1
|
Ahsan SA, Laird R, Dooley C, Akbar S, Sweeney J, Ohira S, Kai M, Levine A, Gass AL, Frishman WH, Aronow WS, Lanier GM. An Update on the Diagnosis and Management of Acute Right Heart Failure. Cardiol Rev 2024; 32:499-506. [PMID: 36847512 DOI: 10.1097/crd.0000000000000538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Right ventricular (RV) dysfunction and resultant acute right heart failure (ARHF) is a rapidly growing field of interest, driven by increasing appreciation of its contribution to heart failure morbidity and mortality. Understanding of ARHF pathophysiology has advanced dramatically over recent years and can be broadly described as RV dysfunction related to acute changes in RV afterload, contractility, preload, or left ventricular dysfunction. There are several diagnostic clinical signs and symptoms as well as imaging and hemodynamic assessments that can provide insight into the degree of RV dysfunction. Medical management is tailored to the different causative pathologies, and in cases of severe or end-stage dysfunction, mechanical circulatory support can be utilized. In this review, we describe the pathophysiology of ARHF, how its diagnosis is established by clinical signs and symptoms and imaging findings, and provide an overview of treatment options, both medical and mechanical.
Collapse
Affiliation(s)
- Syed Adeel Ahsan
- From the Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX
| | - Rachel Laird
- Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Caroline Dooley
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sara Akbar
- Department of pulmonary and critical care medicine, Spectrum Health/Michigan State University, Detroit, MI
| | - James Sweeney
- Division of Cardiology, Hackensack Meridian Jersey Shore University Medical Center, Neptune, NJ
| | - Suguru Ohira
- Division of Cardiothoracic Surgery, Department of Surgery, Westchester Medical Center, Valhalla, NY
| | - Masashi Kai
- Division of Cardiothoracic Surgery, Department of Surgery, Westchester Medical Center, Valhalla, NY
| | - Avi Levine
- Departments of Cardiology and Medicine Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Alan L Gass
- Departments of Cardiology and Medicine Westchester Medical Center and New York Medical College, Valhalla, NY
| | - William H Frishman
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- Departments of Cardiology and Medicine Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Gregg M Lanier
- Departments of Cardiology and Medicine Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
2
|
Elmi-Sarabi M, Couture E, Jarry S, Saade E, Calderone A, Potes C, Denault A. Inhaled Epoprostenol and Milrinone Effect on Right Ventricular Pressure Waveform Monitoring. Can J Cardiol 2022; 39:474-482. [PMID: 36528279 DOI: 10.1016/j.cjca.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) and right ventricular (RV) dysfunction are major complications in cardiac surgery. This study aimed to evaluate the change in RV pressure waveform in patients receiving a combination of inhaled epoprostenol and inhaled milrinone (iE&iM) before cardiopulmonary bypass (CPB) and to assess the safety of this approach with a matched case-control group. METHODS A prospective single-centre cohort study of adult patients undergoing cardiac surgery administered iE&iM through an ultrasonic mesh nebulizer. RV pressure waveform monitoring was obtained by continuously transducing the RV port of the pulmonary artery (PA) catheter. RESULTS The final analysis included 26 patients receiving iE&iM. There was a significant drop in mean PA pressure (MPAP) (-4.8 ± 8.7, P = 0.010), systolic PA pressure (SPAP) (-8.2 ± 12.8, P = 0.003), RV end-diastolic pressure (RVEDP) (-2.1 ± 2.8, P < 0.001) and RV diastolic pressure gradient (RVDPG) (-1.7 ± 1.4, P < 0.001) after 17 ± 9 minutes of iE&iM administration. Patients also had a significant increase in RV outflow tract (RVOT) gradient (3.7 ± 4.7, P < 0.001), RV maximal rate of pressure rise during early systole (dP/dt max) (68.3 ± 144.7, P = 0.024), and left ventricular (LV) dP/dt max (66.4 ± 90.1, P < 0.001). Change in RVOT gradient was only observed in those with a positive pulmonary vasodilator response to treatment. Treatment with iE&iM did not present adverse effects when compared with a matched case-control group. CONCLUSIONS Coadministration of iE&iM in cardiac surgery patients presenting with PH or signs of RV dysfunction is a safe and effective treatment approach in improving RV function. Appearance of a transient increase in RVOT gradient after iE&iM could be useful to predict response to treatment.
Collapse
Affiliation(s)
- Mahsa Elmi-Sarabi
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Etienne Couture
- Department of Anesthesiology, Department of Medicine, Division of Intensive Care Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Stéphanie Jarry
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Elena Saade
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Alexander Calderone
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | | - André Denault
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Fayad FH, Sellke FW, Feng J. Pulmonary hypertension associated with cardiopulmonary bypass and cardiac surgery. J Card Surg 2022; 37:5269-5287. [PMID: 36378925 DOI: 10.1111/jocs.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIM Pulmonary hypertension (PH) is frequently associated with cardiovascular surgery and is a common complication that has been observed after surgery utilizing cardiopulmonary bypass (CPB). The purpose of this review is to explain the characteristics of PH, the mechanisms of PH induced by cardiac surgery and CPB, treatments for postoperative PH, and future directions in treating PH induced by cardiac surgery and CPB using up-to-date findings. METHODS The PubMed database was utilized to find published articles. RESULTS There are many mechanisms that contribute to PH after cardiac surgery and CPB which involve pulmonary vasomotor dysfunction, cyclooxygenase, the thromboxane A2 and prostacyclin pathway, the nitric oxide pathway, inflammation, and oxidative stress. Furthermore, there are several effective treatments for postoperative PH within different types of cardiac surgery. CONCLUSIONS By possessing a deep understanding of the mechanisms that contribute to PH after cardiac surgery and CPB, researchers can develop treatments for clinicians to use which target the mechanisms of PH and ultimately reduce and/or eliminate postoperative PH. Additionally, learning about the most up-to-date studies regarding treatments can allow clinicians to choose the best treatments for patients who are undergoing cardiac surgery and CPB.
