - Ju Hee Han
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hae Lee
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Solam Lee
- Department of Dermatology, College of Medicine, Yonsei University, Wonju, Korea
| | - Jung Min Bae
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
5
|
Quan QL, Yoon KN, Lee JS, Kim EJ, Lee DH. Impact of ultraviolet radiation on cardiovascular and metabolic disorders: The role of nitric oxide and vitamin D. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:573-581. [PMID: 37731181 DOI: 10.1111/phpp.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND/PURPOSE Ultraviolet (UV) radiation has both harmful and beneficial effects on human skin and health. It causes skin damage, aging, and cancer; however, it is also a primary source of vitamin D. Additionally, UV radiation can impact energy metabolism and has protective effects on several cardiovascular and metabolic disorders in mice and humans. However, the mechanisms of UV protection against these diseases have not been clearly identified. METHODS This review summarizes the systemic effects of UV radiation on hypertension and several metabolic diseases such as obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) in mice, and we also consider the mechanisms of action of the related regulators nitric oxide (NO) and vitamin D. RESULTS UV exposure can lower blood pressure and prevent the development of cardiovascular diseases and metabolic disorders, such as metabolic syndrome, obesity, and type 2 diabetes, primarily through mechanisms that depend on UV-induced NO. UV radiation may also effectively delay the onset of type 1 diabetes through mechanisms that rely on UV-induced vitamin D. UV-induced NO and vitamin D play roles in preventing and slowing the progression of NAFLD. CONCLUSION UV exposure is a promising nonpharmacological intervention for cardiovascular and metabolic disorders. NO and vitamin D may play a crucial role in mediating these effects. However, further investigations are required to elucidate the exact mechanisms and determine the optimal dosage and exposure duration of UV radiation.
Collapse
Affiliation(s)
- Qing-Ling Quan
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Kyeong-No Yoon
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Ji Su Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Li XY, Qin T, Zhang PF, Yan WJ, Lei LL, Kuang JY, Li HD, Zhang WC, Lu XT, Sun YY. Weak UVB Irradiation Promotes Macrophage M2 Polarization and Stabilizes Atherosclerosis. J Cardiovasc Transl Res 2022; 15:855-864. [PMID: 34811697 PMCID: PMC9622510 DOI: 10.1007/s12265-021-10189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022]
Abstract
Atherosclerosis (AS) is a chronic cardiovascular disease endangering human health and is one of the most common causes of myocardial infarction and stroke. Macrophage polarization plays a vital role in regulating plaque stability. As an important component of sunlight, ultraviolet B (UVB) has been proven to promote vitamin D and nitric oxide synthesis. This research used an AS model in ApoE-/- mice to study the effects of UVB on macrophage polarization and atherosclerotic plaque stability. In vitro, UVB irradiation increased arginase-I (Arg-I, M2 macrophage) and macrophage mannose receptor (CD206) expression, while the expression of inducible nitric oxide synthase (iNOS) (M1 macrophage) and CD86 was decreased. UVB promoted Akt phosphorylation in vitro. In vivo, UVB irradiation promoted the stabilization of atherosclerotic lesion plaques, while the phenotype of M2 macrophages increased. Our research provides new evidence for UVB in preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Xin-Yun Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Qin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Emergency Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng-Fei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Jiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling-Li Lei
- Grade 2018, School of Basic Medical Sciences, Clinical Medicine (5+3), Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiang-Ying Kuang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao-Dong Li
- Grade 2018, School of Basic Medical Sciences, Clinical Medicine (5+3), Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ting Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan-Yuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
7
|
Kasahara K, Sasaki N, Amin HZ, Tanaka T, Horibe S, Yamashita T, Hirata KI, Rikitake Y. Depletion of Foxp3 + regulatory T cells augments CD4 + T cell immune responses in atherosclerosis-prone hypercholesterolemic mice. Heliyon 2022; 8:e09981. [PMID: 35898604 PMCID: PMC9309665 DOI: 10.1016/j.heliyon.2022.e09981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022] Open
Abstract
Compelling evidence suggests a crucial role for Foxp3+ regulatory T cells (Tregs) in the control of atherosclerosis. Although suppression of pro-inflammatory CD4+ T cell immune responses is supposed to be important for athero-protective action of Foxp3+ Tregs, few studies have provided direct evidence for this protective mechanism. We investigated the impact of Foxp3+ Treg depletion on CD4+ T cell immune responses and the development of atherosclerosis under hypercholesterolemia. We employed DEREG (depletion of regulatory T cells) mice on an atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr -/-) background, which carry a diphtheria toxin (DT) receptor under the control of the foxp3 gene locus. In these mice, DT injection led to efficient depletion of Foxp3+ Tregs in spleen, lymph nodes and aorta. Depletion of Foxp3+ Tregs augmented CD4+ effector T cell immune responses and aggravated atherosclerosis without affecting plasma lipid profile. Notably, the proportion of pro-inflammatory IFN-γ-producing T cells were increased in spleen and aorta following Foxp3+ Treg depletion, implying that Foxp3+ Tregs efficiently regulate systemic and aortic T cell-mediated inflammatory responses under hypercholesterolemia. Unexpectedly, Foxp3+ Treg depletion resulted in an increase in anti-inflammatory IL-10-producing T cells, which was not sufficient to suppress the augmented proinflammatory T cell immune responses caused by reduced numbers of Foxp3+ Tregs. Our data indicate that Foxp3+ Tregs suppress pro-inflammatory CD4+ T cell immune responses to control atherosclerosis under hypercholesterolemia.
