1
|
Xiang R, Wang Y, Shuey MM, Carvajal B, Wells QS, Beckman JA, Jaffe IZ. Development and Implementation of an Integrated Preclinical Atherosclerosis Database. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004397. [PMID: 38563135 PMCID: PMC11021141 DOI: 10.1161/circgen.123.004397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Basic scientists have used preclinical animal models to explore mechanisms driving human diseases for decades, resulting in thousands of publications, each supporting causative inferences. Despite substantial advances in the mechanistic construct of disease, there has been limited translation from individual studies to advances in clinical care. An integrated approach to these individual studies has the potential to improve translational success. METHODS Using atherosclerosis as a test case, we extracted data from the 2 most common mouse models of atherosclerosis (ApoE [apolipoprotein E]-knockout and LDLR [low-density lipoprotein receptor]-knockout). We restricted analyses to manuscripts published in 2 well-established journals, Arteriosclerosis, Thrombosis, and Vascular Biology and Circulation, as of query in 2021. Predefined variables including experimental conditions, intervention, and outcomes were extracted from each publication to produce a preclinical atherosclerosis database. RESULTS Extracted data include animal sex, diet, intervention type, and distinct plaque pathologies (size, inflammation, and lipid content). Procedures are provided to standardize data extraction, attribute interventions to specific genes, and transform the database for use with available transcriptomics software. The database integrates hundreds of genes, each directly tested in vivo for causation in a murine atherosclerosis model. The database is provided to allow the research community to perform integrated analyses that reflect the global impact of decades of atherosclerosis investigation. CONCLUSIONS This database is provided as a resource for future interrogation of sub-data sets associated with distinct plaque pathologies, cell type, or sex. We also provide the methods and software needed to expand this data set and apply this approach to the extensive repository of peer-reviewed data utilizing preclinical models to interrogate mechanisms of diverse human diseases.
Collapse
Affiliation(s)
- Rachel Xiang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Yihua Wang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Megan M. Shuey
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Quinn S. Wells
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joshua A. Beckman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
2
|
Shuey MM, Wang Y, Xiang RR, Zou A, Rahman P, Fabbri D, Beckman JA, Jaffe I, Wells QS. Aggregation and Contextualization of Murine Investigations Improves Discovery of Significant Human Atherosclerotic Cardiovascular Disease Associations. Circulation 2024; 149:1056-1058. [PMID: 38527133 PMCID: PMC10965229 DOI: 10.1161/circulationaha.123.067510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- Megan M. Shuey
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yihua Wang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Rachel R. Xiang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Aaron Zou
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Protiva Rahman
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel Fabbri
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Joshua A. Beckman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Iris Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Quinn S. Wells
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Xiang R, Wang Y, Shuey MM, Carvajal B, Wells QS, Beckman JA, Jaffe IZ. Development and implementation of an integrated preclinical atherosclerosis database. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557423. [PMID: 37745476 PMCID: PMC10515845 DOI: 10.1101/2023.09.12.557423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Basic scientists have used preclinical animal models to explore mechanisms driving human diseases for decades, resulting in thousands of publications, each supporting causative inferences. Despite substantial advances in the mechanistic construct of disease, there has been limited translation from individual studies to advances in clinical care. An integrated approach to these individual studies has the potential to improve translational success. Methods Using atherosclerosis as a test case, we extracted data from the two most common mouse models of atherosclerosis (ApoE and LDLR knockout). We restricted analyses to manuscripts published in two well-established journals, Arteriosclerosis, Thrombosis, and Vascular Biology and Circulation, as of query in 2021. Predefined variables including experimental conditions, intervention and outcomes were extracted from each publication to produce a preclinical atherosclerosis database. Results Extracted data include animal sex, diet, intervention type and distinct plaque pathologies (size, inflammation, lipid content). Procedures are provided to standardize data extraction, attribute interventions to specific genes and transform the database for use with available transcriptomics software. The database integrates hundreds of genes, each directly tested in vivo for causation in a murine atherosclerosis model. The database is provided to allow the research community to perform integrated analyses that reflect the global impact of decades of atherosclerosis investigation. Conclusions Future database uses include interrogation of sub-datasets associated with distinct plaque pathologies, cell-type or sex. We provide the methods and software needed to apply this approach to the extensive repository of peer-reviewed data utilizing preclinical models to interrogate mechanisms of diverse human diseases.