Collapse
Affiliation(s)
- Fayez H Fayad
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Program in Liberal Medical Education, Brown University, Providence, Rhode Island, USA
| | - Frank W Sellke
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jun Feng
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
McGlothlin D, Granton J, Klepetko W, Beghetti M, Rosenzweig EB, Corris P, Horn E, Kanwar M, McRae K, Roman A, Tedford R, Badagliacca R, Bartolome S, Benza R, Caccamo M, Cogswell R, Dewachter C, Donahoe L, Fadel E, Farber HW, Feinstein J, Franco V, Frantz R, Gatzoulis M, Hwa (Anne) Goh C, Guazzi M, Hansmann G, Hastings S, Heerdt P, Hemnes A, Herpain A, Hsu CH, Kerr K, Kolaitis N, Kukreja J, Madani M, McCluskey S, McCulloch M, Moser B, Navaratnam M, Radegran G, Reimer C, Savale L, Shlobin O, Svetlichnaya J, Swetz K, Tashjian J, Thenappan T, Vizza CD, West S, Zuckerman W, Zuckermann A, De Marco T. ISHLT CONSENSUS STATEMENT: Peri-operative Management of Patients with Pulmonary Hypertension and Right Heart Failure Undergoing Surgery. J Heart Lung Transplant 2022; 41:1135-1194. [DOI: 10.1016/j.healun.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022] Open
|
5
|
Levy D, Laghlam D, Estagnasie P, Brusset A, Squara P, Nguyen LS. Post-operative Right Ventricular Failure After Cardiac Surgery: A Cohort Study. Front Cardiovasc Med 2021; 8:667328. [PMID: 34195233 PMCID: PMC8236513 DOI: 10.3389/fcvm.2021.667328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Right ventricular failure (RVF) after cardiac surgery is an important risk factor for morbidity and mortality. Its diagnosis is challenging, and thus, its incidence and predictors are not well-established. We investigated the incidence, complications, and variables associated with clinically relevant post-operative RVF. Methods: We included all patients who underwent cardiac surgery with cardiopulmonary bypass between 2016 and 2019 in a cardiac surgery center with standardized diagnostic and therapeutic management of RVF. RVF was considered only if clinically relevant: associated with hemodynamic instability requiring catecholamine support and inhaled nitric oxide relayed by sildenafil. Results: Overall, 3,826 patients were included, of whom, 110 (2.9%) developed post-operative RVF. Mortality was not different among patients who developed post-operative RVF, compared with the rest of the cohort (1.8 vs. 0.7%, p = 0.17). Using a composite outcome that combined death, reintubation, stroke, and prolonged intensive care unit stay (more than 14 days) yielded an incidence of 6.6%, and RVF was associated with this composite outcome with an odds ratio of 3.6 (2.2–5.8), p < 0.001. In a multivariable model, pre-operative variables independently associated with post-operative RVF were pre-operative atrial fibrillation (AF) {adjusted odds ratio (adjOR) 3.22 [95% confidence interval (95%CI) = 1.94–5.36], p < 0.001}, left ventricle ejection fraction below 50% [adjOR = 2.55 (95%CI = 1.52–4.33), p < 0.001], systolic pulmonary artery pressure above 55 mmHg [adjOR = 8.64 (95%CI = 5.27–14.1); p < 0.001], mitral valve surgery [adjOR = 2.17 CI (95%CI = 1.28–3.66), p = 0.004], and tricuspid valve surgery [adjOR = 10.33 (95%CI = 6.14–17.4), p < 0.001]. In patients who developed post-operative RVF requiring treatment, 32 (29.1%) showed RV dysfunction before surgery. Conclusion: In this cohort study, 2.9% of patients developed clinically significant post-operative RVF. Moreover, RVF was associated with severe adverse outcomes, including death, strokes, reintubation, and prolonged intensive care unit stay.
