1
|
Nardone V, Ruggiero D, Chini MG, Bruno I, Lauro G, Terracciano S, Nebbioso A, Bifulco G, Cappabianca S, Reginelli A. From Bench to Bedside: Translational Approaches to Cardiotoxicity in Breast Cancer, Lung Cancer, and Lymphoma Therapies. Cancers (Basel) 2025; 17:1059. [PMID: 40227572 PMCID: PMC11987928 DOI: 10.3390/cancers17071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Cardiotoxicity represents a critical challenge in cancer therapy, particularly in the treatment of thoracic tumors, such as lung cancer and lymphomas, as well as breast cancer. These malignancies stand out for their high prevalence and the widespread use of cardiotoxic treatments, such as chemotherapy, radiotherapy, and immunotherapy. This work underscores the importance of preclinical models in uncovering the mechanisms of cardiotoxicity and developing targeted prevention and mitigation strategies. In vitro models provide valuable insights into cellular processes, enabling the observation of changes in cell viability and function following exposure to various drugs or ionizing radiation. Complementarily, in vivo animal models offer a broader perspective, allowing for evaluating of both short- and long-term effects and a better understanding of chronic toxicity and cardiac diseases. By integrating these approaches, researchers can identify potential mechanisms of cardiotoxicity and devise effective prevention strategies. This analysis highlights the central role of preclinical models in advancing knowledge of cardiotoxic effects associated with common therapeutic regimens for thoracic and breast cancers.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Dafne Ruggiero
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| |
Collapse
|
2
|
Balaji P, Liulu X, Sivakumar S, Chong JJH, Kizana E, Vandenberg JI, Hill AP, Hau E, Qian PC. Mechanistic Insights and Knowledge Gaps in the Effects of Radiation Therapy on Cardiac Arrhythmias. Int J Radiat Oncol Biol Phys 2025; 121:75-89. [PMID: 39222823 DOI: 10.1016/j.ijrobp.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Stereotactic body radiation therapy (SBRT) is an innovative modality for the treatment of refractory ventricular arrhythmias (VAs). Phase 1/2 clinical trials have demonstrated the remarkable efficacy of SBRT at reducing VA burden (by >85%) in patients with good short-term safety. SBRT as an option for VA treatment delivered in an ambulatory nonsedated patient in a single fraction during an outpatient session of 15 to 30 minutes, without added risks of anesthetic or surgery, is clinically relevant. However, the underlying mechanism remains unclear. Currently, the clinical dosing of SBRT has been derived from preclinical studies aimed at inducing transmural fibrosis in the atria. The propitious clinical effects of SBRT appear earlier than the time course for fibrosis. This review addresses the plausible mechanisms by which radiation alters the electrophysiological properties of myocytes and myocardial conduction to impart an antiarrhythmic effect, elucidate clinical observations, and point the direction for further research in this promising area.
Collapse
Affiliation(s)
- Poornima Balaji
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Xingzhou Liulu
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sonaali Sivakumar
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - James J H Chong
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Centre for Heart Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eddy Kizana
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Centre for Heart Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Eric Hau
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia; Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Pierre C Qian
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Kovacs B, Lehmann HI, Manninger M, Saguner AM, Futyma P, Duncker D, Chun J. Stereotactic arrhythmia radioablation and its implications for modern cardiac electrophysiology: results of an EHRA survey. Europace 2024; 26:euae110. [PMID: 38666444 PMCID: PMC11086561 DOI: 10.1093/europace/euae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Stereotactic arrhythmia radioablation (STAR) is a treatment option for recurrent ventricular tachycardia/fibrillation (VT/VF) in patients with structural heart disease (SHD). The current and future role of STAR as viewed by cardiologists is unknown. The study aimed to assess the current role, barriers to application, and expected future role of STAR. An online survey consisting of 20 questions on baseline demographics, awareness/access, current use, and the future role of STAR was conducted. A total of 129 international participants completed the survey [mean age 43 ± 11 years, 25 (16.4%) female]. Ninety-one (59.9%) participants were electrophysiologists. Nine participants (7%) were unaware of STAR as a therapeutic option. Sixty-four (49.6%) had access to STAR, while 62 (48.1%) had treated/referred a patient for treatment. Common primary indications for STAR were recurrent VT/VF in SHD (45%), recurrent VT/VF without SHD (7.8%), or premature ventricular contraction (3.9%). Reported main advantages of STAR were efficacy in the treatment of arrhythmias not amenable to conventional treatment (49%) and non-invasive treatment approach with overall low expected acute and short-term procedural risk (23%). Most respondents have foreseen a future clinical role of STAR in the treatment of VT/VF with or without underlying SHD (72% and 75%, respectively), although only a minority expected a first-line indication for it (7% and 5%, respectively). Stereotactic arrhythmia radioablation as a novel treatment option of recurrent VT appears to gain acceptance within the cardiology community. Further trials are critical to further define efficacy, patient populations, as well as the appropriate clinical use for the treatment of VT.
Collapse
Affiliation(s)
- Boldizsar Kovacs
- Department of Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, 48109 MI, USA
- Department of Cardiology, University Heart Center Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Helge Immo Lehmann
- Department of Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, 48109 MI, USA
- Corrigan Minehan Heart Center, Massachusetts General Hospital, 55 Fruit St, Boston, 02114 MA, USA
| | - Martin Manninger
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Center Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Piotr Futyma
- Medical College, University of Rzeszów and St. Joseph’s Heart Rhythm Center, Rzeszów, Poland
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Julian Chun
- Cardioangiologisches Centrum Bethanien, Agaplesion Bethanien Krankenhaus, Frankfurt, Germany
| |
Collapse
|
4
|
Petzl A, Benali K, Mbolamena N, Dyrda K, Rivard L, Seidl S, Martins R, Martinek M, Pürerfellner H, Aguilar M. Patient-specific quantification of cardiorespiratory motion for cardiac stereotactic radioablation treatment planning. Heart Rhythm O2 2024; 5:234-242. [PMID: 38690147 PMCID: PMC11056453 DOI: 10.1016/j.hroo.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background Cardiac radioablation is a new treatment for patients with refractory ventricular tachycardia (VT). The target for cardiac radioablation is subject to cardiorespiratory motion (CRM), the heart's movement with breathing and cardiac contraction. Data regarding the magnitude of target CRM are limited but are highly important for treatment planning. Objectives The study sought to assess CRM amplitude by using ablation catheter geometrical data. Methods Electroanatomic mapping data of patients undergoing catheter ablation for VT at 3 academic centers were exported. The spatial position of the ablation catheter as a function of time while in contact with endocardium was analyzed and used to quantify CRM. Results Forty-four patients with ischemic and nonischemic cardiomyopathy and VT contributed 1364 ablation lesions to the analysis. Average cardiac and respiratory excursion were 1.62 ± 1.21 mm and 12.12 ± 4.10 mm, respectively. The average ratio of respiratory to cardiac motion was approximately 11:1. CRM was greatest along the craniocaudal axis (9.66 ± 4.00 mm). Regional variations with respect to respiratory and cardiac motion were observed: basal segments had smaller displacements vs midventricular and apical segments. Patient characteristics (previous cardiac surgery, height, weight, body mass index, and left ventricular ejection fraction) had a statistically significant, albeit clinically moderate, impact on CRM. Conclusion CRM is primarily determined by respiratory displacement and is modulated by the location of the target and the patient's biometric characteristics. The patient-specific quantification of CRM may allow to decrease treatment volume and reduce radiation exposure of surrounding organs at risk while delivering the therapeutic dose to the target.
