1
|
Bentestuen MS, Weis CN, Jeppesen CB, Thiele LS, Thirstrup JP, Cordero-Solorzano J, Jensen HK, Starnawska A, Hauser AS, Gasse C. Pharmacogenomic markers associated with drug-induced QT prolongation: a systematic review. Pharmacogenomics 2025; 26:53-72. [PMID: 40116580 PMCID: PMC11988217 DOI: 10.1080/14622416.2025.2481025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025] Open
Abstract
AIM To systematically assess clinical studies involving patients undergoing drug therapy, comparing different genotypes to assess the relationship with changes in QT intervals, with no limitations on study design, setting, population, dosing regimens, or duration. METHODS This systematic review followed PRISMA guidelines and a pre-registered protocol. Clinical human studies on PGx markers of diQTP were identified, assessed using standardized tools, and categorized by design. Gene associations were classified as pharmacokinetic or pharmacodynamic. Identified genes underwent pathway enrichment analyses. Drugs were classified by third-level Anatomical Therapeutic Chemical (ATC) codes. Descriptive statistics were computed by study category and drug classes. RESULTS Of 4,493 reports, 84 studies were included, identifying 213 unique variants across 42 drug classes, of which 10% were replicated. KCNE1-Asp85Asn was the most consistent variant. Most findings (82%) were derived from candidate gene studies, suggesting bias toward known markers. The diQTP-associated genes were mainly linked to "cardiac conduction" and "muscle contraction" pathways (false discovery rate = 4.71 × 10-14). We also found an overlap between diQTP-associated genes and congenital long QT syndrome genes. CONCLUSION Key genes, drugs, and pathways were identified, but few consistent PGx markers emerged. Extensive, unbiased studies with diverse populations are crucial to advancing the field. REGISTRATION A protocol was pre-registered at PROSPERO under registration number CRD42022296097. DATA DEPOSITION Data sets generated by this review are available at figshare: DOI: 10.6084/m9.figshare.27959616.
Collapse
Affiliation(s)
- Marlene Schouby Bentestuen
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Christian Noe Weis
- Department of Forensic Psychiatry, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | | | - Liv Swea Thiele
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | - Janne Pia Thirstrup
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Juan Cordero-Solorzano
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | - Henrik Kjærulf Jensen
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD‐Heart, Aarhus, Denmark
| | - Anna Starnawska
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | - Alexander Sebastian Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christiane Gasse
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| |
Collapse
|
2
|
van Doorn ECH, Amesz JH, Sadeghi AH, de Groot NMS, Manintveld OC, Taverne YJHJ. Preclinical Models of Cardiac Disease: A Comprehensive Overview for Clinical Scientists. Cardiovasc Eng Technol 2024; 15:232-249. [PMID: 38228811 PMCID: PMC11116217 DOI: 10.1007/s13239-023-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
For recent decades, cardiac diseases have been the leading cause of death and morbidity worldwide. Despite significant achievements in their management, profound understanding of disease progression is limited. The lack of biologically relevant and robust preclinical disease models that truly grasp the molecular underpinnings of cardiac disease and its pathophysiology attributes to this stagnation, as well as the insufficiency of platforms that effectively explore novel therapeutic avenues. The area of fundamental and translational cardiac research has therefore gained wide interest of scientists in the clinical field, while the landscape has rapidly evolved towards an elaborate array of research modalities, characterized by diverse and distinctive traits. As a consequence, current literature lacks an intelligible and complete overview aimed at clinical scientists that focuses on selecting the optimal platform for translational research questions. In this review, we present an elaborate overview of current in vitro, ex vivo, in vivo and in silico platforms that model cardiac health and disease, delineating their main benefits and drawbacks, innovative prospects, and foremost fields of application in the scope of clinical research incentives.
Collapse
Affiliation(s)
- Elisa C H van Doorn
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jorik H Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amir H Sadeghi
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja M S de Groot
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Yannick J H J Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Kang GJ, Xie A, Kim E, Dudley SC. miR-448 regulates potassium voltage-gated channel subfamily A member 4 (KCNA4) in ischemia and heart failure. Heart Rhythm 2023; 20:730-736. [PMID: 36693615 PMCID: PMC10149585 DOI: 10.1016/j.hrthm.2023.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND MicroRNA miR-448 mediates some of the effects of ischemia on arrhythmic risk. Potassium voltage-gated channel subfamily A member 4 (KCNA4) encodes a Kv1.4 current that opens in response to membrane depolarization and is essential for regulating the action potential duration in heart. KCNA4 has a miR-448 binding site. OBJECTIVE We investigated whether miR-448 was involved in the regulation of KCNA4 messenger RNA expression in ischemia. METHODS Quantitative real-time reverse-transcriptase polymerase chain reaction was used to investigate the expression of KCNA4 and miR-448. Pull-down assays were used to examine the interaction between miR-448 and KCNA4. miR-448 decoy and binding site mutation were used to examine the specificity of the effect for KCNA4. RESULTS The expression of KCNA4 is diminished in ischemia and human heart failure tissues with ventricular tachycardia. Previously, we have shown that miR-448 is upregulated in ischemia and inhibition can prevent arrhythmic risk after myocardial infarction. The 3'-untranslated region of KCNA4 has a conserved miR-448 binding site. miR-448 bound to this site directly and reduced KCNA4 expression and the transient outward potassium current. Inhibition of miR-448 restored KCNA4. CONCLUSION These findings showed a link between Kv1.4 downregulation and miR-448-mediated upregulation in ischemia, suggesting a new mechanism for the antiarrhythmic effect of miR-448 inhibition.
Collapse
Affiliation(s)
- Gyeoung-Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - An Xie
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Eunji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Samuel C Dudley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
4
|
Verkerk AO, Wilders R. Human Sinoatrial Node Pacemaker Activity: Role of the Slow Component of the Delayed Rectifier K + Current, I Ks. Int J Mol Sci 2023; 24:7264. [PMID: 37108427 PMCID: PMC10138838 DOI: 10.3390/ijms24087264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The pacemaker activity of the sinoatrial node (SAN) has been studied extensively in animal species but is virtually unexplored in humans. Here we assess the role of the slowly activating component of the delayed rectifier K+ current (IKs) in human SAN pacemaker activity and its dependence on heart rate and β-adrenergic stimulation. HEK-293 cells were transiently transfected with wild-type KCNQ1 and KCNE1 cDNA, encoding the α- and β-subunits of the IKs channel, respectively. KCNQ1/KCNE1 currents were recorded both during a traditional voltage clamp and during an action potential (AP) clamp with human SAN-like APs. Forskolin (10 µmol/L) was used to increase the intracellular cAMP level, thus mimicking β-adrenergic stimulation. The experimentally observed effects were evaluated in the Fabbri-Severi computer model of an isolated human SAN cell. Transfected HEK-293 cells displayed large IKs-like outward currents in response to depolarizing voltage clamp steps. Forskolin significantly increased the current density and significantly shifted the half-maximal activation voltage towards more negative potentials. Furthermore, forskolin significantly accelerated activation without affecting the rate of deactivation. During an AP clamp, the KCNQ1/KCNE1 current was substantial during the AP phase, but relatively small during diastolic depolarization. In the presence of forskolin, the KCNQ1/KCNE1 current during both the AP phase and diastolic depolarization increased, resulting in a clearly active KCNQ1/KCNE1 current during diastolic depolarization, particularly at shorter cycle lengths. Computer simulations demonstrated that IKs reduces the intrinsic beating rate through its slowing effect on diastolic depolarization at all levels of autonomic tone and that gain-of-function mutations in KCNQ1 may exert a marked bradycardic effect during vagal tone. In conclusion, IKs is active during human SAN pacemaker activity and has a strong dependence on heart rate and cAMP level, with a prominent role at all levels of autonomic tone.