Collapse
Affiliation(s)
- David Levy
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Driss Laghlam
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Philippe Estagnasie
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Alain Brusset
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Pierre Squara
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Lee S Nguyen
- Intensive Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| |
Collapse
|
6
|
Liu K, Wang H, Yu SJ, Tu GW, Luo Z. Inhaled pulmonary vasodilators: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:597. [PMID: 33987295 PMCID: PMC8105872 DOI: 10.21037/atm-20-4895] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
Abstract
Pulmonary hypertension (PH) is a severe disease that affects people of all ages. It can occur as an idiopathic disorder at birth or as part of a variety of cardiovascular and pulmonary disorders. Inhaled pulmonary vasodilators (IPV) can reduce pulmonary vascular resistance (PVR) and improve RV function with minimal systemic effects. IPV includes inhaled nitric oxide (iNO), inhaled aerosolized prostacyclin, or analogs, including epoprostenol, iloprost, treprostinil, and other vasodilators. In addition to pulmonary vasodilating effects, IPV can also be used to improve oxygenation, reduce inflammation, and protect cell. Off-label use of IPV is common in daily clinical practice. However, evidence supporting the inhalational administration of these medications is limited, inconclusive, and controversial regarding their safety and efficacy. We conducted a search for relevant papers published up to May 2020 in four databases: PubMed, Google Scholar, EMBASE and Web of Science. This review demonstrates that the clinical using and updated evidence of IPV. iNO is widely used in neonates, pediatrics, and adults with different cardiopulmonary diseases. The limitations of iNO include high cost, flat dose-response, risk of significant rebound PH after withdrawal, and the requirement of complex technology for monitoring. The literature suggests that inhaled aerosolized epoprostenol, iloprost, treprostinil and others such as milrinone and levosimendan may be similar to iNO. More research of IPV is needed to determine acceptable inclusion criteria, long-term outcomes, and management strategies including time, dose, and duration.
Collapse
Affiliation(s)
- Kai Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shen-Ji Yu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Critical Care Med, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|
7
|
Abstract
Presently, with increasing survival of patients with congenital heart disease (CHD), pulmonary arterial hypertension (PAH) associated with CHD is commonly encountered in children and adults. This increased prevalence is seen despite significant advances in early diagnosis and surgical correction of patients with structural CHD. PAH is the cause of significant morbidity and mortality in these patients and comes in many forms. With the increased availability of targeted therapies for PAH, there is hope for improved hemodynamics, exercise capacity, quality of life, and possibly survival for these patients. There may also be opportunities for combined medical and interventional/surgical approaches for some.
Collapse
Affiliation(s)
- Erika B Rosenzweig
- Division of Pediatric Cardiology, Columbia University Irving Medical Center - New York Presbyterian Hospital, 3959 Broadway-CH-2N, New York, NY 10032, USA.
| | - Usha Krishnan
- Division of Pediatric Cardiology, Columbia University Irving Medical Center - New York Presbyterian Hospital, 3959 Broadway-CH-2N, New York, NY 10032, USA
| |
Collapse
|
8
|
Gaudard P, Barbanti C, Rozec B, Mauriat P, M'rini M, Cambonie G, Liet JM, Girard C, Leger PL, Assaf Z, Damas P, Loron G, Lecourt L, Amour J, Pouard P. New Modalities for the Administration of Inhaled Nitric Oxide in Intensive Care Units After Cardiac Surgery or for Neonatal Indications: A Prospective Observational Study. Anesth Analg 2019; 126:1234-1240. [PMID: 29341967 DOI: 10.1213/ane.0000000000002813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nitric oxide (NO) has a well-known efficacy in pulmonary hypertension (PH), with wide use for 20 years in many countries. The objective of this study was to describe the current use of NO in real life and the gap with the guidelines. METHODS This is a multicenter, prospective, observational study on inhaled NO administered through an integrated delivery and monitoring device and indicated for PH according to the market authorizations. The characteristics of NO therapy and ventilation modes were observed. Concomitant pulmonary vasodilator treatments, safety data, and outcome were also collected. Quantitative data are expressed as median (25th, 75th percentile). RESULTS Over 1 year, 236 patients were included from 14 equipped and trained centers: 117 adults and 81 children with PH associated with cardiac surgery and 38 neonates with persistent PH of the newborn. Inhaled NO was initiated before intensive care unit (ICU) admission in 57%, 12.7%, and 38.9% with an initial dose of 10 (10, 15) ppm, 20 (18, 20) ppm, and 17 (11, 20) ppm, and a median duration of administration of 3.9 (1.9, 6.1) days, 3.8 (1.8, 6.8) days, and 3.1 (1.0, 5.7) days, respectively, for the adult population, pediatric cardiac group, and newborns. The treatment was performed using administration synchronized to the mechanical ventilation. The dose was gradually decreased before withdrawal in 86% of the cases according to the usual procedure of each center. Adverse events included rebound effect for 3.4% (95% confidence interval [CI], 0.9%-8.5%) of adults, 1.2% (95% CI, 0.0%-6.7%) of children, and 2.6% (95% CI, 0.1%-13.8%) of neonates and methemoglobinemia exceeded 2.5% for 5 of 62 monitored patients. Other pulmonary vasodilators were associated with NO in 23% of adults, 95% of children, and 23.7% of neonates. ICU stay was respectively 10 (6, 22) days, 7.5 (5.5, 15) days, and 9 (8, 15) days and ICU mortality was 22.2%, 6.2%, and 7.9% for adults, children, and neonates, respectively. CONCLUSIONS This study confirms the safety of NO therapy in the 3 populations with a low rate of rebound effect. Gradual withdrawal of NO combined with pulmonary vasodilators are current practices in this population. The use of last-generation NO devices allowed good compliance with recommendations.