Collapse
Affiliation(s)
- Rachel Xiang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Yihua Wang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Megan M. Shuey
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Quinn S. Wells
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joshua A. Beckman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
4
|
Clark JM, Garvey WT, Niswender KD, Schmidt AM, Ahima RS, Aleman JO, Battarbee AN, Beckman J, Bennett WL, Brown NJ, Chandler‐Laney P, Cox N, Goldberg IJ, Habegger KM, Harper LM, Hasty AH, Hidalgo BA, Kim SF, Locher JL, Luther JM, Maruthur NM, Miller ER, Sevick MA, Wells Q. Obesity and Overweight: Probing Causes, Consequences, and Novel Therapeutic Approaches Through the American Heart Association's Strategically Focused Research Network. J Am Heart Assoc 2023; 12:e027693. [PMID: 36752232 PMCID: PMC10111504 DOI: 10.1161/jaha.122.027693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023]
Abstract
As the worldwide prevalence of overweight and obesity continues to rise, so too does the urgency to fully understand mediating mechanisms, to discover new targets for safe and effective therapeutic intervention, and to identify biomarkers to track obesity and the success of weight loss interventions. In 2016, the American Heart Association sought applications for a Strategically Focused Research Network (SFRN) on Obesity. In 2017, 4 centers were named, including Johns Hopkins University School of Medicine, New York University Grossman School of Medicine, University of Alabama at Birmingham, and Vanderbilt University Medical Center. These 4 centers were convened to study mechanisms and therapeutic targets in obesity, to train a talented cadre of American Heart Association SFRN-designated fellows, and to initiate and sustain effective and enduring collaborations within the individual centers and throughout the SFRN networks. This review summarizes the central themes, major findings, successful training of highly motivated and productive fellows, and the innovative collaborations and studies forged through this SFRN on Obesity. Leveraging expertise in in vitro and cellular model assays, animal models, and humans, the work of these 4 centers has made a significant impact in the field of obesity, opening doors to important discoveries, and the identification of a future generation of obesity-focused investigators and next-step clinical trials. The creation of the SFRN on Obesity for these 4 centers is but the beginning of innovative science and, importantly, the birth of new collaborations and research partnerships to propel the field forward.
Collapse
Affiliation(s)
- Jeanne M. Clark
- Division of General Internal Medicine, Department of MedicineThe Johns Hopkins University School of MedicineBaltimoreMD
- Department of EpidemiologyThe Johns Hopkins Bloomberg School of Public HealthBaltimoreMD
- Welch Center for Prevention, Epidemiology and Clinical ResearchThe Johns Hopkins UniversityBaltimoreMD
| | - W. Timothy Garvey
- Department of Nutrition SciencesUniversity of Alabama at BirminghamBirminghamAL
| | - Kevin D. Niswender
- Tennessee Valley Healthcare SystemVanderbilt University Medical CenterNashvilleTN
- Division of Diabetes, Department of Medicine, Endocrinology and MetabolismVanderbilt University Medical CenterNashvilleTN
| | - Ann Marie Schmidt
- Department of Medicine, Diabetes Research Program, Division of Endocrinology, Diabetes and MetabolismNew York University Grossman School of MedicineNew YorkNY
| | - Rexford S. Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and MetabolismThe Johns Hopkins University School of MedicineBaltimoreMD
| | - Jose O. Aleman
- Division of Endocrinology, Department of Medicine, Diabetes and MetabolismNew York University Grossman School of MedicineNew YorkNY
| | - Ashley N. Battarbee
- Division of Maternal Fetal Medicine, Department of Obstetrics and GynecologyUniversity of Alabama at BirminghamBirminghamAL
| | - Joshua Beckman
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Wendy L. Bennett
- Division of General Internal Medicine, Department of MedicineThe Johns Hopkins University School of MedicineBaltimoreMD
- Department of EpidemiologyThe Johns Hopkins Bloomberg School of Public HealthBaltimoreMD
- Welch Center for Prevention, Epidemiology and Clinical ResearchThe Johns Hopkins UniversityBaltimoreMD
- Department of Population, Family and Reproductive HealthThe Johns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | | | | | - Nancy Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Ira J. Goldberg
- Division of Endocrinology, Department of Medicine, Diabetes and MetabolismNew York University Grossman School of MedicineNew YorkNY
| | - Kirk M. Habegger
