1
|
Kapteijn MY, Bakker N, Koekkoek JAF, Versteeg HH, Buijs JT. Venous Thromboembolism in Patients with Glioblastoma: Molecular Mechanisms and Clinical Implications. Thromb Haemost 2025; 125:421-434. [PMID: 39168144 PMCID: PMC12040436 DOI: 10.1055/s-0044-1789592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Patients with glioblastoma are among the cancer patients with the highest risk of developing venous thromboembolism (VTE). Long-term thromboprophylaxis is not generally prescribed because of the increased susceptibility of glioblastoma patients to intracranial hemorrhage. This review provides an overview of the current clinical standard for glioblastoma patients, as well as the molecular and genetic background which underlies the high incidence of VTE. The two main procoagulant proteins involved in glioblastoma-related VTE, podoplanin and tissue factor, are described, in addition to the genetic aberrations that can be linked to a hypercoagulable state in glioblastoma. Furthermore, possible novel biomarkers and future treatment strategies are discussed, along with the potential of sequencing approaches toward personalized risk prediction for VTE. A glioblastoma-specific VTE risk stratification model may help identifying those patients in which the increased risk of bleeding due to extended anticoagulation is outweighed by the decreased risk of VTE.
Collapse
Affiliation(s)
- Maaike Y. Kapteijn
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina Bakker
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan A. F. Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H. Versteeg
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T. Buijs
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Ettelaie C. Licking the wound with procoagulant vesicles. Blood 2024; 144:2570-2571. [PMID: 39699924 DOI: 10.1182/blood.2024026991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
|
3
|
Thaler J, Tripisciano C, Kraemmer D, Hau C, Samadi N, Ruf W, Pabinger I, Knoebl P, Nieuwland R, Ay C. Saliva of persons with hemophilia A triggers coagulation via extrinsic tenase complexes. Blood 2024; 144:2666-2677. [PMID: 39437554 DOI: 10.1182/blood.2024025093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Human saliva contains extracellular vesicles (EVs). These EVs expose extrinsic tenase complexes of tissue factor (TF) and activated factor VII (FVIIa), and trigger blood coagulation. Here, we show that EVs exposing extrinsic tenase complexes are also present in saliva of persons with severe hemophilia A, that is, persons with FVIII deficiency. Addition of these salivary EVs to autologous FVIII-deficient blood results in FXa generation, thereby compensating for the lack of FXa generation via intrinsic tenase (FVIIIa/FIXa) complexes. Consistently, in our retrospective analysis of persons with severe hemophilia A who do not receive prophylactic FVIII substitution, oropharyngeal mucosal bleedings are infrequent and self-limited. Conversely, in saliva of persons with severe FVII deficiency, in whom oropharyngeal bleedings are prevalent, functional extrinsic tenase complexes are absent, because EVs lack FVII. Saliva of persons with severe FVII deficiency is unable to restore blood coagulation, which is because of the absence of FVII in both their saliva and blood. Picomolar levels of recombinant FVIIa can restore the coagulant potential of saliva of persons with FVII deficiency. Taken together, our findings may explain the paucity of oropharyngeal bleedings in persons with hemophilia A as well as the occurrence of such bleedings in persons with severe FVII deficiency.
Collapse
Affiliation(s)
- Johannes Thaler
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Carla Tripisciano
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Daniel Kraemmer
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Chi Hau
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nazanin Samadi
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| | - Ingrid Pabinger
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Paul Knoebl
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Cihan Ay
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Zisser L, Binder CJ. Extracellular Vesicles as Mediators in Atherosclerotic Cardiovascular Disease. J Lipid Atheroscler 2024; 13:232-261. [PMID: 39355407 PMCID: PMC11439751 DOI: 10.12997/jla.2024.13.3.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 10/03/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima, characterized by accumulation of lipoproteins and accompanying inflammation, leading to the formation of plaques that eventually trigger occlusive thrombotic events, such as myocardial infarction and ischemic stroke. Although many aspects of plaque development have been elucidated, the role of extracellular vesicles (EVs), which are lipid bilayer-delimited vesicles released by cells as mediators of intercellular communication, has only recently come into focus of atherosclerosis research. EVs comprise several subtypes that may be differentiated by their size, mode of biogenesis, or surface marker expression and cargo. The functional effects of EVs in atherosclerosis depend on their cellular origin and the specific pathophysiological context. EVs have been suggested to play a role in all stages of plaque formation. In this review, we highlight the known mechanisms by which EVs modulate atherogenesis and outline current limitations and challenges in the field.
Collapse
Affiliation(s)
- Lucia Zisser
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Zelaya H, Grunz K, Nguyen TS, Habibi A, Witzler C, Reyda S, Gonzalez-Menendez I, Quintanilla-Martinez L, Bosmann M, Weiler H, Ruf W. Nucleic acid sensing promotes inflammatory monocyte migration through biased coagulation factor VIIa signaling. Blood 2024; 143:845-857. [PMID: 38096370 PMCID: PMC10940062 DOI: 10.1182/blood.2023021149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/30/2023] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMβ2-dependent migration on fibrinogen but not for integrin β1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in β-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-β-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET), Tucuman, Argentina
| | - Kristin Grunz
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - T. Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anxhela Habibi
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Claudius Witzler
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Pulmonary Center, Department of Medicine and Department of Pathology & Laboratory Medicine, Boston University, Boston, MA
| | | | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| |
Collapse
|
6
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Tissue factor in cancer-associated thromboembolism: possible mechanisms and clinical applications. Br J Cancer 2022; 127:2099-2107. [PMID: 36097177 PMCID: PMC9467428 DOI: 10.1038/s41416-022-01968-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023] Open
Abstract
Venous and arterial thromboses, called as cancer-associated thromboembolism (CAT), are common complications in cancer patients that are associated with high mortality. The cell-surface glycoprotein tissue factor (TF) initiates the extrinsic blood coagulation cascade. TF is overexpressed in cancer cells and is a component of extracellular vesicles (EVs). Shedding of TF+EVs from cancer cells followed by association with coagulation factor VII (fVII) can trigger the blood coagulation cascade, followed by cancer-associated venous thromboembolism in some cancer types. Secretion of TF is controlled by multiple mechanisms of TF+EV biogenesis. The procoagulant function of TF is regulated via its conformational change. Thus, multiple steps participate in the elevation of plasma procoagulant activity. Whether cancer cell-derived TF is maximally active in the blood is unclear. Numerous mechanisms other than TF+EVs have been proposed as possible causes of CAT. In this review, we focused on a wide variety of regulatory and shedding mechanisms for TF, including the effect of SARS-CoV-2, to provide a broad overview for its role in CAT. Furthermore, we present the current technical issues in studying the relationship between CAT and TF.
Collapse
|
8
|
Fleischer MI, Röhrig N, Raker VK, Springer J, Becker D, Ritz S, Bros M, Stege H, Haist M, Grabbe S, Haub J, Becker C, Reyda S, Disse J, Schmidt T, Mahnke K, Weiler H, Ruf W, Steinbrink K. Protease- and cell type-specific activation of protease-activated receptor 2 in cutaneous inflammation. J Thromb Haemost 2022; 20:2823-2836. [PMID: 36161697 DOI: 10.1111/jth.15894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Protease-activated receptor 2 (PAR2) signaling controls skin barrier function and inflammation, but the roles of immune cells and PAR2-activating proteases in cutaneous diseases are poorly understood. OBJECTIVE To dissect PAR2 signaling contributions to skin inflammation with new genetic and pharmacological tools. METHODS/RESULTS We found markedly increased numbers of PAR2+ infiltrating myeloid cells in skin lesions of allergic contact dermatitis (ACD) patients and in the skin of contact hypersensitivity (CHS) in mice, a murine ACD model for T cell-mediated allergic skin inflammation. Cell type-specific deletion of PAR2 in myeloid immune cells as well as mutation-induced complete PAR2 cleavage insensitivity significantly reduced skin inflammation and hapten-specific Tc1/Th1 cell response. Pharmacological approaches identified individual proteases involved in PAR2 cleavage and demonstrated a pivotal role of tissue factor (TF) and coagulation factor Xa (FXa) as upstream activators of PAR2 in both the induction and effector phase of CHS. PAR2 mutant mouse strains with differential cleavage sensitivity for FXa versus skin epithelial cell-expressed proteases furthermore uncovered a time-dependent regulation of CHS development with an important function of FXa-induced PAR2 activation during the late phase of skin inflammation. CONCLUSIONS Myeloid cells and the TF-FXa-PAR2 axis are key mediators and potential therapeutic targets in inflammatory skin diseases.