Collapse
Affiliation(s)
- Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
5
|
Zhang HQ, Lin JL, Pan L, Mao L, Pang JL, Yuan Q, Li GY, Yi GS, Lin YB, Feng BL, Li YD, Wang Y, Jie LJ, Zhang YH. Enzastaurin cardiotoxicity: QT interval prolongation, negative inotropic responses and negative chronotropic action. Biochem Pharmacol 2023; 209:115443. [PMID: 36720353 DOI: 10.1016/j.bcp.2023.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Several clinical trials observed that enzastaurin prolonged QT interval in cancer patients. However, the mechanism of enzastaurin-induced QT interval prolongation is unclear. Therefore, this study aimed to assess the effect and mechanism of enzastaurin on QT interval and cardiac function. The Langendorff and Ion-Optix MyoCam systems were used to assess the effects of enzastaurin on QT interval, cardiac systolic function and intracellular Ca2+ transient in guinea pig hearts and ventricular myocytes. The effects of enzastaurin on the rapid delayed rectifier (IKr), the slow delayed rectifier K+ current (IKs), transient outward potassium current (Ito), action potentials, Ryanodine Receptor 2 (RyR2) and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) expression and activity in HEK 293 cell system and primary cardiomyocytes were investigated using whole-cell recording technique and western blotting. We found that enzastaurin significantly prolonged QT interval in guinea pig hearts and increased the action potential duration (APD) in guinea pig cardiomyocytes in a dose-dependent manner. Enzastaurin potently inhibited IKr by binding to the human Ether-à-go-go-Related gene (hERG) channel in both open and closed states, and hERG mutant channels, including S636A, S631A, and F656V attenuated the inhibitory effect of enzastaurin. Enzastaurin also moderately decreased IKs. Additionally, enzastaurin also induced negative chronotropic action. Moreover, enzastaurin impaired cardiac systolic function and reduced intracellular Ca2+ transient via inhibition of RyR2 phosphorylation. Taken together, we found that enzastaurin prolongs QT, reduces heart rate and impairs cardiac systolic function. Therefore, we recommend that electrocardiogram (ECG) and cardiac function should be continuously monitored when enzastaurin is administered to cancer patients.
Collapse
Affiliation(s)
- He-Qiang Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jia-le Lin
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lei Pan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Liang Mao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing-Long Pang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qian Yuan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Gui-Yang Li
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Gang-Si Yi
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang-Bin Lin
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bao-Long Feng
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yun-da Li
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Ling-Jun Jie
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Yan-Hui Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Karlova M, Abramochkin DV, Pustovit KB, Nesterova T, Novoseletsky V, Loussouarn G, Zaklyazminskaya E, Sokolova OS. Disruption of a Conservative Motif in the C-Terminal Loop of the KCNQ1 Channel Causes LQT Syndrome. Int J Mol Sci 2022; 23:ijms23147953. [PMID: 35887302 PMCID: PMC9316142 DOI: 10.3390/ijms23147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
We identified a single nucleotide variation (SNV) (c.1264A > G) in the KCNQ1 gene in a 5-year-old boy who presented with a prolonged QT interval. His elder brother and mother, but not sister and father, also had this mutation. This missense mutation leads to a p.Lys422Glu (K422E) substitution in the Kv7.1 protein that has never been mentioned before. We inserted this substitution in an expression plasmid containing Kv7.1 cDNA and studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1, using the whole-cell configuration of the patch-clamp technique. Expression of the mutant Kv7.1 channel in both homo- and heterozygous conditions in the presence of auxiliary subunit KCNE1 results in a significant decrease in tail current densities compared to the expression of wild-type (WT) Kv7.1 and KCNE1. This study also indicates that K422E point mutation causes a dominant negative effect. The mutation was not associated with a trafficking defect; the mutant channel protein was confirmed to localize at the cell membrane. This mutation disrupts the poly-Lys strip in the proximal part of the highly conserved cytoplasmic A−B linker of Kv7.1 that was not shown before to be crucial for channel functioning.
Collapse
Affiliation(s)
- Maria Karlova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
| | - Denis V. Abramochkin
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
| | - Ksenia B. Pustovit
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
| | - Tatiana Nesterova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049 Ekaterinburg, Russia;
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620075 Ekaterinburg, Russia
| | - Valery Novoseletsky
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
- Biology Department, Shenzhen MSU-BIT University, Shenzhen 517182, China
| | - Gildas Loussouarn
- Nantes Université, CNRS, INSERM, l’institut du Thorax, F-44000 Nantes, France;
| | | | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
- Biology Department, Shenzhen MSU-BIT University, Shenzhen 517182, China
- Correspondence: or
| |
Collapse
|
7
|
Ross RL, Mavria G, Del Galdo F, Elies J. Downregulation of Vascular Hemeoxygenase-1 Leads to Vasculopathy in Systemic Sclerosis. Front Physiol 2022; 13:900631. [PMID: 35600300 PMCID: PMC9117635 DOI: 10.3389/fphys.2022.900631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a terminal disease characterized by vasculopathy, tissue fibrosis, and autoimmunity. Although the exact etiology of SSc remains unknown, endothelial dysfunction, oxidative stress, and calcium handling dysregulation have been associated with a large number of SSc-related complications such as neointima formation, vasculogenesis, pulmonary arterial hypertension, impaired angiogenesis, and cardiac arrhythmias. Hemeoxygenase-1 (HO-1) is an antioxidant enzyme involved in multiple biological actions in the cardiovascular system including vascular tone, angiogenesis, cellular proliferation, apoptosis, and oxidative stress. The aim of this work was to investigate the physiological role of HO-1 and its relevance in the cardiovascular complications occurring in SSc. We found that, in early phases of SSc, the expression of HO-1 in dermal fibroblast is lower compared to those isolated from healthy control individuals. This is particularly relevant as reduction of the HO-1/CO signaling pathway is associated with endothelial dysfunction and vasculopathy. We show evidence of the role of HO-1/carbon monoxide (CO) signaling pathway in calcium handling. Using an in vitro model of pulmonary arterial hypertension (PAH) we investigated the role of HO-1 in Ca2+ mobilization from intracellular stores. Our results indicate that HO-1 regulates calcium release from intracellular stores of human pulmonary arterial endothelial cells. We interrogated the activity of HO-1 in angiogenesis using an organotypic co-culture of fibroblast-endothelial cell. Inhibition of HO-1 significantly reduced the ability of endothelial cells to form tubules. We further investigated if this could be associated with cell motility or migration of endothelial cells into the extracellular matrix synthesized by fibroblasts. By mean of holographic imaging, we studied the morphological and functional features of endothelial cells in the presence of an HO-1 activator and selective inhibitors. Our results demonstrate that inhibition of HO-1 significantly reduces cell proliferation and cell motility (migration) of cultured endothelial cells, whilst activation of HO-1 does not modify either morphology, proliferation or motility. In addition, we investigated the actions of CO on the Kv7.1 (KCQN1) channel current, an important component of the cardiac action potential repolarization. Using electrophysiology (whole-cell patch-clamp in a recombinant system overexpressing the KCQN1 channel), we assessed the regulation of KCQN1 by CO. CORM-2, a CO donor, significantly reduced the Kv7.1 current, suggesting that HO-1/CO signaling may play a role in the modulation of the cardiac action potential via regulation of this ion channel. In summary, our results indicate a clear link between: 1) downregulation of HO-1/CO signaling; and 2) pathophysiological processes occurring in early phases of SSc, such as calcium homeostasis dysregulation, impaired angiogenesis and cardiac arrhythmias. A better understanding of the canonical actions (mainly due to the biological actions of CO), and non-canonical actions of HO-1, as well as the interaction of HO-1/CO signaling with other gasotransmitters in SSc will contribute to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Georgia Mavria
- Signal Transduction and Tumour Microenvironment Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Jacobo Elies
- Cardiovascular Research Group, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Jacobo Elies,
| |
Collapse
|
8
|
Gray B, Baruteau AE, Antolin AA, Pittman A, Sarganas G, Molokhia M, Blom MT, Bastiaenen R, Bardai A, Priori SG, Napolitano C, Weeke PE, Shakir SA, Haverkamp W, Mestres J, Winkel BG, Witney AA, Chis-Ster I, Sangaralingam A, Camm AJ, Tfelt-Hansen J, Roden DM, Tan HL, Garbe E, Sturkenboom M, Behr ER. Rare Variation in Drug Metabolism and Long QT Genes and the Genetic Susceptibility to Acquired Long QT Syndrome. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003391. [PMID: 35113648 DOI: 10.1161/circgen.121.003391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Acquired long QT syndrome (aLQTS) is a serious unpredictable adverse drug reaction. Pharmacogenomic markers may predict risk. METHODS Among 153 aLQTS patients (mean age 58 years [range, 14-88], 98.7% White, 85.6% symptomatic), computational methods identified proteins interacting most significantly with 216 QT-prolonging drugs. All cases underwent sequencing of 31 candidate genes arising from this analysis or associating with congenital LQTS. Variants were filtered using a minor allele frequency <1% and classified for susceptibility for aLQTS. Gene-burden analyses were then performed comparing the primary cohort to control exomes (n=452) and an independent replication aLQTS exome sequencing cohort. RESULTS In 25.5% of cases, at least one rare variant was identified: 22.2% of cases carried a rare variant in a gene associated with congenital LQTS, and in 4% of cases that variant was known to be pathogenic or likely pathogenic for congenital LQTS; 7.8% cases carried a cytochrome-P450 (CYP) gene variant. Of 12 identified CYP variants, 11 (92%) were in an enzyme known to metabolize at least one culprit drug to which the subject had been exposed. Drug-drug interactions that affected culprit drug metabolism were found in 19% of cases. More than one congenital LQTS variant, CYP gene variant, or drug interaction was present in 7.8% of cases. Gene-burden analyses of the primary cohort compared to control exomes (n=452), and an independent replication aLQTS exome sequencing cohort (n=67) and drug-tolerant controls (n=148) demonstrated an increased burden of rare (minor allele frequency<0.01) variants in CYP genes but not LQTS genes. CONCLUSIONS Rare susceptibility variants in CYP genes are emerging as potentially important pharmacogenomic risk markers for aLQTS and could form part of personalized medicine approaches in the future.