Collapse
Affiliation(s)
- Kazuyuki Kasahara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Naoto Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.,Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Hilman Zulkifli Amin
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Sayo Horibe
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
8
|
Tanaka T, Sasaki N, Rikitake Y. Recent Advances on the Role and Therapeutic Potential of Regulatory T Cells in Atherosclerosis. J Clin Med 2021; 10:5907. [PMID: 34945203 PMCID: PMC8707380 DOI: 10.3390/jcm10245907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerotic diseases, including ischemic heart disease and stroke, are a main cause of mortality worldwide. Chronic vascular inflammation via immune dysregulation is critically involved in the pathogenesis of atherosclerosis. Accumulating evidence suggests that regulatory T cells (Tregs), responsible for maintaining immunological tolerance and suppressing excessive immune responses, play an important role in preventing the development and progression of atherosclerosis through the regulation of pathogenic immunoinflammatory responses. Several strategies to prevent and treat atherosclerosis through the promotion of regulatory immune responses have been developed, and could be clinically applied for the treatment of atherosclerotic cardiovascular disease. In this review, we summarize recent advances in our understanding of the protective role of Tregs in atherosclerosis and discuss attractive approaches to treat atherosclerotic disease by augmenting regulatory immune responses.
Collapse
Affiliation(s)
- Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan; (T.T.); (Y.R.)
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan; (T.T.); (Y.R.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 658-8558, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan; (T.T.); (Y.R.)
| |
Collapse
|
9
|
Zhou X, Qiao J, Zhao Y, Han K, Xia Z. Multi-responsive deep-ultraviolet emission in praseodymium-doped phosphors for microbial sterilization. SCIENCE CHINA MATERIALS 2021; 65:1103-1111. [PMID: 34692172 PMCID: PMC8527286 DOI: 10.1007/s40843-021-1790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 05/27/2023]
Abstract
Perusing multimode luminescent materials capable of being activated by diverse excitation sources and realizing multi-responsive emission in a single system remains a challenge. Herein, we utilize a heterovalent substituting strategy to realize multimode deep-ultraviolet (UV) emission in the defect-rich host Li2CaGeO4 (LCGO). Specifically, the Pr3+ substitution in LCGO is beneficial to activating defect site reconstruction including the generation of cation defects and the decrease of oxygen vacancies. Regulation of different traps in LCGO:Pr3+ presents persistent luminescence and photo-stimulated luminescence in a synergetic fashion. Moreover, the up-conversion luminescence appears with the aid of the 4f discrete energy levels of Pr3+ ions, wherein incident visible light is partially converted into germicidal deep-UV radiation. The multi-responsive character enables LCGO:Pr3+ to response to convenient light sources including X-ray tube, standard UV lamps, blue and near-infrared lasers. Thus, a dual-mode optical conversion strategy for inactivating bacteria is fabricated, and this multi-responsive deep-UV emitter offers new insights into developing UV light sources for sterilization applications. Heterovalent substituting in trap-mediated host lattice also provides a methodological basis for the construction of multi-mode luminescent materials.