Collapse
Affiliation(s)
- Maria Isabel Fleischer
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Verena K Raker
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Dermatology, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Juliane Springer
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Detlef Becker
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Sandra Ritz
- Institute of Molecular Biology Mainz, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University of Mainz, Mainz, Germany
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Maximilian Haist
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University of Mainz, Mainz, Germany
| | - Jessica Haub
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Christian Becker
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Dermatology, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Disse
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Talkea Schmidt
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Karsten Mahnke
- Department of Dermatology, University of Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Hartmut Weiler
- Versity Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Center, University of Muenster, Muenster, Germany
| |
Collapse
|
9
|
He Y, Wu Q. The Effect of Extracellular Vesicles on Thrombosis. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10342-w. [DOI: 10.1007/s12265-022-10342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The risk of cardiovascular events caused by acute thrombosis is high, including acute myocardial infarction, acute stroke, acute pulmonary embolism, and deep vein thrombosis. In this review, we summarize the roles of extracellular vesicles of different cellular origins in various cardiovascular events associated with acute thrombosis, as described in the current literature, to facilitate the future development of a precise therapy for thrombosis caused by such vesicles. We hope that our review will indicate a new horizon in the field of cardiovascular research with regard to the treatment of acute thrombosis, especially targeting thrombosis caused by extracellular vesicles secreted by individual cells. As more emerging technologies are being developed, new diagnostic and therapeutic strategies related to EVs are expected to be identified for related diseases in the future.
Collapse
|
10
|
Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb Res 2022; 220:48-59. [DOI: 10.1016/j.thromres.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
11
|
Mast AE, Ruf W. Regulation of coagulation by tissue factor pathway inhibitor: Implications for hemophilia therapy. J Thromb Haemost 2022; 20:1290-1300. [PMID: 35279938 PMCID: PMC9314982 DOI: 10.1111/jth.15697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) is an alternatively spliced anticoagulant protein that primarily dampens the initiation phase of coagulation before thrombin is generated. As such, TFPI's actions are localized to cells expressing TF and to sites of injury, where it is an important regulator of bleeding in hemophilia. The major splice isoforms TFPIα and TFPIβ localize to different sites within and surrounding the vasculature. Both forms directly inhibit factor Xa (FXa) via their Kunitz 2 domain and inhibit TF-FVIIa via their Kunitz 1 domain in a tight complex primarily localized to cells. By forming complexes localized to distinct cellular microenvironments and engaging additional cell surface receptors, TFPI alters cellular trafficking and signaling pathways driven by coagulation proteases of the TF pathway. TFPIα, which circulates in complex with FV and protein S, also serves an inhibitor of FXa independent of the TF initiation complex and prevents the formation of an active prothrombinase. This regulation of thrombin generation in the context of vessel injury is effectively blocked by antibodies to Kunitz 2 domain of TFPI and exploited as a therapy to restore efficient hemostasis in hemophilia.
Collapse
Affiliation(s)
- Alan E. Mast
- Versiti Blood Research InstituteMilwaukeeWisconsinUSA
| | - Wolfram Ruf
- Center for Thrombosis and HemostasisJohannes Gutenberg University Medical CenterMainzGermany
- Department of Immunology and MicrobiologyScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
12
|
Koizume S, Kobayashi S, Ruf W, Miyagi Y. Authors' reply to the Letter to the Editor: Tissue factor and its procoagulant activity on cancer-associated thromboembolism in pancreatic cancer. Cancer Sci 2022; 113:1888-1890. [PMID: 35332617 PMCID: PMC9128152 DOI: 10.1111/cas.15324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
Tissue factor-procoagulant activity (TF-PCA) on cells is modified by multiple molecular mechanisms of encryption and decryption. The risk of thrombosis is higher for patients with a high tissue factor antigen level at registration as this enables patient's blood more PCA-high status before the onset of cancer-associated thromboembolism (CAT). ELISA, including the Quantikine assay with validation as performed in our study, can contribute to more precise prediction of CAT.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics DivisionKanagawa Cancer Center Research InstituteKanagawaJapan
- Pathology DivisionKanagawa Cancer CenterKanagawaJapan
| | - Satoshi Kobayashi
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology DivisionKanagawa Cancer CenterKanagawaJapan
| | - Wolfram Ruf
- Center for Thrombosis and HemostasisJohannes Gutenberg University Medical CenterMainzGermany
| | - Yohei Miyagi
- Molecular Pathology and Genetics DivisionKanagawa Cancer Center Research InstituteKanagawaJapan
- Pathology DivisionKanagawa Cancer CenterKanagawaJapan
| |
Collapse
|
13
|
Kohli S, Isermann B. Crosstalk between inflammation and coagulation: Focus on pregnancy related complications. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Moreira R, Mendonça LS, Pereira de Almeida L. Extracellular Vesicles Physiological Role and the Particular Case of Disease-Spreading Mechanisms in Polyglutamine Diseases. Int J Mol Sci 2021; 22:ijms222212288. [PMID: 34830171 PMCID: PMC8621536 DOI: 10.3390/ijms222212288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Recent research demonstrated pathological spreading of the disease-causing proteins from one focal point across other brain regions for some neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. Spreading mediated by extracellular vesicles is one of the proposed disease-spreading mechanisms. Extracellular vesicles are cell membrane-derived vesicles, used by cells for cell-to-cell communication and excretion of toxic components. Importantly, extracellular vesicles carrying pathological molecules, when internalized by "healthy" cells, may trigger pathological pathways and, consequently, promote disease spreading to neighboring cells. Polyglutamine diseases are a group of genetic neurodegenerative disorders characterized by the accumulation of mutant misfolded proteins carrying an expanded tract of glutamines, including Huntington's and Machado-Joseph disease. The pathological spread of the misfolded proteins or the corresponding mutant mRNA has been explored. The understanding of the disease-spreading mechanism that plays a key role in the pathology progression of these diseases can result in the development of effective therapeutic approaches to stop disease progression, arresting the spread of the toxic components and disease aggravation. Therefore, the present review's main focus is the disease-spreading mechanisms with emphasis on polyglutamine diseases and the putative role played by extracellular vesicles in this process.
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| | - Luís Pereira de Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| |
Collapse
|
15
|
Functional Characteristics and Regulated Expression of Alternatively Spliced Tissue Factor: An Update. Cancers (Basel) 2021; 13:cancers13184652. [PMID: 34572880 PMCID: PMC8471299 DOI: 10.3390/cancers13184652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
In human and mouse, alternative splicing of tissue factor's primary transcript yields two mRNA species: one features all six TF exons and encodes full-length tissue factor (flTF), and the other lacks exon 5 and encodes alternatively spliced tissue factor (asTF). flTF, which is oftentimes referred to as "TF", is an integral membrane glycoprotein due to the presence of an alpha-helical domain in its C-terminus, while asTF is soluble due to the frameshift resulting from the joining of exon 4 directly to exon 6. In this review, we focus on asTF-the more recently discovered isoform of TF that appears to significantly contribute to the pathobiology of several solid malignancies. There is currently a consensus in the field that asTF, while dispensable to normal hemostasis, can activate a subset of integrins on benign and malignant cells and promote outside-in signaling eliciting angiogenesis; cancer cell proliferation, migration, and invasion; and monocyte recruitment. We provide a general overview of the pioneering, as well as more recent, asTF research; discuss the current concepts of how asTF contributes to cancer progression; and open a conversation about the emerging utility of asTF as a biomarker and a therapeutic target.
