1
|
Bulut G, Turgut GT, Toksoy G, Altunoğlu U, Aslanger AD, Uyguner ZO, Karaman B. A Novel Truncating Variant in Sandestig-Stefanova Syndrome with Hydrocephalus. Mol Syndromol 2025; 16:69-76. [PMID: 39911172 PMCID: PMC11793897 DOI: 10.1159/000540314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Sandestig-Stefanova syndrome (MIM:618804) is characterized by pre- and postnatal microcephaly, trigonocephaly, bilateral congenital cataracts, microphthalmia, cleft lip and palate or high-arched palate, camptodactyly, rocker-bottom feet, heart anomalies, periventricular white matter loss, thin corpus callosum, and delayed myelination. Bi-allelic loss-of-function variants in the Nucleoporin 188 (NUP188) (MIM:615587) gene are implicated in the etiology. Case Presentation Our patient, born to consanguineous parents, presented with tetralogy of Fallot, bilateral congenital cataracts, hydrocephalus, a bifid uvula, a right pelvic kidney, hepatomegaly, facial feature findings, and a history of a similarly affected ex-sibling. Whole exome sequence analysis in the index case revealed a novel homozygous variant NM_015354.2: c.124C>T/p.(Arg42Ter) in the NUP188 gene. Conclusion This study describes a new patient with Sandestig-Stefanova syndrome harboring a novel pathogenic variant in the NUP188 gene.
Collapse
Affiliation(s)
- Gülnihal Bulut
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, İstanbul, Turkey
- Department of Genetics, Institute of Health Sciences, Istanbul University, İstanbul, Turkey
| | - Gözde Tutku Turgut
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, İstanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, İstanbul, Turkey
| | - Umut Altunoğlu
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, İstanbul, Turkey
| | - Ayça Dilruba Aslanger
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, İstanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, İstanbul, Turkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, İstanbul, Turkey
- Pediatric Basic Sciences, Child Health Institute, Istanbul University, İstanbul, Turkey
| |
Collapse
|
2
|
Qin Q, Zhou ZY, Liu Y, Zhou F, Cao C, Teng L. Unraveling the nexus of nesprin in dilated cardiomyopathy: From molecular insights to therapeutic prospects. Life Sci 2024; 358:123126. [PMID: 39396640 DOI: 10.1016/j.lfs.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dilated cardiomyopathy is a complex and debilitating heart disorder characterized by the enlargement and weakening of the cardiac chambers, leading to impaired contractility and heart failure. Nesprins, a family of nuclear envelope spectrin repeat proteins that include isoforms Nesprin-1/-2, are integral components of the LInker of Nucleoskeleton and Cytoskeleton complex. They facilitate the connection between the nuclear envelope and the cytoskeleton, crucial for maintaining nuclear architecture, migration and positioning, and mechanical transduction and signaling. Nesprin-1/-2 are abundantly expressed in cardiac and skeletal muscles.They have emerged as key players in the pathogenesis of dilated cardiomyopathy. Mutations in synaptic nuclear envelope-1/-2 genes encoding Nesprin-1/-2 are associated with dilated cardiomyopathy, underscoring their significance in cardiac health. This review highlights the all known cases of Nesprin-1/-2 related dilated cardiomyopathy, focusing on their interactions with the nuclear envelope, their role in mechanical transduction, and their influence on gene expression. Moreover, it delves into the underlying mechanisms through which Nesprin dysfunction disrupts nuclear-cytoskeletal coupling, leading to abnormal nuclear morphology, impaired mechanotransduction, and altered gene regulation. The exploration of Nesprin's impact on dilated cardiomyopathy offers a promising avenue for therapeutic interventions aimed at ameliorating the disease. This review provides a comprehensive overview of recent advancements in understanding the pivotal role of Nesprins in dilated cardiomyopathy research.
Collapse
Affiliation(s)
- Qin Qin
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Zi-Yi Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Yangyuanzhi Liu
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China
| | - Chunyu Cao
- School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China; College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Lin Teng
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, UK.
| |
Collapse
|
3
|
Lv Y, Wang C, Liu R, Wu S, Chen J, Zheng X, Jiang T, Chen L. NUP37 promotes the proliferation and invasion of glioma cells through DNMT1-mediated methylation. Cell Death Discov 2024; 10:373. [PMID: 39174498 PMCID: PMC11341718 DOI: 10.1038/s41420-024-02138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Nuclear regulation has potential in cancer therapy, with the nuclear pore complex (NPC) serving as a critical channel between the nucleus and cytoplasm, playing a role in regulating various biological processes and cancer. DNA methylation, an epigenetic modification mediated by DNA methyltransferases (DNMTs), influences gene expression and cell differentiation, and is crucial for the development and progression of tumor cells. Gliomas are the most common primary brain tumors, with glioblastoma being particularly aggressive, characterized by invasiveness, migration capability, and resistance to conventional treatments, resulting in poor prognosis. Our study revealed that the expression level of NUP37 affects the proliferation and invasion of glioma cells, and that the overexpression of DNMT1 can alleviate the adverse effects caused by NUP37 depletion. These findings suggest that NUP37 promotes the proliferation and invasion of glioma cells through its interaction with DNMT1.