Collapse
Affiliation(s)
- Adrian Petzl
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada
| | - Karim Benali
- Department of Cardiac Electrophysiology, Saint-Etienne University Hospital, France
| | - Nicolas Mbolamena
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada
| | - Katia Dyrda
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada
| | - Léna Rivard
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada
| | - Sebastian Seidl
- Department of Internal Medicine 2/Cardiology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Raphaël Martins
- Department of Cardiac Electrophysiology, Rennes University Hospital, France
| | - Martin Martinek
- Department of Internal Medicine 2/Cardiology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Helmut Pürerfellner
- Department of Internal Medicine 2/Cardiology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Martin Aguilar
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada
| |
Collapse
|
5
|
Herrera Siklody C, Schiappacasse L, Jumeau R, Reichlin T, Saguner AM, Andratschke N, Elicin O, Schreiner F, Kovacs B, Mayinger M, Huber A, Verhoeff JJC, Pascale P, Solana Muñoz J, Luca A, Domenichini G, Moeckli R, Bourhis J, Ozsahin EM, Pruvot E. Recurrences of ventricular tachycardia after stereotactic arrhythmia radioablation arise outside the treated volume: analysis of the Swiss cohort. Europace 2023; 25:euad268. [PMID: 37695314 PMCID: PMC10551232 DOI: 10.1093/europace/euad268] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
AIMS Stereotactic arrhythmia radioablation (STAR) has been recently introduced for the management of therapy-refractory ventricular tachycardia (VT). VT recurrences have been reported after STAR but the mechanisms remain largely unknown. We analysed recurrences in our patients after STAR. METHODS AND RESULTS From 09.2017 to 01.2020, 20 patients (68 ± 8 y, LVEF 37 ± 15%) suffering from refractory VT were enrolled, 16/20 with a history of at least one electrical storm. Before STAR, an invasive electroanatomical mapping (Carto3) of the VT substrate was performed. A mean dose of 23 ± 2 Gy was delivered to the planning target volume (PTV). The median ablation volume was 26 mL (range 14-115) and involved the interventricular septum in 75% of patients. During the first 6 months after STAR, VT burden decreased by 92% (median value, from 108 to 10 VT/semester). After a median follow-up of 25 months, 12/20 (60%) developed a recurrence and underwent a redo ablation. VT recurrence was located in the proximity of the treated substrate in nine cases, remote from the PTV in three cases and involved a larger substrate over ≥3 LV segments in two cases. No recurrences occurred inside the PTV. Voltage measurements showed a significant decrease in both bipolar and unipolar signal amplitude after STAR. CONCLUSION STAR is a new tool available for the treatment of VT, allowing for a significant reduction of VT burden. VT recurrences are common during follow-up, but no recurrences were observed inside the PTV. Local efficacy was supported by a significant decrease in both bipolar and unipolar signal amplitude.
Collapse
Affiliation(s)
| | - Luis Schiappacasse
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphaël Jumeau
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | - Boldizsar Kovacs
- Department of Cardiology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Adrian Huber
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrizio Pascale
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Jorge Solana Muñoz
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Adrian Luca
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Domenichini
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Moeckli
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Esat M Ozsahin
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Etienne Pruvot
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
6
|
Wijesuriya N, Galante JR, Sisodia C, Whitaker J, Ahmad S, Rinaldi CA. Increase in right ventricular lead pacing threshold following stereotactic ablative therapy for ventricular tachycardia. HeartRhythm Case Rep 2023; 9:555-559. [PMID: 37614389 PMCID: PMC10444549 DOI: 10.1016/j.hrcr.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Affiliation(s)
- Nadeev Wijesuriya
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Joao R. Galante
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Caroline Sisodia
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Shahreen Ahmad
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
7
|
Guarracini F, Tritto M, Di Monaco A, Mariani MV, Gasperetti A, Compagnucci P, Muser D, Preda A, Mazzone P, Themistoclakis S, Carbucicchio C. Stereotactic Arrhythmia Radioablation Treatment of Ventricular Tachycardia: Current Technology and Evolving Indications. J Cardiovasc Dev Dis 2023; 10:jcdd10040172. [PMID: 37103051 PMCID: PMC10143260 DOI: 10.3390/jcdd10040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Ventricular tachycardia in patients with structural heart disease is a significant cause of morbidity and mortality. According to current guidelines, cardioverter defibrillator implantation, antiarrhythmic drugs, and catheter ablation are established therapies in the management of ventricular arrhythmias but their efficacy is limited in some cases. Sustained ventricular tachycardia can be terminated by cardioverter-defibrillator therapies although shocks in particular have been demonstrated to increase mortality and worsen patients' quality of life. Antiarrhythmic drugs have important side effects and relatively low efficacy, while catheter ablation, even if it is actually an established treatment, is an invasive procedure with intrinsic procedural risks and is frequently affected by patients' hemodynamic instability. Stereotactic arrhythmia radioablation for ventricular arrhythmias was developed as bail-out therapy in patients unresponsive to traditional treatments. Radiotherapy has been mainly applied in the oncological field, but new current perspectives have developed in the field of ventricular arrhythmias. Stereotactic arrhythmia radioablation provides an alternative non-invasive and painless therapeutic strategy for the treatment of previously detected cardiac arrhythmic substrate by three-dimensional intracardiac mapping or different tools. Since preliminary experiences have been reported, several retrospective studies, registries, and case reports have been published in the literature. Although, for now, stereotactic arrhythmia radioablation is considered an alternative palliative treatment for patients with refractory ventricular tachycardia and no other therapeutic options, this research field is currently extremely promising.
Collapse
Affiliation(s)
| | - Massimo Tritto
- Electrophysiology and Cardiac Pacing Unit, Humanitas Mater Domini Hospital, 21053 Castellanza, Italy
| | - Antonio Di Monaco
- Cardiology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, Italy
| | - Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Alessio Gasperetti
- Department of Cardiology, ASST-Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital Ospedali Riuniti Umberto I-Lancisi-Salesi, 60126 Ancona, Italy
| | - Daniele Muser
- Cardiothoracic Department, University Hospital, 33100 Udine, Italy
| | - Alberto Preda
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Patrizio Mazzone
- Cardiothoracovascular Department, Electrophysiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Sakis Themistoclakis
- Department of Cardiothoracic, Vascular Medicine and Intensive Care, Dell'Angelo Hospital, Mestre, 30174 Venice, Italy
| | - Corrado Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| |
Collapse
|
8
|
Puvanasunthararajah S, Camps SM, Wille ML, Fontanarosa D. Combined clustered scan-based metal artifact reduction algorithm (CCS-MAR) for ultrasound-guided cardiac radioablation. Phys Eng Sci Med 2022; 45:1273-1287. [PMID: 36352318 DOI: 10.1007/s13246-022-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Cardiac radioablation is a promising treatment for cardiac arrhythmias, but accurate dose delivery can be affected by heart motion. For this reason, real-time cardiac motion monitoring during radioablation is of paramount importance. Real-time ultrasound (US) guidance can be a solution. The US-guided cardiac radioablation workflow can be simplified by the simultaneous US and planning computed tomography (CT) acquisition, which can result in US transducer-induced metal artifacts on the planning CT scans. To reduce the impact of these artifacts, a new metal artifact reduction (MAR) algorithm (named: Combined Clustered Scan-based MAR [CCS-MAR]) has been developed and compared with iMAR (Siemens), O-MAR (Philips) and MDT (ReVision Radiology) algorithms. CCS-MAR is a fully automated sinogram inpainting-based MAR algorithm, which uses a two-stage correction process based on a normalized MAR method. The second stage aims to correct errors remaining from the first stage to create an artifact-free combined clustered scan for the process of metal artifact reduction. To evaluate the robustness of CCS-MAR, conventional CT scans and/or dual-energy CT scans from three anthropomorphic phantoms and transducers with different sizes were used. The performance of CCS-MAR for metal artifact reduction was compared with other algorithms through visual comparison, image quality metrics analysis, and HU value restoration evaluation. The results of this study show that CCS-MAR effectively reduced the US transducer-induced metal artifacts and that it improved HU value accuracy more or comparably to other MAR algorithms. These promising results justify future research into US transducer-induced metal artifact reduction for the US-guided cardiac radioablation purposes.
Collapse
Affiliation(s)
- Sathyathas Puvanasunthararajah
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia. .,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
| | | | - Marie-Luise Wille
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.,School of Mechanical, Medical & Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia.,ARC ITTC for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Huang SH, Wu YW, Shueng PW, Wang SY, Tsai MC, Liu YH, Chuang WP, Lin HH, Tien HJ, Yeh HP, Hsieh CH. Case report: Stereotactic body radiation therapy with 12 Gy for silencing refractory ventricular tachycardia. Front Cardiovasc Med 2022; 9:973105. [PMID: 36407435 PMCID: PMC9669661 DOI: 10.3389/fcvm.2022.973105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Encouraging results have been reported for the treatment of ventricular tachycardia (VT) with stereotactic body radiation therapy (SBRT) with 25 Gy. SBRT with 12 Gy for refractory VT was designed to reduce long-term cardiac toxicity. METHODS Stereotactic body radiation therapy-VT simulation, planning, and treatment were performed using standard techniques. A patient was treated with a marginal dose of 12 Gy in a single fraction to the planning target volume (PTV). The goal was for at least ≥ 95% of the PTV to be covered by at least 95% of 12 Gy radiation. RESULTS From April 2021 through June 2022, a patient with refractory VT underwent treatment. The volume for PTV was 65.8 cm3. The mean radiation dose administered to the heart (the heart volume excluding the PTV) was 2.2 Gy. No acute or late toxicity was observed after SBRT. Six months after SBRT, the patient experienced new monomorphic right ventricular outflow tract (RVOT) VT. Interestingly, the substrate of the left ventricular basal to middle posteroseptal wall before SBRT was turned into scar zones with a local voltage < 0.5 mV. Catheter ablation to treat RVOT VT was performed, and the situation remains stable to date. CONCLUSION This study reports the first patient with refractory VT successfully treated with 12.0 Gy SBRT, suggesting that 12 Gy is a potential dose to treat refractory VT. Further investigations and enrollment of more patients are warranted to assess the long-term efficacy and side effects of this treatment.