Collapse
|
16
|
Bacitracin and Rutin Regulate Tissue Factor Production in Inflammatory Monocytes and Acute Myeloid Leukemia Blasts. Cancers (Basel) 2021; 13:cancers13163941. [PMID: 34439096 PMCID: PMC8393688 DOI: 10.3390/cancers13163941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Aberrant tissue factor (TF) expression by transformed myeloblasts and inflammatory monocytes contributes to coagulation activation in acute myeloid leukemia (AML). TF procoagulant activity (PCA) is regulated by protein disulfide isomerase (PDI), an oxidoreductase with chaperone activity, but its specific role in AML-associated TF biology is unclear. Here, we provide novel mechanistic insights into this interrelation. We show that bacitracin and rutin, two pan-inhibitors of the PDI family, prevent lipopolysaccharide (LPS)-induced monocyte TF production under inflammatory conditions and constitutive TF expression by THP1 cells and AML blasts, thus exerting promising anticoagulant activity. Downregulation of the TF protein was mainly restricted to its non-coagulant, cryptic pool and was at least partially regulated on the mRNA level in LPS-stimulated monocytes. Collectively, our study indicates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with the most abundant PDI being a promising therapeutic target in the management of AML-associated coagulopathies. Abstract Aberrant expression of tissue factor (TF) by transformed myeloblasts and inflammatory monocytes drives coagulation activation in acute myeloid leukemia (AML). Although regulation of TF procoagulant activity (PCA) involves thiol-disulfide exchange reactions, the specific role of protein disulfide isomerase (PDI) and other thiol isomerases in AML-associated TF biology is unclear. THP1 cells and peripheral blood mononuclear cells (PBMCs) from healthy controls or AML patients were analyzed for thiol isomerase-dependent TF production under various experimental conditions. Total cellular and membrane TF antigen, TF PCA and TF mRNA were analyzed by ELISA, flow cytometry, clotting or Xa generation assay and qPCR, respectively. PBMCs and THP1 cells showed significant insulin reductase activity, which was inhibited by bacitracin or rutin. Co-incubation with these thiol isomerase inhibitors prevented LPS-induced TF production by CD14-positive monocytes and constitutive TF expression by THP1 cells and AML blasts. Downregulation of the TF antigen was mainly restricted to the cryptic pool of TF, efficiently preventing phosphatidylserine-dependent TF activation by daunorubicin, and at least partially regulated on the mRNA level in LPS-stimulated monocytes. Our study thus delineates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with PDI being a promising therapeutic target in the management of AML-associated coagulopathies.
Collapse
|
17
|
Kapopara PR, Safikhan NS, Huang JL, Meixner SC, Gonzalez K, Loghmani H, Ruf W, Mast AE, Lei V, Pryzdial EL, Conway EM. CD248 enhances tissue factor procoagulant function, promoting arterial and venous thrombosis in mouse models. J Thromb Haemost 2021; 19:1932-1947. [PMID: 33830628 PMCID: PMC8571649 DOI: 10.1111/jth.15338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND CD248 is a pro-inflammatory, transmembrane glycoprotein expressed by vascular smooth muscle cells (VSMC), monocytes/macrophages, and other cells of mesenchymal origin. Its distribution and properties are reminiscent of those of the initiator of coagulation, tissue factor (TF). OBJECTIVE We examined whether CD248 also participates in thrombosis. METHODS We evaluated the role of CD248 in coagulation using mouse models of vascular injury, and by assessing its functional interaction with the TF-factor VIIa (FVIIa)-factor X (FX) complex. RESULTS The time to ferric chloride-induced occlusion of the carotid artery in CD248 knockout (KO) mice was significantly longer than in wild-type (WT) mice. In an inferior vena cava (IVC) stenosis model of thrombosis, lack of CD248 conferred relative resistance to thrombus formation compared to WT mice. Levels of circulating cells and coagulation factors, prothrombin time, activated partial thromboplastin time, and tail bleeding times were similar in both groups. Proximity ligation assays revealed that TF and CD248 are <40 nm apart, suggesting a potential functional relationship. Expression of CD248 by murine and human VSMCs, and by a monocytic cell line, significantly augmented TF-FVIIa-mediated activation of FX, which was not due to differential expression or encryption of TF, altered exposure of phosphatidylserine or differences in tissue factor pathway inhibitor expression. Rather, conformation-specific antibodies showed that CD248 induces allosteric changes in the TF-FVIIa-FX complex that facilitates FX activation by TF-FVIIa. CONCLUSION CD248 is a newly uncovered protein partner and potential therapeutic target in the TF-FVIIa-FX macromolecular complex that modulates coagulation.
Collapse
Affiliation(s)
- Piyushkumar R. Kapopara
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nooshin S. Safikhan
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny L. Huang
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott C. Meixner
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Canadian Blood Services, Centre for Innovation, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Gonzalez
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Canadian Blood Services, Centre for Innovation, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Houra Loghmani
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Alan E. Mast
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Victor Lei
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L.G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Canadian Blood Services, Centre for Innovation, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Lewis CS, Karve A, Matiash K, Stone T, Li J, Wang JK, Versteeg HH, Aronow BJ, Ahmad SA, Desai PB, Bogdanov VY. A First-In-Class, Humanized Antibody Targeting Alternatively Spliced Tissue Factor: Preclinical Evaluation in an Orthotopic Model of Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:691685. [PMID: 34395257 PMCID: PMC8358774 DOI: 10.3389/fonc.2021.691685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
In 2021, pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause of cancer deaths in the United States. This is largely due to a lack of symptoms and limited treatment options, which extend survival by only a few weeks. There is thus an urgent need to develop new therapies effective against PDAC. Previously, we have shown that the growth of PDAC cells is suppressed when they are co-implanted with RabMab1, a rabbit monoclonal antibody specific for human alternatively spliced tissue factor (asTF). Here, we report on humanization of RabMab1, evaluation of its binding characteristics, and assessment of its in vivo properties. hRabMab1 binds asTF with a KD in the picomolar range; suppresses the migration of high-grade Pt45.P1 cells in Boyden chamber assays; has a long half-life in circulation (~ 5 weeks); and significantly slows the growth of pre-formed orthotopic Pt45.P1 tumors in athymic nude mice when administered intravenously. Immunohistochemical analysis of tumor tissue demonstrates the suppression of i) PDAC cell proliferation, ii) macrophage infiltration, and iii) neovascularization, whereas RNAseq analysis of tumor tissue reveals the suppression of pathways that promote cell division and focal adhesion. This is the first proof-of-concept study whereby a novel biologic targeting asTF has been investigated as a systemically administered single agent, with encouraging results. Given that hRabMab1 has a favorable PK profile and is able to suppress the growth of human PDAC cells in vivo, it comprises a promising candidate for further clinical development.