Collapse
Affiliation(s)
- Yongqiang Lv
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Chaolian Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Ruoyu Liu
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Junjun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Tianwei Jiang
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
4
|
Wang Z, Zhao N, Zhang S, Wang D, Wang S, Liu N. YEATS domain-containing protein GAS41 regulates nuclear shape by working in concert with BRD2 and the mediator complex in colorectal cancer. Pharmacol Res 2024; 206:107283. [PMID: 38964523 DOI: 10.1016/j.phrs.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
The maintenance of nuclear shape is essential for cellular homeostasis and disruptions in this process have been linked to various pathological conditions, including cancer, laminopathies, and aging. Despite the significance of nuclear shape, the precise molecular mechanisms controlling it are not fully understood. In this study, we have identified the YEATS domain-containing protein 4 (GAS41) as a previously unidentified factor involved in regulating nuclear morphology. Genetic ablation of GAS41 in colorectal cancer cells resulted in significant abnormalities in nuclear shape and inhibited cancer cell proliferation both in vitro and in vivo. Restoration experiments revealed that wild-type GAS41, but not a YEATS domain mutant devoid of histone H3 lysine 27 acetylation or crotonylation (H3K27ac/cr) binding, rescued the aberrant nuclear phenotypes in GAS41-deficient cells, highlighting the importance of GAS41's binding to H3K27ac/cr in nuclear shape regulation. Further experiments showed that GAS41 interacts with H3K27ac/cr to regulate the expression of key nuclear shape regulators, including LMNB1, LMNB2, SYNE4, and LEMD2. Mechanistically, GAS41 recruited BRD2 and the Mediator complex to gene loci of these regulators, promoting their transcriptional activation. Disruption of GAS41-H3K27ac/cr binding caused BRD2, MED14 and MED23 to dissociate from gene loci, leading to nuclear shape abnormalities. Overall, our findings demonstrate that GAS41 collaborates with BRD2 and the Mediator complex to control the expression of crucial nuclear shape regulators.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Copeland I, Wonkam-Tingang E, Gupta-Malhotra M, Hashmi SS, Han Y, Jajoo A, Hall NJ, Hernandez PP, Lie N, Liu D, Xu J, Rosenfeld J, Haldipur A, Desire Z, Coban-Akdemir ZH, Scott DA, Li Q, Chao HT, Zaske AM, Lupski JR, Milewicz DM, Shete S, Posey JE, Hanchard NA. Exome sequencing implicates ancestry-related Mendelian variation at SYNE1 in childhood-onset essential hypertension. JCI Insight 2024; 9:e172152. [PMID: 38716726 PMCID: PMC11141928 DOI: 10.1172/jci.insight.172152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.
Collapse
Affiliation(s)
- Ian Copeland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Edmond Wonkam-Tingang
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | | | - S. Shahrukh Hashmi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yixing Han
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Aarti Jajoo
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Nancy J. Hall
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- US Department of Agriculture Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Paula P. Hernandez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- US Department of Agriculture Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Natasha Lie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
- US Department of Agriculture Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dan Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Aparna Haldipur
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Zelene Desire
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Zeynep H. Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics
| | - Qing Li
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics; and
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital and Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
| | - Ana M. Zaske
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sanjay Shete
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
| | - Neil A. Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| |
Collapse
|
6
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Li Y, Bertozzi A, Mann MRW, Kühn B. Interdependent changes of nuclear lamins, nuclear pore complexes, and ploidy regulate cellular regeneration and stress response in the heart. Nucleus 2023; 14:2246310. [PMID: 37606283 PMCID: PMC10446781 DOI: 10.1080/19491034.2023.2246310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
In adult mammals, many heart muscle cells (cardiomyocytes) are polyploid, do not proliferate (post-mitotic), and, consequently, cannot contribute to heart regeneration. In contrast, fetal and neonatal heart muscle cells are diploid, proliferate, and contribute to heart regeneration. We have identified interdependent changes of the nuclear lamina, nuclear pore complexes, and DNA-content (ploidy) in heart muscle cell maturation. These results offer new perspectives on how cells alter their nuclear transport and, with that, their gene regulation in response to extracellular signals. We present how changes of the nuclear lamina alter nuclear pore complexes in heart muscle cells. The consequences of these changes for cellular regeneration and stress response in the heart are discussed.
Collapse
Affiliation(s)
- Yao Li
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Bertozzi
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mellissa RW Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Jühlen R, Fahrenkrog B. From the sideline: Tissue-specific nucleoporin function in health and disease, an update. FEBS Lett 2023; 597:2750-2768. [PMID: 37873737 DOI: 10.1002/1873-3468.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
The subcellular compartmentalisation of eukaryotic cells requires selective exchange between the cytoplasm and the nucleus. Intact nucleocytoplasmic transport is vital for normal cell function and mutations in the executing machinery have been causally linked to human disease. Central players in nucleocytoplasmic exchange are nuclear pore complexes (NPCs), which are built from ~30 distinct proteins collectively termed nucleoporins. Aberrant nucleoporin expression was detected in human cancers and autoimmune diseases since quite some time, while it was through the increasing use of next generation sequencing that mutations in nucleoporin genes associated with mainly rare hereditary diseases were revealed. The number of newly identified mutations is steadily increasing, as is the number of diseases. Mutational hotspots have emerged: mutations in the scaffold nucleoporins seemingly affect primarily inner organs, such as heart, kidney, and ovaries, whereas genetic alterations in peripheral, cytoplasmic nucleoporins affect primarily the central nervous system and development. In this review, we summarise latest insights on altered nucleoporin function in the context of human hereditary disorders, with a focus on those where mechanistic insights are beginning to emerge.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
9
|
Petrovic S, Mobbs GW, Bley CJ, Nie S, Patke A, Hoelz A. Structure and Function of the Nuclear Pore Complex. Cold Spring Harb Perspect Biol 2022; 14:a041264. [PMID: 36096637 PMCID: PMC9732903 DOI: 10.1101/cshperspect.a041264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus, a genome-containing organelle eponymous of eukaryotes, is enclosed by a double membrane continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) is an ∼110-MDa, ∼1000-protein channel that selectively transports macromolecules across the nuclear envelope and thus plays a central role in the regulated flow of genetic information from transcription to translation. Its size, complexity, and flexibility have hindered determination of atomistic structures of intact NPCs. Recent studies have overcome these hurdles by combining biochemical reconstitution and docking of high-resolution structures of NPC subcomplexes into cryo-electron tomographic reconstructions with biochemical and physiological validation. Here, we provide an overview of the near-atomic composite structure of the human NPC, a milestone toward unlocking a molecular understanding of mRNA export, NPC-associated diseases, and viral host-pathogen interactions, serving as a paradigm for studying similarly large complexes.