Collapse
Affiliation(s)
- Philippe Gaudard
- From the Cardiothoracic Intensive Care Unit, Centre Hospitalier Universitaire de Montpellier, and PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Claudio Barbanti
- Pediatric Cardiac Intensive Care, Anesthesia and Perfusion Unit, Reference Centre for Complex Congenital Cardiac Disease, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bertrand Rozec
- Department of Anesthesia and Intensive Care, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Philippe Mauriat
- Congenital Cardiac Surgery Unit, Department of Anesthesia and Intensive Care II, Maison du Haut Lévêque - Groupe Hospitalier Sud, Pessac, France
| | | | - Gilles Cambonie
- Neonatal and pediatric Intensive Care Unit, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Jean Michel Liet
- Pediatric Intensive Care Unit, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Claude Girard
- Cardiovascular Intensive Care Unit, Centre Hospitalier Universitaire Bocage Central, Dijon, France
| | | | - Ziad Assaf
- Pediatric Cardiac Intensive Care, Anesthesia and Perfusion Unit, Reference Centre for Complex Congenital Cardiac Disease, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pierre Damas
- Intensive Care Unit, Centre Hospitalier Universitaire de Liège, Liège, Belgique
| | - Gauthier Loron
- Neonatal Intensive Care Unit, Centre Hospitalier Universitaire de Reims, Reims, France
| | | | - Julien Amour
- Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Pouard
- Pediatric Cardiac Intensive Care, Anesthesia and Perfusion Unit, Reference Centre for Complex Congenital Cardiac Disease, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
9
|
Evaluation of Clinical Outcomes with Phosphodiesterase-5 Inhibitor Therapy for Right Ventricular Dysfunction After Left Ventricular Assist Device Implantation. ASAIO J 2019; 65:264-269. [DOI: 10.1097/mat.0000000000000809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Ram E, Sternik L, Klempfner R, Eldar M, Goldenberg I, Peled Y, Raanani E, Kogan A. Sildenafil for Pulmonary Hypertension in the Early Postoperative Period After Mitral Valve Surgery. J Cardiothorac Vasc Anesth 2018; 33:1648-1656. [PMID: 30685151 DOI: 10.1053/j.jvca.2018.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The phosphodiesterase-5 inhibitor sildenafil was developed for the treatment of pulmonary hypertension. The authors investigated the efficacy and safety of sildenafil in the early postoperative period after mitral valve surgery in patients with pulmonary hypertension. DESIGN A double-blind, placebo-controlled randomized trial was performed. SETTING The trial was performed in a single tertiary referral center. PARTICIPANTS Fifty consecutive patients who experienced pulmonary hypertension and underwent mitral valve surgery. INTERVENTIONS Patients were randomly assigned to the following 2 groups: 25 patients received 20 mg sildenafil every 8 hours, and the remaining 25 patients received placebo during the same period. Hemodynamic parameters were studied by using a pulmonary artery catheter at baseline and every 6 hours up to 36 hours. RESULTS Patients who received sildenafil showed a decrease in mean pulmonary pressure, from 32 ± 7 mmHg at baseline to 26 ± 3 mmHg after 36 hours, whereas no change was seen in patients who received placebo (mean pulmonary pressure 34 ± 6 mmHg at baseline and 35 ± 5 mmHg after 36 h) (p < 0.001). No significant changes in systemic hemodynamic and oxygenation were observed. Patients who received sildenafil compared with those who received placebo had a median mechanical lung ventilation time of 16 (10-31) hours versus 19 (13-41) hours (p = 0.431), intensive care unit stay of 74 (44-106) hours versus 91 (66-141) hours (p = 0.410), and a total hospitalization stay of 7 (5-10) days versus 11 (7-15) days (p = 0.009). CONCLUSIONS The immediate postoperative administration of sildenafil after mitral valve surgery is safe. Sildenafil demonstrates a favorable decreasing effect on pulmonary vascular pressure without systemic hypotension and ventilation-perfusion mismatch.
Collapse
Affiliation(s)
- Eilon Ram
- Department of Cardiac Surgery, Sheba Medical Center at Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Leonid Sternik
- Department of Cardiac Surgery, Sheba Medical Center at Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Robert Klempfner
- Heart Institute, Sheba Medical Center at Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Eldar
- Heart Institute, Sheba Medical Center at Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Goldenberg
- Heart Institute, Sheba Medical Center at Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Peled
- Heart Institute, Sheba Medical Center at Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Raanani
- Department of Cardiac Surgery, Sheba Medical Center at Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Kogan
- Department of Cardiac Surgery, Sheba Medical Center at Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Kloner RA, Goggin P, Goldstein I, Hackett G, Kirby MG, Osterloh I, Parker JD, Sadovsky R. A New Perspective on the Nitrate-Phosphodiesterase Type 5 Inhibitor Interaction. J Cardiovasc Pharmacol Ther 2018; 23:375-386. [PMID: 29739235 DOI: 10.1177/1074248418771896] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Nitrates and nitrate-containing compounds are vasodilators used for the treatment of angina and heart failure. Phosphodiesterase type 5 inhibitors used for the treatment of erectile dysfunction are also vasodilators, and when taken together with nitrates, synergistic effects that enhance hypotensive effects may occur. Phosphodiesterase type 5 inhibitors are therefore contraindicated in patients taking organic nitrates. METHODS AND RESULTS A literature review was performed to provide a historical overview of different phosphodiesterase type 5 inhibitors and nitrates and their interaction. The pharmacologic characteristics of phosphodiesterase type 5 inhibitors and nitrates are reviewed, and clinical recommendations for treating cardiovascular disease in men taking phosphodiesterase type 5 inhibitors are discussed. Pharmacologic and adverse drug reactions between nitrates and phosphodiesterase type 5 inhibitors are dependent on many variables. Organic nitrates remain an absolute contraindication in men treated with phosphodiesterase type 5 inhibitors. In general, nitrates may be taken 24 hours after the last dose of short-acting phosphodiesterase type 5 inhibitors and 48 hours after the last dose of long-acting phosphodiesterase type 5 inhibitors. CONCLUSIONS This literature review determined that the use of phosphodiesterase type 5 inhibitors with nitrates is a contraindication, with the duration between the last dose of phosphodiesterase inhibitor and nitrate use generally varying between short- and long-acting phosphodiesterase type 5 formulations. Patients receiving nitrates who wish to use phosphodiesterase type 5 inhibitors should be educated regarding the interaction and should be evaluated to determine whether nitrate treatment can be discontinued. Further research is needed to determine how soon phosphodiesterase type 5 inhibitors can be restarted after a patient has taken a nitrate and the effect of high and low phosphodiesterase type 5 inhibitor doses on the interaction effect.