Collapse
Affiliation(s)
- Belinda Gray
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| | - Alban-Elouen Baruteau
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France (A.-E.B.)
| | - Albert A Antolin
- Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute & University Pompeu Fabra, Parc de Recerca Biomedica, Barcelona, Catalonia, Spain (A.A.A., M.J.M.)
| | - Alan Pittman
- Genetics Research Centre (A.P.), St George's University of London, United Kingdom
| | - Giselle Sarganas
- Clinical Pharmacology & Toxicology, Charite Universitaetsmedizin, Berlin, Germany (G.S.)
| | - Mariam Molokhia
- Department of Population Health Sciences, King's College London, United Kingdom (M.M.)
| | - Marieke T Blom
- Heart Centre AMC, Department of Experimental & Clinical Cardiology, Academic Medical Center, Amsterdam, the Netherlands (M.T.B., A.B., H.L.T.)
| | - Rachel Bastiaenen
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| | - Abdenasser Bardai
- Heart Centre AMC, Department of Experimental & Clinical Cardiology, Academic Medical Center, Amsterdam, the Netherlands (M.T.B., A.B., H.L.T.)
| | - Silvia G Priori
- Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy (S.G.P., C.N.)
- Department of Molecular Medicine, University of Pavia, Italy (S.G.P., C.N.)
| | - Carlo Napolitano
- Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy (S.G.P., C.N.)
- Department of Molecular Medicine, University of Pavia, Italy (S.G.P., C.N.)
| | - Peter E Weeke
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France (A.-E.B.)
- Departments of Medicine, Pharmacology & Biomedical Informatics Vanderbilt University Medical Centre (P.E.W., D.M.R.)
| | - Saad A Shakir
- Drug Safety Research Unit, Bursledon Hall, Blundell Lane, Southampton, United Kingdom (S.A.S.)
- Associate Department of the School of Pharmacy & Biomedical Sciences, University of Portsmouth, United Kingdom (S.A.S.)
| | - Wilhelm Haverkamp
- Charité-Campus Virchow-Klinikum (CVK), Department of Cardiology, Berlin, Germany (W.H.)
| | - Jordi Mestres
- Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute & University Pompeu Fabra, Parc de Recerca Biomedica, Barcelona, Catalonia, Spain (A.A.A., M.J.M.)
| | - Bo Gregers Winkel
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark (B.W., J.T.-H.)
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (P.E.W., B.W., J.T.-H.)
| | - Adam A Witney
- Institute of Infection & Immunity (A.A.W., I.C.-S.), St George's University of London, United Kingdom
| | - Irina Chis-Ster
- Institute of Infection & Immunity (A.A.W., I.C.-S.), St George's University of London, United Kingdom
| | - Ajanthah Sangaralingam
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| | - A John Camm
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (P.E.W., B.W., J.T.-H.)
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark (B.W., J.T.-H.)
| | - Dan M Roden
- Departments of Medicine, Pharmacology & Biomedical Informatics Vanderbilt University Medical Centre (P.E.W., D.M.R.)
| | - Hanno L Tan
- Heart Centre AMC, Department of Experimental & Clinical Cardiology, Academic Medical Center, Amsterdam, the Netherlands (M.T.B., A.B., H.L.T.)
| | - Edeltraut Garbe
- Leibniz Institute for Prevention Research & Epidemiology - BIPS, Bremen, Germany (E.G.)
| | - Miriam Sturkenboom
- Julius Global Health, University Medical Center Utrecht, the Netherlands (M.S.)
| | - Elijah R Behr
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| |
Collapse
|
9
|
Jie LJ, Li YD, Zhang HQ, Mao L, Xie HB, Zhou FG, Zhou TL, Xie D, Lin JL, Li GY, Cai BN, Zhang YH, Wang Y. Mechanisms of gefitinib-induced QT prolongation. Eur J Pharmacol 2021; 910:174441. [PMID: 34474028 DOI: 10.1016/j.ejphar.2021.174441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
Gefitinib, a tyrosine kinase inhibitor, was the first targeted therapy for non-small cell lung cancer (NSCLC). Gefitinib could block human Ether-à-go-go-Related Gene (hERG) channel, an important target in drug-induced long QT syndrome. However, it is unclear whether gefitinib could induce QT interval prolongation. Here, whole-cell patch-clamp technique was used for evaluating the effect of gefitinib on rapidly-activating delayed rectifier K+ current (IKr), slowly-activating delayed rectifier K+ current (IKs), transient outward potassium current (Ito), inward rectifier K+ current (IK1) and on action potentials in guinea pig ventricular myocytes. The Langendorff heart perfusion technique was used to determine drug effect on the ECG. Gefitinib depressed IKr by binding to open and closed hERG channels in a concentration-dependent way (IC50: 1.91 μM). The inhibitory effect of gefitinib on wildtype hERG channels was reduced at the hERG mutants Y652A, S636A, F656V and S631A (IC50: 8.51, 13.97, 18.86, 32.99 μM), indicating that gefitinib is a pore inhibitor of hERG channels. In addition, gefitinib accelerated hERG channel inactivation and decreased channel steady-state inactivation. Gefitinib also decreased IKs with IC50 of 23.8 μM. Moreover, gefitinib increased action potential duration (APD) in guinea pig ventricular myocytes and the corrected QT interval (QTc) in isolated perfused guinea pig hearts in a concentration-dependent way (1-30 μM). These findings indicate that gefitinib could prolong QTc interval by potently blocking hERG channel, modulating kinetic properties of hERG channel. Partial block of KCNQ1/KCNE1 could also contribute to delayed repolarization and prolonged QT interval. Thus, caution should be taken when gefitinib is used for NSCLC treatment.
Collapse
Affiliation(s)
- Ling-Jun Jie
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - Yun-Da Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - He-Qiang Zhang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - Liang Mao
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China; Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hua-Bin Xie
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - Fa-Guang Zhou
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - Tian-Li Zhou
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - Dong Xie
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - Jia-Le Lin
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - Gui-Yang Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - Bin-Ni Cai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China
| | - Yan-Hui Zhang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China.
| |
Collapse
|
10
|
|
11
|
Abstract
In this section of the European Resuscitation Council Guidelines 2021, key information on the epidemiology and outcome of in and out of hospital cardiac arrest are presented. Key contributions from the European Registry of Cardiac Arrest (EuReCa) collaboration are highlighted. Recommendations are presented to enable health systems to develop registries as a platform for quality improvement and to inform health system planning and responses to cardiac arrest.
Collapse
|
12
|
Kompella SN, Brette F, Hancox JC, Shiels HA. Phenanthrene impacts zebrafish cardiomyocyte excitability by inhibiting IKr and shortening action potential duration. J Gen Physiol 2021; 153:e202012733. [PMID: 33475719 PMCID: PMC7829948 DOI: 10.1085/jgp.202012733] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/18/2020] [Indexed: 01/14/2023] Open
Abstract
Air pollution is an environmental hazard that is associated with cardiovascular dysfunction. Phenanthrene is a three-ringed polyaromatic hydrocarbon that is a significant component of air pollution and crude oil and has been shown to cause cardiac dysfunction in marine fishes. We investigated the cardiotoxic effects of phenanthrene in zebrafish (Danio rerio), an animal model relevant to human cardiac electrophysiology, using whole-cell patch-clamp of ventricular cardiomyocytes. First, we show that phenanthrene significantly shortened action potential duration without altering resting membrane potential or upstroke velocity (dV/dt). L-type Ca2+ current was significantly decreased by phenanthrene, consistent with the decrease in action potential duration. Phenanthrene blocked the hERG orthologue (zfERG) native current, IKr, and accelerated IKr deactivation kinetics in a dose-dependent manner. Furthermore, we show that phenanthrene significantly inhibits the protective IKr current envelope, elicited by a paired ventricular AP-like command waveform protocol. Phenanthrene had no effect on other IK. These findings demonstrate that exposure to phenanthrene shortens action potential duration, which may reduce refractoriness and increase susceptibility to certain arrhythmia triggers, such as premature ventricular contractions. These data also reveal a previously unrecognized mechanism of polyaromatic hydrocarbon cardiotoxicity on zfERG by accelerating deactivation and decreasing IKr protective current.