Collapse
Affiliation(s)
- Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
10
|
Poot M. The Expanding Phenotypic Spectrum of NUP188 Variants Points Toward Multiple Biological Pathways. Mol Syndromol 2022; 13:261-262. [PMID: 36158058 PMCID: PMC9421690 DOI: 10.1159/000525275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 01/03/2023] Open
|
11
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Viegas D, Pereira CD, Martins F, Mateus T, da Cruz e Silva OAB, Herdeiro MT, Rebelo S. Nuclear Envelope Alterations in Myotonic Dystrophy Type 1 Patient-Derived Fibroblasts. Int J Mol Sci 2022; 23:522. [PMID: 35008948 PMCID: PMC8745202 DOI: 10.3390/ijms23010522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying this disease are still poorly characterized, although there are some hypotheses that envisage to explain the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE) dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared with the control fibroblasts. In addition, the results showed an altered location of these NE proteins accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly relevant pathological characteristic observed in DM1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (D.V.); (C.D.P.); (F.M.); (T.M.); (O.A.B.d.C.e.S.); (M.T.H.)
| |
Collapse
|
13
|
Méndez I, Fernández AI, Espinosa MÁ, Cuenca S, Lorca R, Rodríguez JF, Tamargo M, García-Montero M, Gómez C, Vilches S, Vázquez N, Álvarez R, Medrano C, Yotti R, Fernández-Avilés F, Bermejo J. Founder mutation in myosin-binding protein C with an early onset and a high penetrance in males. Open Heart 2021; 8:openhrt-2021-001789. [PMID: 34588271 PMCID: PMC8483030 DOI: 10.1136/openhrt-2021-001789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE One of the challenges in hypertrophic cardiomyopathy (HCM) is to determine the pathogenicity of genetic variants and to establish genotype/phenotype correlations. This study aimed to: (1) demonstrate that MYBPC3 c.2149-1G>A is a founder pathogenic variant, (2) describe the phenotype and clinical characteristics of mutation carriers and (3) compare these patients with those with the most frequent pathogenic HCM variants: MYBPC3 p.Arg502Trp/Gln. METHODS We reviewed genetic tests performed in HCM probands at our institution. We carried out transcript analyses to demonstrate the splicing effect, and haplotype analyses to support the founder effect of MYBPC3 c.2149-1G>A. Carriers with this mutation were compared with those from MYBPC3 p.Arg502Trp/Gln in terms of presentation features, imaging and outcomes. RESULTS MYBPC3 c.2149-1G>A was identified in 8 of 570 probands and 25 relatives. Penetrance was age and sex dependent, 50.0% of the carriers over age 36 years and 75.0% of the carriers over 40 years showing HCM. Penetrance was significantly higher in males: in carriers older than 30 years old, 100.0% of males vs 50.0% of females had a HCM phenotype (p=0.01). Males were also younger at diagnosis (32±13 vs 53±10 years old, p<0.001). MYBPC3 c.2149-1G>A resulted in an abnormal transcript that led to haploinsufficiency and was segregated in two haplotypes. However, both came from one founder haplotype. Affected carriers showed a better functional class and higher left ventricular ejection fraction (LVEF) than patients with MYBPC3 p.Arg502Trp/Gln (p<0.05 for both). Nevertheless, the rate of major adverse outcomes was similar between the two groups. CONCLUSIONS MYBPC3 c.2149-1G>A splicing variant is a founder mutation. Affected males show an early onset of HCM and with higher penetrance than women. Carriers show better functional class and higher LVEF than MYBPC3 p.Arg502Trp/Gln carriers, but a similar rate of major adverse outcomes.
Collapse
Affiliation(s)
- Irene Méndez
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain .,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Ana Isabel Fernández
- CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Maria Ángeles Espinosa
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Sofía Cuenca
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Rebeca Lorca
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - José Fernando Rodríguez
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Maria Tamargo
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Marta García-Montero
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Cristina Gómez
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Silvia Vilches
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Nélida Vázquez
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Reyes Álvarez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Pediatric Cardiology, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Constancio Medrano
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Pediatric Cardiology, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | | | - Francisco Fernández-Avilés
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Javier Bermejo
- Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
14
|
Staley BS, Milko LV, Waltz M, Griesemer I, Mollison L, Grant TL, Farnan L, Roche M, Navas A, Lightfoot A, Foreman AKM, O'Daniel JM, O'Neill SC, Lin FC, Roman TS, Brandt A, Powell BC, Rini C, Berg JS, Bensen JT. Evaluating the clinical utility of early exome sequencing in diverse pediatric outpatient populations in the North Carolina Clinical Genomic Evaluation of Next-generation Exome Sequencing (NCGENES) 2 study: a randomized controlled trial. Trials 2021; 22:395. [PMID: 34127041 PMCID: PMC8201439 DOI: 10.1186/s13063-021-05341-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Exome sequencing (ES) has probable utility for shortening the diagnostic odyssey of children with suspected genetic disorders. This report describes the design and methods of a study evaluating the potential of ES as a routine clinical tool for pediatric patients who have suspected genetic conditions and who are in the early stages of the diagnostic odyssey. METHODS The North Carolina Clinical Genomic Evaluation by Next-generation Exome Sequencing (NCGENES) 2 study is an interdisciplinary, multi-site Phase III randomized controlled trial of two interventions: educational pre-visit preparation (PVP) and offer of first-line ES. In this full-factorial design, parent-child dyads are randomly assigned to one of four study arms (PVP + usual care, ES + usual care, PVP + ES + usual care, or usual care alone) in equal proportions. Participants are recruited from Pediatric Genetics or Neurology outpatient clinics in three North Carolina healthcare facilities. Eligible pediatric participants are < 16 years old and have a first visit to a participating clinic, a suspected genetic condition, and an eligible parent/guardian to attend the clinic visit and complete study measures. The study oversamples participants from underserved and under-represented populations. Participants assigned to the PVP arms receive an educational booklet and question prompt list before clinical interactions. Randomization to offer of first-line ES is revealed after a child's clinic visit. Parents complete measures at baseline, pre-clinic, post-clinic, and two follow-up timepoints. Study clinicians provide phenotypic data and complete measures after the clinic visit and after returning results. Reportable study-related research ES results are confirmed in a CLIA-certified clinical laboratory. Results are disclosed to the parent by the clinical team. A community consultation team contributed to the development of study materials and study implementation methods and remains engaged in the project. DISCUSSION NCGENES 2 will contribute valuable knowledge concerning technical, clinical, psychosocial, and health economic issues associated with using early diagnostic ES to shorten the diagnostic odyssey of pediatric patients with likely genetic conditions. Results will inform efforts to engage diverse populations in genomic medicine research and generate evidence that can inform policy, practice, and future research related to the utility of first-line diagnostic ES in health care. TRIAL REGISTRATION ClinicalTrials.gov NCT03548779 . Registered on June 07, 2018.