Collapse
Affiliation(s)
- Clayton S Lewis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Kateryna Matiash
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Timothy Stone
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jingxing Li
- Technology Development, LakePharma, Inc., Belmont, CA, United States
| | - Jordon K Wang
- Technology Development, LakePharma, Inc., Belmont, CA, United States
| | - Henri H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Bruce J Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, United States
| | - Syed A Ahmad
- Division of Surgical Oncology, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Pankaj B Desai
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
19
|
Ruf W, Graf C. Coagulation signaling and cancer immunotherapy. Thromb Res 2021; 191 Suppl 1:S106-S111. [PMID: 32736766 DOI: 10.1016/s0049-3848(20)30406-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
The last decades have delineated many interactions of the hemostatic system with cancer cells that are pivotal for cancer-associated thrombosis, angiogenesis and metastasis. Expanding evidence shows that platelets, the tissue factor pathway, and proteolytic signaling involving protease-activated receptors (PARs) are also central players in innate and adaptive immunity. Recent studies in immune-competent mice have uncovered new immune-evasive roles of coagulation signaling networks in the development and growth of different preclinical tumor models. Tumor-type specific PAR1 signaling facilitates the escape from immune surveillance by cytotoxic T cells. In addition, tumor-associated macrophages produce factor X (FX) and cell autonomous FXa-PAR2 signaling emerges as a central mechanism for tumor-promoting macrophage polarization in the tumor microenvironment. Pharmacological targeting of this signaling pathway with tissue penetrating oral FXa inhibitor reprograms macrophage phenotypes, enhances tumor antigen presentation, and expands tumor-killing cytotoxic lymphocytes. Importantly, by specifically targeting innate immune cells, the oral FXa inhibitor rivaroxaban synergizes with checkpoint inhibitor therapy in enhancing antigen-specific antitumor immunity. In similar experiments, anticoagulation with heparin is inefficient to block extravascular coagulation signaling. Thus, antithrombotic therapy with oral FXa inhibitors may contribute to reversing tumor immune-evasive mechanisms and enhance the clinical outcome of targeted immuno-therapy regimens.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
20
|
Hamza MS, Mousa SA. Cancer-Associated Thrombosis: Risk Factors, Molecular Mechanisms, Future Management. Clin Appl Thromb Hemost 2021; 26:1076029620954282. [PMID: 32877229 PMCID: PMC7476343 DOI: 10.1177/1076029620954282] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Venous thromboembolism (VTE) is a major health problem in patients with cancer. Cancer augments thrombosis and causes cancer-associated thrombosis (CAT) and vice versa thrombosis amplifies cancer progression, termed thrombosis-associated cancer (TAC). Risk factors that lead to CAT and TAC include cancer type, chemotherapy, radiotherapy, hormonal therapy, anti-angiogenesis therapy, surgery, or supportive therapy with hematopoietic growth factors. There are some other factors that have an effect on CAT and TAC such as tissue factor, neutrophil extracellular traps (NETs) released in response to cancer, cancer procoagulant, and cytokines. Oncogenes, estrogen hormone, and thyroid hormone with its integrin αvβ3 receptor promote angiogenesis. Lastly, patient-related factors can play a role in development of thrombosis in cancer. Low-molecular-weight heparin and direct oral anticoagulants (DOACs) are used in VTE prophylaxis and treatment rather than vitamin K antagonist. Now, there are new directions for potential management of VTE in patients with cancer such as euthyroid, blockade of thyroid hormone receptor on integrin αvβ3, sulfated non-anticoagulant heparin, inhibition of NETs and stratifying low and high-risk patients with significant bleeding problems with DOACs.
Collapse
Affiliation(s)
- Marwa S. Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- Shaker A. Mousa, PhD, The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| |
Collapse
|
21
|
Abstract
Oral anticoagulant therapy has changed by clinical evidence that coagulation factor Xa (FXa) can be safely and effectively targeted for thromboprophylaxis. Because thrombotic and thrombo-inflammatory diseases are frequently caused by excessive activation of the tissue factor (TF) pathway, activation of FX by the TF-FVIIa complex is of central importance for understanding the roles of FXa in thrombosis and hemostasis and functions beyond blood coagulation. Recent data showed that the nascent product FXa associated with TF-FVIIa not only supports hemostatic cofactor VIII activation, but also broadly influences immune reactions in inflammation, cancer, and autoimmunity. These signaling functions of FXa are mediated through protease activated receptor (PAR) cleavage and PAR2 activation occurs in extravascular environments specifically by macrophage synthesized FX. Cell autonomous FXa-PAR2 signaling is a mechanism for tumor-promoting macrophage polarization in the tumor microenvironment and tissue penetrance of oral FXa inhibitors favors the reprogramming of tumor-associated macrophages for non-coagulant therapeutic benefit. It is necessary to decipher the distinct functions of coagulation factors synthesized by the liver for circulation in blood versus those synthesized by extrahepatic immune cells for activity in tissue milieus. This research will lead to a better understanding of the broader roles of FXa as a central regulator of immune and hematopoietic systems.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
22
|
Müller-Calleja N, Hollerbach A, Royce J, Ritter S, Pedrosa D, Madhusudhan T, Teifel S, Meineck M, Häuser F, Canisius A, Nguyen TS, Braun J, Bruns K, Etzold A, Zechner U, Strand S, Radsak M, Strand D, Gu JM, Weinmann-Menke J, Esmon CT, Teyton L, Lackner KJ, Ruf W. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 2021; 371:371/6534/eabc0956. [PMID: 33707237 DOI: 10.1126/science.abc0956] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
Antiphospholipid antibodies (aPLs) cause severe autoimmune disease characterized by vascular pathologies and pregnancy complications. Here, we identify endosomal lysobisphosphatidic acid (LBPA) presented by the CD1d-like endothelial protein C receptor (EPCR) as a pathogenic cell surface antigen recognized by aPLs for induction of thrombosis and endosomal inflammatory signaling. The engagement of aPLs with EPCR-LBPA expressed on innate immune cells sustains interferon- and toll-like receptor 7-dependent B1a cell expansion and autoantibody production. Specific pharmacological interruption of EPCR-LBPA signaling attenuates major aPL-elicited pathologies and the development of autoimmunity in a mouse model of systemic lupus erythematosus. Thus, aPLs recognize a single cell surface lipid-protein receptor complex to perpetuate a self-amplifying autoimmune signaling loop dependent on the cooperation with the innate immune complement and coagulation pathways.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Anne Hollerbach
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Jennifer Royce
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Svenja Ritter
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Sina Teifel
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Myriam Meineck
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Antje Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - T Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Johannes Braun
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Kai Bruns
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Anna Etzold
- Institute of Human Genetics, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Senckenberg Zentrum für Humangenetik, 60314 Frankfurt, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Senckenberg Zentrum für Humangenetik, 60314 Frankfurt, Germany
| | - Susanne Strand
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Markus Radsak
- Department of Medicine III, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Dennis Strand
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Jian-Ming Gu
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Julia Weinmann-Menke
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Charles T Esmon
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Hohensinner PJ, Mayer J, Kichbacher J, Kral-Pointner J, Thaler B, Kaun C, Hell L, Haider P, Mussbacher M, Schmid JA, Stojkovic S, Demyanets S, Fischer MB, Huber K, Wöran K, Hengstenberg C, Speidl WS, Oehler R, Pabinger I, Wojta J. Alternative activation of human macrophages enhances tissue factor expression and production of extracellular vesicles. Haematologica 2021; 106:454-463. [PMID: 31974204 PMCID: PMC7849567 DOI: 10.3324/haematol.2019.220210] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophages are versatile cells that can be polarized by the tissue environment to fulfill required needs. Proinflammatory polarization is associated with increased tissue degradation and propagation of inflammation whereas alternative polarization within a Th2 cytokine environment is associated with wound healing and angiogenesis. To understand whether polarization of macrophages can lead to a procoagulant macrophage subset we polarized human monocyte-derived macrophages to proinflammatory and alternative activation states. Alternative polarization with interleukin-4 and interleukin-13 led to a macrophage phenotype characterized by increased tissue factor (TF) production and release and by an increase in extracellular vesicle production. In addition, TF activity was enhanced in extracellular vesicles of alternatively polarized macrophages. This TF induction was dependent on signal transducer and activator of transcription- 6 signaling and poly ADP ribose polymerase activity. In contrast to monocytes, human macrophages did not show increased TF expression upon stimulation with lipopolysaccharide and interferon-γ. Previous polarization to either a proinflammatory or an alternative activation subset did not change the subsequent stimulation of TF. The inability of proinflammatory activated macrophages to respond to lipopolysaccharide and interferon- γ with an increase in TF production seemed to be due to an increase in TF promoter methylation and was reversible when these macrophages were treated with a demethylating agent. In conclusion, we provide evidence that proinflammatory polarization of macrophages does not lead to enhanced procoagulatory function, whereas alternative polarization of macrophages leads to an increased expression of TF and increased production of TF-bearing extracellular vesicles by these cells suggesting a procoagulatory phenotype of alternatively polarized macrophages.