Collapse
Affiliation(s)
- Robert A Kloner
- 1 Huntington Medical Research Institutes, Pasadena, CA, USA.,2 Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Michael G Kirby
- 6 Health & Human Sciences, Centre for Research in Primary & Community Care, University of Hertfordshire, Hatfield, United Kingdom
| | | | - John D Parker
- 8 Division of Cardiology, Department of Medicine, University of Toronto and Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Richard Sadovsky
- 9 State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
12
|
Pediatric Perioperative Pulmonary Arterial Hypertension: A Case-Based Primer. CHILDREN-BASEL 2017; 4:children4100092. [PMID: 29064445 PMCID: PMC5664022 DOI: 10.3390/children4100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
The perioperative period is an extremely tenuous time for the pediatric patient with pulmonary arterial hypertension. This article will discuss a multidisciplinary approach to preoperative planning, the importance of early identification of pulmonary hypertensive crises, and practical strategies for postoperative management for this unique group of children.
Collapse
|
13
|
Al Omar S, Salama H, Al Hail M, Al Rifai H, Bunahia M, El Kasem W, Siddiqui FJ, Dilawar M, Yassin H, Masud F, Mohamed A, Mansour A. Effect of early adjunctive use of oral sildenafil and inhaled nitric oxide on the outcome of pulmonary hypertension in newborn infants. A feasibility study. J Neonatal Perinatal Med 2017; 9:251-9. [PMID: 27589542 DOI: 10.3233/npm-16161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Inhaled nitric oxide (iNO) is the standard therapy for infants with persistent pulmonary hypertension of the newborn (PPHN). Recently, sildenafil has been evaluated as an alternative or adjunctive pulmonary vasodilator. OBJECTIVE To assess the effectiveness of adding sildenafil as an early adjunctive therapy together with iNO when treating newborns with PPHN and/or hypoxemic respiratory failure. METHODS This is a randomized placebo trial on newborns with gestational age > 34 weeks, postnatal age < 48 hours, and diagnosed with PPHN (oxygen index (OI) ≥ 20). Newborns were randomized to two groups: Group A- received oral sildenafil and iNO, and group B- received placebo and iNO. Initial and follow up echocardiography were performed over 14 days period. RESULTS A total of 24 newborns were recruited; 13 of them received sildenafil in addition to iNO and 11 received iNO and placebo. The most common causes of PPHN were meconium aspiration syndrome, pneumonia, and RDS. At the starting point, OI was marginally higher in the intervention group without statistical significance (29 vs 28). There were no differences between the two groups regarding surfactant administration, incidence of pneumothoraces, and the underlying causes of PPHN. Sildenafil or placebo treatment started within 12 hours after starting iNO (8 vs 6 hours). CONCLUSION Early use of oral sildenafil next to iNO in cases of PPHN was tolerated well by newborns and it did not show significant adverse effects. Further studies with a larger sample size is needed to assess its effecacy.
Collapse
|
14
|
Care of the patient with pulmonary arterial hypertension. Dimens Crit Care Nurs 2017; 34:340-7. [PMID: 26436299 DOI: 10.1097/dcc.0000000000000140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Patients presenting with pulmonary arterial hypertension (PAH), the rarest of the groups of pulmonary hypertension diagnoses, are infrequently seen in the critical care arena. However, when patients with PAH present in the intensive care unit, it is generally related to an exhaustion of treatments. This article focuses on the current state of the literature addressing the group designation, pathophysiology, symptom expression, and treatment modalities of the patient with PAH.