Collapse
Affiliation(s)
- Brooke S Staley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Campus Box #7295, Chapel Hill, NC, 27599-7295, USA.
| | - Laura V Milko
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Margaret Waltz
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ida Griesemer
- Department of Heath Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lonna Mollison
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tracey L Grant
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Laura Farnan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Myra Roche
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Angelo Navas
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandra Lightfoot
- Department of Heath Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ann Katherine M Foreman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Julianne M O'Daniel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Suzanne C O'Neill
- Department of Oncology, Georgetown University, Washington, DC, 20007, USA
| | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tamara S Roman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alicia Brandt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bradford C Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christine Rini
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Campus Box #7295, Chapel Hill, NC, 27599-7295, USA
| |
Collapse
|
15
|
Bayes-Genis A, Liu PP, Lanfear DE, de Boer RA, González A, Thum T, Emdin M, Januzzi JL. Omics phenotyping in heart failure: the next frontier. Eur Heart J 2021; 41:3477-3484. [PMID: 32337540 DOI: 10.1093/eurheartj/ehaa270] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This state-of-the-art review aims to provide an up-to-date look at breakthrough omic technologies that are helping to unravel heart failure (HF) disease mechanisms and heterogeneity. Genomics, transcriptomics, proteomics, and metabolomics in HF are reviewed in depth. In addition, there is a thorough, expert discussion regarding the value of omics in identifying novel disease pathways, advancing understanding of disease mechanisms, differentiating HF phenotypes, yielding biomarkers for diagnosis or prognosis, or identifying new therapeutic targets in HF. The combination of multiple omics technologies may create a more comprehensive picture of the factors and physiology involved in HF than achieved by either one alone and provides a rich resource for predictive phenotype modelling. However, the successful translation of omics tools as solutions to clinical HF requires that the observations are robust and reproducible and can be validated across multiple independent populations to ensure confidence in clinical decision-making.
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute (iCor), University Hospital Germans Trias i Pujol, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universitat Autònoma Barcelona
| | - Peter P Liu
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David E Lanfear
- Henry Ford Heart and Vascular Institute, Center for Individualized and Genomic Medicine Research, Henry Ford Hospital, Detroit, MI, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Arantxa González
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| | - James L Januzzi
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Zhao T, Ma Y, Zhang Z, Xian J, Geng X, Wang F, Huang J, Yang Z, Luo Y, Lin Y. Young and early-onset dilated cardiomyopathy with malignant ventricular arrhythmia and sudden cardiac death induced by the heterozygous LDB3, MYH6, and SYNE1 missense mutations. Ann Noninvasive Electrocardiol 2021; 26:e12840. [PMID: 33949037 PMCID: PMC8293610 DOI: 10.1111/anec.12840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The whole exome sequencing (WES) with targeted gene analysis is an effective diagnostic tool for cardiomyopathy. The early-onset sudden cardiac death (SCD) was commonly associated with dilated cardiomyopathy (DCM) induced by pathogenic genetic mutations. METHODS In a Chinese Han family, the patient of 24 years old occurred with early-onset and DCM and died of SCD associated with ICD storms induced by repetitive ventricular tachycardia/fibrillation (VT/F). Genomic DNA samples of peripheral blood were conducted for WES and Sanger sequence. Then, we performed bioinformatics analysis for 200 genes susceptible to cardiomyopathies and arrhythmias. Further, we analyzed how the potential pathogenic mutations affecting the secondary structure, hydrophobicity, and phosphorylation of amino acids, protein properties, and their joint pathogenicity by ProtParam, SOPMA, and ORVAL algorisms. The protein-protein interaction was analyzed by STRING algorism. RESULTS The mutations of LDB3 p.M456R, MYH6 p.S180Y, and SYNE1 p.S4607F were identified as "Damaging/Deleterious." The SYNE1 (p.S4607F) increased one of alpha helix and decreased one of beta sheet. The LDB3 (p.M456R) reduced one of beta sheet and increased one of beta turn. The MYH6 (p.S180Y) decreased two of beta sheets and four of beta turns, but significantly increased twelve coils. The hydrophobicity of amino acid residues and their adjacent sequences were decreased by LDB3 (p.M456R) and MYH6 (p.S180Y), and significantly increased by SYNE1 (p.S4607F). The mutations of LDB3 (p.M456R), SYNE1 (p.S4607F), and MYH6 (p.S180Y) resulted in the phosphorylation changes of the corresponding amino acid sites or the nearby amino acid sites. The pairwise combinations of LDB3, MYH6, and SYNE1 mutations have the high probability of causing disease, especially the highest probability for SYNE1 and LDB3 mutations. There was obviously indirect interaction of the proteins encoded by SYNE1, LDB3, and MYH6. CONCLUSIONS The multiple heterozygous mutations of SYNE1, LDB3, and MYH6 may be associated with young and early-onset of DCM and SCD.