Collapse
Affiliation(s)
- Shiva N. Kompella
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Fabien Brette
- Institut National de la Santé et de la Recherche Médicale, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique, Bordeaux, France
- Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
13
|
The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183148. [PMID: 31825788 DOI: 10.1016/j.bbamem.2019.183148] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ion channels play crucial roles in cellular biology, physiology, and communication including sensory perception. Voltage-gated potassium (Kv) channels execute their function by sensor activation, pore-coupling, and pore opening leading to K+ conductance. SCOPE OF REVIEW This review focuses on a voltage-gated K+ ion channel KCNQ1 (Kv 7.1). Firstly, discussing its positioning in the human ion chanome, and the role of KCNQ1 in the multitude of cellular processes. Next, we discuss the overall channel architecture and current structural insights on KCNQ1. Finally, the gating mechanism involving members of the KCNE family and its interaction with non-KCNE partners. MAJOR CONCLUSIONS KCNQ1 executes its important physiological functions via interacting with KCNE1 and non-KCNE1 proteins/molecules: calmodulin, PIP2, PKA. Although, KCNQ1 has been studied in great detail, several aspects of the channel structure and function still remain unexplored. This review emphasizes the structural and biophysical studies of KCNQ1, its interaction with KCNE1 and non-KCNE1 proteins and focuses on several seminal findings showing the role of VSD and the pore domain in the channel activation and gating properties. GENERAL SIGNIFICANCE KCNQ1 mutations can result in channel defects and lead to several diseases including atrial fibrillation and long QT syndrome. Therefore, a thorough structure-function understanding of this channel complex is essential to understand its role in both normal and disease biology. Moreover, unraveling the molecular mechanisms underlying the regulation of this channel complex will help to find therapeutic strategies for several diseases.
Collapse
|
14
|
Martinez-Matilla M, Blanco-Verea A, Santori M, Ansede-Bermejo J, Ramos-Luis E, Gil R, Bermejo AM, Lotufo-Neto F, Hirata MH, Brisighelli F, Paramo M, Carracedo A, Brion M. Genetic susceptibility in pharmacodynamic and pharmacokinetic pathways underlying drug-induced arrhythmia and sudden unexplained deaths. Forensic Sci Int Genet 2019; 42:203-212. [PMID: 31376648 DOI: 10.1016/j.fsigen.2019.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/21/2022]
Abstract
Drug-induced arrhythmia is an adverse drug reaction that can be potentially fatal since it is mostly related to drug-induced QT prolongation, a known risk factor for Torsade de Pointes and sudden cardiac death (SCD). Several risk factors have been described in association to these drug-induced events, such as preexistent cardiac disease and genetic variation. Our objective was to study the genetic susceptibility in pharmacodynamic and pharmacokinetic pathways underlying suspected drug-induced arrhythmias and sudden unexplained deaths in 32 patients. The genetic component in the pharmacodynamic pathway was studied by analysing 96 genes associated with higher risk of SCD through massive parallel sequencing. Pharmacokinetic-mediated genetic susceptibility was investigated by studying the genes encoding cytochrome P450 enzymes using medium-throughput genotyping. Pharmacodynamic analysis showed three probably pathogenic variants and 45 variants of uncertain significance in 28 patients, several of them previously described in relation to mild or late onset cardiomyopathies. These results suggest that genetic variants in cardiomyopathy genes, in addition to those related with channelopathies, could be relevant to drug-induced cardiotoxicity and contribute to the arrhythmogenic phenotype. Pharmacokinetic analysis showed three patients that could have an altered metabolism of the drugs they received involving CYP2C19 and/or CYP2D6, probably contributing to the arrhythmogenic phenotype. The study of genetic variants in both pharmacodynamic and pharmacokinetic pathways may be a useful strategy to understand the multifactorial mechanism of drug-induced events in both clinical practice and forensic field. However, it is necessary to comprehensively study and evaluate the contribution of the genetic susceptibility to drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- M Martinez-Matilla
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.
| | - A Blanco-Verea
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - M Santori
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - J Ansede-Bermejo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Centro Nacional de Genotipado-CeGen-USC-PRB3-ISCIII, Santiago de Compostela, Spain
| | - E Ramos-Luis
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - R Gil
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - A M Bermejo
- Instituto de Ciencias Forenses "Luis Concheiro" (INCIFOR), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - F Lotufo-Neto
- Psiquiatry Institute - Faculty of Medicine at University of São Paulo, São Paulo, Brazil
| | - M H Hirata
- Institute Dante Pazzanese of Cardiology, São Paulo, Brazil; School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - F Brisighelli
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Paramo
- Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Centro Nacional de Genotipado-CeGen-USC-PRB3-ISCIII, Santiago de Compostela, Spain
| | - M Brion
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Centro Nacional de Genotipado-CeGen-USC-PRB3-ISCIII, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Policarová M, Novotný T, Bébarová M. Impaired Adrenergic/Protein Kinase A Response of Slow Delayed Rectifier Potassium Channels as a Long QT Syndrome Motif: Importance and Unknowns. Can J Cardiol 2019; 35:511-522. [DOI: 10.1016/j.cjca.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
|
16
|
Gurgul S, Buyukakilli B, Komur M, Okuyaz C, Balli E, Ozcan T. Does Levetiracetam Administration Prevent Cardiac Damage in Adulthood Rats Following Neonatal Hypoxia/Ischemia-Induced Brain Injury? ACTA ACUST UNITED AC 2018; 54:medicina54020012. [PMID: 30344243 PMCID: PMC6037241 DOI: 10.3390/medicina54020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Cardiovascular abnormalities are widespread when a newborn is exposed to a hypoxic-ischemic injury in the neonatal period. Although the neuroprotective effects of levetiracetam (LEV) have been reported after hypoxia, the cardioprotective effects of LEV have not been documented. Therefore, we aimed to investigate whether levetiracetam (LEV) has a protective effect on cardiac-contractility and ultrastructure of heart muscle in rats exposed to hypoxia-ischemia (HI) during the neonatal period. A total of 49 seven-day-old rat pups were separated into four groups. For HI induction, a combination of right common carotid artery ligation with 8% oxygen in seven-day-old rat pups for 2 h was performed for saline, LEV100, and LEV200 groups. Just after hypoxia, LEV100 and LEV200 groups were administered with 100 mg/kg and 200 mg/kg of LEV, respectively. The arteries of rats in the control group were only detected; no ligation or hypoxia was performed. At the end of the 16th week after HI, cardiac mechanograms were recorded, and samples of tissue were explored by electronmicroscopy.While ventricular contractility in the control group was similar to LEV100, there were significant decreases in both saline and LEV200 groups (p < 0.05). Although ventricular contractile duration of the control and saline groups was found to be similar, durations in the LEV100 and LEV200 groups were significantly higher (p < 0.05). After HI, mitochondrial damage and ultrastructural deteriorative alterations in ventricles and atriums of the LEV-administered groups were significantly less severe than the saline group. The present study showed that neonatal HI caused long-term cardiac dysfunction and ultrastructural deteriorations in cardiac muscles. LEV administration just after HI might possess some protective effects against myocardial damage and contractility.