Collapse
|
15
|
Estrada VHN, Franco DLM, Moreno AAV, Gambasica JAR, Nunez CCC. Postoperative Right Ventricular Failure in Cardiac Surgery. Cardiol Res 2016; 7:185-195. [PMID: 28197291 PMCID: PMC5295509 DOI: 10.14740/cr500e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Two cases of patients that developed right ventricular failure (RVF) after cardiac valve surgery are presented with a narrative revision of the literature. RVF involves a great challenge due to the severity of this condition; it has a low incidence among non-congenital cardiac surgery patients, is more likely associated with cardiovascular and pulmonary complications related to cardiopulmonary bypass (CPB), and is a cause of acute graft failure and of a higher early mortality in cardiac transplant. The morphologic and hemodynamic characteristics of the right ventricle and some specific factors that breed pulmonary hypertension after cardiac surgery are in favor of the onset of RVF. Due to the possibility of complications after cardiac valve repair or replacement, measures as appropriate hemodynamic monitoring, to manage oxygenation, ventilation, sedation, acid base equilibrium and perfusion goals are a requirement, as well as a normal circulating volume, and the prevention of a disproportionate rise in the afterload, to preserve the free wall of the right ventricle (RV) and the septum's contribution to the right ventricular global function and geometry. If there is no response to these basic measures, the use of advanced therapy with inotropics, intravenous or inhaled pulmonary vasodilation agents is recommended; the use of mechanical ventricular assistance stands as a last resource.
Collapse
|
16
|
Thunberg CA, Morozowich ST, Ramakrishna H. Inhaled therapy for the management of perioperative pulmonary hypertension. Ann Card Anaesth 2016; 18:394-402. [PMID: 26139748 PMCID: PMC4881725 DOI: 10.4103/0971-9784.159811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Patients with pulmonary hypertension (PH) are at high risk for complications in the perioperative setting and often receive vasodilators to control elevated pulmonary artery pressure (PAP). Administration of vasodilators via inhalation is an effective strategy for reducing PAP while avoiding systemic side effects, chiefly hypotension. The prototypical inhaled pulmonary-specific vasodilator, nitric oxide (NO), has a proven track record but is expensive and cumbersome to implement. Alternatives to NO, including prostanoids (such as epoprostenol, iloprost, and treprostinil), NO-donating drugs (sodium nitroprusside, nitroglycerin, and nitrite), and phosphodiesterase inhibitors (milrinone, sildenafil) may be given via inhalation for the purpose of treating elevated PAP. This review will focus on the perioperative therapy of PH using inhaled vasodilators.
Collapse
Affiliation(s)
| | | | - Harish Ramakrishna
- Division of Cardiovascular and Thoracic Anesthesiology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
17
|
Papathanasiou A, Nakos G. Why there is a need to discuss pulmonary hypertension other than pulmonary arterial hypertension? World J Crit Care Med 2015; 4:274-277. [PMID: 26557477 PMCID: PMC4631872 DOI: 10.5492/wjccm.v4.i4.274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition characterized by the elevation of the mean pulmonary artery pressure above 25 mmHg and the pulmonary vascular resistance above 3 wood units. Pulmonary arterial hypertension (PAH) is an uncommon condition with severe morbidity and mortality, needing early recognition and appropriate and specific treatment. PH is frequently associated with hypoxemia, mainly chronic obstructive pulmonary disease and DPLD and/or left heart diseases (LHD), mainly heart failure with reduced or preserved ejection fraction. Although in the majority of patients with PH the cause is not PAH, a significant number of published studies are still in regard to group I PH, leading to a logical assumption that PH due to other causes is not such an important issue. So, is there a reason to discuss PH other than PAH? Chronic lung diseases, mainly chronic obstructive lung disease and DPLD, are associated with a high incidence of PH which is linked to exercise limitations and a worse prognosis. Although pathophysiological studies suggest that specific PAH therapy may benefit such patients, the results presented from small studies in regard to the safety and effectiveness of the specific PAH therapy are discouraging. PH is a common complication of left heart disease and is related to disease severity, especially in patients with reduced ejection fraction. There are two types of PH related to LHD based on diastolic pressure difference (DPD, defined as diastolic pulmonary artery pressure - mean PAWP): Isolated post-capillary PH, defined as PAWP > 15 mmHg and DPD < 7 mmHg, and combined post-capillary PH and pre-capillary PH, defined as PAWP > 15 mmHg and DPD ≥ 7 mmHg. The potential use of PAH therapies in patients with PH related to left heart disease is based on a logical pathobiological rationale. In patients with heart failure, endothelial dysfunction has been proposed as a cause of PH and hence as a target for treatment, supported by the presence of increased endothelin-1 activity and impaired nitric oxide-dependent vasodilation. Unfortunately, so far, there is no evidence supporting the use of specific PAH therapies in patients with PH related to left heart disease. In conclusion, the presence of PH in patients with conditions other than PAH contributes to the severity of the disease, affecting the outcome and quality of life. The disappointing results regarding the effectiveness of specific PAH therapies in patients with chronic lung diseases and LHD underline the need for seeking new underlying mechanisms and thus novel therapies targeting PH due to left heart disease and/or lung diseases.