Collapse
Affiliation(s)
- Shan-Hui Huang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Nuclear Medicine Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Pei-Wei Shueng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Meng-Chieh Tsai
- Division of Radiology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yuan-Hung Liu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Electronic Engineering, Asia Eastern University of Science and Technology, New Taipei City, Taiwan
| | - Wen-Po Chuang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Heng-Hsu Lin
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hui-Ju Tien
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hsin-Pei Yeh
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chen-Hsi Hsieh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Head and Neck Cancer Surveillance and Research Group, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
10
|
Killu AM, Collins JD, Eleid MF, Alkhouli M, Simard T, Rihal C, Asirvatham SJ, Guerrero M. Preemptive Septal Radiofrequency Ablation to Prevent Left Ventricular Outflow Tract Obstruction With Transcatheter Mitral Valve Replacement: A Case Series. Circ Cardiovasc Interv 2022; 15:e012228. [PMID: 36256696 DOI: 10.1161/circinterventions.122.012228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Left ventricular outflow tract obstruction may occur following transcatheter mitral valve replacement in the setting of mitral annular calcification. METHODS We present a case series whereby preemptive septal radiofrequency ablation (RADIO-TMVR) was used to augment the left ventricular outflow tract for transcatheter mitral valve replacement in 4 patients at risk for left ventricular outflow tract obstruction despite alcohol septal ablation. RESULTS All patients were female, average age of 74.9 (68.8-80.4) years. Baseline ejection fraction was 71% (63%-75%). Mean mitral valve area was 1.28 (range, 1.0-1.59) cm2. Mean mitral valve gradient at rest was 9.5 (range, 7-11) mm Hg. New York Heart Association symptoms were III to IV at baseline. Patients underwent preemptive septal radiofrequency ablation to prevent left ventricular outflow tract obstruction with transcatheter mitral valve replacement a range between 69 and 154 days after alcohol septal ablation. Procedural time was 384 (337-424) minutes with a fluoroscopic time of 31 (14-71) minutes. Radiofrequency ablation time was 132 (100-175) minutes. As anticipated, 3 patients developed complete heart block and underwent pacemaker implantation, whereas 1 had a preexisting pacemaker. One patient developed groin hematoma and heart failure exacerbation. There were no peri-procedural deaths. Preemptive septal radiofrequency ablation to prevent left ventricular outflow tract obstruction with transcatheter mitral valve replacement resulted in septal end-diastolic wall thickness reduction compared with baseline (28.6%, 30.4%, 30.3%, and 11.1%) and following alcohol septal ablation (23.1%, 12%, 8.5%). Valve replacement in the setting of mitral annular calcification was performed in all patients 89 (range, 38-45) days after preemptive septal radiofrequency ablation to prevent left ventricular outflow tract obstruction with transcatheter mitral valve replacement. Two patients had concomitant laceration of the anterior mitral leaflet to further augment the neo-left ventricular outflow tract. Postprocedure, New York Heart Association symptoms improved to class I (3 patients) and class II (1 patient). CONCLUSIONS In at-risk individuals, preemptive septal radiofrequency ablation may be an effective strategy at preventing left ventricular outflow tract obstruction with transcatheter mitral valve replacement.
Collapse
Affiliation(s)
- Ammar M Killu
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (A.M.K., S.J.A.), Mayo Clinic Hospital, Rochester, MN
| | - Jeremy D Collins
- Department of Diagnostic Radiology (J.D.C.), Mayo Clinic Hospital, Rochester, MN
| | - Mackram F Eleid
- Division of Interventional Cardiology, Department of Cardiovascular Medicine (M.F.E., M.A., T.S., C.R., M.G.), Mayo Clinic Hospital, Rochester, MN
| | - Mohamad Alkhouli
- Division of Interventional Cardiology, Department of Cardiovascular Medicine (M.F.E., M.A., T.S., C.R., M.G.), Mayo Clinic Hospital, Rochester, MN
| | - Trevor Simard
- Division of Interventional Cardiology, Department of Cardiovascular Medicine (M.F.E., M.A., T.S., C.R., M.G.), Mayo Clinic Hospital, Rochester, MN
| | - Charanjit Rihal
- Division of Interventional Cardiology, Department of Cardiovascular Medicine (M.F.E., M.A., T.S., C.R., M.G.), Mayo Clinic Hospital, Rochester, MN
| | - Samuel J Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (A.M.K., S.J.A.), Mayo Clinic Hospital, Rochester, MN
- Pediatric and Adolescent Medicine and Department of Biomedical Engineering (S.J.A.), Mayo Clinic Hospital, Rochester, MN
| | - Mayra Guerrero
- Division of Interventional Cardiology, Department of Cardiovascular Medicine (M.F.E., M.A., T.S., C.R., M.G.), Mayo Clinic Hospital, Rochester, MN
| |
Collapse
|
11
|
Whitaker J, Zei PC, Ahmad S, Niederer S, O'Neill M, Rinaldi CA. The effect of ionizing radiation through cardiac stereotactic body radiation therapy on myocardial tissue for refractory ventricular arrhythmias: A review. Front Cardiovasc Med 2022; 9:989886. [PMID: 36186961 PMCID: PMC9520407 DOI: 10.3389/fcvm.2022.989886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac stereotactic body radiation therapy (cSBRT) is a non-invasive treatment modality that has been recently reported as an effective treatment for ventricular arrhythmias refractory to medical therapy and catheter ablation. The approach leverages tools developed and refined in radiation oncology, where experience has been accumulated in the treatment of a wide variety of malignant conditions. However, important differences exist between rapidly dividing malignant tumor cells and fully differentiated myocytes in pathologically remodeled ventricular myocardium, which represent the respective radiation targets. Despite its initial success, little is known about the radiobiology of the anti-arrhythmic effect cSBRT. Pre-clinical data indicates a late fibrotic effect of that appears between 3 and 4 months following cSBRT, which may result in conduction slowing and block. However, there is clear clinical evidence of an anti-arrhythmic effect of cSBRT that precedes the appearance of radiation induced fibrosis for which the mechanism is unclear. In addition, the data to date suggests that even the late anti-arrhythmic effect of cSBRT is not fully attributable to radiation.-induced fibrosis. Pre-clinical data has identified upregulation of proteins expected to result in both increased cell-to-cell coupling and excitability in the early post cSBRT period and demonstrated an associated increase in myocardial conduction velocity. These observations indicate a complex response to radiotherapy and highlight the lack of clarity regarding the different stages of the anti-arrhythmic mechanism of cSBRT. It may be speculated that in the future cSBRT therapy could be planned to deliver both early and late radiation effects titrated to optimize the combined anti-arrhythmic efficacy of the treatment. In addition to these outstanding mechanistic questions, the optimal patient selection, radiation modality, radiation dose and treatment planning strategy are currently being investigated. In this review, we consider the structural and functional effect of radiation on myocardium and the possible anti-arrhythmic mechanisms of cSBRT. Review of the published data highlights the exciting prospects for the development of knowledge and understanding in this area in which so many outstanding questions exist.
Collapse
Affiliation(s)
- John Whitaker
- Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical Schools, Boston, MA, United States
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
- *Correspondence: John Whitaker
| | - Paul C. Zei
- Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical Schools, Boston, MA, United States
| | - Shahreen Ahmad
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
- Guy's and St. Thomas's NHS Foundation Trust, London, United Kingdom
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| |
Collapse
|
12
|
Ninni S, Gallot-Lavallée T, Klein C, Longère B, Brigadeau F, Potelle C, Crop F, Rault E, Decoene C, Lacornerie T, Lals S, Kouakam C, Pontana F, Lacroix D, Klug D, Mirabel X. Stereotactic Radioablation for Ventricular Tachycardia in the Setting of Electrical Storm. Circ Arrhythm Electrophysiol 2022; 15:e010955. [PMID: 36074658 DOI: 10.1161/circep.122.010955] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) has been reported as a safe and efficient therapy for treating refractory ventricular tachycardia (VT) despite optimal medical treatment and catheter ablation. However, data on the use of SBRT in patients with electrical storm (ES) is lacking. The aim of this study was to assess the clinical outcomes associated with SBRT in the context of ES. METHODS This retrospective study included patients who underwent SBRT in the context of ES from March 2020 to March 2021 in one tertiary center (CHU Lille). The target volume was delineated according to a predefined workflow. The efficacy was assessed with the following end points: sustained VT recurrence, VT reduced with antitachycardia pacing, and implantable cardioverter defibrillator shock. RESULTS Seventeen patients underwent SBRT to treat refractory VT in the context of ES (mean 67±12.8 age, 59% presenting ischemic heart disease, mean left ventricular ejection fraction: 33.7± 9.7%). Five patients presented with ES related to incessant VT. Among these 5 patients, the time to effectiveness ranged from 1 to 7 weeks after SBRT. In the 12 remaining patients, VT recurrences occurred in 7 patients during the first 6 weeks following SBRT. After a median 12.5 (10.5-17.8) months follow-up, a significant reduction of the VT burden was observed beyond 6 weeks (-91% [95% CI, 78-103]), P<0.0001). The incidence of implantable cardioverter defibrillator shock and antitachycardia pacing was 36% at 1 year. CONCLUSIONS SBRT is associated with a significant reduction of the VT burden in the event of an ES; however, prospective randomized control trials are needed. In patients without incessant VT, recurrences are observed in half of patients during the first 6 weeks. VT tolerance and implantable cardioverter defibrillator programming adjustments should be integrated as part of an action plan defined before SBRT for each patient.
