1
|
Wang H, Wang C, Wei J, Zhao X, Yang X, Li R, Li M, Zhu Z. LMO2 confers value as a potential immunotherapy marker in pan-cancer analysis and inhibits progression of Clear Cell Renal Cell Carcinoma. Transl Oncol 2025; 57:102409. [PMID: 40344914 DOI: 10.1016/j.tranon.2025.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/31/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Emerging evidence highlights LIM-domain only 2 (LMO2) as both a potential biomarker and therapeutic target in diverse cancers. However, its functional characterization and clinical significance remain insufficiently explored in cancers such as Clear Cell Renal Cell Carcinoma (ccRCC). Therefore, comprehensive pan-cancer analysis and mechanistic investigation are necessary for optimizing LMO2-targeted immunotherapy strategies. METHODS We conducted comprehensive multi-omics analyses and clinicopathological correlation studies across all cancers using TCGA data and specialized bioinformatics tools. Immune microenvironment associations were evaluated through Pearson correlation coefficients and TIMER algorithm validation. Subsequent functional enrichment analyses and predictive regulator identification were performed to delineate signaling pathways in ccRCC. Mechanistic insights were validated through in vitro models and xenograft experiments. RESULTS LMO2 demonstrates significant deregulation across multiple malignancies, with its mRNA expression exhibiting distinct correlations with clinical staging, survival outcomes, and tumor immune microenvironment characteristics. Systematic analysis further confirmed it as a potentially novel immunotherapeutic target. Mechanistic investigations revealed that ZC3H13 depletion mediates LMO2 downregulation through N6-methyladenosine (m6A)-dependent epigenetic modifications. Through comprehensive functional validation in ccRCC, we established LMO2's tumor-suppressive properties using both in vitro models and xenograft assays. Subsequent pathway investigation demonstrated that LMO2 exerts its anti-tumor effects through direct modulation of the NF-κB signaling cascade via the GATA2-BEX1 regulatory axis. CONCLUSIONS Our findings establish substantial evidence for LMO2 as both a potential therapeutic candidate in cancer immunotherapy and a significant prognostic modulator in ccRCC pathogenesis. The mechanistic characterization of LMO2's tumor-suppressive functions warrants heightened translational consideration in both clinical management strategies and molecular etiology research.
Collapse
Affiliation(s)
- Huiping Wang
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| | - Cong Wang
- Laboratory of Experimental and Clinical Pathology, Departments of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| | - Jia Wei
- Laboratory of Experimental and Clinical Pathology, Departments of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| | - Xuan'er Zhao
- School of Anethesiology, Xuzhou Medical University, Xuzhou, Jiangs 221004, PR China.
| | - Xuemei Yang
- Laboratory of Experimental and Clinical Pathology, Departments of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| | - Renren Li
- Center of Healthcare Management, The Affiliated Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| | - Mengmeng Li
- Department of Neurology III, Xuzhou Oriental People's Hospital, Xuzhou, Jiangsu 221004, PR China.
| | - Zhansheng Zhu
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Laboratory of Experimental and Clinical Pathology, Departments of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
2
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
3
|
Hu H, Wang Y, Dong Y, Wang L, Chen Y, Zhou Y, Sun L. Knockdown of LIMD2 inhibits the progression of ovarian carcinoma through ERK1/2 pathway. Mol Biol Rep 2023; 50:8985-8993. [PMID: 37716918 DOI: 10.1007/s11033-023-08733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND The incidence rate of ovarian carcinoma (OC) is the third of the female reproductive system malignant tumors, while its mortality rate ranks first among causes of female reproductive system tumor related death in the world. METHODS In the present research, we investigated the specific role of LIMD2 through LIMD2 knockdown in OC cells. RESULTS The results of online analysis and expression detection proved that LIMD2 was up-regulated in human OC tissues and cells. Knockdown of LIMD2 inhibited the proliferation, migration and invasion in OC cells. LIMD2 knockdown promoted the apoptosis, as well as the expression of Cleaved-Caspase3 and Bax. Importantly, knockdown of LIMD2 promotes cell autophagy. LC3-II/I ratio and Beclin1 expression increased in LIMD2 knockdown cells, while P62 expression declined in LIMD2 knockdown cells. Additionally, the phosphorylation of ERK1/2 was inhibited by the knockdown of LIMD2 in SKOV3 and OVCAR3 cells. CONCLUSION Knockdown of LIMD2 inhibits cell proliferation, migration, invasion and autophagy, and promotes the apoptosis through the ERK1/2 signaling pathway, suggesting that LIMD2-siRNA may be an effective molecule to prevent OC progression.