Collapse
Affiliation(s)
- Serkan Gurgul
- Department of Biophysics, Faculty of Medicine, Gaziantep University, TR-27310 Gaziantep, Turkey.
| | - Belgin Buyukakilli
- Department of Biophysics, Faculty of Medicine, Mersin University, TR-33343 Mersin, Turkey.
| | - Mustafa Komur
- Department of Child Health and Disease, Faculty of Medicine, Mersin University, TR-33343 Mersin, Turkey.
| | - Cetin Okuyaz
- Department of Child Health and Disease, Faculty of Medicine, Mersin University, TR-33343 Mersin, Turkey.
| | - Ebru Balli
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, TR-33343 Mersin, Turkey.
| | - Tuba Ozcan
- Department of Histology and Embryology, Faculty of Medicine, K. Sütcü Imam University, TR-46040 Kahramanmaraş, Turkey.
| |
Collapse
|
17
|
Jalily Hasani H, Ganesan A, Ahmed M, Barakat KH. Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel. PLoS One 2018; 13:e0191905. [PMID: 29444113 PMCID: PMC5812580 DOI: 10.1371/journal.pone.0191905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
The voltage-gated KCNQ1 potassium ion channel interacts with the type I transmembrane protein minK (KCNE1) to generate the slow delayed rectifier (IKs) current in the heart. Mutations in these transmembrane proteins have been linked with several heart-related issues, including long QT syndromes (LQTS), congenital atrial fibrillation, and short QT syndrome. Off-target interactions of several drugs with that of KCNQ1/KCNE1 ion channel complex have been known to cause fatal cardiac irregularities. Thus, KCNQ1/KCNE1 remains an important avenue for drug-design and discovery research. In this work, we present the structural and mechanistic details of potassium ion permeation through an open KCNQ1 structural model using the combined molecular dynamics and steered molecular dynamics simulations. We discuss the processes and key residues involved in the permeation of a potassium ion through the KCNQ1 ion channel, and how the ion permeation is affected by (i) the KCNQ1-KCNE1 interactions and (ii) the binding of chromanol 293B ligand and its derivatives into the complex. The results reveal that interactions between KCNQ1 with KCNE1 causes a pore constriction in the former, which in-turn forms small energetic barriers in the ion-permeation pathway. These findings correlate with the previous experimental reports that interactions of KCNE1 dramatically slows the activation of KCNQ1. Upon ligand-binding onto the complex, the energy-barriers along ion permeation path are more pronounced, as expected, therefore, requiring higher force in our steered-MD simulations. Nevertheless, pulling the ion when a weak blocker is bound to the channel does not necessitate high force in SMD. This indicates that our SMD simulations have been able to discern between strong and week blockers and reveal their influence on potassium ion permeation. The findings presented here will have some implications in understanding the potential off-target interactions of the drugs with the KCNQ1/KCNE1 channel that lead to cardiotoxic effects.
Collapse
Affiliation(s)
- Horia Jalily Hasani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Lin Z, Xing W, Gao C, Wang X, Qi D, Dai G, Zhao W, Yan G. Inhibitory Effect of Vascular Endothelial Growth Factor on the Slowly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes. J Am Heart Assoc 2018; 7:JAHA.117.007730. [PMID: 29374044 PMCID: PMC5850256 DOI: 10.1161/jaha.117.007730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (IK) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. Methods and Results IK and AP were recorded by the whole‐cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3‐kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (IKs) in a concentration‐dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P=0.001; 12.73±0.34 versus 9.05±1.20, n=5, P=0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P=0.021). Wortmannin, a phosphatidylinositol 3‐kinase inhibitor, eliminated these VEGF‐induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (IKr), resting membrane potential, AP amplitude, or maximal velocity of depolarization. Conclusions VEGF inhibited IKs in a concentration‐dependent manner through a phosphatidylinositol 3‐kinase–mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia.
Collapse
Affiliation(s)
- Zhenhao Lin
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Wenlu Xing
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xianpei Wang
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Datun Qi
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Guoyou Dai
- Department of Cardiology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Wen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ganxin Yan
- Main Line Health Heart Center, Lankenau Institute for Medical Research, Wynnewood, PA
| |
Collapse
|
19
|
Long QQ, Wang H, Gao W, Fan Y, Li YF, Ma Y, Yang Y, Shi HJ, Chen BR, Meng HY, Wang QM, Wang F, Wang ZM, Wang LS. Long Noncoding RNA Kcna2 Antisense RNA Contributes to Ventricular Arrhythmias via Silencing Kcna2 in Rats With Congestive Heart Failure. J Am Heart Assoc 2017; 6:JAHA.117.005965. [PMID: 29263036 PMCID: PMC5778995 DOI: 10.1161/jaha.117.005965] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Congestive heart failure (CHF) is a common cardiovascular disease that is often accompanied by ventricular arrhythmias. The decrease of the slow component of the delayed rectifier potassium current (IKs) in CHF leads to action potential (AP) prolongation, and the IKs is an important contributor to the development of ventricular arrhythmias. However, the molecular mechanisms underlying ventricular arrhythmias are still unknown. METHODS AND RESULTS Kcna2 and Kcna2 antisense RNA (Kcna2 AS) transcript expression was measured in rat cardiac tissues using quantitative real-time reverse transcription-polymerase chain reaction and Western blotting. There was a 43% reduction in Kcna2 mRNA in the left ventricular myocardium of rats with CHF. Kcna2 knockdown in the heart decreased the IKs and prolonged APs in cardiomyocytes, consistent with the changes observed in heart failure. Conversely, Kcna2 overexpression in the heart significantly attenuated the CHF-induced decreases in the IKs, AP prolongation, and ventricular arrhythmias. Kcna2 AS was upregulated ≈1.7-fold in rats with CHF and with phenylephrine-induced cardiomyocyte hypertrophy. Kcna2 AS inhibition increased the CHF-induced downregulation of Kcna2. Consequently, Kcna2 AS mitigated the decrease in the IKs and the prolongation of APs in vivo and in vitro and reduced ventricular arrhythmias, as detected using electrocardiography. CONCLUSIONS Ventricular Kcna2 AS expression increases in rats with CHF and contributes to reduced IKs, prolonged APs, and the occurrence of ventricular arrhythmias by silencing Kcna2. Thus, Kcna2 AS may be a new target for the prevention and treatment of ventricular arrhythmias in patients with CHF.
Collapse
Affiliation(s)
- Qing-Qing Long
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Fei Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Emergency and Intensive Care, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao-Jie Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing-Rui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao-Yu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi-Ming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Empana JP, Blom MT, Bӧttiger BW, Dagres N, Dekker JM, Gislason G, Jouven X, Meitinger T, Ristagno G, Schwartz PJ, Jonsson M, Tfelt-Hansen J, Truhlar A, Tan HL. Determinants of occurrence and survival after sudden cardiac arrest-A European perspective: The ESCAPE-NET project. Resuscitation 2017; 124:7-13. [PMID: 29246744 DOI: 10.1016/j.resuscitation.2017.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 12/10/2017] [Indexed: 11/16/2022]
Abstract
AIMS The ESCAPE-NET project ("European Sudden Cardiac Arrest network- towards Prevention, Education and New Effective Treatments") aims to study: (1) risk factors and mechanisms for the occurrence of sudden cardiac arrest (SCA) in the population, and (2) risk factors and treatment strategies for survival after SCA on a European scale. METHODS This is an Horizon2020 funded program of the European Union, performed by a European public-private consortium of 16 partners across 10 EU countries. There are 11 deep-phenotyped SCA cohorts for the study of risk factors and treatment strategies for survival after SCA, and 5 deep-phenotyped observational prospective population cohorts for the study of risk factors for occurrence of SCA. Personalized risk scores for predicting SCA onset and for predicting survival after SCA will be derived and validated. RESULTS The 11 clinical studies with SCA cases comprise 85,790 SCA cases; the 5 observational prospective population cohorts include 53,060 subjects. A total of 15,000 SCA samples will be genotyped for common and rare variants at the Helmholtz Zentrum München (Germany) using the Illumina Global Screening Array which contains > 770,000 SNPs, and after imputation, a database of an estimated > 9 million variants will be available for genome wide association studies. Standardization of risk factors definition and outcomes is ongoing. An Executive Committee has been created along with a Collaboration Policy document. CONCLUSION ESCAPE-NET will complement ongoing efforts on SCA outside Europe and within Europe including the EuReCa project.