Collapse
|
24
|
Genetics and Pathogenetic Role of Inflammasomes in Philadelphia Negative Chronic Myeloproliferative Neoplasms: A Narrative Review. Int J Mol Sci 2021; 22:ijms22020561. [PMID: 33429941 PMCID: PMC7827003 DOI: 10.3390/ijms22020561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The last decade has been very important for the quantity of preclinical information obtained regarding chronic myeloproliferative neoplasms (MPNs) and the following will be dedicated to the translational implications of the new biological acquisitions. The overcoming of the mechanistic model of clonal evolution and the entry of chronic inflammation and dysimmunity into the new model are the elements on which to base a part of future therapeutic strategies. The innate immune system plays a major role in this context. Protagonists of the initiation and regulation of many pathological aspects, from cytokine storms to fibrosis, the NLRP3 and AIM2 inflammasomes guide and condition the natural history of the disease. For this reason, MPNs share many biological and clinical aspects with non-neoplastic diseases, such as autoimmune disorders. Finally, cardiovascular risk and disturbances in iron metabolism and myelopoiesis are also closely linked to the role of inflammasomes. Although targeted therapies are already being tested, an increase in knowledge on the subject is desirable and potentially translates into better care for patients with MPNs.
Collapse
|
25
|
The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood 2020; 135:1087-1100. [PMID: 32016282 DOI: 10.1182/blood.2019002282] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial infection not only stimulates innate immune responses but also activates coagulation cascades. Overactivation of the coagulation system in bacterial sepsis leads to disseminated intravascular coagulation (DIC), a life-threatening condition. However, the mechanisms by which bacterial infection activates the coagulation cascade are not fully understood. Here we show that type 1 interferons (IFNs), a widely expressed family of cytokines that orchestrate innate antiviral and antibacterial immunity, mediate bacterial infection-induced DIC by amplifying the release of high-mobility group box 1 (HMGB1) into the bloodstream. Inhibition of the expression of type 1 IFNs and disruption of their receptor IFN-α/βR or downstream effector (eg, HMGB1) uniformly decreased gram-negative bacteria-induced DIC. Mechanistically, extracellular HMGB1 markedly increased the procoagulant activity of tissue factor by promoting the externalization of phosphatidylserine to the outer cell surface, where phosphatidylserine assembles a complex of cofactor-proteases of the coagulation cascades. These findings not only provide novel insights into the link between innate immune responses and coagulation, but they also open a new avenue for developing novel therapeutic strategies to prevent DIC in sepsis.
Collapse
|
26
|
Sluka SHM, Stämpfli SF, Akhmedov A, Rodewald TK, Sanz-Moreno A, Horsch M, Grest P, Rothmeier AS, Rathkolb B, Schrewe A, Beckers J, Neff F, Wolf E, Camici GG, Fuchs H, Durner VG, de Angelis MH, Lüscher TF, Ruf W, Tanner FC. Murine tissue factor disulfide mutation causes a bleeding phenotype with sex specific organ pathology and lethality. Haematologica 2020; 105:2484-2495. [PMID: 33054088 PMCID: PMC7556672 DOI: 10.3324/haematol.2019.218818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/30/2019] [Indexed: 11/28/2022] Open
Abstract
Tissue factor is highly expressed in sub-endothelial tissue. The extracellular allosteric disulfide bond Cys186-Cys209 of human tissue factor shows high evolutionary conservation and in vitro evidence suggests that it significantly contributes to tissue factor procoagulant activity. To investigate the role of this allosteric disulfide bond in vivo, we generated a C213G mutant tissue factor mouse by replacing Cys213 of the corresponding disulfide Cys190-Cys213 in murine tissue factor. A bleeding phenotype was prominent in homozygous C213G tissue factor mice. Pre-natal lethality of 1/3rd of homozygous offspring was observed between E9.5 and E14.5 associated with placental hemorrhages. After birth, homozygous mice suffered from bleedings in different organs and reduced survival. Homozygous C213G tissue factor male mice showed higher incidence of lung bleedings and lower survival rates than females. In both sexes, C213G mutation evoked a reduced protein expression (about 10-fold) and severely reduced pro-coagulant activity (about 1000-fold). Protein glycosylation was impaired and cell membrane exposure decreased in macrophages in vivo. Single housing of homozygous C213G tissue factor males reduced the occurrence of severe bleeding and significantly improved survival, suggesting that inter-male aggressiveness might significantly account for the sex differences. These experiments show that the tissue factor allosteric disulfide bond is of crucial importance for normal in vivo expression, post-translational processing and activity of murine tissue factor. Although C213G tissue factor mice do not display the severe embryonic lethality of tissue factor knock-out mice, their postnatal bleeding phenotype emphasizes the importance of fully functional tissue factor for hemostasis.
Collapse
Affiliation(s)
| | - Simon F. Stämpfli
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital, Zurich, Switzerland
- Cardiology Division, Heart Center, Luzerner Kantonsspital, Luzern, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Tanja Klein Rodewald
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
| | - Paula Grest
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Andrea S. Rothmeier
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anja Schrewe
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München and German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital, Zurich, Switzerland
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
- Center for Thrombosis and Hemostasis Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Felix C. Tanner
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital, Zurich, Switzerland
| |
Collapse
|
27
|
Holstein K, Matysiak A, Witt L, Sievers B, Beckmann L, Haddad M, Renné T, Voigtlaender M, Langer F. LPS-induced expression and release of monocyte tissue factor in patients with haemophilia. Ann Hematol 2020; 99:1531-1542. [PMID: 32430703 PMCID: PMC7316670 DOI: 10.1007/s00277-020-04075-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
In haemophilia, thrombin generation and fibrin deposition upon vascular injury critically depend on the tissue factor (TF)-driven coagulation pathway. TF expression by monocytes/macrophages and circulating microvesicles contributes to haemostasis, thrombosis and inflammation. Inflammation is a hallmark of blood-induced joint disease. The aim of this study is to correlate TF production by whole-blood monocytes with inflammatory markers and clinical parameters in patients with moderate-to-severe haemophilia A or B (n = 43) in comparison to healthy males (n = 23). Monocyte TF antigen and microvesicle-associated TF procoagulant activity (MV TF PCA) were measured immediately after blood draw (baseline) and following incubation of whole blood with buffer or lipopolysaccharide (LPS) using two-colour flow cytometry and chromogenic FXa generation assay, respectively. Patients with HIV or uncontrolled HBV/HCV infections were excluded. TF was hardly detectable and not different in baseline and buffer-treaded samples from both groups. Stimulation with LPS, however, induced monocyte TF production, with increased TF-specific mean fluorescence intensity (P = 0.08) and MV TF PCA (P < 0.05) in patients compared to controls. Patients also had elevated hs-CRP and IL-6 serum levels (P < 0.001), which correlated with LPS-induced TF parameters. Further exploratory analyses revealed that the presence of systemic (low-grade) inflammation and boosted LPS-induced monocyte TF production were mainly restricted to patients with clinically controlled HBV and/or HCV infection (n = 16), who were older and also had a significantly worse orthopaedic joint score than patients with no history of viral hepatitis (P < 0.01). Our study delineates a previously unrecognised link between systemic inflammation and inducible monocyte TF production in patients with haemophilia A or B.
Collapse
Affiliation(s)
- Katharina Holstein
- Department of Haematology and Oncology, University Cancer Centre Hamburg (UCCH), University Medical Centre Eppendorf, Hamburg, Germany
| | - Anna Matysiak
- Department of Haematology and Oncology, University Cancer Centre Hamburg (UCCH), University Medical Centre Eppendorf, Hamburg, Germany
| | - Leonora Witt
- Department of Haematology and Oncology, University Cancer Centre Hamburg (UCCH), University Medical Centre Eppendorf, Hamburg, Germany
| | - Bianca Sievers
- Department of Haematology and Oncology, University Cancer Centre Hamburg (UCCH), University Medical Centre Eppendorf, Hamburg, Germany
| | - Lennart Beckmann
- Department of Haematology and Oncology, University Cancer Centre Hamburg (UCCH), University Medical Centre Eppendorf, Hamburg, Germany
| | - Munif Haddad
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Eppendorf, Hamburg, Germany
| | - Minna Voigtlaender
- Department of Haematology and Oncology, University Cancer Centre Hamburg (UCCH), University Medical Centre Eppendorf, Hamburg, Germany
| | - Florian Langer
- Department of Haematology and Oncology, University Cancer Centre Hamburg (UCCH), University Medical Centre Eppendorf, Hamburg, Germany.