Collapse
Affiliation(s)
- Ting Zhao
- The First Hospital Affiliated to Jinan University, The First People's Hospital of Guangzhou, Guangzhou, China.,Department of Cardiology, The Cardiovascular Center, Interventional Medical Center, Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yuting Ma
- Department of Cardiology, The Cardiovascular Center, Interventional Medical Center, Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zuoquan Zhang
- Department of Cardiology, The Cardiovascular Center, Interventional Medical Center, Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jianzhong Xian
- Department of Cardiology, The Cardiovascular Center, Interventional Medical Center, Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaojing Geng
- Department of Cardiology, The Cardiovascular Center, Interventional Medical Center, Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Feng Wang
- Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jiana Huang
- Reproductive Center, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhe Yang
- Department of Cardiology, The Cardiovascular Center, Interventional Medical Center, Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yi Luo
- The First Hospital Affiliated to Jinan University, The First People's Hospital of Guangzhou, Guangzhou, China
| | - Yubi Lin
- Department of Cardiology, The Cardiovascular Center, Interventional Medical Center, Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
17
|
Shickh S, Gutierrez Salazar M, Zakoor KR, Lázaro C, Gu J, Goltz J, Kleinman D, Noor A, Khalouei S, Mighton C, Reble E, Kodida R, Bombard Y, DiTroia S, Baxter S, Watkins N, Care M, Adler A, Horsburgh S, Morar O, Murphy J, Nevay DL, Szybowska M, Aronson M, Panchal S, Godoy R, Holter S, Randall Armel S, Semotiuk K, Elser C, Kim RH, Chitayat D, So J, Faghfoury H, Silver J, Morel CF, Lerner-Ellis J. Exome and genome sequencing in adults with undiagnosed disease: a prospective cohort study. J Med Genet 2020; 58:275-283. [PMID: 32581083 DOI: 10.1136/jmedgenet-2020-106936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Exome and genome sequencing have been demonstrated to increase diagnostic yield in paediatric populations, improving treatment options and providing risk information for relatives. There are limited studies examining the clinical utility of these tests in adults, who currently have limited access to this technology. METHODS Patients from adult and cancer genetics clinics across Toronto, Ontario, Canada were recruited into a prospective cohort study evaluating the diagnostic utility of exome and genome sequencing in adults. Eligible patients were ≥18 years of age and suspected of having a hereditary disorder but had received previous uninformative genetic test results. In total, we examined the diagnostic utility of exome and genome sequencing in 47 probands and 34 of their relatives who consented to participate and underwent exome or genome sequencing. RESULTS Overall, 17% (8/47) of probands had a pathogenic or likely pathogenic variant identified in a gene associated with their primary indication for testing. The diagnostic yield for patients with a cancer history was similar to the yield for patients with a non-cancer history (4/18 (22%) vs 4/29 (14%)). An additional 24 probands (51%) had an inconclusive result. Secondary findings were identified in 10 patients (21%); three had medically actionable results. CONCLUSIONS This study lends evidence to the diagnostic utility of exome or genome sequencing in an undiagnosed adult population. The significant increase in diagnostic yield warrants the use of this technology. The identification and communication of secondary findings may provide added value when using this testing modality as a first-line test.
Collapse
Affiliation(s)
- Salma Shickh
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Gutierrez Salazar
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Kathleen-Rose Zakoor
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Conxi Lázaro
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hospital Duran i Reynals, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet, Barcelona, Spain.,Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Jessica Gu
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada.,Genetics, Medcan Clinic, Toronto, Ontario, Canada
| | - Jamie Goltz
- University of Guelph, Guelph, Ontario, Canada
| | - Dakota Kleinman
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Abdul Noor
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Sam Khalouei
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Chloe Mighton
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Emma Reble
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Rita Kodida
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yvonne Bombard
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie DiTroia
- Center for Mendelian Genomics, Broad Institute, Cambridge, Massachusetts, USA
| | - Samantha Baxter
- Center for Mendelian Genomics, Broad Institute, Cambridge, Massachusetts, USA
| | - Nicholas Watkins
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Melanie Care
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada
| | - Arnon Adler
- Department of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sheri Horsburgh
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada
| | - Oana Morar
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada.,Clinical Genetics, Trillium Health Partners, Mississauga, Ontario, Canada
| | - Jillian Murphy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada
| | - Dayna-Lynn Nevay
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada
| | - Marta Szybowska
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Seema Panchal
- Marvelle Koffler Breast Centre, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Ruth Godoy
- Marvelle Koffler Breast Centre, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada.,Lifelabs, Toronto, Ontario, Canada
| | - Spring Holter
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Susan Randall Armel
- Familial Breast and Ovarian Cancer Clinic, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Kara Semotiuk
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Christine Elser
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Marvelle Koffler Breast Centre, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Raymond H Kim
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Medical Oncology and Hematology, University Health Network, Toronto, Ontario, Canada
| | - David Chitayat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Joyce So
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hanna Faghfoury
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Josh Silver
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada
| | - Chantal F Morel
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Buratti J, Ji L, Keren B, Lee Y, Booke S, Erdin S, Kim SY, Palculict TB, Meiner V, Chae JH, Woods CG, Tam A, Héron D, Cong F, Harel T. De novo variants in SIAH1, encoding an E3 ubiquitin ligase, are associated with developmental delay, hypotonia and dysmorphic features. J Med Genet 2020; 58:205-212. [PMID: 32430360 DOI: 10.1136/jmedgenet-2019-106335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ubiquitination has a central role in numerous biological processes, including cell development, stress responses and ageing. Perturbed ubiquitination has been implicated in human diseases ranging from cancer to neurodegenerative diseases. SIAH1 encodes a RING-type E3 ubiquitin ligase involved in protein ubiquitination. Among numerous other roles, SIAH1 regulates metabotropic glutamate receptor signalling and affects neural cell fate. Moreover, SIAH1 positively regulates Wnt signalling through ubiquitin-mediated degradation of Axin and accumulation of β-catenin. METHODS Trio exome sequencing followed by Sanger validation was undertaken in five individuals with syndromic developmental delay. Three-dimensional structural modelling was used to predict pathogenicity of affected residues. Wnt stimulatory activity was measured by luciferase reporter assays and Axin degradation assays in HEK293 cells transfected with wild-type and mutant SIAH1 expression plasmids. RESULTS We report five unrelated individuals with shared features of developmental delay, infantile hypotonia, dysmorphic features and laryngomalacia, in whom exome sequencing identified de novo monoallelic variants in SIAH1. In silico protein modelling suggested alteration of conserved functional sites. In vitro experiments demonstrated loss of Wnt stimulatory activity with the SIAH1 mutants, suggesting variant pathogenicity. CONCLUSION Our results lend support to SIAH1 as a candidate Mendelian disease gene for a recognisable syndrome, further strengthening the connection between SIAH1 and neurodevelopmental disorders. Furthermore, the results suggest that dysregulation of the Wnt/β-catenin pathway may be involved in the pathogenesis.