Collapse
Affiliation(s)
- Jean-Philippe Empana
- Université Paris Descartes, INSERM UMRS-970, Paris Cardiovascular Research Centre, Paris, France
| | - Marieke T Blom
- Department of Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Bernd W Bӧttiger
- European Resuscitation Council, Brussels, Belgium; Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany
| | - Nikolaos Dagres
- European Heart Rhythm Association, representing the European Society of Cardiology, Sophia Antipolis, France
| | | | - Gunnar Gislason
- Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark and Danish Heart Foundation
| | - Xavier Jouven
- Université Paris Descartes, INSERM UMRS-970, Paris Cardiovascular Research Centre, Paris, France
| | | | - Giuseppe Ristagno
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy; Italian Resuscitation Council, Bologna, Italy
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Reference Network for Rare and Low Prevalence Complexe Diseases of the Heart (ERN GUARD-HEART), Italy
| | - Martin Jonsson
- Center for Resuscitation Science, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark and Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark and Reference Network for Rare and Low Prevalence Complexe Diseases of the Heart (ERN GUARD-HEART)
| | - Anatolij Truhlar
- Emergency Medical Services of the Hradec Kralove Region, Czech Republic
| | - Hanno L Tan
- Department of Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
21
|
Effects of equol on multiple K+ channels stably expressed in HEK 293 cells. PLoS One 2017; 12:e0183708. [PMID: 28832658 PMCID: PMC5568406 DOI: 10.1371/journal.pone.0183708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
The present study investigated the effects of equol on cardiovascular K+ channel currents. The cardiovascular K+ channel currents were determined in HEK 293 cells stably expressing cloned differential cardiovascular K+ channels with conventional whole-cell patch voltage-clamp technique. We found that equol inhibited hKv1.5 (IC50: 15.3 μM), hKv4.3 (IC50: 29.2 μM and 11.9 μM for hKv4.3 peak current and charge area, respectively), IKs (IC50: 24.7 μM) and IhERG (IC50: 31.6 and 56.5 μM for IhERG.tail and IhERG.step, respectively), but not hKir2.1 current, in a concentration-dependent manner. Interestingly, equol increased BKCa current with an EC50 of 0.1 μM. It had no significant effect on guinea pig ventricular action potentials at concentrations of ≤3 μM. These results demonstrate that equol inhibits several cardiac K+ currents at relatively high concentrations, whereas it increases BKCa current at very low concentrations, suggesting that equol is a safe drug candidate for treating patients with cerebral vascular disorders.
Collapse
|
22
|
Sugrue A, Noseworthy PA, Kremen V, Bos JM, Qiang B, Rohatgi RK, Sapir Y, Attia ZI, Brady P, Caraballo PJ, Asirvatham SJ, Friedman PA, Ackerman MJ. Automated T-wave analysis can differentiate acquired QT prolongation from congenital long QT syndrome. Ann Noninvasive Electrocardiol 2017; 22. [PMID: 28429460 DOI: 10.1111/anec.12455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/18/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Prolongation of the QT on the surface electrocardiogram can be due to either genetic or acquired causes. Distinguishing congenital long QT syndrome (LQTS) from acquired QT prolongation has important prognostic and management implications. We aimed to investigate if quantitative T-wave analysis could provide a tool for the physician to differentiate between congenital and acquired QT prolongation. METHODS Patients were identified through an institution-wide computer-based QT screening system which alerts the physician if the QTc ≥ 500 ms. ECGs were retrospectively analyzed with an automated T-wave analysis program. Congenital LQTS was compared in a 1:3 ratio to those with an identified acquired etiology for QT prolongation (electrolyte abnormality and/or prescription of known QT prolongation medications). Linear discriminant analysis was performed using 10-fold cross-validation to statistically test the selected features. RESULTS The 12-lead ECG of 38 patients with congenital LQTS and 114 patients with drug-induced and/or electrolyte-mediated QT prolongation were analyzed. In lead V5 , patients with acquired QT prolongation had a shallower T wave right slope (-2,322 vs. -3,593 mV/s), greater T-peak-Tend interval (109 vs. 92 ms), and smaller T wave center of gravity on the x axis (290 ms vs. 310 ms; p < .001). These features could distinguish congenital from acquired causes in 77% of cases (sensitivity 90%, specificity 58%). CONCLUSION T-wave morphological analysis on lead V5 of the surface ECG could successfully differentiate congenital from acquired causes of QT prolongation.
Collapse
Affiliation(s)
- Alan Sugrue
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Peter A Noseworthy
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Vaclav Kremen
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA.,Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - J Martijn Bos
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Bo Qiang
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Ram K Rohatgi
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
| | - Yehu Sapir
- Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zachi I Attia
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA.,Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Peter Brady
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | | | - Samuel J Asirvatham
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
| | - Paul A Friedman
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Jie LJ, Wu WY, Li G, Xiao GS, Zhang S, Li GR, Wang Y. Clemizole hydrochloride blocks cardiac potassium currents stably expressed in HEK 293 cells. Br J Pharmacol 2017; 174:254-266. [PMID: 27886373 DOI: 10.1111/bph.13679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Clemizole, a histamine H1 receptor antagonist has a potential therapeutic effect on hepatitis C infection and also potently inhibits TRPC5 ion channels. The aim of the present study was to investigate whether clemizole blocks cardiac K+ currents and thus affects cardiac repolarization. EXPERIMENTAL APPROACH Whole-cell patch techniques was used to examine the effects of clemizole on hERG channel current, IKs and Kv 1.5 channel current in HEK 293 cell expression systems as well as on ventricular action potentials of guinea pig hearts. Isolated hearts from guinea pigs were used to determine the effect on the ECG. KEY RESULTS Clemizole decreased hERG current by blocking both open and closed states of the channel in a concentration-dependent manner (IC50 : 0.07 μM). The S631A, S636A, Y652A and F656V hERG mutant channels reduced the inhibitory effect of clemizole (IC50 : 0.82, 0.89, 1.49 and 2.98 μM, respectively), suggesting that clemizole is a pore blocker of hERG channels. Clemizole also moderately decreased IKs and human Kv 1.5 channel current. Moreover, clemizole increased the duration of the ventricular action potential in guinea pig hearts and the QTc interval in isolated perfused hearts from guinea pigs, in a concentration-dependent manner (0.1-1.0 μM). CONCLUSION AND IMPLICATIONS Our results provide the first evidence that clemizole potently blocks hERG channels, moderately inhibits cardiac IKs , delays cardiac repolarization and thereby prolongs QT interval. Thus, caution should be taken when clemizole is used as a TRPC5 channel blocker or for treating hepatitis C infection.
Collapse
Affiliation(s)
- Ling-Jun Jie
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS. Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 2017; 97:89-134. [PMID: 27807201 PMCID: PMC5539372 DOI: 10.1152/physrev.00008.2016] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Collapse
Affiliation(s)
- M S Bohnen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - G Peng
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - S H Robey
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - C Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - V Iyer
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - K J Sampson
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - R S Kass
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| |
Collapse
|
25
|
Wu J, Ding WG, Horie M. Molecular pathogenesis of long QT syndrome type 1. J Arrhythm 2016; 32:381-388. [PMID: 27761162 PMCID: PMC5063268 DOI: 10.1016/j.joa.2015.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/16/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023] Open
Abstract
Long QT syndrome type 1 (LQT1) is a subtype of a congenital cardiac syndrome caused by mutation in the KCNQ1 gene, which encodes the α-subunit of the slow component of delayed rectifier K+ current (IKs) channel. Arrhythmias in LQT1 are characterized by prolongation of the QT interval on ECG, as well as the occurrence of life-threatening cardiac events, frequently triggered by adrenergic stimuli (e.g., physical or emotional stress). During the past two decades, much advancement has been made in understanding the molecular pathogenesis underlying LQT1. Uncovering the genotype-phenotype correlations in LQT1 is of clinical importance to better understand the gene-specific differences that may influence the propensity for developing life-threatening arrhythmias under specific conditions. Elucidation of these mechanisms will also help to improve the diagnosis and management of this cardiac disorder based on gene-specific considerations. This review describes the current medical consensus and recent developments regarding the molecular pathogenesis of LQT1 and provides a novel insight into the adrenergic regulation of this disease.
Collapse
Affiliation(s)
- Jie Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, 710061, Xi׳an, China
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
26
|
Cubeddu LX. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias. Curr Cardiol Rev 2016; 12:141-54. [PMID: 26926294 PMCID: PMC4861943 DOI: 10.2174/1573403x12666160301120217] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/29/2016] [Indexed: 01/11/2023] Open
Abstract
Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended.