| |
Collapse
|
28
|
Slack MA, Gordon SM. Protease Activity in Vascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:e210-e218. [PMID: 31553665 PMCID: PMC6764587 DOI: 10.1161/atvbaha.119.312413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Megan A. Slack
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
29
|
Ivanov II, Apta BHR, Bonna AM, Harper MT. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep 2019; 9:13397. [PMID: 31527604 PMCID: PMC6746844 DOI: 10.1038/s41598-019-49635-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Tissue factor (TF) plays a central role in haemostasis and thrombosis. Following vascular damage, vessel wall TF initiates the extrinsic coagulation cascade. TF can also be exposed by monocytes. Inflammatory or infectious stimuli trigger synthesis of new TF protein by monocytes over the course of hours. It has also been suggested that monocytes can expose TF within minutes when stimulated by activated platelets. Here, we have confirmed that monocytes rapidly expose TF in whole blood and further demonstrate that platelet P-selectin exposure is necessary and sufficient. Monocyte TF exposure increased within five minutes in response to platelet activation by PAR1-AP, PAR4-AP or CRP-XL. PAR1-AP did not trigger TF exposure on isolated monocytes unless platelets were also present. In whole blood, PAR1-AP-triggered TF exposure required P-selectin and PGSL-1. In isolated monocytes, although soluble recombinant P-selectin had no effect, P-selectin coupled to 2 µm beads triggered TF exposure. Cycloheximide did not affect rapid TF exposure, indicating that de novo protein synthesis was not required. These data show that P-selectin on activated platelets rapidly triggers TF exposure on monocytes. This may represent a mechanism by which platelets and monocytes rapidly contribute to intravascular coagulation.
Collapse
Affiliation(s)
- Ivelin I Ivanov
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Bonita H R Apta
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Arkadiusz M Bonna
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
30
|
Tissue factor pathway inhibitor primes monocytes for antiphospholipid antibody-induced thrombosis. Blood 2019; 134:1119-1131. [PMID: 31434703 DOI: 10.1182/blood.2019001530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Antiphospholipid antibodies (aPLs) with complex lipid and/or protein reactivities cause complement-dependent thrombosis and pregnancy complications. Although cross-reactivities with coagulation regulatory proteins contribute to the risk for developing thrombosis in patients with antiphospholipid syndrome, the majority of pathogenic aPLs retain reactivity with membrane lipid components and rapidly induce reactive oxygen species-dependent proinflammatory signaling and tissue factor (TF) procoagulant activation. Here, we show that lipid-reactive aPLs activate a common species-conserved TF signaling pathway. aPLs dissociate an inhibited TF coagulation initiation complex on the cell surface of monocytes, thereby liberating factor Xa for thrombin generation and protease activated receptor 1/2 heterodimer signaling. In addition to proteolytic signaling, aPLs promote complement- and protein disulfide isomerase-dependent TF-integrin β1 trafficking that translocates aPLs and NADPH oxidase to the endosome. Cell surface TF pathway inhibitor (TFPI) synthesized by monocytes is required for TF inhibition, and disabling TFPI prevents aPL signaling, indicating a paradoxical prothrombotic role for TFPI. Myeloid cell-specific TFPI inactivation has no effect on models of arterial or venous thrombus development, but remarkably prevents experimental aPL-induced thrombosis in mice. Thus, the physiological control of TF primes monocytes for rapid aPL pathogenic signaling and thrombosis amplification in an unexpected crosstalk between complement activation and coagulation signaling.
Collapse
|
31
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
32
|
Acid sphingomyelinase plays a critical role in LPS- and cytokine-induced tissue factor procoagulant activity. Blood 2019; 134:645-655. [PMID: 31262782 DOI: 10.1182/blood.2019001400] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Tissue factor (TF) is a cofactor for factor VIIa and the primary cellular initiator of coagulation. Typically, most TF on cell surfaces exists in a cryptic coagulant-inactive state but are transformed to a procoagulant form (decryption) following cell activation. Our recent studies in cell model systems showed that sphingomyelin (SM) in the outer leaflet of the plasma membrane is responsible for maintaining TF in an encrypted state in resting cells, and the hydrolysis of SM leads to decryption of TF. The present study was carried out to investigate the relevance of this novel mechanism in the regulation of TF procoagulant activity in pathophysiology. As observed in cell systems, administration of adenosine triphosphate (ATP) to mice enhanced lipopolysaccharide (LPS)-induced TF procoagulant activity in monocytes. Treatment of mice with pharmacological inhibitors of acid sphingomyelinase (ASMase), desipramine and imipramine, attenuated ATP-induced TF decryption. Interestingly, ASMase inhibitors also blocked LPS-induced TF procoagulant activity without affecting the LPS-induced de novo synthesis of TF protein. Additional studies showed that LPS induced translocation of ASMase to the outer leaflet of the plasma membrane and reduced SM levels in monocytes. Studies using human monocyte-derived macrophages and endothelial cells further confirmed the role of ASMase in LPS- and cytokine-induced TF procoagulant activity. Overall, our data indicate that LPS- or cytokine-induced TF procoagulant activity requires the decryption of newly synthesized TF protein by ASMase-mediated hydrolysis of SM. The observation that ASMase inhibitors attenuate TF-induced coagulation raises the possibility of their therapeutic use in treating thrombotic disorders associated with aberrant expression of TF.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Extracellular vesicles have emerged as one of the most important means through which cells interact with each other and the extracellular environment, but extracellular vesicle research remains challenging due to their small size, limited amount of material required for traditional molecular biology assays and inconsistency in the methods of their isolation. The advent of new technologies and standards in the field, however, have led to increased mechanistic insight into extracellular vesicle function. Herein, the latest studies on the role of extracellular vesicles in cardiovascular physiology and disease are discussed. RECENT FINDINGS Extracellular vesicles help control cardiovascular homeostasis and remodelling by mediating communication between cells and directing alterations in the extracellular matrix to respond to changes in the environment. The message carried from the parent cell to extracellular space can be intended for both local (within the same tissue) and distal (downstream of blood flow) targets. Pathological cargo loaded within extracellular vesicles could further result in various diseases. On the contrary, new studies indicate that injection of extracellular vesicles obtained from cultured cells into diseased tissues can promote restoration of normal tissue function. SUMMARY Extracellular vesicles are an integral part of cell and tissue function, and harnessing the properties inherent to extracellular vesicles may provide a therapeutic strategy to promote tissue regeneration.