Collapse
Affiliation(s)
- Xinquan Zhou
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 China
| | - Jianwei Qiao
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 China
| | - Yifei Zhao
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 China
| | - Kai Han
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 China
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 China
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641 China
| |
Collapse
|
10
|
Moattari CR, Granstein RD. Neuropeptides and neurohormones in immune, inflammatory and cellular responses to ultraviolet radiation. Acta Physiol (Oxf) 2021; 232:e13644. [PMID: 33724698 DOI: 10.1111/apha.13644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Humans are exposed to varying amounts of ultraviolet radiation (UVR) through sunlight. UVR penetrates into human skin leading to release of neuropeptides, neurotransmitters and neuroendocrine hormones. These messengers released from local sensory nerves, keratinocytes, Langerhans cells (LCs), mast cells, melanocytes and endothelial cells (ECs) modulate local and systemic immune responses, mediate inflammation and promote differing cell biologic effects. In this review, we will focus on both animal and human studies that elucidate the roles of calcitonin gene-related peptide (CGRP), substance P (SP), nerve growth factor (NGF), nitric oxide and proopiomelanocortin (POMC) derivatives in mediating immune and inflammatory effects of exposure to UVR as well as other cell biologic effects of UVR exposure.
Collapse
|
11
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Azhagesan A, Paulraj VD, Jothimani M, Yesudhason BV, Chellathurai Vasantha N, Ganesan M, Rajagopalan K, Venkatachalam S, Benedict J, John Samuel JK, Selvan Christyraj JRS. Exploring the effect of UV-C radiation on earthworm and understanding its genomic integrity in the context of H2AX expression. Sci Rep 2020; 10:21005. [PMID: 33273505 PMCID: PMC7713072 DOI: 10.1038/s41598-020-77719-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/17/2020] [Indexed: 01/28/2023] Open
Abstract
Maintaining genomic stability is inevitable for organism survival and it is challenged by mutagenic agents, which include ultraviolet (UV) radiation. Whenever DNA damage occurs, it is sensed by DNA-repairing proteins and thereby performing the DNA-repair mechanism. Specifically, in response to DNA damage, H2AX is a key protein involved in initiating the DNA-repair processes. In this present study, we investigate the effect of UV-C on earthworm, Perionyx excavatus and analyzed the DNA-damage response. Briefly, we expose the worms to different doses of UV-C and find that worms are highly sensitive to UV-C. As a primary response, earthworms produce coelomic fluid followed by autotomy. However, tissue inflammation followed by death is observed when we expose worm to increased doses of UV-C. In particular, UV-C promotes damages in skin layers and on the contrary, it mediates the chloragogen and epithelial outgrowth in intestinal tissues. Furthermore, UV-C promotes DNA damages followed by upregulation of H2AX on dose-dependent manner. Our finding confirms DNA damage caused by UV-C is directly proportional to the expression of H2AX. In short, we conclude that H2AX is present in the invertebrate earthworm, which plays an evolutionarily conserved role in DNA damage event as like that in higher animals.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Jackson Durairaj Selvan Christyraj
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Ananthaselvam Azhagesan
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India ,grid.412813.d0000 0001 0687 4946Present Address: Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| | - Vennila Devi Paulraj
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Muralidharan Jothimani
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India ,grid.411312.40000 0001 0363 9238Present Address: Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, 630004 Tamilnadu India
| | - Beryl Vedha Yesudhason
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Niranjan Chellathurai Vasantha
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Mijithra Ganesan
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Kamarajan Rajagopalan
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Saravanakumar Venkatachalam
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Johnson Benedict
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Jemima Kamalapriya John Samuel
- grid.252262.30000 0001 0613 6919Department of Biotechnology, Anna University of Technology, Tiruchirappalli, 620024 Tamilnadu India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| |
Collapse
|
12
|