Collapse
Affiliation(s)
- Julien Buratti
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Lei Ji
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Youngha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Stephanie Booke
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soo Yeon Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | | | - Vardiella Meiner
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jong Hee Chae
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Christopher Geoffrey Woods
- Cambridge Institute for Medical Research, Department of Medical Genetics, Univeristy of Cambridge, Cambridge, UK
| | - Allison Tam
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Delphine Héron
- Département de Génétique et Centre de Référence "déficiences intellectuelles de causes rares", AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Feng Cong
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Tamar Harel
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
19
|
Poot M. Mutated NUP188 and Other Nucleoporins as Gateways to Developmental Syndromes. Mol Syndromol 2020; 11:1-3. [PMID: 32256295 DOI: 10.1159/000506410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
|
20
|
Makio T, Wozniak RW. Passive diffusion through nuclear pore complexes regulates levels of the yeast SAGA and SLIK coactivator complexes. J Cell Sci 2020; 133:jcs237156. [PMID: 32051285 DOI: 10.1242/jcs.237156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/31/2020] [Indexed: 11/20/2022] Open
Abstract
Nuclear pore complexes (NPCs) control gene expression by regulating the bi-directional exchange of proteins and RNAs between nuclear and cytoplasmic compartments, including access of transcriptional regulators to the nucleoplasm. Here, we show that the yeast (Saccharomyces cerevisiae) nucleoporin Nup170, in addition to binding and silencing subtelomeric genes, supports transcription of genes regulated by the SAGA transcriptional activator complex. Specifically, we show that a lower amount of SAGA complex is bound to target genes in the absence of Nup170. Consistent with this observation, levels of the SAGA complex are decreased in cells lacking Nup170, while those of the SAGA-related SLIK complexes are increased. This change in the ratio of SAGA to SLIK complexes is due to increased nuclear activity of Pep4, a protease responsible for production of the SLIK complex. Further analyses of various nucleoporin mutants revealed that the increased nuclear entry of Pep4 observed in the nup170Δ mutant likely occurs as the consequence of an increase in the sieving limits of the NPC diffusion channel. On the basis of these results, we propose that changes in passive diffusion rates represent a mechanism for regulating SAGA- and SLIK complex-mediated transcriptional events.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada, T6G 2H7
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada, T6G 2H7
| |
Collapse
|
21
|
Burdine RD, Preston CC, Leonard RJ, Bradley TA, Faustino RS. Nucleoporins in cardiovascular disease. J Mol Cell Cardiol 2020; 141:43-52. [PMID: 32209327 DOI: 10.1016/j.yjmcc.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is a pressing health problem with significant global health, societal, and financial burdens. Understanding the molecular basis of polygenic cardiac pathology is thus essential to devising novel approaches for management and treatment. Recent identification of uncharacterized regulatory functions for a class of nuclear envelope proteins called nucleoporins offers the opportunity to understand novel putative mechanisms of cardiac disease development and progression. Consistent reports of nucleoporin deregulation associated with ischemic and dilated cardiomyopathies, arrhythmias and valvular disorders suggests that nucleoporin impairment may be a significant but understudied variable in cardiopathologic disorders. This review discusses and converges existing literature regarding nuclear pore complex proteins and their association with cardiac pathologies, and proposes a role for nucleoporins as facilitators of cardiac disease.
Collapse
Affiliation(s)
- Ryan D Burdine
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; School of Health Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, United States of America
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Riley J Leonard
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Tyler A Bradley
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22(nd) Street, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|
22
|
Leonard RJ, Preston CC, Gucwa ME, Afeworki Y, Selya AS, Faustino RS. Protein Subdomain Enrichment of NUP155 Variants Identify a Novel Predicted Pathogenic Hotspot. Front Cardiovasc Med 2020; 7:8. [PMID: 32118046 PMCID: PMC7019101 DOI: 10.3389/fcvm.2020.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 01/05/2023] Open
Abstract
Functional variants in nuclear envelope genes are implicated as underlying causes of cardiopathology. To examine the potential association of single nucleotide variants of nucleoporin genes with cardiac disease, we employed a prognostic scoring approach to investigate variants of NUP155, a nucleoporin gene clinically linked with atrial fibrillation. Here we implemented bioinformatic profiling and predictive scoring, based on the gnomAD, National Heart Lung and Blood Institute-Exome Sequencing Project (NHLBI-ESP) Exome Variant Server, and dbNSFP databases to identify rare single nucleotide variants (SNVs) of NUP155 potentially associated with cardiopathology. This predictive scoring revealed 24 SNVs of NUP155 as potentially cardiopathogenic variants located primarily in the N-terminal crescent-shaped domain of NUP155. In addition, a predicted NUP155 R672G variant prioritized in our study was mapped to a region within the alpha helical stack of the crescent domain of NUP155. Bioinformatic analysis of inferred protein-protein interactions of NUP155 revealed over representation of top functions related to molecular transport, RNA trafficking, and RNA post-transcriptional modification. Topology analysis revealed prioritized hubs critical for maintaining network integrity and informational flow that included FN1, SIRT7, and CUL7 with nodal enrichment of RNA helicases in the topmost enriched subnetwork. Furthermore, integration of the top 5 subnetworks to capture network topology of an expanded framework revealed that FN1 maintained its hub status, with elevation of EED, CUL3, and EFTUD2. This is the first study to report novel discovery of a NUP155 subdomain hotspot that enriches for allelic variants of NUP155 predicted to be clinically damaging, and supports a role for RNA metabolism in cardiac disease and development.