Collapse
|
18
|
Development of a Human Model for the Study of Effects of Hypoxia, Exercise, and Sildenafil on Cardiac and Vascular Function in Chronic Heart Failure. J Cardiovasc Pharmacol 2015; 66:229-38. [DOI: 10.1097/fjc.0000000000000262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Inhaled nitric oxide in cardiac surgery: Evidence or tradition? Nitric Oxide 2015; 49:67-79. [PMID: 26186889 DOI: 10.1016/j.niox.2015.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/08/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022]
Abstract
Inhaled nitric oxide (iNO) therapy as a selective pulmonary vasodilator in cardiac surgery has been one of the most significant pharmacological advances in managing pulmonary hemodynamics and life threatening right ventricular dysfunction and failure. However, this remarkable story has experienced a roller-coaster ride with high hopes and nearly universal demonstration of physiological benefits but disappointing translation of these benefits to harder clinical outcomes. Most of our understanding on the iNO field in cardiac surgery stems from small observational or single centre randomised trials and even the very few multicentre trials fail to ascertain strong evidence base. As a consequence, there are only weak clinical practice guidelines on the field and only European expert opinion for the use of iNO in routine and more specialised cardiac surgery such as heart and lung transplantation and left ventricular assist device (LVAD) insertion. In this review the authors from a specialised cardiac centre in the UK with a very high volume of iNO usage provide detailed information on the early observations leading to the European expert recommendations and reflect on the nature and background of these recommendations. We also provide a summary of the progress in each of the cardiac subspecialties for the last decade and initial survey data on the views of senior anaesthetic and intensive care colleagues on these recommendations. We conclude that the combination of high price tag associated with iNO therapy and lack of substantial clinical evidence is not sustainable on the current field and we are risking loosing this promising therapy from our daily practice. Overcoming the status quo will not be easy as there is not much room for controlled trials in heart transplantation or in the current atmosphere of LVAD implantation. However, we call for international cooperation to conduct definite studies to determine the place of iNO therapy in lung transplantation and high risk mitral surgery. This will require new collaboration between the pharmaceutical companies, national grant agencies and the clinical community. Until these trials are realized we should gather multi-institutional experience from large retrospective studies and prospective data from a new international registry. We must step up international efforts if we wish to maintain the iNO modality in the armamentarium of hemodynamic tools for the perioperative management of our high risk cardiac surgical patients.
Collapse
|
20
|
Jentzer JC, Mathier MA. Pulmonary Hypertension in the Intensive Care Unit. J Intensive Care Med 2015; 31:369-85. [PMID: 25944777 DOI: 10.1177/0885066615583652] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/16/2015] [Indexed: 12/19/2022]
Abstract
Pulmonary hypertension occurs as the result of disease processes increasing pressure within the pulmonary circulation, eventually leading to right ventricular failure. Patients may become critically ill from complications of pulmonary hypertension and right ventricular failure or may develop pulmonary hypertension as the result of critical illness. Diagnostic testing should evaluate for common causes such as left heart failure, hypoxemic lung disease and pulmonary embolism. Relatively few patients with pulmonary hypertension encountered in clinical practice require specific pharmacologic treatment of pulmonary hypertension targeting the pulmonary vasculature. Management of right ventricular failure involves optimization of preload, maintenance of systemic blood pressure and augmentation of inotropy to restore systemic perfusion. Selected patients may require pharmacologic therapy to reduce right ventricular afterload by directly targeting the pulmonary vasculature, but only after excluding elevated left heart filling pressures and confirming increased pulmonary vascular resistance. Critically-ill patients with pulmonary hypertension remain at high risk of adverse outcomes, requiring a diligent and thoughtful approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Jacob C Jentzer
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, USA Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael A Mathier
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Abstract
Perioperative pulmonary hypertension can originate from an established disease or acutely develop within the surgical setting. Patients with increased pulmonary vascular resistance are consequently at greater risk for complications. Despite the various specific therapies available, the ideal therapeutic approach in this patient population is not currently clear. This article describes the basic principles of perioperative pulmonary hypertension and reviews the different classes of agents used to promote pulmonary vasodilation in the surgical setting.
Collapse
|
22
|
Intravenous Sildenafil in Right Ventricular Dysfunction with Pulmonary Hypertension following a Heart Transplant. Heart Int 2014. [DOI: 10.5301/heart.2014.12492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Brunner N, de Jesus Perez VA, Richter A, Haddad F, Denault A, Rojas V, Yuan K, Orcholski M, Liao X. Perioperative pharmacological management of pulmonary hypertensive crisis during congenital heart surgery. Pulm Circ 2014; 4:10-24. [PMID: 25006417 DOI: 10.1086/674885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 09/12/2013] [Indexed: 01/12/2023] Open
Abstract
Pulmonary hypertensive crisis is an important cause of morbidity and mortality in patients with pulmonary arterial hypertension secondary to congenital heart disease (PAH-CHD) who require cardiac surgery. At present, prevention and management of perioperative pulmonary hypertensive crisis is aimed at optimizing cardiopulmonary interactions by targeting prostacyclin, endothelin, and nitric oxide signaling pathways within the pulmonary circulation with various pharmacological agents. This review is aimed at familiarizing the practitioner with the current pharmacological treatment for dealing with perioperative pulmonary hypertensive crisis in PAH-CHD patients. Given the life-threatening complications associated with pulmonary hypertensive crisis, proper perioperative planning can help anticipate cardiopulmonary complications and optimize surgical outcomes in this patient population.