Bae JM, Kim YS, Choo EH, Kim MY, Lee JY, Kim HO, Park YM. Both cardiovascular and cerebrovascular events are decreased following long-term narrowband ultraviolet B phototherapy in patients with vitiligo: a propensity score matching analysis. J Eur Acad Dermatol Venereol 2020; 35:222-229. [PMID: 32702138 DOI: 10.1111/jdv.16830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Systemic effects of long-term narrowband ultraviolet B (NB-UVB) phototherapy have not been well studied in vitiligo patients. An 11-year nationwide population-based retrospective cohort study was conducted using the Korean National Health Insurance claims database (2007-2017). OBJECTIVES To investigate the effects of long-term NB-UVB phototherapy on the risk of cardiovascular and cerebrovascular events in vitiligo patients. METHODS This study included vitiligo patients with ≥100 phototherapy sessions (phototherapy group, n = 3229) and <3 phototherapy sessions (no phototherapy group, n = 9687), in which covariables with age, sex, insurance type and comorbidities such as diabetes, hypertension and hyperlipidemia were matched by 1 : 3 propensity score matching. The outcomes of interest were cardiovascular (ischaemic heart disease and myocardial infarction) and cerebrovascular events (cerebrovascular infraction and haemorrhage). Cox proportional hazards models were used to assess the associations between NB-UVB phototherapy and each event. RESULTS The risk of cardiovascular or cerebrovascular events was significantly decreased in the phototherapy group compared with the no phototherapy group [hazard ratio (HR) 0.637, 95% confidence interval (CI) 0.523-0.776]. Subgroup analysis revealed that the risk of cardiovascular (HR: 0.682, 95% CI: 0.495-0.940) and cerebrovascular events (HR: 0.601, 95% CI: 0.470-0.769) were significantly lower in the phototherapy group than the no phototherapy group, respectively. CONCLUSIONS Our findings suggest that long-term NB-UVB phototherapy could decrease the risk of cardiovascular and cerebrovascular events in patients with vitiligo.
Collapse
Affiliation(s)
- J M Bae
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Y-S Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - E H Choo
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - M-Y Kim
- CNP Skin Clinic, Seoul, Korea
| | - J Y Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - H-O Kim
- Line Dermatology Clinic, Seoul, Korea
| | - Y M Park
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
13
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
14
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
15
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
16
|
Palasubramaniam J, Wang X, Peter K. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:e176-e185. [PMID: 31339782 DOI: 10.1161/atvbaha.119.312578] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jathushan Palasubramaniam
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| | - Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| |
Collapse
|
17
|
Ferguson AL, Kok LF, Luong JK, Van Den Bergh M, Bell-Anderson KS, Fazakerley DJ, Byrne SN. Exposure to solar ultraviolet radiation limits diet-induced weight gain, increases liver triglycerides and prevents the early signs of cardiovascular disease in mice. Nutr Metab Cardiovasc Dis 2019; 29:633-638. [PMID: 30956026 DOI: 10.1016/j.numecd.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND AND AIMS Sunlight exposure is associated with a number of health benefits including protecting us from autoimmunity, cardiovascular disease, obesity and diabetes. Animal studies have confirmed that ultraviolet (UV)-B radiation, independently of vitamin D, can limit diet-induced obesity, metabolic syndrome and atherosclerosis. The aim of this study is to investigate whether exposure to the UV radiation contained in sunlight impacts on these disease parameters. METHODS AND RESULTS We have trialled an intervention with solar UV in obese and atherosclerosis-prone mice. We have discovered that solar-simulated UV can significantly limit diet-induced obesity and reduce atheroma development in mice fed a diet high in sugar and fat. The optimal regime for this benefit was exposure once a week to solar UV equivalent to approximately 30 min of summer sun. Exposure to this optimal dose of solar UV also led to a significant increase in liver triglycerides which may protect the liver from damage. CONCLUSION Our results show that the UV contained in sunlight has the potential to prevent and treat chronic disease at sites distant from irradiated skin. A major health challenge going forward will be to harness the power of the sun safely, without risking an increase in skin cancers.
Collapse
Affiliation(s)
- A L Ferguson
- The University of Sydney, Discipline of Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia; The University of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia; The Centenary Institute, Camperdown, New South Wales, Australia
| | - L F Kok
- The University of Sydney, Discipline of Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - J K Luong
- The University of Sydney, Discipline of Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia; The University of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia
| | - M Van Den Bergh
- The University of Sydney, Discipline of Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia; The University of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia
| | - K S Bell-Anderson
- The University of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - D J Fazakerley
- The University of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - S N Byrne
- The University of Sydney, Discipline of Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia; The University of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia; Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, New South Wales, Australia.