Collapse
Affiliation(s)
- Sandro Ninni
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - Thomas Gallot-Lavallée
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - Cédric Klein
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - Benjamin Longère
- CHU Lille, Institut Cœur-Poumon, Service De Radiologie (B.L., F.P.)
| | - François Brigadeau
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | | | - Frederik Crop
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.).,Medical Physics, Centre Oscar Lambret, Lille, France (F.C., E.R., C.D., T.L.)
| | - Erwann Rault
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.).,Medical Physics, Centre Oscar Lambret, Lille, France (F.C., E.R., C.D., T.L.)
| | - Camille Decoene
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.).,Medical Physics, Centre Oscar Lambret, Lille, France (F.C., E.R., C.D., T.L.)
| | - Thomas Lacornerie
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.).,Medical Physics, Centre Oscar Lambret, Lille, France (F.C., E.R., C.D., T.L.)
| | - Séverine Lals
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.)
| | - Claude Kouakam
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - François Pontana
- CHU Lille, Institut Cœur-Poumon, Service De Radiologie (B.L., F.P.)
| | - Dominique Lacroix
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - Didier Klug
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | | |
Collapse
|
13
|
Piccolo C, Vigorito S, Rondi E, Piperno G, Ferrari A, Pepa M, Riva G, Durante S, Conte E, Catto V, Andreini D, Carbucicchio C, Jereczek-Fossa BA, Pompilio G, Orecchia R, Cattani F. Phantom study of stereotactic radioablation for ventricular tachycardia (STRA-MI-VT) using Cyberknife Synchrony Respiratory Tracking System with a single fiducial marker. Phys Med 2022; 100:135-141. [PMID: 35816942 DOI: 10.1016/j.ejmp.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Within the STRA-MI-VT phase Ib/II trial (NCT04066517), the aim of this phantom study was to explore the feasibility of Cyberknife treatments on cardiac lesions by tracking as a single marker the lead tip of an implantable cardioverter defibrillator. The residual displacement of the lesion during the tracking was studied, planning margins were found and the dosimetric accuracy of the treatment was checked. MATERIALS AND METHODS A lead was inserted into a phantom (EasyCube phantom, Sun Nuclear Co, USA) and then placed on the translating ExacTrac Gating System (BrainLAB AG, Germany). The phantom was rotated, a virtual lesion was identified and its displacement during the tracking was studied. Two plans were compared, calculated on the unrotated volume and on the envelope of the unrotated and the rotated volumes. The plans were delivered using the Cyberknife System (Accuray Inc, USA) and their dosimetric accuracy verified by gamma analysis with gafchromic films. RESULTS The residual margin increases enhancing the distance between the lead and the lesion. It is 4 mm for distance 0 cm and 5 mm for distance 5 cm. The coverage is reduced by 3.8% (interquartile range 2.5%-4.7%) when the dose is prescribed on the unrotated volume. All treatment plans are accurate and 3% 3 mm gamma analysis results are greater than 94%. CONCLUSIONS Results showed that tracking with a single marker is feasible considering adequate residual planning margins. The volumes could be further reduced by using additional markers, for example by placing them on the patient's skin.
Collapse
Affiliation(s)
- C Piccolo
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy.
| | - S Vigorito
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - E Rondi
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - G Piperno
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - A Ferrari
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - M Pepa
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - G Riva
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - S Durante
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - E Conte
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - V Catto
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - D Andreini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - C Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - B A Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - G Pompilio
- Scientific Directorate, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - R Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - F Cattani
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
14
|
Shangguan W, Xu G, Wang X, Zhang N, Liu X, Li G, Tse G, Liu T. Stereotactic Radiotherapy: An Alternative Option for Refractory Ventricular Tachycardia to Drug and Ablation Therapy. J Clin Med 2022; 11:3549. [PMID: 35743614 PMCID: PMC9225049 DOI: 10.3390/jcm11123549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Refractory ventricular tachycardia (VT) often occurs in the context of organic heart disease. It is associated with significantly high mortality and morbidity rates. Antiarrhythmic drugs and catheter ablation represent the two main treatment options for refractory VT, but their use can be associated with inadequate therapeutic responses and procedure-related complications. Stereotactic body radiotherapy (SBRT) is extensively applied in the precision treatment of solid tumors, with excellent therapeutic responses. Recently, this highly precise technology has been applied for radioablation of VT, and its early results demonstrate a favorable safety profile. This review presents the potential value of SBRT in refractory VT.
Collapse
Affiliation(s)
- Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Gang Xu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Xin Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Xingpeng Liu
- Department of Heart Center, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd., Chaoyang District, Beijing 100020, China;
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- Kent and Medway Medical School, Canterbury CT2 7FS, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| |
Collapse
|
15
|
Li H, Dong L, Bert C, Chang J, Flampouri S, Jee KW, Lin L, Moyers M, Mori S, Rottmann J, Tryggestad E, Vedam S. Report of AAPM Task Group 290: Respiratory motion management for particle therapy. Med Phys 2022; 49:e50-e81. [PMID: 35066871 PMCID: PMC9306777 DOI: 10.1002/mp.15470] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Dose uncertainty induced by respiratory motion remains a major concern for treating thoracic and abdominal lesions using particle beams. This Task Group report reviews the impact of tumor motion and dosimetric considerations in particle radiotherapy, current motion‐management techniques, and limitations for different particle‐beam delivery modes (i.e., passive scattering, uniform scanning, and pencil‐beam scanning). Furthermore, the report provides guidance and risk analysis for quality assurance of the motion‐management procedures to ensure consistency and accuracy, and discusses future development and emerging motion‐management strategies. This report supplements previously published AAPM report TG76, and considers aspects of motion management that are crucial to the accurate and safe delivery of particle‐beam therapy. To that end, this report produces general recommendations for commissioning and facility‐specific dosimetric characterization, motion assessment, treatment planning, active and passive motion‐management techniques, image guidance and related decision‐making, monitoring throughout therapy, and recommendations for vendors. Key among these recommendations are that: (1) facilities should perform thorough planning studies (using retrospective data) and develop standard operating procedures that address all aspects of therapy for any treatment site involving respiratory motion; (2) a risk‐based methodology should be adopted for quality management and ongoing process improvement.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph Bert
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Joe Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stella Flampouri
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Kyung-Wook Jee
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Michael Moyers
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Joerg Rottmann
- Center for Proton Therapy, Proton Therapy Singapore, Proton Therapy Pte Ltd, Singapore
| | - Erik Tryggestad
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland, Baltimore, USA
| |
Collapse
|
16
|
De la Pinta C, Besse R. Stereotactic ablative body radiotherapy for ventricular tachycardia: An alternative therapy for refractory patients. Anatol J Cardiol 2021; 25:858-862. [PMID: 34866579 PMCID: PMC8654013 DOI: 10.5152/anatoljcardiol.2021.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Stereotactic ablative body radiotherapy (SABR) allows the administration of ablative doses of radiation in a focused form with a low probability of side effects and is widely used for cancer treatment. However, in the recent years its usefulness in benign cardiac pathology is being studied. In this study, we aimed to guide the cardiologist in SABR and its applications in treatment of refractory ventricular tachycardia. In this review, we analyzed published literature on PubMed and MEDLINE with papers published in the past 5 years. We included papers in the English language with information about indications, radiotherapy plan, doses and fractionations, and outcomes. All citations were evaluated for relevant content and validation.
Collapse
Affiliation(s)
| | - Raquel Besse
- Department of Internal Medicine, Ramón y Cajal Hospital; Madrid-Spain
| |
Collapse
|
17
|
Hohmann S, Hillmann HAK, Müller-Leisse J, Eiringhaus J, Zormpas C, Merten R, Veltmann C, Duncker D. Stereotactic radioablation for ventricular tachycardia. Herzschrittmacherther Elektrophysiol 2021; 33:49-54. [PMID: 34825951 DOI: 10.1007/s00399-021-00830-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Non-invasive stereotactic radioablation of ventricular tachycardia (VT) substrate has been proposed as a novel treatment modality for patients not eligible for catheter-based ablation or in whom this approach has failed. Initial clinical results are promising with good short-term efficacy in VT suppression and tolerable side effects. This article reviews the current clinical evidence for cardiac radioablation and gives an overview of important preclinical and translational results. Practical guidance is provided, and a cardiac radioablation planning and treatment workflow based on expert consensus and the authors' institutional experience is set out.