Collapse
Affiliation(s)
- Luigi X Cubeddu
- Division of Cardio-Metabolic Research, Department of Pharmaceutical Sciences, Health professions Division, Nova Southeastern University, 3200 S. University Dr., Davie, FL, 333218, USA.
| |
Collapse
|
27
|
Wiśniowska B, Polak S. Virtual Clinical Trial Toward Polytherapy Safety Assessment: Combination of Physiologically Based Pharmacokinetic/Pharmacodynamic-Based Modeling and Simulation Approach With Drug-Drug Interactions Involving Terfenadine as an Example. J Pharm Sci 2016; 105:3415-3424. [PMID: 27640752 DOI: 10.1016/j.xphs.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
A Quantitative Systems Pharmacology approach was utilized to predict the cardiac consequences of drug-drug interaction (DDI) at the population level. The Simcyp in vitro-in vivo correlation and physiologically based pharmacokinetic platform was used to predict the pharmacokinetic profile of terfenadine following co-administration of the drug. Electrophysiological effects were simulated using the Cardiac Safety Simulator. The modulation of ion channel activity was dependent on the inhibitory potential of drugs on the main cardiac ion channels and a simulated free heart tissue concentration. ten Tusscher's human ventricular cardiomyocyte model was used to simulate the pseudo-ECG traces and further predict the pharmacodynamic consequences of DDI. Consistent with clinical observations, predicted plasma concentration profiles of terfenadine show considerable intra-subject variability with recorded Cmax values below 5 ng/mL for most virtual subjects. The pharmacokinetic and pharmacodynamic effects of inhibitors were predicted with reasonable accuracy. In all cases, a combination of the physiologically based pharmacokinetic and physiology-based pharmacodynamic models was able to differentiate between the terfenadine alone and terfenadine + inhibitor scenario. The range of QT prolongation was comparable in the clinical and virtual studies. The results indicate that mechanistic in vitro-in vivo correlation can be applied to predict the clinical effects of DDI even without comprehensive knowledge on all mechanisms contributing to the interaction.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, Kraków 30-688, Poland.
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, Kraków 30-688, Poland; Simcyp (part of Certara), Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK
| |
Collapse
|
28
|
Zhang X, Guo L, Zeng H, White SL, Furniss M, Balasubramanian B, Lis E, Lagrutta A, Sannajust F, Zhao LL, Xi B, Wang X, Davis M, Abassi YA. Multi-parametric assessment of cardiomyocyte excitation-contraction coupling using impedance and field potential recording: A tool for cardiac safety assessment. J Pharmacol Toxicol Methods 2016; 81:201-16. [DOI: 10.1016/j.vascn.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/29/2016] [Accepted: 06/04/2016] [Indexed: 11/17/2022]
|
29
|
Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2016; 13:316-25. [PMID: 27403141 PMCID: PMC4921544 DOI: 10.11909/j.issn.1671-5411.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record Ito and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of Ito and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of Ito in M layers and partly inhibit the channel openings of Ito in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of transmural inhibition of Ito and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.
Collapse
|
30
|
Pfeiffer ER, Vega R, McDonough PM, Price JH, Whittaker R. Specific prediction of clinical QT prolongation by kinetic image cytometry in human stem cell derived cardiomyocytes. J Pharmacol Toxicol Methods 2016; 81:263-73. [PMID: 27095424 DOI: 10.1016/j.vascn.2016.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A priority in the development and approval of new drugs is assessment of cardiovascular risk. Current methodologies for screening compounds (e.g. HERG testing) for proarrhythmic risk lead to many false positive and false negative results, resulting in the attrition of potentially therapeutic compounds in early development, and the advancement of other candidates that cause adverse effects. With improvements in the technologies of high content imaging and human stem cell differentiation, it is now possible to directly screen compounds for arrhythmogenic tendencies in human stem cell derived cardiomyocytes (hSC-CMs). METHODS A training panel of 90 compounds consisting of roughly equal numbers of QT-prolonging and negative control (non-QT-prolonging) compounds, and a follow-up blinded study of 35 compounds including 16 from the 90 compound panel and 2 duplicates, were evaluated for prolongation of the calcium transient in hSC-CMs using kinetic image cytometry (KIC), a specialized form of high content analysis. RESULTS The KIC-hSC-CM assay identified training compounds that prolong the calcium transient with 98% specificity, 97% precision, 80% sensitivity, and 89% accuracy in predicting clinical QT prolongation by these compounds. The follow-up study of 35 blinded compounds confirmed the reproducibility and strong diagnostic accuracy of the assay. DISCUSSION The correlation of the KIC-hSC-CM results to clinical observations met or surpassed traditional preclinical assessment of cardiac risk utilizing animal models. Thus, the KIC-hSC-CM assay, which can be accomplished in high throughput and at relatively low cost, is an effective new model system for testing chemicals for cardiovascular risk.
Collapse
Affiliation(s)
| | - Raquel Vega
- Vala Sciences, Inc., San Diego, CA 92121, United States
| | | | | | | |
Collapse
|
31
|
Liu H, Yang L, Chen KH, Sun HY, Jin MW, Xiao GS, Wang Y, Li GR. SKF-96365 blocks human ether-à-go-go-related gene potassium channels stably expressed in HEK 293 cells. Pharmacol Res 2015; 104:61-9. [PMID: 26689773 DOI: 10.1016/j.phrs.2015.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
Abstract
SKF-96365 is a TRPC channel antagonist commonly used to characterize the potential functions of TRPC channels in different systems, which was recently reported to induce QTc prolongation on ECG by inhibiting TRPC channels. The present study investigates whether the blockade of cardiac repolarization currents would be involved in the increase of QTc interval. Cardiac repolarization currents were recorded in HEK 293 cells stably expressing human ether-à-go-go-related gene potassium (hERG or hKv11.1) channels, hKCNQ1/hKCNE1 channels (IKs) or hKir2.1 channels and cardiac action potentials were recorded in guinea pig ventricular myocytes using a whole-cell patch technique. The potential effect of SKF-96365 on QT interval was evaluated in ex vivo guinea pig hearts. It was found that SKF-96365 inhibited hERG current in a concentration-dependent manner (IC50, 3.4μM). The hERG mutants S631A in the pore helix and F656V of the S6 region reduced the inhibitory sensitivity with IC50s of 27.4μM and 11.0μM, suggesting a channel pore blocker. In addition, this compound inhibited IKs and hKir2.1currents with IC50s of 10.8 and 8.7μM. SKF-96365 (10μM) significantly prolonged ventricular APD90 in guinea pig ventricular myocytes and QTc interval in ex vivo guinea pig hearts. These results indicate that the TRPC channel antagonist SKF-96365 exerts blocking effects on hERG, IKs, and hKir2.1 channels. Prolongation of ventricular APD and QT interval is related to the inhibition of multiple repolarization potassium currents, especially hERG channels.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lei Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kui-Hao Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hai-Ying Sun
- Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Man-Wen Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China.
| | - Gui-Rong Li
- Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China; Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China.
| |
Collapse
|
32
|
Moreno C, Oliveras A, de la Cruz A, Bartolucci C, Muñoz C, Salar E, Gimeno JR, Severi S, Comes N, Felipe A, González T, Lambiase P, Valenzuela C. A new KCNQ1 mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome. Cardiovasc Res 2015; 107:613-23. [PMID: 26168993 DOI: 10.1093/cvr/cvv196] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/26/2015] [Indexed: 11/12/2022] Open
Abstract
AIMS KCNQ1 and KCNE1 encode Kv7.1 and KCNE1, respectively, the pore-forming and the accessory subunits of the slow delayed rectifier potassium current, IKs. KCNQ1 mutations are associated with long and short QT syndrome. The aim of this study was to characterize the biophysical and cellular phenotype of a KCNQ1 missense mutation, F279I, found in a 23-year-old man with a corrected QT interval (QTc) of 356 ms and a family history of sudden cardiac death. METHODS AND RESULTS Experiments were performed using perforated patch-clamp, western blot, co-immunoprecipitation, biotinylation, and immunocytochemistry techniques in HEK293, COS7 cells and in cardiomyocytes transfected with WT Kv7.1/KCNE1 or F279I Kv7.1/KCNE1 channels. In the absence of KCNE1, F279I Kv7.1 current exhibited a lesser degree of inactivation than WT Kv7.1. Also, functional analysis of F279I Kv7.1 in the presence of KCNE1 revealed a negative shift in the activation curve and an acceleration of the activation kinetics leading to a gain of function in IKs. The co-assembly between F279I Kv7.1 channels and KCNE1 was markedly decreased compared with WT Kv7.1 channels, as revealed by co-immunoprecipitation and Föster Resonance Energy Transfer experiments. All these effects contribute to the increase of IKs when channels incorporate F279I Kv7.1 subunits, as shown by a computer model simulation of these data that predicts a shortening of the action potential (AP) consistent with the patient phenotype. CONCLUSION The F279I mutation induces a gain of function of IKs due to an impaired gating modulation of Kv7.1 induced by KCNE1, leading to a shortening of the cardiac AP.