| |
Collapse
|
18
|
Amin HZ, Sasaki N, Yamashita T, Mizoguchi T, Hayashi T, Emoto T, Matsumoto T, Yoshida N, Tabata T, Horibe S, Kawauchi S, Rikitake Y, Hirata KI. CTLA-4 Protects against Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice. Sci Rep 2019; 9:8065. [PMID: 31147569 PMCID: PMC6542846 DOI: 10.1038/s41598-019-44523-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
Vascular inflammation via T-cell-mediated immune responses has been shown to be critically involved in the pathogenesis of abdominal aortic aneurysm (AAA). T-cell coinhibitory molecule cytotoxic T-lymphocyte–associated antigen-4 (CTLA-4) is known to act as a potent negative regulator of immune responses. However, the role of this molecule in the development of AAA remains completely unknown. We determined the effects of CTLA-4 overexpression on experimental AAA. We continuously infused CTLA-4 transgenic (CTLA-4-Tg)/apolipoprotein E–deficient (Apoe−/−) mice or control Apoe−/− mice fed a high-cholesterol diet with angiotensin II by implanting osmotic mini-pumps and evaluated the development of AAA. Ninety percent of angiotensin II-infused mice developed AAA, with 50% mortality because of aneurysm rupture. Overexpression of CTLA-4 significantly reduced the incidence (66%), mortality (26%), and diameter of AAA. These protective effects were associated with a decreased number of effector CD4+ T cells and the downregulated expression of costimulatory molecules CD80 and CD86, ligands for CTLA-4, on CD11c+ dendritic cells in lymphoid tissues. CTLA-4-Tg/Apoe−/− mice had reduced accumulation of macrophages and CD4+ T cells, leading to attenuated aortic inflammation, preserved vessel integrity, and decreased susceptibility to AAA and aortic rupture. Our findings suggest T-cell coinhibitory molecule CTLA-4 as a novel therapeutic target for AAA.
Collapse
Affiliation(s)
- Hilman Zulkifli Amin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan.,Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Naoto Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan. .,Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan.
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taiji Mizoguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Tomohiro Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuya Matsumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naofumi Yoshida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tokiko Tabata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sayo Horibe
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Shoji Kawauchi
- Education and Research Center for Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
19
|
Lucas RM, Yazar S, Young AR, Norval M, de Gruijl FR, Takizawa Y, Rhodes LE, Sinclair CA, Neale RE. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem Photobiol Sci 2019; 18:641-680. [PMID: 30810559 DOI: 10.1039/c8pp90060d] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Montreal Protocol has limited increases in the UV-B (280-315 nm) radiation reaching the Earth's surface as a result of depletion of stratospheric ozone. Nevertheless, the incidence of skin cancers continues to increase in most light-skinned populations, probably due mainly to risky sun exposure behaviour. In locations with strong sun protection programs of long duration, incidence is now reducing in younger age groups. Changes in the epidemiology of UV-induced eye diseases are less clear, due to a lack of data. Exposure to UV radiation plays a role in the development of cataracts, pterygium and possibly age-related macular degeneration; these are major causes of visual impairment world-wide. Photodermatoses and phototoxic reactions to drugs are not uncommon; management of the latter includes recognition of the risks by the prescribing physician. Exposure to UV radiation has benefits for health through the production of vitamin D in the skin and modulation of immune function. The latter has benefits for skin diseases such as psoriasis and possibly for systemic autoimmune diseases such as multiple sclerosis. The health risks of sun exposure can be mitigated through appropriate sun protection, such as clothing with both good UV-blocking characteristics and adequate skin coverage, sunglasses, shade, and sunscreen. New sunscreen preparations provide protection against a broader spectrum of solar radiation, but it is not clear that this has benefits for health. Gaps in knowledge make it difficult to derive evidence-based sun protection advice that balances the risks and benefits of sun exposure.