Collapse
Affiliation(s)
- Riley J. Leonard
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Biology, College of St. Benedict/St. John's University, Collegeville, MN, United States
| | - Claudia C. Preston
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
| | - Melanie E. Gucwa
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Biology, Carthage College, Kenosha, WI, United States
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core Facility, Sanford Research, Sioux Falls, SD, United States
| | - Arielle S. Selya
- Behavioral Sciences Group, Sanford Research, Sioux Falls, SD, United States
| | - Randolph S. Faustino
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, United States
| |
Collapse
|
23
|
Sandestig A, Engström K, Pepler A, Danielsson I, Odelberg-Johnsson P, Biskup S, Holz A, Stefanova M. NUP188 Biallelic Loss of Function May Underlie a New Syndrome: Nucleoporin 188 Insufficiency Syndrome? Mol Syndromol 2019; 10:313-319. [PMID: 32021605 DOI: 10.1159/000504818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
There is no clearly established association between the gene NUP188 and human pathology. Only a few reports of patients with different clinical presentation and different heterozygous or compound heterozygous missense or splice region variants have been identified in several sequencing projects; however, a causative association between the clinical features and the identified variants has not been established. For the first time, we report 2 unrelated patients with 2 different homozygous nonsense gene variants of NUP188, p.Tyr96* and p.Gln113*, respectively. Although having different supposedly truncating mutations, the patients presented with strikingly comparable phenotypes including pre- and postnatal microcephaly, trigonocephaly, congenital bilateral cataract, microphthalmia, cleft lip and palate or high-arched palate, camptodactyly, rocker-bottom feet, heart anomalies, specific brain changes (such as loss of periventricular white matter), thin corpus callosum, and delayed myelinization. Both patients showed very similar facial features such as laterally extended arched eyebrows, wide convex nose with a wide prominent nasal bridge, and prominent angulated antihelix. They were both born small for gestational age and died shortly after birth at the age of 67 and 140 days, respectively, as a result of central respiratory failure. Our findings strongly suggest a correlation between the homozygous nonsense gene variants of NUP188 and a severe phenotype of a new developmental syndrome with poor prognosis resulting from nucleoporin 188 homolog protein insufficiency.
Collapse
Affiliation(s)
- Anna Sandestig
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Karolina Engström
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | | | - Ingela Danielsson
- Department of Neonatology, Linköping University Hospital, Linköping, Sweden
| | | | - Saskia Biskup
- CeGaT GmbH, and Praxis für Humangenetik, Tübingen, Germany
| | - Anja Holz
- CeGaT GmbH, and Praxis für Humangenetik, Tübingen, Germany
| | - Margarita Stefanova
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
24
|
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Mechanosensing at the Nuclear Envelope by Nuclear Pore Complex Stretch Activation and Its Effect in Physiology and Pathology. Front Physiol 2019; 10:896. [PMID: 31354529 PMCID: PMC6640030 DOI: 10.3389/fphys.2019.00896] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/27/2019] [Indexed: 02/03/2023] Open
Abstract
Cell fate is correlated to mechanotransduction, in which forces transmitted by the cytoskeleton filaments alter the nuclear shape, affecting transcription factor import/export, cells transcription activity and chromatin distribution. There is in fact evidence that stem cells cultured in 3D environments mimicking the native niche are able to maintain their stemness or modulate their cellular function. However, the molecular and biophysical mechanisms underlying cellular mechanosensing are still largely unclear. The propagation of mechanical stimuli via a direct pathway from cell membrane integrins to SUN proteins residing in the nuclear envelop has been demonstrated, but we suggest that the cells’ fate is mainly affected by the force distribution at the nuclear envelope level, where the SUN protein transmits the stimuli via its mechanical connection to several cell structures such as chromatin, lamina and the nuclear pore complex (NPC). In this review, we analyze the NPC structure and organization, which have not as yet been fully investigated, and its plausible involvement in cell fate. NPC is a multiprotein complex that spans the nuclear envelope, and is involved in several key cellular processes such as bidirectional nucleocytoplasmic exchange, cell cycle regulation, kinetochore organization, and regulation of gene expression. As several connections between the NPC and the nuclear envelope, chromatin and other transmembrane proteins have been identified, it is reasonable to suppose that nuclear deformations can alter the NPC structure. We provide evidence that the transmission of mechanical forces may significantly affects the basket conformation via the Nup153-SUN1 connection, both altering the passage of molecules through it and influencing the state of chromatin packing. Finally, we review the known correlations between a pathological NPC structure and diseases such as cancer, autoimmune disease, aging and laminopathies.
Collapse
Affiliation(s)
- F Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - E Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - M Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - M T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| |
Collapse
|
25
|
Affiliation(s)
- Megan J Puckelwartz
- From the Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
26
|
Li K, Hu F, Xiong W, Wei Q, Liu FF. Network-based transcriptomic analysis reveals novel melatonin-sensitive genes in cardiovascular system. Endocrine 2019; 64:414-419. [PMID: 30989468 DOI: 10.1007/s12020-019-01925-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Heart disease is a major cause of mortality and disability worldwide. Melatonin is a neuroendocrine hormone and has been found to be protective in heart disease. However, the molecular basis underlying this cardioprotective effect is not fully understood. Here we aim to investigate melatonin-sensitive genes in cardiovascular system using public gene expression databases. METHODS An innovative genomic analysis method, the weighted gene co-expression network analysis (WGCNA) combined with differential gene expression analysis, was used in this study. The algorithm was implemented in R/Bioconductor. RESULTS Using this method, we provide a comprehensive characterization of transcriptional profiles associated with melatonin treatment. We found that 357 differentially expressed genes (DEGs) were highly sensitive to melatonin in mouse myocardium. Enrichment analysis showed that these 357 genes were mostly related to GO:0051984 (positive regulation of chromosome segregation), GO:0016605 (PML body) and GO:0006281 (DNA repair). We further obtained 5 hub genes from the 357 DEGs, including Set, Dhx40, Scaf11, Cfh, and Nup43. CONCLUSIONS We identified numerous melatonin-sensitive genes and further identified five hub genes. The five novel genes are possibly associated with the myocardial benefits of melatonin.