Collapse
Affiliation(s)
- Stephan Hohmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Henrike A K Hillmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanna Müller-Leisse
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jörg Eiringhaus
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christos Zormpas
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Roland Merten
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Christian Veltmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
18
|
Wei C, Qian PC, Boeck M, Bredfeldt JS, Blankstein R, Tedrow UB, Mak R, Zei PC. Cardiac stereotactic body radiation therapy for ventricular tachycardia: Current experience and technical gaps. J Cardiovasc Electrophysiol 2021; 32:2901-2914. [PMID: 34587335 DOI: 10.1111/jce.15259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Despite advances in drug and catheter ablation therapy, long-term recurrence rates for ventricular tachycardia remain suboptimal. Cardiac stereotactic body radiotherapy (SBRT) is a novel treatment that has demonstrated reduction of arrhythmia episodes and favorable short-term safety profile in treatment-refractory patients. Nevertheless, the current clinical experience is early and limited. Recent studies have highlighted variable duration of treatment effect and substantial recurrence rates several months postradiation. Contributing to these differential outcomes are disparate approaches groups have taken in planning and delivering radiation, owing to both technical and knowledge gaps limiting optimization and standardization of cardiac SBRT. METHODS AND FINDINGS In this report, we review the historical basis for cardiac SBRT and existing clinical data. We then elucidate the current technical gaps in cardiac radioablation, incorporating the current clinical experience, and summarize the ongoing and needed efforts to resolve them. CONCLUSION Cardiac SBRT is an emerging therapy that holds promise for the treatment of ventricular tachycardia. Technical gaps remain, to be addressed by ongoing research and growing clincial experience.
Collapse
Affiliation(s)
- Chen Wei
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre C Qian
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michelle Boeck
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jeremy S Bredfeldt
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Usha B Tedrow
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raymond Mak
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paul C Zei
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Zhang DM, Szymanski J, Bergom C, Cuculich PS, Robinson CG, Schwarz JK, Rentschler SL. Leveraging Radiobiology for Arrhythmia Management: A New Treatment Paradigm? Clin Oncol (R Coll Radiol) 2021; 33:723-734. [PMID: 34535357 DOI: 10.1016/j.clon.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023]
Abstract
Radiation therapy is a well-established approach for safely and non-invasively treating solid tumours and benign diseases with high precision and accuracy. Cardiac radiation therapy has recently emerged as a non-invasive treatment option for the management of refractory ventricular tachycardia. Here we summarise existing clinical and preclinical literature surrounding cardiac radiobiology and discuss how these studies may inform basic and translational research, as well as clinical treatment paradigms in the management of arrhythmias.
Collapse
Affiliation(s)
- D M Zhang
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J Szymanski
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C Bergom
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - P S Cuculich
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C G Robinson
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J K Schwarz
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - S L Rentschler
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Developmental Biology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
20
|
Bergom C, Bradley JA, Ng AK, Samson P, Robinson C, Lopez-Mattei J, Mitchell JD. Past, Present, and Future of Radiation-Induced Cardiotoxicity: Refinements in Targeting, Surveillance, and Risk Stratification. JACC CardioOncol 2021; 3:343-359. [PMID: 34604796 PMCID: PMC8463722 DOI: 10.1016/j.jaccao.2021.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is an important component of cancer therapy for many malignancies. With improvements in cardiac-sparing techniques, radiation-induced cardiac dysfunction has decreased but remains a continued concern. In this review, we provide an overview of the evolution of radiotherapy techniques in thoracic cancers and associated reductions in cardiac risk. We also highlight data demonstrating that in some cases radiation doses to specific cardiac substructures correlate with cardiac toxicities and/or survival beyond mean heart dose alone. Advanced cardiac imaging, cardiovascular risk assessment, and potentially even biomarkers can help guide post-radiotherapy patient care. In addition, treatment of ventricular arrhythmias with the use of ablative radiotherapy may inform knowledge of radiation-induced cardiac dysfunction. Future efforts should explore further personalization of radiotherapy to minimize cardiac dysfunction by coupling knowledge derived from enhanced dosimetry to cardiac substructures, post-radiation regional dysfunction seen on advanced cardiac imaging, and more complete cardiac toxicity data.
Collapse
Key Words
- CAC, coronary artery calcium
- CAD, coronary artery disease
- CMRI, cardiac magnetic resonance imaging
- CT, computed tomography
- HL, Hodgkin lymphoma
- LAD, left anterior descending artery
- LV, left ventricular
- MHD, mean heart dose
- NSCLC, non–small cell lung cancer
- RICD, radiation-induced cardiovascular disease
- RT, radiation therapy
- SBRT, stereotactic body radiation therapy
- breast cancer
- cancer survivorship
- childhood cancer
- esophageal cancer
- imaging
- lung cancer
- lymphoma
- radiation physics
Collapse
Affiliation(s)
- Carmen Bergom
- Department of Radiation Oncology, Washington University, Saint Louis, Missouri, USA
- Cardio-Oncology Center of Excellence, Washington University, St. Louis, Missouri, USA
- Alvin J. Siteman Center, Washington University, St. Louis, Missouri, USA
| | - Julie A. Bradley
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida, USA
| | - Andrea K. Ng
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pamela Samson
- Department of Radiation Oncology, Washington University, Saint Louis, Missouri, USA
- Alvin J. Siteman Center, Washington University, St. Louis, Missouri, USA
| | - Clifford Robinson
- Department of Radiation Oncology, Washington University, Saint Louis, Missouri, USA
- Alvin J. Siteman Center, Washington University, St. Louis, Missouri, USA
- Division of Cardiology, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Juan Lopez-Mattei
- Departments of Cardiology and Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joshua D. Mitchell
- Cardio-Oncology Center of Excellence, Washington University, St. Louis, Missouri, USA
- Alvin J. Siteman Center, Washington University, St. Louis, Missouri, USA
- Division of Cardiology, Department of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
21
|
The Rapidly-Developing Area of Radiocardiology: Principles, Complications and Applications of Radiotherapy on the Heart. Can J Cardiol 2021; 37:1818-1827. [PMID: 34303782 DOI: 10.1016/j.cjca.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death. Current treatment strategies for VT, including antiarrhythmic drugs and catheter ablation, have limited efficacy in patients with structural heart disease. Non-invasive ablation with the use of externally applied radiation (cardiac radio-ablation) has emerged as a promising and novel approach to treating recurrent VTs. However, the heart is generally an "organ at risk" for radiation treatments, such that very little is known on the effects of radiotherapy on cardiac ultrastructure and electrophysiological properties. Furthermore, there has been limited interaction between the fields of cardiology and radiation oncology and physics. The advent of cardiac radio-ablation will undoubtedly increase interactions between cardiologists, cardiac electrophysiologists, radiation oncologists and physicists There is an important knowledge gap separating these specialties while scientific developments, technical optimization and improvements are dependent on intense multidisciplinary collaboration. This manuscript seeks to review the basic of radiation physics and biology for cardiovascular specialists in an effort to facilitate constructive scientific and clinical collaborations to improve patient outcomes.
Collapse
|
22
|
Gheini A, Pourya A, Pooria A. Atrial Fibrillation and Ventricular Tachyarrhythmias: Advancements for Better Outcomes. Cardiovasc Hematol Disord Drug Targets 2021; 20:249-259. [PMID: 33001020 DOI: 10.2174/1871529x20666201001143907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Cardiac arrhythmias are associated with several cardiac diseases and are prevalent in people with or without structural and valvular abnormalities. Ventricular arrhythmias (VA) can be life threating and their onset require immediate medical attention. Similarly, atrial fibrillation and flutter lead to stroke, heart failure and even death. Optimal treatment of VA is variable and depends on the medical condition associated with the rhythm disorder (which includes reversible causes such as myocardial ischemia or pro-arrhythmic drugs). While an implanted cardioverter defibrillator is often indicated in secondary prevention of VA. This review highlights the newest advancements in these techniques and management of ventricular and atrial tachyarrhythmias, along with pharmacological therapy.
Collapse
Affiliation(s)
- Alireza Gheini
- Department of Cardiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Ali Pooria
- Department of Cardiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
23
|
Whitaker J, Mak RH, Zei PC. Non-invasive ablation of arrhythmias with stereotactic ablative radiotherapy. Trends Cardiovasc Med 2021; 32:287-296. [PMID: 33951498 DOI: 10.1016/j.tcm.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
Stereotactic ablative radiotherapy (SABR), or stereotactic body radiotherapy (SBRT), has recently been applied in the field of arrhythmia management. It has been most widely assessed in the treatment of ventricular tachycardia (VT) but may also have potential in the treatment of other arrhythmias as well, often termed stereotactic arrhythmia radiotherapy (STAR). The non-invasive delivery of treatment for VT has the potential to spare an often physiologically vulnerable group of patients the burden of long catheter ablation procedures with the potential for prolonged periods of hemodynamic instability. Cardiac SABR also has the capacity to direct ablative therapy at substrate that is inaccessible using current transchatheter techniques. For these reasons cardiac SABR has generated significant enthusiasm as an emerging treatment modality for VT. We consider in review the pre-clinical data pertaining to the use of SABR in cardiac tissue and recent clinical evidence regarding the application of SABR in the field of arrhythmia management.