Collapse
Affiliation(s)
- R M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia. and Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - S Yazar
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia and MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - M Norval
- Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, Scotland, UK
| | - F R de Gruijl
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Y Takizawa
- Akita University School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - L E Rhodes
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - R E Neale
- QIMR Berghofer Institute of Medical Research, Herston, Brisbane, Australia and School of Public Health, University of Queensland, Australia
| |
Collapse
|
20
|
Hart PH, Norval M, Byrne SN, Rhodes LE. Exposure to Ultraviolet Radiation in the Modulation of Human Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:55-81. [PMID: 30125148 DOI: 10.1146/annurev-pathmechdis-012418-012809] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses primarily on the beneficial effects for human health of exposure to ultraviolet radiation (UVR). UVR stimulates anti-inflammatory and immunosuppressive pathways in skin that modulate psoriasis, atopic dermatitis, and vitiligo; suppresses cutaneous lesions of graft-versus-host disease; and regulates some infection and vaccination outcomes. While polymorphic light eruption and the cutaneous photosensitivity of systemic lupus erythematosus are triggered by UVR, polymorphic light eruption also frequently benefits from UVR-induced immunomodulation. For systemic diseases such as multiple sclerosis, type 1 diabetes, asthma, schizophrenia, autism, and cardiovascular disease, any positive consequences of UVR exposure are more speculative, but could occur through the actions of UVR-induced regulatory cells and mediators, including 1,25-dihydroxy vitamin D3, interleukin-10, and nitric oxide. Reduced UVR exposure is a risk factor for the development of several inflammatory, allergic, and autoimmune conditions, including diseases initiated in early life. This suggests that UVR-induced molecules can regulate cell maturation in developing organs.
Collapse
Affiliation(s)
- Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia 6008, Australia;
| | - Mary Norval
- University of Edinburgh Medical School, Edinburgh EH8 9AG, United Kingdom;
| | - Scott N Byrne
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia; .,Westmead Institute for Medical Research, Westmead, New South Wales 2145, Australia
| | - Lesley E Rhodes
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, and Faculty of Biology, Medicine, and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom;
| |
Collapse
|
21
|
Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin 2018; 39:1249-1258. [PMID: 29323337 DOI: 10.1038/aps.2017.140] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is an autoimmune disease caused by self- and non-self-antigens contributing to excessive activation of T and B cell immune responses. These responses further aggravate vascular infiammation and promote progression of atherosclerosis and vulnerability to plaques via releasing pro-infiammatory cytokines. Regulatory T cells (Tregs) as the major immunoregulatory cells, in particular, induce and maintain immune homeostasis and tolerance by suppressing the immune responses of various cells such as T and B cells, natural killer (NK) cells, monocytes, and dendritic cells (DCs), as well as by secreting inhibitory cytokines interleukin (IL)-10, IL-35 and transcription growth factor β (TGF-β) in both physiological and pathological states. Numerous evidence demonstrates that reduced numbers and dysfunction of Treg may be involveved in atherosclerosis pathogenesis. Increasing or restoring the numbers and improving the immunosuppressive capacity of Tregs may serve as a fundamental immunotherapy to treat atherosclerotic cardiovascular diseases. In this article, we briefiy present current knowledge of Treg subsets, summarize the relationship between Tregs and atherosclerosis development, and discuss the possibilities of regulating Tregs for prevention of atherosclerosis pathogenesis and enhancement of plaque stability. Although the exact molecular mechanisms of Treg-mediated protection against atherosclerosis remain to be elucidated, the strategies for targeting the regulation of Tregs may provide specific and significant approaches for the prevention and treatment of atherosclerotic cardiovascular diseases.
Collapse
|
22
|
Bais F, Luca RM, Bornman JF, Williamson CE, Sulzberger B, Austin AT, Wilson SR, Andrady AL, Bernhard G, McKenzie RL, Aucamp PJ, Madronich S, Neale RE, Yazar S, Young AR, de Gruijl FR, Norval M, Takizawa Y, Barnes PW, Robson TM, Robinson SA, Ballaré CL, Flint SD, Neale PJ, Hylander S, Rose KC, Wängberg SÅ, Häder DP, Worrest RC, Zepp RG, Paul ND, Cory RM, Solomon KR, Longstreth J, Pandey KK, Redhwi HH, Torikai A, Heikkilä AM. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 2018; 17:127-179. [PMID: 29404558 PMCID: PMC6155474 DOI: 10.1039/c7pp90043k] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.