Collapse
|
34
|
Rothmeier AS, Versteeg HH, Ruf W. Factor VIIa-induced interaction with integrin controls the release of tissue factor on extracellular vesicles from endothelial cells. J Thromb Haemost 2019; 17:627-634. [PMID: 30740873 DOI: 10.1111/jth.14406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
Essentials Prothrombotic extracellular vesicles (EV) carry agonist pathway-specific proteomes Agonists for protease activated receptor (PAR) 2 signaling have distinct effects on EV composition PAR2 signaling rapidly generates prothrombotic EV and slowly EV with inactive tissue factor (TF) FVIIa integrin ligation restricts TF incorporation into EV from endothelial cells SUMMARY: Background Cell injury signal-induced activation and release of tissue factor (TF) on extracellular vesicles (EVs) from immune and vessel wall cells propagate local and systemic coagulation initiation. TF trafficking and release on EVs occurs in concert with the release of cell adhesion receptors, including integrin β1 heterodimers, which control trafficking of the TF-activated factor VII (FVIIa) complex. Activation of the TF signaling partner, protease-activated receptor (PAR) 2, also triggers TF release on integrin β1+ EVs from endothelial cells, but the physiological signals for PAR2-dependent EV generation at the vascular interface remain unknown. Objective To define relevant protease ligands of TF contributing to PAR2-dependent release on EVs from endothelial cells. Methods In endothelial cells with balanced expression of TF and PAR2, we evaluated TF release on EVs by using a combination of activity and antigen assays, immunocapture, and confocal imaging. Results and Conclusions PAR2 stimulation generated time-dependent release of distinct TF+ EVs with high coagulant activity (early) and high antigen levels (late). Whereas PAR2 agonist peptide and a stabilized TF-FVIIa-activated FX complex triggered TF+ EV release, stimulation with FVIIa alone promoted cellular retention of TF, despite comparable PAR2 activation. On endothelial cells, FVIIa uniquely induced formation of a complex of TF with integrin α5 β1 . Internalization of TF by FVIIa or anti-TF and activating antibodies against integrin β1 prevented PAR2 agonist-induced release of TF on EVs. These data demonstrate that intracellular trafficking controlled by FVIIa forcing interaction with integrin β1 regulates TF availability for release on procoagulant EVs.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Henri H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden, the Netherlands
| | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
35
|
Ansari SA, Pendurthi UR, Rao LVM. Role of Cell Surface Lipids and Thiol-Disulphide Exchange Pathways in Regulating the Encryption and Decryption of Tissue Factor. Thromb Haemost 2019; 119:860-870. [PMID: 30861549 DOI: 10.1055/s-0039-1681102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue factor (TF), a transmembrane glycoprotein, is the cellular receptor of the coagulation factors VII (FVII) and VIIa (FVIIa). The formation of TF-FVIIa complex triggers the initiation of the blood coagulation pathway. TF plays an essential role in haemostasis, but an aberrant expression of TF activity contributes to thrombotic disorders. In health, TF pro-coagulant activity on cells is controlled tightly to allow sufficient coagulant activity to achieve haemostasis but not to cause thrombosis. It is achieved largely by selective localization of TF in the body and encryption of TF at the cell surface. A vast majority of TF on resting cells exists in an encrypted state with minimal pro-coagulant activity but becomes pro-thrombotic following cell injury or activation. At present, the mechanisms that are responsible for TF encryption and activation (decryption) are not entirely clear, but recent studies provide important mechanistic insights into these processes. To date, externalization of phosphatidylserine to the outer leaflet and thiol-disulphide exchange pathways that either turn on and off the allosteric disulphide bond in TF are shown to play a major role in regulating TF pro-coagulant activity on cell surfaces. Recent studies showed that sphingomyelin, a major phospholipid in the outer leaflet of plasma membrane, plays a critical role in the encryption of TF in resting cells. The present review provides an overview of recent literature on the above-described mechanisms of TF encryption and decryption with a particular emphasis on our recent findings.
Collapse
Affiliation(s)
- Shabbir A Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| |
Collapse
|
36
|
Complement C5 but not C3 is expendable for tissue factor activation by cofactor-independent antiphospholipid antibodies. Blood Adv 2019; 2:979-986. [PMID: 29716893 DOI: 10.1182/bloodadvances.2018017095] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 11/20/2022] Open
Abstract
The complement and coagulation cascades interact at multiple levels in thrombosis and inflammatory diseases. In venous thrombosis, complement factor 3 (C3) is crucial for platelet and tissue factor (TF) procoagulant activation dependent on protein disulfide isomerase (PDI). Furthermore, C5 selectively contributes to the exposure of leukocyte procoagulant phosphatidylserine (PS), which is a prerequisite for rapid activation of monocyte TF and fibrin formation in thrombosis. Here, we show that monoclonal cofactor-independent antiphospholipid antibodies (aPLs) rapidly activate TF on myelomonocytic cells. TF activation is blocked by PDI inhibitor and an anti-TF antibody interfering with PDI binding to TF, and requires C3 but unexpectedly not C5. Other prothrombotic, complement-fixing antibodies, for example, antithymocyte globulin, typically induce TF activation dependent on C5b-7-mediated PS exposure on the outer membrane of monocytes. We show that aPLs directly induce procoagulant PS exposure independent of C5. Accordingly, mice deficient in C3, but not mice deficient in C5, are protected from in vivo thrombus formation induced by cofactor-independent aPLs. Only immunoglobulin G (IgG) fractions with cofactor-independent anticardiolipin reactivity from patients with antiphospholipid syndrome (APS) induce complement-independent monocyte PS exposure and PDI-dependent TF activation. Neither a human monoclonal aPL directed against β2-glycoprotein I (β2GPI) nor patient IgG with selective reactivity to β2GPI rapidly activated monocyte TF. These results indicate that inhibitors of PDI and TF, but not necessarily clinically available drugs targeting C5, have therapeutic benefit in preventing thrombosis associated with APS caused by pathogenic aPLs primarily reactive with lipid, independent of β2GPI.
Collapse
|
37
|
Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost 2018; 16:1941-1952. [PMID: 30030891 DOI: 10.1111/jth.14246] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The tissue factor (TF) pathway plays a central role in hemostasis and thrombo-inflammatory diseases. Although structure-function relationships of the TF initiation complex are elucidated, new facets of the dynamic regulation of TF's activities in cells continue to emerge. Cellular pathways that render TF non-coagulant participate in signaling of distinct TF complexes with associated proteases through the protease-activated receptor (PAR) family of G protein-coupled receptors. Additional co-receptors, including the endothelial protein C receptor (EPCR) and integrins, confer signaling specificity by directing subcellular localization and trafficking. We here review how TF is switched between its role in coagulation and cell signaling through thiol-disulfide exchange reactions in the context of physiologically relevant lipid microdomains. Inflammatory mediators, including reactive oxygen species, activators of the inflammasome, and the complement cascade play pivotal roles in TF procoagulant activation on monocytes, macrophages and endothelial cells. We furthermore discuss how TF, intracellular ligands, co-receptors and associated proteases are integrated in PAR-dependent cell signaling pathways controlling innate immunity, cancer and metabolic inflammation. Knowledge of the precise interactions of TF in coagulation and cell signaling is important for understanding effects of new anticoagulants beyond thrombosis and identification of new applications of these drugs for potential additional therapeutic benefits.
Collapse
Affiliation(s)
- H Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET) and National University of Tucumán, Tucumán, Argentina
| | - A S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - W Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- German Center for Cardiovascular Research (DZHK), Partnersite Rhein-Main, Mainz, Germany
| |
Collapse
|
38
|
Graner MW. Extracellular vesicles in cancer immune responses: roles of purinergic receptors. Semin Immunopathol 2018; 40:465-475. [PMID: 30209547 DOI: 10.1007/s00281-018-0706-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nano- to micro-scale membrane-enclosed vesicles that are released from presumably all cell types. Tumor cells and immune cells are prodigious generators of EVs often with competing phenotypes in terms of immune suppression versus immune stimulation. Purinergic receptors, proteins that bind diverse purine nucleotides and nucleosides (ATP, ADP, AMP, adenosine), are widely expressed across tissues and cell types, and are prominent players in immune and tumor cell nucleotide metabolism. The effects of purinergic receptor stimulation or agonism tend to produce inflammatory responses that may aid immune stimulation but may also provoke various immune suppression mechanisms, particularly in the tumor microenvironment. EVs released by cells following receptor stimulation are frequently pro-inflammatory, but often also pro-thrombolytic; these EVs may generate an environment that favors tumor progression at the cost of an effective immune response. Purinergic signaling pathways are becoming more recognized as valuable targets in various therapeutic scenarios, including cancer. It is possible that some of those clinically relevant compounds might also impact EV secretion and/or phenotype, which would hopefully capitalize on the immune stimulatory properties of purinergic signaling while minimizing the immune suppressive consequences. This review covers a relatively understudied area in EV biology, but even so, focuses almost exclusively on the purinergic receptors in a very limited capacity. There is much more to evaluate and incorporate into our understanding of extracellular nucleotides in EV biology, and we hope this work prompts further discovery.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, RC2, 12700 E 19th Ave, Room 5125, Aurora, CO, 80045, USA.