Collapse
Affiliation(s)
- Nathan Brunner
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Alice Richter
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - François Haddad
- Division of Cardiology, Stanford School of Medicine, Stanford, California, USA
| | - André Denault
- Division of Anesthesiology, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Vanessa Rojas
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Mark Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Xiaobo Liao
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA ; Division of Cardiothoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
[Nitrid oxide, levosimendan and sildenafile in a patient with right ventricle dysfunction and severe pulmonary hypertension after cardiac surgery]. ACTA ACUST UNITED AC 2013; 61:513-6. [PMID: 24360765 DOI: 10.1016/j.redar.2013.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/23/2013] [Accepted: 09/28/2013] [Indexed: 11/23/2022]
Abstract
Pulmonary hypertension (PHT) and the resulting right ventricle dysfunction are important risk factors in patients who undergo cardiac surgery. The treatment of PHT and right ventricle dysfunction should be focused on maintaining the correct right ventricle after load, improving right ventricle function and reducing the right ventricle pre-load and therefore reducing pulmonary vascular resistance by means of vasodilators. A combined therapy of vasodilators and medicines which have different mechanisms of action, is becoming an option for the treatment of PHT. We present a 65 year old woman that suffered from mitral regurgitation, aortic valve disease, tricuspid and ascending aortic dilation with 115mmHg of pulmonary artery pressure (by ultrasound evaluation). The patient was operated on of mitral, aortic valve and tricuspid plastia and proximal aortic artery plastia as well. Previosly to surgery the patient suffered right ventricle dysfunction and PHT and was treated with nitric oxide, intravenous sildenafil and levosimendan. Subsequent evolution was satisfactory, PHT being controlled, without arterial hypotension nor respiratory alterations.
Collapse
|
25
|
|
26
|
Antoniou T, Koletsis EN, Prokakis C, Rellia P, Thanopoulos A, Theodoraki K, Zarkalis D, Sfyrakis P. Hemodynamic Effects of Combination Therapy With Inhaled Nitric Oxide and Iloprost in Patients With Pulmonary Hypertension and Right Ventricular Dysfunction After High-Risk Cardiac Surgery. J Cardiothorac Vasc Anesth 2013; 27:459-66. [DOI: 10.1053/j.jvca.2012.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Indexed: 11/11/2022]
|
27
|
Bech-Hanssen O, Malm CJ, Nguyen L, Jeppsson A, Scherstén H, Ricksten SE. Pressure reflection in the pulmonary circulation in patients with severe mitral regurgitation indicates adverse postoperative outcome. Eur J Cardiothorac Surg 2013; 44:1037-44. [PMID: 23520236 DOI: 10.1093/ejcts/ezt153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Severe pulmonary hypertension (PH) is a known risk factor in valvular surgery. In the present study, we hypothesized that the assessment of pressure reflection (PR) in the pulmonary circulation, indicating increased pulmonary vascular resistance, might improve the identification of patients with increased morbidity and mortality following surgery for severe mitral regurgitation. METHODS A total of 103 patients without atrial fibrillation were divided into three groups: Group 1 (n = 48), patients without PR; Group 2 (n = 36), patients with PR and pulmonary artery systolic pressure (PASP) ≤ 60 mmHg and Group 3 (n = 19), patients with PR and PASP >60 mmHg. Three variables related to PR were selected: the acceleration time in the right ventricular outflow tract (RVOT), the interval between peak velocity in the RVOT and peak tricuspid regurgitant jet velocity and the right ventricular pressure increase after peak RVOT velocity. RESULTS There were no differences between groups in age, ejection fraction, need for coronary bypass grafting or creatinine. Patients with PR (Groups 2 and 3) had more use of vasoactive drugs (overall P < 0.0001, Group 1 vs Group 2 P = 0.018). The proportion of patients with >24 h in the intensive care unit was 27% in Group 1, 54% in Group 2 and 84% in Group 3 (overall P < 0.0001, Group 1 vs Group 2 P = 0.006). The in-hospital mortality in patients without PR (n = 49) was 0% compared with 10.9% in patients with PR (P = 0.029). CONCLUSIONS Echocardiography assessment of PR in the pulmonary circulation and severe PH may identify patients with adverse outcome following mitral surgery.
Collapse
Affiliation(s)
- Odd Bech-Hanssen
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary. J Heart Lung Transplant 2013; 32:157-87. [DOI: 10.1016/j.healun.2012.09.013] [Citation(s) in RCA: 850] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 02/08/2023] Open
|
29
|
Current World Literature. Curr Opin Anaesthesiol 2013; 26:98-104. [DOI: 10.1097/aco.0b013e32835cb4f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening and progressive disease of various origins characterized by pulmonary vascular remodeling that leads to increased pulmonary vascular resistance and pulmonary arterial pressure, most often resulting in right-sided heart failure. The most common symptom at presentation is breathlessness, with impaired exercise capacity as a hallmark of the disease. Advances in understanding the pathobiology over the last 2 decades have led to therapies (endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, and prostacyclins or analogs) initially directed at reversing the pulmonary vasoconstriction and more recently directed toward reversing endothelial cell dysfunction and smooth muscle cell proliferation. Despite these advances, disease progression is common even with use of combination regimens targeting multiple mechanistic pathways. Overall 5-year survival for PAH has increased significantly from approximately 30% in the 1980s to approximately 60% at present, yet remains abysmal. This review summarizes the mechanisms of action, clinical data, and regulatory histories of approved PAH therapies and describes the latest agents in late-stage clinical development.
Collapse
|