Collapse
Affiliation(s)
- F. Bais
- Aristotle Univ. of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
| | - R. M. Luca
- National Centre for Epidemiology and Population Health, Australian National Univ., Canberra, Australia
| | - J. F. Bornman
- Curtin Univ., Curtin Business School, Perth, Australia
| | | | - B. Sulzberger
- Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A. T. Austin
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. R. Wilson
- School of Chemistry, Centre for Atmospheric Chemistry, Univ. of Wollongong, Wollongong, Australia
| | - A. L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State Univ., Raleigh, NC, USA
| | - G. Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA
| | | | - P. J. Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - S. Madronich
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - R. E. Neale
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia
| | - S. Yazar
- Univ. of Western Australia, Centre for Ophthalmology and Visual Science, Lions Eye Institute, Perth, Australia
| | | | - F. R. de Gruijl
- Department of Dermatology, Leiden Univ. Medical Centre, Leiden, The Netherlands
| | - M. Norval
- Univ. of Edinburgh Medical School, UK
| | - Y. Takizawa
- Akita Univ. School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - P. W. Barnes
- Department of Biological Sciences and Environment Program, Loyola Univ., New Orleans, USA
| | - T. M. Robson
- Research Programme in Organismal and Evolutionary Biology, Viikki Plant Science Centre, Univ. of Helsinki, Finland
| | - S. A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, Univ. of Wollongong, Wollongong, NSW 2522, Australia
| | - C. L. Ballaré
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. D. Flint
- Dept of Forest, Rangeland and Fire Sciences, Univ. of Idaho, Moscow, ID, USA
| | - P. J. Neale
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - S. Hylander
- Centre for Ecology and Evolution in Microbial model Systems, Linnaeus Univ., Kalmar, Sweden
| | - K. C. Rose
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - S.-Å. Wängberg
- Dept Marine Sciences, Univ. of Gothenburg, Göteborg, Sweden
| | - D.-P. Häder
- Friedrich-Alexander Univ. Erlangen-Nürnberg, Dept of Biology, Möhrendorf, Germany
| | - R. C. Worrest
- CIESIN, Columbia Univ., New Hartford, Connecticut, USA
| | - R. G. Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - N. D. Paul
- Lanter Environment Centre, Lanter Univ., LA1 4YQ, UK
| | - R. M. Cory
- Earth and Environmental Sciences, Univ. of Michigan, Ann Arbor, MI, USA
| | - K. R. Solomon
- Centre for Toxicology, School of Environmental Sciences, Univ. of Guelph, Guelph, ON, Canada
| | - J. Longstreth
- The Institute for Global Risk Research, Bethesda, MD, USA
| | - K. K. Pandey
- Institute of Wood Science and Technology, Bengaluru, India
| | - H. H. Redhwi
- Chemical Engineering Dept, King Fahd Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - A. Torikai
- Materials Life Society of Japan, Kayabacho Chuo-ku, Tokyo, Japan
| | - A. M. Heikkilä
- Finnish Meteorological Institute R&D/Climate Research, Helsinki, Finland
| |
Collapse
|
23
|
Hatakeyama M, Fukunaga A, Washio K, Taguchi K, Oda Y, Ogura K, Nishigori C. Anti-Inflammatory Role of Langerhans Cells and Apoptotic Keratinocytes in Ultraviolet-B-Induced Cutaneous Inflammation. THE JOURNAL OF IMMUNOLOGY 2017; 199:2937-2947. [PMID: 28893957 DOI: 10.4049/jimmunol.1601681] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/14/2017] [Indexed: 02/03/2023]
Abstract
UV radiation, particularly UVB, is the major risk factor for the induction of skin cancer, and it induces skin inflammation and immunosuppression. Although reports documented that Langerhans cells (LCs) play various roles in photobiology, little is known about whether they contribute to UVB-induced cutaneous inflammation. Recently, the anti-inflammatory effect of apoptotic cells was noted. This study focuses on the roles of LCs and apoptotic cells in UVB-induced cutaneous inflammation. We show that LCs are essential for resolution of UVB-induced cutaneous inflammation. Administration of quinolyl-valyl-O-methylaspartyl-[2,6-difluophenoxy]-methyl ketone, a broad-spectrum caspase inhibitor with potent antiapoptotic properties, inhibited the formation of UVB-induced apoptotic cells and aggravated UVB-induced cutaneous inflammation in wild-type mice. In contrast, exacerbation of UVB-induced cutaneous inflammation following quinolyl-valyl-O-methylaspartyl-[2,6-difluophenoxy]-methyl ketone administration was not observed in LC-depleted mice. These results suggest that the interaction between LCs and apoptotic cells is critical for resolution of UVB-induced cutaneous inflammation. Interestingly, UVB-induced apoptotic keratinocytes were increased in LC-depleted mice. In addition, we revealed that UVB-induced apoptotic keratinocytes were phagocytosed by LCs ex vivo and that prolongation of UVB-induced cutaneous inflammation following treatment with Cytochalasin D, an inhibitor of phagocytosis, was partially attenuated in LC-depleted mice. Collectively, our findings demonstrate that the interaction between LCs and apoptotic cells, possibly via LC-mediated phagocytosis of apoptotic keratinocytes, has an essential anti-inflammatory role in the resolution of UVB-induced cutaneous inflammation.