Collapse
Affiliation(s)
- John Whitaker
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Raymond H Mak
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Paul C Zei
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| |
Collapse
|
24
|
Lydiard, PGDip S, Blanck O, Hugo G, O’Brien R, Keall P. A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities. Int J Radiat Oncol Biol Phys 2021; 109:783-800. [DOI: 10.1016/j.ijrobp.2020.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
|
25
|
Hohmann S, Deisher AJ, Konishi H, Rettmann ME, Suzuki A, Merrell KW, Kruse JJ, Fitzgerald ST, Newman LK, Parker KD, Monahan KH, Foote RL, Herman MG, Packer DL. Catheter-free ablation of infarct scar through proton beam therapy: Tissue effects in a porcine model. Heart Rhythm 2020; 17:2190-2199. [DOI: 10.1016/j.hrthm.2020.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
|
26
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Sáenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace 2020; 21:1143-1144. [PMID: 31075787 DOI: 10.1093/europace/euz132] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Narducci ML, Cellini F, Placidi L, Boldrini L, Perna F, Bencardino G, Pinnacchio G, Bertolini R, Cannelli G, Frascino V, Tagliaferri L, Chiesa S, Mattiucci GC, Balducci M, Gambacorta MA, Rossi M, Indovina L, Pelargonio G, Valentini V, Crea F. Case Report: A Case Report of Stereotactic Ventricular Arrhythmia Radioablation (STAR) on Large Cardiac Target Volume by Highly Personalized Inter- and Intra-fractional Image Guidance. Front Cardiovasc Med 2020; 7:565471. [PMID: 33330640 PMCID: PMC7719630 DOI: 10.3389/fcvm.2020.565471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction: Although catheter ablation is the current gold standard treatment for refractory ventricular arrhythmias, sometimes its efficacy is not optimal and it's associated with high risks of procedural complication and death. Stereotactic arrhythmia radioablation (STAR) is increasingly being adopted for such clinical presentation, considering its efficacy and safety.Case Presentation: We do report our experience managing a case of high volume of left ventricle for refractory ventricular tachycardia in advanced heart failure patient, by delivering a single fraction of STAR through an highly personalization of dose delivery applying repeated inter- and continuous intra-fraction image guidance.Conclusion: According to the literature reports, we recommend considering increasing as much as possible the personalization features and safety technical procedure as long as that is not significantly affecting the STAR duration. Moreover, the duration in itself shouldn't be the main parameter, but balanced into the frame of possibly obtainable outcome improvement. At best of our knowledge, this is the first report applying such specific technology onto this clinical setting. Future studies will clarify these issues.
Collapse
Affiliation(s)
- Maria Lucia Narducci
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Cellini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lorenzo Placidi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Perna
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluigi Bencardino
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Pinnacchio
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta Bertolini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Cannelli
- Department of Anesthesiology, Intensive Care and Pain Therapy, Fondazione Policlinico A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Frascino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Tagliaferri
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Chiesa
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gian Carlo Mattiucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Balducci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Rossi
- Department of Anesthesiology, Intensive Care and Pain Therapy, Fondazione Policlinico A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gemma Pelargonio
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Cardiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Gemma Pelargonio
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Crea
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Cardiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
28
|
Chiu MH, Mitchell LB, Ploquin N, Faruqi S, Kuriachan VP. Review of Stereotactic Arrhythmia Radioablation Therapy for Cardiac Tachydysrhythmias. CJC Open 2020; 3:236-247. [PMID: 33778440 PMCID: PMC7984992 DOI: 10.1016/j.cjco.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/06/2020] [Indexed: 12/04/2022] Open
Abstract
Cardiac tachyarrhythmias are a major cause of morbidity and mortality. Treatments for these tachyarrhythmias include antiarrhythmic drugs, catheter ablation, surgical ablation, cardiac implantable electronic devices, and cardiac transplantation. Each of these treatment approaches is effective in some patients but there is considerable room for improvement, particularly with respect to the most common of the tachydysrhythmias, atrial fibrillation, and the most dangerous of the tachydysrhythmias, ventricular tachycardia (VT) or ventricular fibrillation. Noninvasive stereotactic ablative radiation therapy is emerging as an effective treatment for refractory tachyarrhythmias. Animal models have shown successful ablation of arrhythmogenic myocardial substrates with minimal short-term complications. Studies of stereotactic radioablation involving patients with refractory VT have shown a reduction in VT recurrence and promising early safety data. In this review, we provide the background for the application of stereotactic arrhythmia radioablation therapy along with promising results from early applications of the technology.
Collapse
Affiliation(s)
- Michael H Chiu
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - L Brent Mitchell
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Nicolas Ploquin
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Salman Faruqi
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Vikas P Kuriachan
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Noninvasive Radioablation of Ventricular Tachycardia. Cardiol Rev 2020; 28:283-290. [PMID: 33017363 DOI: 10.1097/crd.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ventricular tachycardia (VT) occurs most commonly in the presence of structural heart disease or myocardial scarring from prior infarction. It is associated with increased mortality, especially when it results in cardiac arrest outside of a hospital. When not due to reversible causes (such as acute ischemia/infarction), placement of an implantable cardioverter-defibrillator for prevention of future sudden death is indicated. The current standard of care for recurrent VT is medical management with antiarrhythmic agents followed by invasive catheter ablation for VT that persists despite appropriate medical therapy. Stereotactic arrhythmia radioablation (STAR) is a novel, noninvasive method of treating VT that has been shown to reduce VT burden for patients who are refractory to medical therapy and/or catheter ablation, or who are unable to tolerate catheter ablation. STAR is the term applied to the use of stereotactic body radiation therapy for the treatment of arrhythmogenic cardiac tissue and requires collaboration between an electrophysiologist and a radiation oncologist. The process involves identification of VT substrate through a combination of electroanatomic mapping and diagnostic imaging (computed tomography, magnetic resonance imaging, positron emission tomography) followed by carefully guided radiation therapy. In this article, we review currently available literature describing the utilization, efficacy, safety profile, and potential future applications of STAR for the management of VT.
Collapse
|
30
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Bella PD, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. J Interv Card Electrophysiol 2020; 59:145-298. [PMID: 31984466 PMCID: PMC7223859 DOI: 10.1007/s10840-019-00663-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, IN, USA
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
31
|
Suzuki A, Deisher AJ, Rettmann ME, Lehmann HI, Hohmann S, Wang S, Konishi H, Kruse JJ, Cusma JT, Newman LK, Parker KD, Monahan KH, Herman MG, Packer DL. Catheter-Free Arrhythmia Ablation Using Scanned Proton Beams: Electrophysiologic Outcomes, Biophysics, and Characterization of Lesion Formation in a Porcine Model. Circ Arrhythm Electrophysiol 2020; 13:e008838. [PMID: 32921132 DOI: 10.1161/circep.120.008838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Proton beam therapy offers radiophysical properties that are appealing for noninvasive arrhythmia elimination. This study was conducted to use scanned proton beams for ablation of cardiac tissue, investigate electrophysiological outcomes, and characterize the process of lesion formation in a porcine model using particle therapy. METHODS Twenty-five animals received scanned proton beam irradiation. ECG-gated computed tomography scans were acquired at end-expiration breath hold. Structures (atrioventricular junction or left ventricular myocardium) and organs at risk were contoured. Doses of 30, 40, and 55 Gy were delivered during expiration to the atrioventricular junction (n=5) and left ventricular myocardium (n=20) of intact animals. RESULTS In this study, procedural success was tracked by pacemaker interrogation in the atrioventricular junction group, time-course magnetic resonance imaging in the left ventricular group, and correlation of lesion outcomes displayed in gross and microscopic pathology. Protein extraction (active caspase-3) was performed to investigate tissue apoptosis. Doses of 40 and 55 Gy caused slowing and interruption of cardiac impulse propagation at the atrioventricular junction. In 40 left ventricular irradiated targets, all lesions were identified on magnetic resonance after 12 weeks, being consistent with outcomes from gross pathology. In the majority of cases, lesion size plateaued between 12 and 16 weeks. Active caspase-3 was seen in lesions 12 and 16 weeks after irradiation but not after 20 weeks. CONCLUSIONS Scanned proton beams can be used as a tool for catheter-free ablation, and time-course of tissue apoptosis was consistent with lesion maturation.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Amanda J Deisher
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN (A.J.D., J.J.K., J.T.C., M.G.H.)
| | - Maryam E Rettmann
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - H Immo Lehmann
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.).,Department of Cardiology, Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston (H.I.L.).,Harvard Medical School, Boston, MA (H.I.L.)