Collapse
Affiliation(s)
- Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, P. R. China
| | - Fan Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, P. R. China
| | - Wan Xiong
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, 430030, Wuhan, P. R. China
| | - Qing Wei
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, P. R. China
| | - Fang-Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 430014, Wuhan, P. R. China.
| |
Collapse
|
27
|
Moonlighting nuclear pore proteins: tissue-specific nucleoporin function in health and disease. Histochem Cell Biol 2018; 150:593-605. [PMID: 30361777 DOI: 10.1007/s00418-018-1748-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
The nuclear pore complex is the main transportation hub for exchange between the cytoplasm and the nucleus. It is built from nucleoporins that form distinct subcomplexes to establish this huge protein complex in the nuclear envelope. Malfunctioning of nucleoporins is well known in human malignancies, such as gene fusions of NUP214 and NUP98 in hematological neoplasms and overexpression of NUP88 in a variety of human cancers. In the past decade, the incremental utilization of next-generation sequencing has unraveled mutations in nucleoporin genes in the context of an increasing number of hereditary diseases, often in a tissue-specific manner. It emerges that, on one hand, the central nervous system and the heart are particularly sensitive to mutations in nucleoporin genes. On the other hand, nucleoporins forming the scaffold structure of the nuclear pore complex are eminently mutation-prone. These novel and exciting associations between nucleoporins and human diseases emphasize the need to shed light on these unanticipated tissue-specific roles of nucleoporins that may go well beyond their role in nucleocytoplasmic transport. In this review, the current insights into altered nucleoporin function associated with human hereditary disorders will be discussed.
Collapse
|
28
|
Janin A, Gache V. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front Physiol 2018; 9:1277. [PMID: 30245638 PMCID: PMC6137955 DOI: 10.3389/fphys.2018.01277] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the inner nuclear transmembrane protein emerin in the early 1990s, nuclear envelope (NE) components and related involvement in nuclei integrity and functionality have been highly investigated. The NE is composed of two distinct lipid bilayers described as the inner (INM) and outer (ONM) nuclear membrane. NE proteins can be specifically “integrated” in the INM (such as emerin and SUN proteins) or in the ONM such as nesprins. Additionally, flanked to the INM, the nuclear lamina, a proteinaceous meshwork mainly composed of lamins A and C completes NE composition. This network of proteins physically interplays to guarantee NE integrity and most importantly, shape the bridge between cytoplasmic cytoskeletons networks (such as microtubules and actin) and the genome, through the anchorage to the heterochromatin. The essential network driving the connection of nucleoskeleton with cytoskeleton takes place in the perinuclear space (the space between ONM and INM) with the contribution of the LINC complex (for Linker of Nucleoskeleton to Cytoskeleton), hosting KASH and SUN proteins interactions. This close interplay between compartments has been related to diverse functions from nuclear integrity, activity and positioning through mechanotransduction pathways. At the same time, mutations in NE components genes coding for proteins such as lamins or nesprins, had been associated with a wide range of congenital diseases including cardiac and muscular diseases. Although most of these NE associated proteins are ubiquitously expressed, a large number of tissue-specific disorders have been associated with diverse pathogenic mutations. Thus, diagnosis and molecular explanation of this group of diseases, commonly called “nuclear envelopathies,” is currently challenging. This review aims, first, to give a better understanding of diverse functions of the LINC complex components, from the point of view of lamins and nesprins. Second, to summarize human congenital diseases with a special focus on muscle and heart abnormalities, caused by mutations in genes coding for these two types of NE associated proteins.
Collapse
Affiliation(s)
- Alexandre Janin
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Vincent Gache
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
29
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
30
|
Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys Rev 2018; 10:1033-1051. [PMID: 29869195 PMCID: PMC6082319 DOI: 10.1007/s12551-018-0431-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex couples the nuclear lamina to the cytoskeleton. The LINC complex and its associated proteins play diverse roles in cells, ranging from genome organization, nuclear morphology, gene expression, to mechanical stability. The importance of a functional LINC complex is highlighted by the large number of mutations in genes encoding LINC complex proteins that lead to skeletal and cardiac myopathies. In this review, the structure, function, and interactions between components of the LINC complex will be described. Mutations that are known to cause cardiomyopathy in patients will be discussed alongside their respective mouse models. Furthermore, future challenges for the field and emerging technologies to investigate LINC complex function will be discussed.
Collapse
|
31
|
Mouse models of nesprin-related diseases. Biochem Soc Trans 2018; 46:669-681. [PMID: 29784648 DOI: 10.1042/bst20180085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/20/2018] [Indexed: 02/05/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are a family of multi-isomeric scaffolding proteins. Nesprins form the LInker of Nucleoskeleton-and-Cytoskeleton (LINC) complex with SUN (Sad1p/UNC84) domain-containing proteins at the nuclear envelope, in association with lamin A/C and emerin, linking the nucleoskeleton to the cytoskeleton. The LINC complex serves as both a physical linker between the nuclear lamina and the cytoskeleton and a mechanosensor. The LINC complex has a broad range of functions and is involved in maintaining nuclear architecture, nuclear positioning and migration, and also modulating gene expression. Over 80 disease-related variants have been identified in SYNE-1/2 (nesprin-1/2) genes, which result in muscular or central nervous system disorders including autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and autosomal recessive cerebellar ataxia type 1. To date, 17 different nesprin mouse lines have been established to mimic these nesprin-related human diseases, which have provided valuable insights into the roles of nesprin and its scaffold LINC complex in a tissue-specific manner. In this review, we summarise the existing nesprin mouse models, compare their phenotypes and discuss the potential mechanisms underlying nesprin-associated diseases.
Collapse
|
32
|
Nesprin-1/2: roles in nuclear envelope organisation, myogenesis and muscle disease. Biochem Soc Trans 2018; 46:311-320. [PMID: 29487227 DOI: 10.1042/bst20170149] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 02/05/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are multi-isomeric scaffolding proteins. Nesprin-1 and -2 are highly expressed in skeletal and cardiac muscles and together with SUN (Sad1p/UNC84) domain-containing proteins form the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex at the nuclear envelope in association with lamin A/C and emerin. Mutations in nesprin-1/2 have been found in patients with autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) as well as dilated cardiomyopathy (DCM). Several lines of evidence indicate that compromised LINC complex function is the critical step leading to muscle disease. Here, we review recent advances in our understanding of the functions of nesprin-1/2 in the LINC complex and mechanistic insights into how mutations in nesprin-1/2 lead to nesprin-related muscle diseases, in particular DCM and EDMD.
Collapse
|