Collapse
Affiliation(s)
- Mayumi Hatakeyama
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Ken Washio
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Kumiko Taguchi
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Yoshiko Oda
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Kanako Ogura
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
24
|
Hayashi T, Sasaki N, Yamashita T, Mizoguchi T, Emoto T, Amin HZ, Yodoi K, Matsumoto T, Kasahara K, Yoshida N, Tabata T, Kitano N, Fukunaga A, Nishigori C, Rikitake Y, Hirata KI. Ultraviolet B Exposure Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice by Expanding CD4 +Foxp3 + Regulatory T Cells. J Am Heart Assoc 2017; 6:JAHA.117.007024. [PMID: 28860231 PMCID: PMC5634315 DOI: 10.1161/jaha.117.007024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Pathogenic immune responses are known to play an important role in abdominal aortic aneurysm (AAA) development. Ultraviolet B (UVB) irradiation has been demonstrated to have therapeutic potential not only for cutaneous diseases but also for systemic inflammatory diseases in mice by suppressing immunoinflammatory responses. We investigated the effect of UVB irradiation on experimental AAA. Methods and Results We used an angiotensin II–induced AAA model in apolipoprotein E–deficient mice fed a high‐cholesterol diet. Mice aged 10 weeks were irradiated with 5 kJ/m2UVB once weekly for 6 weeks (UVB‐irradiated, n=38; nonirradiated, n=42) and were euthanized for evaluation of AAA formation at 16 weeks. Overall, 93% of angiotensin II–infused mice developed AAA, with 60% mortality possibly because of aneurysm rupture. UVB irradiation significantly decreased the incidence (66%) and mortality (29%) of AAA (P=0.004 and P=0.006, respectively). UVB‐irradiated mice had significantly smaller diameter AAA (P=0.008) and fewer inflammatory cells in the aortic aneurysm tissue than nonirradiated mice, along with systemic expansion of CD4+Foxp3+ regulatory T cells and decreased effector CD4+CD44highCD62Llow T cells in para‐aortic lymph nodes. Genetic depletion of regulatory T cells abrogated these beneficial effects of UVB treatment, demonstrating a critical role of regulatory T cells. Conclusions Our data suggest that UVB‐dependent expansion of regulatory T cells has beneficial effects on experimental AAA and may provide a novel strategy for the treatment of AAA.
Collapse
Affiliation(s)
- Tomohiro Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoto Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan .,Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taiji Mizoguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hilman Zulkifli Amin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan.,Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Keiko Yodoi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuya Matsumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuyuki Kasahara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naofumi Yoshida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tokiko Tabata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Kitano
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Rikitake
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
25
|
Ait-Oufella H, Sage AP. The Sunlight: A New Immunomodulatory Approach of Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:7-9. [PMID: 28062456 DOI: 10.1161/atvbaha.116.308637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hafid Ait-Oufella
- From the INSERM UMR-S 970, Paris Cardiovascular Research Center-PARCC, Université Paris Descartes, Sorbonne Paris Cité, France (H.A.-O.); AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Saint-Antoine, UPMC Université Paris 06, France (H.A.-O.); and Department of Medicine, University of Cambridge, United Kingdom (A.P.S.).
| | - Andrew P Sage
- From the INSERM UMR-S 970, Paris Cardiovascular Research Center-PARCC, Université Paris Descartes, Sorbonne Paris Cité, France (H.A.-O.); AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Saint-Antoine, UPMC Université Paris 06, France (H.A.-O.); and Department of Medicine, University of Cambridge, United Kingdom (A.P.S.)
| |
Collapse
|