| | - Stephan Hohmann
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Songyun Wang
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Hiroki Konishi
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Jon J Kruse
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN (A.J.D., J.J.K., J.T.C., M.G.H.)
| | - Jack T Cusma
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN (A.J.D., J.J.K., J.T.C., M.G.H.)
| | - Laura K Newman
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Kay D Parker
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Kristi H Monahan
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN (A.J.D., J.J.K., J.T.C., M.G.H.)
| | - Douglas L Packer
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| |
Collapse
|
32
|
STRA-MI-VT (STereotactic RadioAblation by Multimodal Imaging for Ventricular Tachycardia): rationale and design of an Italian experimental prospective study. J Interv Card Electrophysiol 2020; 61:583-593. [PMID: 32851578 PMCID: PMC8376737 DOI: 10.1007/s10840-020-00855-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Background Ventricular tachycardia (VT) is a life-threatening condition, which usually implies the need of an implantable cardioverter defibrillator in combination with antiarrhythmic drugs and catheter ablation. Stereotactic body radiotherapy (SBRT) represents a common form of therapy in oncology, which has emerged as a well-tolerated and promising alternative option for the treatment of refractory VT in patients with structural heart disease. Objective In the STRA-MI-VT trial, we will investigate as primary endpoints safety and efficacy of SBRT for the treatment of recurrent VT in patients not eligible for catheter ablation. Secondary aim will be to evaluate SBRT effects on global mortality, changes in heart function, and in the quality of life during follow-up. Methods This is a spontaneous, prospective, experimental (phase Ib/II), open-label study (NCT04066517); 15 patients with structural heart disease and intractable VT will be enrolled within a 2-year period. Advanced multimodal cardiac imaging preceding chest CT-simulation will serve to elaborate the treatment plan on different linear accelerators with target and organs-at-risk definition. SBRT will consist in a single radioablation session of 25 Gy. Follow-up will last up to 12 months. Conclusions We test the hypothesis that SBRT reduces the VT burden in a safe and effective way, leading to an improvement in quality of life and survival. If the results will be favorable, radioablation will turn into a potential alternative option for selected patients with an indication to VT ablation, based on the opportunity to treat ventricular arrhythmogenic substrates in a convenient and less-invasive manner.
Collapse
|
33
|
van der Ree MH, Blanck O, Limpens J, Lee CH, Balgobind BV, Dieleman EM, Wilde AA, Zei PC, de Groot JR, Slotman BJ, Cuculich PS, Robinson CG, Postema PG. Cardiac radioablation—A systematic review. Heart Rhythm 2020; 17:1381-1392. [DOI: 10.1016/j.hrthm.2020.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/13/2020] [Indexed: 12/29/2022]
|
34
|
Hohmann S, Henkenberens C, Zormpas C, Christiansen H, Bauersachs J, Duncker D, Veltmann C. A novel open-source software-based high-precision workflow for target definition in cardiac radioablation. J Cardiovasc Electrophysiol 2020; 31:2689-2695. [PMID: 32648343 DOI: 10.1111/jce.14660] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/13/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Noninvasive ablative radiotherapy of cardiac arrhythmias (stereotactic ablative body radiation) has shown promising initial results. Precise targeting of the arrhythmogenic substrate is paramount to limit adverse effects to healthy myocardium, organs at risk, and cardiac implantable electronic devices. Using electroanatomic maps for treatment planning is technically challenging. METHODS AND RESULTS Using the free open-source 3D Slicer software platform we established a workflow for high-precision target definition based on electroanatomic maps. An import plug-in for 3D Slicer has been designed that reads electroanatomic maps generated with three mapping systems in widespread clinical use. Using our proposed workflow in a real-world patient case we were able to align the map to the computed tomography (CT) with a mean distance of 3.1 mm. Thus, points defined on the map were translated into CT space with high accuracy and a radiotherapy treatment volume was defined in CT space based on these map-derived points. CONCLUSION We describe a novel high-precision target definition method for stereotactic ablation of cardiac arrhythmias. Multimodal integration of the electroanatomic map with the planning CT allows for highly accurate localization of previously identified electrophysiological features in CT space. It remains to be shown whether this novel planning workflow leads to superior ablation outcomes when compared with other approaches.
Collapse
Affiliation(s)
- Stephan Hohmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Christos Zormpas
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Hans Christiansen
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christian Veltmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Fiorentino A, Gregucci F, Bonaparte I, Vitulano N, Surgo A, Mazzola R, Di Monaco A, Carbonara R, Alongi F, Langialonga T, Grimaldi M. Stereotactic Ablative radiation therapy (SABR) for cardiac arrhythmia: A new therapeutic option? Radiol Med 2020; 126:155-162. [PMID: 32405924 DOI: 10.1007/s11547-020-01218-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Abstract
AIM Stereotactic ablative radiation therapy (SABR) is used in non-oncologic indications, recently even for cardiac arrhythmias. Thus, aim of this analysis is to review preclinical, early clinical evidences and future direction of the latter new treatment approach. METHOD A collection of available data regarding SABR and cardiac arrhythmias was made, by Pubmed research and 2 independent researchers, including preclinical and clinical data. A review of ongoing trials was conducted on ClinicalTrials.gov. RESULTS Preclinical research conducted in animal models showed that a safe and effective noninvasive treatment approach for cardiac arrhythmias could be represented by SABR with a median time of response around 2-3 months. The treatment dose plays a crucial role: the atrioventricular node would seem more radiosensitive than the other cardiac electric zones. Clinical data, such as published case series, case reports and early prospective studies, have already suggested the feasibility, efficacy and safety of SABR (25 Gy in one session) for refractory ventricular arrhythmias. CONCLUSION Considering the ongoing trials of SABR and new technological improvements in radiotherapy (e.g. hybrid magnetic resonance) and in arrhythmias noninvasive mapping systems, the future analyses will improve the reliability of those preliminary results.
Collapse
Affiliation(s)
- Alba Fiorentino
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy
| | - Fabiana Gregucci
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy.
| | - Ilaria Bonaparte
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy
| | - Nicola Vitulano
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy
| | - Rosario Mazzola
- Department of Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
| | - Antonio Di Monaco
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - Roberta Carbonara
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy
| | - Filippo Alongi
- Department of Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
| | - Tommaso Langialonga
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| |
Collapse
|
36
|
Scholz M. State-of-the-Art and Future Prospects of Ion Beam Therapy: Physical and Radiobiological Aspects. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2935240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Wei C, Qian P, Tedrow U, Mak R, Zei PC. Non-invasive Stereotactic Radioablation: A New Option for the Treatment of Ventricular Arrhythmias. Arrhythm Electrophysiol Rev 2020; 8:285-293. [PMID: 32685159 PMCID: PMC7358955 DOI: 10.15420/aer.2019.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ventricular tachycardia (VT) is associated with significant morbidity and mortality. Radiofrequency catheter ablation can be effective for the treatment of VT but it carries a high rate of recurrence often attributable to insufficient depth of penetration for reaching critical arrhythmogenic substrates. Stereotactic body radioablation (SBRT) is a commonly used technology developed for the non-invasive treatment of solid tumours. Recent evidence suggests that it can also be effective for the treatment of VT. It is a non-invasive procedure and it has the unique advantage of delivering ablative energy to any desired volume within the body to reach sites that are inaccessible with catheter ablation. This article summarises the pre-clinical studies that have formed the evidence base for SBRT in the heart, describes the clinical approaches for SBRT VT ablation and provides perspective on next steps for this new treatment modality.
Collapse
Affiliation(s)
- Chen Wei
- Harvard Medical School, Boston, MA, US.,Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, US
| | - Pierre Qian
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, US
| | - Usha Tedrow
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, US
| | - Raymond Mak
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, MA, US
| | - Paul C Zei
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, US
| |
Collapse
|
38
|
Qian PC, Azpiri JR, Assad J, Gonzales Aceves EN, Cardona Ibarra CE, de la Pena C, Hinojosa M, Wong D, Fogarty T, Maguire P, Jack A, Gardner EA, Zei PC. Noninvasive stereotactic radioablation for the treatment of atrial fibrillation: First-in-man experience. J Arrhythm 2020; 36:67-74. [PMID: 32071622 PMCID: PMC7011819 DOI: 10.1002/joa3.12283] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Catheter ablation is an effective therapy for atrial fibrillation (AF). However, risks remain, and improved efficacy is desired. Stereotactic body radiotherapy (SBRT) is a well-established therapy used to noninvasively treat malignancies and functional disorders with precision. We evaluated the feasibility of stereotactic radioablation for treating paroxysmal AF. METHODS Two patients with drug-refractory paroxysmal AF underwent pulmonary vein isolation with SBRT. After placement of a percutaneous active fixation temporary pacing lead tracking fiducial, computed tomography (CT) angiography was performed to define left atrial anatomy. A tailored planning treatment volume was created to deliver contiguous linear ablations to isolate the pulmonary veins and posterior wall. Patients were treated on an outpatient basis in the radioablation suite. Clinical follow-up was performed through at least 24 months after therapy. RESULTS Both patients successfully underwent SBRT planning and treatment without significant early or long-term side effects up to 48 months of follow-up. One patient had AF recurrence after 6 months free of arrhythmia, while the second patient remains free of AF after 24 months with fibrosis detected on MRI scan consistent with the ablation lesion set. An incidentally noted small pericardial effusion occurred in one patient. CONCLUSION Stereotactic radioablation may be feasible for the treatment of drug-refractory AF. Further evaluation is warranted.