- Division of Endocrinology, Department of Medicine, Diabetes, and MetabolismUniversity of Alabama at BirminghamBirminghamAL
| | - Lorie M. Harper
- Division of Maternal Fetal Medicine, Department of Obstetrics and GynecologyUniversity of Alabama at BirminghamBirminghamAL
- Division of Maternal‐Fetal Medicine, Department of Women’s Health, Dell Medical SchoolUniversity of Texas at AustinAustinTXUSA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTN
- VA Tennessee Valley Healthcare SystemNashvilleTN
| | - Bertha A. Hidalgo
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sangwon F. Kim
- Department of Medicine, Division of Endocrinology, Diabetes and MetabolismThe Johns Hopkins University School of MedicineBaltimoreMD
- Department of NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreMD
| | - Julie L. Locher
- Division of Gerontology, Department of Medicine, Geriatrics, and Palliative CareUniversity of Alabama at BirminghamBirminghamAL
| | - James M. Luther
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical Center TennesseeNashvilleTN
| | - Nisa M. Maruthur
- Division of General Internal Medicine, Department of MedicineThe Johns Hopkins University School of MedicineBaltimoreMD
- Department of EpidemiologyThe Johns Hopkins Bloomberg School of Public HealthBaltimoreMD
- Welch Center for Prevention, Epidemiology and Clinical ResearchThe Johns Hopkins UniversityBaltimoreMD
| | - Edgar R. Miller
- Division of General Internal Medicine, Department of MedicineThe Johns Hopkins University School of MedicineBaltimoreMD
- Department of EpidemiologyThe Johns Hopkins Bloomberg School of Public HealthBaltimoreMD
- Welch Center for Prevention, Epidemiology and Clinical ResearchThe Johns Hopkins UniversityBaltimoreMD
| | - Mary Ann Sevick
- Division of Endocrinology, Department of Medicine, Diabetes and MetabolismNew York University Grossman School of MedicineNew YorkNY
- Department of Population Health, Center for Healthful Behavior ChangeNew York University Langone HealthNew YorkNY
| | - Quinn Wells
- Department of PharmacologyVanderbilt UniversityNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| |
Collapse
|
5
|
Zhang L, Xiong L, Fan L, Diao H, Tang M, Luo E, Guo W, Yang X, Xing S. Vascular lipidomics analysis reveales increased levels of phosphocholine and lysophosphocholine in atherosclerotic mice. Nutr Metab (Lond) 2023; 20:1. [PMID: 36600244 PMCID: PMC9811766 DOI: 10.1186/s12986-022-00723-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Atherosclerosis (AS) is the major cause of cardiovascular disease, and dyslipidemia is a principal determinant of the initiation and progression of AS. Numerous works have analyzed the lipid signature of blood, but scarce information on the lipidome of vascular tissue is available. This study investigated the lipid profile in the aorta of ApoE-/- mice. METHOD ApoE-/- mice were randomly divided into two groups: (1) the normal diet (ND) group and (2) the high-fat diet (HFD) group. After feeding for 8 weeks, the plasma low-density lipoprotein (LDL), total cholesterol (TC), and triglyceride (TGs) levels were measured. UHPLC-Q Exactive plus MS was used to assess the lipid profile using both positive and negative ionization modes. RESULTS LDL and TC levels were significantly increased in HFD mice, and lipid deposition, plaque area and collagen fiber levels were increased in HFD group. In addition, a total of 131 differential lipids were characterized, including 57 lipids with levels that were increased in the HFD group and 74 with levels that were decreased. Further analysis revealed that the levels of several differentially expressed phosphocholines (PCs) and lysophosphocholines (LPCs) were significantly increased. These PCs included PC (38:3), PC (36:4), PC (36:3), PC (36:2), PC (36:1), PC (34:1e), PC (34:1), PC (32:1), PC (18:0/18:1), and PC (38:5), and the LPCs included LPC (18:1), LPC (18:0) and LPC (16:0). CONCLUSION Our findings indicate the presence of a comprehensive lipid profile in the vascular tissue of atherosclerotic mice, particularly involving PC and LPC, which exhibited significantly increased levels in AS.
Collapse
Affiliation(s)
- Li Zhang
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China ,grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336 China
| | - Liling Xiong
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Li Fan
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Haoyang Diao
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Mi Tang
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Erdan Luo
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Wenmei Guo
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Xiao Yang
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Shasha Xing
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|