| |
Collapse
|
39
|
Rothmeier AS, Liu E, Chakrabarty S, Disse J, Mueller BM, Østergaard H, Ruf W. Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling. Blood 2018; 131:674-685. [PMID: 29246902 PMCID: PMC5805488 DOI: 10.1182/blood-2017-02-768218] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
The tissue factor (TF) pathway serves both hemostasis and cell signaling, but how cells control these divergent functions of TF remains incompletely understood. TF is the receptor and scaffold of coagulation proteases cleaving protease-activated receptor 2 (PAR2) that plays pivotal roles in angiogenesis and tumor development. Here we demonstrate that coagulation factor VIIa (FVIIa) elicits TF cytoplasmic domain-dependent proangiogenic cell signaling independent of the alternative PAR2 activator matriptase. We identify a Lys-Gly-Glu (KGE) integrin-binding motif in the FVIIa protease domain that is required for association of the TF-FVIIa complex with the active conformer of integrin β1. A point mutation in this motif markedly reduces TF-FVIIa association with integrins, attenuates integrin translocation into early endosomes, and reduces delayed mitogen-activated protein kinase phosphorylation required for the induction of proangiogenic cytokines. Pharmacologic or genetic blockade of the small GTPase ADP-ribosylation factor 6 (arf6) that regulates integrin trafficking increases availability of TF-FVIIa with procoagulant activity on the cell surface, while inhibiting TF-FVIIa signaling that leads to proangiogenic cytokine expression and tumor cell migration. These experiments delineate the structural basis for the crosstalk of the TF-FVIIa complex with integrin trafficking and suggest a crucial role for endosomal PAR2 signaling in pathways of tissue repair and tumor biology.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Enbo Liu
- San Diego Biomedical Research Institute, San Diego, CA
| | - Sagarika Chakrabarty
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jennifer Disse
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
40
|
Spronk HMH, Padro T, Siland JE, Prochaska JH, Winters J, van der Wal AC, Posthuma JJ, Lowe G, d'Alessandro E, Wenzel P, Coenen DM, Reitsma PH, Ruf W, van Gorp RH, Koenen RR, Vajen T, Alshaikh NA, Wolberg AS, Macrae FL, Asquith N, Heemskerk J, Heinzmann A, Moorlag M, Mackman N, van der Meijden P, Meijers JCM, Heestermans M, Renné T, Dólleman S, Chayouâ W, Ariëns RAS, Baaten CC, Nagy M, Kuliopulos A, Posma JJ, Harrison P, Vries MJ, Crijns HJGM, Dudink EAMP, Buller HR, Henskens YMC, Själander A, Zwaveling S, Erküner O, Eikelboom JW, Gulpen A, Peeters FECM, Douxfils J, Olie RH, Baglin T, Leader A, Schotten U, Scaf B, van Beusekom HMM, Mosnier LO, van der Vorm L, Declerck P, Visser M, Dippel DWJ, Strijbis VJ, Pertiwi K, Ten Cate-Hoek AJ, Ten Cate H. Atherothrombosis and Thromboembolism: Position Paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2018; 118:229-250. [PMID: 29378352 DOI: 10.1160/th17-07-0492] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and long-term morbidity. Platelets and coagulation proteases, interacting with circulating cells and in different vascular beds, modify several complex pathologies including atherosclerosis. In the second Maastricht Consensus Conference on Thrombosis, this theme was addressed by diverse scientists from bench to bedside. All presentations were discussed with audience members and the results of these discussions were incorporated in the final document that presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following five topics: 1. Risk factors, biomarkers and plaque instability: In atherothrombosis research, more focus on the contribution of specific risk factors like ectopic fat needs to be considered; definitions of atherothrombosis are important distinguishing different phases of disease, including plaque (in)stability; proteomic and metabolomics data are to be added to genetic information. 2. Circulating cells including platelets and atherothrombosis: Mechanisms of leukocyte and macrophage plasticity, migration, and transformation in murine atherosclerosis need to be considered; disease mechanism-based biomarkers need to be identified; experimental systems are needed that incorporate whole-blood flow to understand how red blood cells influence thrombus formation and stability; knowledge on platelet heterogeneity and priming conditions needs to be translated toward the in vivo situation. 3. Coagulation proteases, fibrin(ogen) and thrombus formation: The role of factor (F) XI in thrombosis including the lower margins of this factor related to safe and effective antithrombotic therapy needs to be established; FXI is a key regulator in linking platelets, thrombin generation, and inflammatory mechanisms in a renin-angiotensin dependent manner; however, the impact on thrombin-dependent PAR signaling needs further study; the fundamental mechanisms in FXIII biology and biochemistry and its impact on thrombus biophysical characteristics need to be explored; the interactions of red cells and fibrin formation and its consequences for thrombus formation and lysis need to be addressed. Platelet-fibrin interactions are pivotal determinants of clot formation and stability with potential therapeutic consequences. 4. Preventive and acute treatment of atherothrombosis and arterial embolism; novel ways and tailoring? The role of protease-activated receptor (PAR)-4 vis à vis PAR-1 as target for antithrombotic therapy merits study; ongoing trials on platelet function test-based antiplatelet therapy adjustment support development of practically feasible tests; risk scores for patients with atrial fibrillation need refinement, taking new biomarkers including coagulation into account; risk scores that consider organ system differences in bleeding may have added value; all forms of oral anticoagulant treatment require better organization, including education and emergency access; laboratory testing still needs rapidly available sensitive tests with short turnaround time. 5. Pleiotropy of coagulation proteases, thrombus resolution and ischaemia-reperfusion: Biobanks specifically for thrombus storage and analysis are needed; further studies on novel modified activated protein C-based agents are required including its cytoprotective properties; new avenues for optimizing treatment of patients with ischaemic stroke are needed, also including novel agents that modify fibrinolytic activity (aimed at plasminogen activator inhibitor-1 and thrombin activatable fibrinolysis inhibitor.
Collapse
Affiliation(s)
- H M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Padro
- Cardiovascular Research Center (ICCC), Hospital Sant Pau, Barcelona, Spain
| | - J E Siland
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - J H Prochaska
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A C van der Wal
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - J J Posthuma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Lowe
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - E d'Alessandro
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - P Wenzel
- Department of Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P H Reitsma
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - W Ruf
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - R H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - T Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - N A Alshaikh
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - F L Macrae
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - N Asquith
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - J Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Moorlag
- Synapse, Maastricht, The Netherlands
| | - N Mackman
- Department of Medicine, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States
| | - P van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J C M Meijers
- Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands
| | - M Heestermans
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - T Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Dólleman
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - W Chayouâ
- Synapse, Maastricht, The Netherlands
| | - R A S Ariëns
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - C C Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Kuliopulos
- Tufts University School of Graduate Biomedical Sciences, Biochemistry/Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - J J Posma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - P Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - M J Vries
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - E A M P Dudink
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H R Buller
- Department of Vascular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Y M C Henskens
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Själander
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - S Zwaveling
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Synapse, Maastricht, The Netherlands
| | - O Erküner
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J W Eikelboom
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - A Gulpen
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - F E C M Peeters
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Douxfils
- Department of Pharmacy, Thrombosis and Hemostasis Center, Faculty of Medicine, Namur University, Namur, Belgium
| | - R H Olie
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Baglin
- Department of Haematology, Addenbrookes Hospital Cambridge, Cambridge, United Kingdom
| | - A Leader
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Tel Aviv, Israel
| | - U Schotten
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - B Scaf
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H M M van Beusekom
- Department of Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L O Mosnier
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | | | - P Declerck
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | | | - D W J Dippel
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | | | - K Pertiwi
- Department of Cardiovascular Pathology, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - A J Ten Cate-Hoek
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
41
|
Graf C, Ruf W. Tissue factor as a mediator of coagulation and signaling in cancer and chronic inflammation. Thromb Res 2018; 164 Suppl 1:S143-S147. [PMID: 29703473 DOI: 10.1016/j.thromres.2018.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
Thrombosis is frequently diagnosed as a first symptom in tumor patients and the clinical management of hypercoagulability in cancer patients remains challenging due to concomitant changes in risk factors for severe bleeding. It therefore remains a priority to better understand interactions of the hemostatic system with cancer biology. Specifically, further research is needed to elucidate the details and effects of new anticoagulants on extravascular coagulation and the interplay between cancer progression and chronic inflammation. In addition, it will be important to identify subgroups of cancer patients benefiting from specific modulations of the coagulation system without increasing the bleeding risk. Here, we review recent findings on tissue factor (TF) regulation, its procoagulant activity and TF signaling in the various cell types of the tumor microenvironment.
Collapse
Affiliation(s)
- Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|