Collapse
Affiliation(s)
- Haiyang Hu
- Department of Gynecology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, People's Republic of China
| | - Yanan Wang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Yan Dong
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Lin Wang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Yahui Chen
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Yan Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Lin Sun
- Department of Gynecology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, People's Republic of China.
| |
Collapse
|
4
|
Rai V, Le H, Agrawal DK. Novel mediators regulating angiogenesis in diabetic foot ulcer healing. Can J Physiol Pharmacol 2023; 101:488-501. [PMID: 37459652 DOI: 10.1139/cjpp-2023-0193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A non-healing diabetic foot ulcer (DFU) is a debilitating clinical problem amounting to socioeconomic and psychosocial burdens. DFUs increase morbidity due to prolonged treatment and mortality in the case of non-treatable ulcers resulting in gangrene and septicemia. The overall amputation rate of the lower extremity with DFU ranges from 3.34% to 42.83%. Wound debridement, antibiotics, applying growth factors, negative pressure wound therapy, hyperbaric oxygen therapy, topical oxygen, and skin grafts are common therapies for DFU. However, recurrence and nonhealing ulcers are still major issues. Chronicity of inflammation, hypoxic environment, poor angiogenesis, and decreased formation of the extracellular matrix (ECM) are common impediments leading to nonhealing patterns of DFUs. Angiogenesis is crucial for wound healing since proper vessel formation facilitates nutrients, oxygen, and immune cells to the ulcer tissue to help in clearing out debris and facilitate healing. However, poor angiogenesis due to decreased expression of angiogenic mediators and matrix formation results in nonhealing and ultimately amputation. Multiple proangiogenic mediators and vascular endothelial growth factor (VEGF) therapy exist to enhance angiogenesis, but the results are not satisfactory. Thus, there is a need to investigate novel pro-angiogenic mediators that can either alone or in combination enhance the angiogenesis and healing of DFUs. In this article, we critically reviewed the existing pro-angiogenic mediators followed by potentially novel factors that might play a regulatory role in promoting angiogenesis and wound healing in DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Hoangvi Le
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
5
|
Rode M, Nenoff K, Wirkner K, Horn K, Teren A, Regenthal R, Loeffler M, Thiery J, Aigner A, Pott J, Kirsten H, Scholz M. Impact of medication on blood transcriptome reveals off-target regulations of beta-blockers. PLoS One 2022; 17:e0266897. [PMID: 35446883 PMCID: PMC9022833 DOI: 10.1371/journal.pone.0266897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background
For many drugs, mechanisms of action with regard to desired effects and/or unwanted side effects are only incompletely understood. To investigate possible pleiotropic effects and respective molecular mechanisms, we describe here a catalogue of commonly used drugs and their impact on the blood transcriptome.
Methods and results
From a population-based cohort in Germany (LIFE-Adult), we collected genome-wide gene-expression data in whole blood using in Illumina HT12v4 micro-arrays (n = 3,378; 19,974 gene expression probes per individual). Expression profiles were correlated with the intake of active substances as assessed by participants’ medication. This resulted in a catalogue of fourteen substances that were identified as associated with differential gene expression for a total of 534 genes. As an independent replication cohort, an observational study of patients with suspected or confirmed stable coronary artery disease (CAD) or myocardial infarction (LIFE-Heart, n = 3,008, 19,966 gene expression probes per individual) was employed. Notably, we were able to replicate differential gene expression for three active substances affecting 80 genes in peripheral blood mononuclear cells (carvedilol: 25; prednisolone: 17; timolol: 38). Additionally, using gene ontology enrichment analysis, we demonstrated for timolol a significant enrichment in 23 pathways, 19 of them including either GPER1 or PDE4B. In the case of carvedilol, we showed that, beside genes with well-established association with hypertension (GPER1, PDE4B and TNFAIP3), the drug also affects genes that are only indirectly linked to hypertension due to their effects on artery walls or their role in lipid biosynthesis.
Conclusions
Our developed catalogue of blood gene expressions profiles affected by medication can be used to support both, drug repurposing and the identification of possible off-target effects.
Collapse
Affiliation(s)
- Michael Rode
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Kolja Nenoff
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Kerstin Wirkner
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Andrej Teren
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Cardiology, Angiology and Intensive Care, Klinikum Lippe, Detmold, Germany
| | - Ralf Regenthal
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Medical Campus Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|