Collapse
Affiliation(s)
- Pierre C. Qian
- Division of Cardiovascular MedicineBrigham and Women's HospitalBostonMAUSA
| | - Jose R. Azpiri
- Department of CardiologyChristus HospitalMonterreyMexico
| | - Jose Assad
- Department of CardiologyChristus HospitalMonterreyMexico
| | | | | | | | - Miguel Hinojosa
- Department of Radiation OncologyChristus HospitalMonterreyMexico
| | | | | | | | | | | | - Paul C. Zei
- Division of Cardiovascular MedicineBrigham and Women's HospitalBostonMAUSA
| |
Collapse
|
39
|
Left ventricular function after noninvasive cardiac ablation using proton beam therapy in a porcine model. Heart Rhythm 2019; 16:1710-1719. [DOI: 10.1016/j.hrthm.2019.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 12/12/2022]
|
40
|
Redefining the electroanatomy of the cardiac conduction system. Heart Rhythm 2019; 17:131-132. [PMID: 31449882 DOI: 10.1016/j.hrthm.2019.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 11/22/2022]
|
41
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm 2019; 17:e2-e154. [PMID: 31085023 PMCID: PMC8453449 DOI: 10.1016/j.hrthm.2019.03.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Biological Cardiac Tissue Effects of High-Energy Heavy Ions - Investigation for Myocardial Ablation. Sci Rep 2019; 9:5000. [PMID: 30899027 PMCID: PMC6428839 DOI: 10.1038/s41598-019-41314-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Noninvasive X-ray stereotactic treatment is considered a promising alternative to catheter ablation in patients affected by severe heart arrhythmia. High-energy heavy ions can deliver high radiation doses in small targets with reduced damage to the normal tissue compared to conventional X-rays. For this reason, charged particle therapy, widely used in oncology, can be a powerful tool for radiosurgery in cardiac diseases. We have recently performed a feasibility study in a swine model using high doses of high-energy C-ions to target specific cardiac structures. Interruption of cardiac conduction was observed in some animals. Here we report the biological effects measured in the pig heart tissue of the same animals six months after the treatment. Immunohistological analysis of the target tissue showed (1.) long-lasting vascular damage, i.e. persistent hemorrhage, loss of microvessels, and occurrence of siderophages, (2.) fibrosis and (3.) loss of polarity of targeted cardiomyocytes and wavy fibers with vacuolization. We conclude that the observed physiological changes in heart function are produced by radiation-induced fibrosis and cardiomyocyte functional inactivation. No effects were observed in the normal tissue traversed by the particle beam, suggesting that charged particles have the potential to produce ablation of specific heart targets with minimal side effects.
Collapse
|
43
|
Turner JL, Marrouche N. The Next 10 Years in Atrial Fibrillation. US CARDIOLOGY REVIEW 2019. [DOI: 10.15420/usc.2018.21.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Predicting future advancements in arrhythmia management – specifically AF – with any certainty is impossible. The clinical approach to AF has changed markedly since the turn of the century in ways that could never have been foreseen, but the current methods of identification and treatment remain far from perfect. Over the next decade we expect significant continued progress in AF management. However, if asked to forecast the future, we consider it wise to predict advancements in the nearer term. We believe there will be widespread expansion in digital health and mobile devices, altering the way we detect and monitor the arrhythmia. We expect substantial growth in advanced MRI to aid in early detection, evaluation, and possibly non-invasive treatment of AF substrate. We imagine there will be increasing focus on individual populations to identify at-risk groups and personalize early management. We also anticipate improvement in anticoagulation employment and left atrial appendage modification. Finally, recognizing the benefit of improvement in modifiable risk factors such as mandatory tobacco cessation and weight loss in obese patients, we predict that reimbursement will be dependent on successfully addressing modifiable risk. For now, several questions remain unanswered, and while no one can predict the next 10 years in AF, there is, without doubt, an abundance of opportunity.
Collapse
Affiliation(s)
- Jeffrey L Turner
- Comprehensive Arrhythmia and Research Management Center, University of Utah School of Medicine, Salt Lake City, UT
| | - Nassir Marrouche
- Comprehensive Arrhythmia and Research Management Center, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
44
|
Abstract
Purpose of Review Stereotactic radioablation is a commonly utilized technology to noninvasively treat solid tumors with precision and efficacy. Using a robotic arm mounted delivery system, multiple low-dose ionizing radiation beams are delivered from multiple angles, concentrating ablative energy at the target tissue. Recently, this technology has been evaluated for treatment of cardiac arrhythmias. This review will present the basic underlying principles, proof-of-principle studies, and clinical experience with stereotactic arrhythmia radioablation. Recent Findings Most recently, stereotactic radioablation has been used to safely and effectively treat a limited number of patients with malignant arrhythmias, including ventricular tachycardia (VT) and atrial fibrillation (AF). Treatment protocols, outcomes, ongoing studies, and future directions will be discussed. Summary Stereotactic radioablation is a well-established technology that has been shown to be a safe and effective therapy for patients with drug-refractory cardiac arrhythmias, including VT and AF. Further clinical evaluation to define safety and efficacy in larger populations of patients is needed.
Collapse
Affiliation(s)
- Paul C Zei
- Department of Medicine, Electrophysiology Section, Brigham and Women's Hospital, 70 Francis Street, Shapiro Building - Room 05088, Boston, MA, 02115, USA.
| | - Scott Soltys
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| |
Collapse
|
45
|
Refaat MM, Ballout JA, Zakka P, Hotait M, Al Feghali KA, Gheida IA, Saade C, Hourani M, Geara F, Tabbal M, Sfeir P, Jalbout W, Al-Jaroudi W, Jurjus A, Youssef B. Swine Atrioventricular Node Ablation Using Stereotactic Radiosurgery: Methods and In Vivo Feasibility Investigation for Catheter-Free Ablation of Cardiac Arrhythmias. J Am Heart Assoc 2017; 6:JAHA.117.007193. [PMID: 29079566 PMCID: PMC5721791 DOI: 10.1161/jaha.117.007193] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Linear accelerator–based stereotactic radiosurgery delivered to cardiac arrhythmogenic foci could be a promising catheter‐free ablation modality. We tested the feasibility of in vivo atrioventricular (AV) node ablation in swine using stereotactic radiosurgery. Methods and Results Five Large White breed swine (weight 40–75 kg; 4 females) were studied. Single‐chamber St Jude pacemakers were implanted in each pig. The pigs were placed under general anesthesia, and coronary/cardiac computed tomography simulation scans were performed to localize the AV node. Cone beam computed tomography was used for target positioning. Stereotactic radiosurgery doses ranging from 35 to 40 Gy were delivered by a linear accelerator to the AV node, and the pigs were followed up with weekly pacemaker interrogations to observe for potential electrocardiographic changes. Once changes were observed, the pigs were euthanized, and pathology specimens of various tissues, including the AV node and tissues surrounding the AV node, were taken to study the effects of radiation. All 5 pigs had disturbances of AV conduction with progressive transition into complete heart block. Macroscopic inspection did not reveal damage to the myocardium, and pigs had preserved systolic function on echocardiography. Immunostaining revealed fibrosis in the target region of the AV node, whereas no fibrosis was detected in the nontargeted regions. Conclusions Catheter‐free radioablation using linear accelerator–based stereotactic radiosurgery is feasible in an intact swine model.
Collapse
Affiliation(s)
- Marwan M Refaat
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon .,Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon
| | - Jad A Ballout
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon
| | - Patrick Zakka
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mostafa Hotait
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon
| | - Karine A Al Feghali
- Department of Radiation Oncology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Ibrahim Abu Gheida
- Department of Radiation Oncology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Charbel Saade
- Department of Radiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mukbil Hourani
- Department of Radiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Fady Geara
- Department of Radiation Oncology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Malek Tabbal
- Department of Physics, Faculty of Arts and Sciences, American University of Beirut, Lebanon
| | - Pierre Sfeir
- Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine, American University of Beirut, Lebanon
| | - Wassim Jalbout
- Department of Radiation Oncology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Wael Al-Jaroudi
- Division of Cardiology, Clemenceau Medical Center, Beirut, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Bassem Youssef
- Department of Radiation Oncology, Faculty of Medicine, American University of Beirut, Lebanon
| |
Collapse
|