Collapse
Affiliation(s)
- Cristina Moreno
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/Arturo Duperier 4, Madrid 28029, Spain
| | - Anna Oliveras
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Alicia de la Cruz
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/Arturo Duperier 4, Madrid 28029, Spain
| | - Chiara Bartolucci
- Cellular and Molecular Engineering Laboratory 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
| | - Carmen Muñoz
- Department of Cardiology, Hospital Universitario Virgen de la Arrixaca de Murcia, Murcia, Spain
| | - Eladia Salar
- Department of Cardiology, Hospital Universitario Virgen de la Arrixaca de Murcia, Murcia, Spain
| | - Juan R Gimeno
- Department of Cardiology, Hospital Universitario Virgen de la Arrixaca de Murcia, Murcia, Spain
| | - Stefano Severi
- Cellular and Molecular Engineering Laboratory 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
| | - Nuria Comes
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Teresa González
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/Arturo Duperier 4, Madrid 28029, Spain
| | - Pier Lambiase
- Department of Cardiac Electrophysiology, The Heart Hospital, Institute of Cardiovascular Science, University College London, London, UK
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
33
|
Abstract
Abstract
Background:
Propofol is widely used clinically for the induction and maintenance of anesthesia. Clinical case reports have shown that propofol has an antiatrial tachycardia/fibrillation effect; however, the related ionic mechanisms are not fully understood. The current study investigates the effects of propofol on human cardiac potassium channels.
Methods:
The whole cell patch voltage clamp technique was used to record transient outward potassium current (Ito) and ultrarapidly activating delayed rectifier potassium current (IKur) in human atrial myocytes and hKv1.5, human ether-à-go-go-related gene (hERG), and hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells. Current clamp mode was used to record action potentials in human atrial myocytes.
Results:
In human atrial myocytes, propofol inhibited Ito in a concentration-dependent manner (IC50 = 33.5 ± 2.0 μM for peak current, n = 6) by blocking open channels without affecting the voltage-dependent kinetics or the recovery time constant; propofol decreased IKur (IC50 = 35.3 ± 1.9 μM, n = 6) in human atrial myocytes and inhibited hKv1.5 current expressed in HEK 293 cells by preferentially binding to the open channels. Action potential duration at 90% repolarization was slightly prolonged by 30 μM propofol in human atrial myocytes. In addition, propofol also suppressed hERG and hKCNQ1/hKCNE1 channels expressed in HEK 293 cells.
Conclusion:
Propofol inhibits multiple human cardiac potassium channels, including human atrial Ito and IKur, as well as hKv1.5, hERG, and hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells, and slightly prolongs human atrial action potential duration, which may contribute to the antiatrial tachycardia/fibrillation effects observed in patients who receive propofol.
Collapse
|
34
|
Osadchii OE. Impact of hypokalemia on electromechanical window, excitation wavelength and repolarization gradients in guinea-pig and rabbit hearts. PLoS One 2014; 9:e105599. [PMID: 25141124 PMCID: PMC4139393 DOI: 10.1371/journal.pone.0105599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/25/2014] [Indexed: 01/15/2023] Open
Abstract
Normal hearts exhibit a positive time difference between the end of ventricular contraction and the end of QT interval, which is referred to as the electromechanical (EM) window. Drug-induced prolongation of repolarization may lead to the negative EM window, which was proposed to be a novel proarrhythmic marker. This study examined whether abnormal changes in the EM window may account for arrhythmogenic effects produced by hypokalemia. Left ventricular pressure, electrocardiogram, and epicardial monophasic action potentials were recorded in perfused hearts from guinea-pig and rabbit. Hypokalemia (2.5 mM K(+)) was found to prolong repolarization, reduce the EM window, and promote tachyarrhythmia. Nevertheless, during both regular pacing and extrasystolic excitation, the increased QT interval invariably remained shorter than the duration of mechanical systole, thus yielding positive EM window values. Hypokalemia-induced arrhythmogenicity was associated with slowed ventricular conduction, and shortened effective refractory periods, which translated to a reduced excitation wavelength index. Hypokalemia also evoked non-uniform prolongation of action potential duration in distinct epicardial regions, which resulted in increased spatial variability in the repolarization time. These findings suggest that arrhythmogenic effects of hypokalemia are not accounted for by the negative EM window, and are rather attributed to abnormal changes in ventricular conduction times, refractoriness, excitation wavelength, and spatial repolarization gradients.
Collapse
Affiliation(s)
- Oleg E. Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
35
|
van Hoeijen DA, Blom MT, Tan HL. Cardiac sodium channels and inherited electrophysiological disorders: an update on the pharmacotherapy. Expert Opin Pharmacother 2014; 15:1875-87. [PMID: 24992280 DOI: 10.1517/14656566.2014.936380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Since the recognition of inherited sodium (Na(+)) channel disease, the cardiac Na(+) channel has been extensively studied. Both loss-of-function and gain-of-function mutations of the cardiac Na(+) channel are associated with cardiac arrhythmia and sudden cardiac death. Pathophysiological mechanisms that may induce arrhythmia are unravelled and include alterations in biophysical properties due to the mutation in SCN5A, drug use and circumstantial factors. Insights into the mechanisms of inherited Na(+) channel disease may result in tailored therapy. However, due to the complexity of cardiac electrical activity and pathophysiological mechanisms, pharmacotherapy in cardiac Na(+) channel disease remains challenging. AREAS COVERED This review discusses various mechanisms involved in inherited Na(+) channel disorders, focussing on Brugada syndrome (Brs) and long QT syndrome type 3 (LQTS3). It aims to provide an overview of developments in pharmacotherapy, discussing both treatment and which drugs to avoid to prevent arrhythmia. EXPERT OPINION Altered biophysical properties of cardiac Na(+) channels are the basis of arrhythmias in patients with inherited Na(+) channel diseases such as BrS and LQTS3. The effects of such biophysical derangements are strongly modulated by concomitant factors. Tailored drug therapy is required to prevent arrhythmia and is best achieved by educating patients affected by Na(+) channel disorders.
Collapse
Affiliation(s)
- Daniel A van Hoeijen
- University of Amsterdam, Academic Medical Center, Department of Cardiology , P.O. Box 22660, 1100 DD, Amsterdam , The Netherlands +0031 20 566 3264 ; +0031 20 566 9131 ;
| | | | | |
Collapse
|
36
|
|
37
|
Heijman J, Voigt N, Carlsson LG, Dobrev D. Cardiac safety assays. Curr Opin Pharmacol 2014; 15:16-21. [DOI: 10.1016/j.coph.2013.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022]
|
38
|
Bhuiyan ZA, Al-Shahrani S, Al-Aama J, Wilde AAM, Momenah TS. Congenital Long QT Syndrome: An Update and Present Perspective in Saudi Arabia. Front Pediatr 2013; 1:39. [PMID: 24400285 PMCID: PMC3864249 DOI: 10.3389/fped.2013.00039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 12/14/2022] Open
Abstract
Primary cardiac arrhythmias are often caused by defects, predominantly in the genes responsible for generation of cardiac electrical potential, i.e., cardiac rhythm generation. Due to the variability in underlying genetic defects, type, and location of the mutations and putative modifiers, clinical phenotypes could be moderate to severe, even absent in many individuals. Clinical presentation and severity could be quite variable, syncope, or sudden cardiac death could also be the first and the only manifestation in a patient who had previously no symptoms at all. Despite usual familial occurrence of such cardiac arrhythmias, disease causal genetic defects could also be de novo in significant number of patients. Long QT syndrome (LQTS) is the most eloquently investigated primary cardiac rhythm disorder. A genetic defect can be identified in ∼70% of definitive LQTS patients, followed by Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) and Brugada syndrome (BrS), where a genetic defect is found in <40% cases. In addition to these widely investigated hereditary arrhythmia syndromes, there remain many other relatively less common arrhythmia syndromes, where researchers also have unraveled the genetic etiology, e.g., short QT syndrome (SQTS), sick sinus syndrome (SSS), cardiac conduction defect (CCD), idiopathic ventricular fibrillation (IVF), early repolarization syndrome (ERS). There exist also various other ill-defined primary cardiac rhythm disorders with strong genetic and familial predisposition. In the present review we will focus on the genetic basis of LQTS and its clinical management. We will also discuss the presently available genetic insight in this context from Saudi Arabia.
Collapse
Affiliation(s)
- Zahurul A. Bhuiyan
- Laboratoire de Génétique Moléculaire, Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Safar Al-Shahrani
- Department of Pediatrics, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Jumana Al-Aama
- Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
- Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arthur A. M. Wilde
- Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tarek S. Momenah
- Department of Pediatric Cardiology, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|