1
|
Greco A, Canale ML, Quagliariello V, Oliva S, Tedeschi A, Inno A, De Biasio M, Bisceglia I, Tarantini L, Maurea N, Navazio A, Corda M, Iacovoni A, Colivicchi F, Grimaldi M, Oliva F. SGLT2 Inhibitors in Cancer Patients: A Comprehensive Review of Clinical, Biochemical, and Therapeutic Implications in Cardio-Oncology. Int J Mol Sci 2025; 26:4780. [PMID: 40429921 PMCID: PMC12112039 DOI: 10.3390/ijms26104780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Patients with active cancer and cancer survivors are at a markedly increased risk for developing cardiovascular comorbidities, including heart failure, coronary artery disease, and renal dysfunction, which are often compounded by the cardiotoxic effects of cancer therapies. This heightened cardiovascular vulnerability underscores the urgent need for effective, safe, and evidence-based cardioprotective strategies to reduce both cardiovascular morbidity and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2is), a class of drugs originally developed for the treatment of type 2 diabetes, have demonstrated significant cardiovascular and renal benefits in high-risk populations, independent of glycemic control. Among the currently available SGLT2i, such as empagliflozin, canagliflozin, dapagliflozin, and sotagliflozin, there is growing evidence supporting their role in reducing major adverse cardiovascular events (MACEs), hospitalization for heart failure, and the progression of chronic kidney disease. Recent preclinical and clinical data suggest that SGLT2is exert cardioprotective effects through multiple mechanisms, including the modulation of inflammasome activity, specifically by reducing NLRP3 inflammasome activation and MyD88-dependent signaling, which are critical drivers of cardiac inflammation and fibrosis. Moreover, SGLT2is have been shown to enhance mitochondrial viability in cardiac cells, promoting improved cellular energy metabolism and function, thus mitigating cardiotoxicity. This narrative review critically evaluates the emerging evidence on the cardiorenal protective mechanisms of SGLT2is, with a particular focus on their potential role in cardio-oncology. We explore the common pathophysiological pathways between cardiovascular dysfunction and cancer, the molecular rationale for the use of SGLT2is in cancer patients, and the potential benefits in both primary and secondary prevention of cardiovascular toxicity related to oncological treatments. The aim is to propose a therapeutic paradigm utilizing SGLT2is to reduce cardiovascular mortality, MACE, and the burden of cardiotoxicity in high-risk oncology patients, fostering an integrated approach to cardio-oncology care.
Collapse
Affiliation(s)
- Alessandra Greco
- Cardiology Division, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Maria Laura Canale
- Cardiology, Versilia Hospital, Azienda USL Toscana Nord-Ovest, 55041 Lido di Camaiore, Italy;
| | - Vincenzo Quagliariello
- Cardiology Division, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80145 Naples, Italy
| | - Stefano Oliva
- UOSD Cardiologia di interesse oncologico, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Andrea Tedeschi
- Cardiology, “Guglielmo da Saliceto” Hospital, 29121 Piacenza, Italy;
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, 37024 Verona, Italy;
| | - Marzia De Biasio
- Cardiology, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy;
| | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento di Scienze Cardio-Toraco-Vascolari, Azienda Ospedaliera San Camillo Forlanini, 00148 Rome, Italy;
| | - Luigi Tarantini
- S.O.C. Cardiologia Ospedaliera, Presidio Ospedaliero Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, 42100 Reggio Emilia, Italy; (L.T.); (A.N.)
| | - Nicola Maurea
- Cardiology Division, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80145 Naples, Italy
| | - Alessandro Navazio
- S.O.C. Cardiologia Ospedaliera, Presidio Ospedaliero Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, 42100 Reggio Emilia, Italy; (L.T.); (A.N.)
| | - Marco Corda
- S.C. Cardiologia, Azienda di Rilievo Nazionale e Alta Specializzazione “G. Brotzu”, 09047 Cagliari, Italy;
| | - Attilio Iacovoni
- SSD Chirurgia dei Trapianti e del Trattamento Chirurgico dello Scompenso, Dipartimento Cardiovascolare, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Furio Colivicchi
- UOC Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—ASL Roma 1, 00161 Rome, Italy;
| | - Massimo Grimaldi
- UOC Cardiologia-UTIC, Ospedale Miulli, Acquaviva delle Fonti (BA), 70021 Bari, Italy;
| | - Fabrizio Oliva
- Cardiologia 1-Emodinamica, Dipartimento Cardiotoracovascolare “A. De Gasperis”, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
- Presidente ANMCO—Associazione Nazionale Medici Cardiologi Ospedalieri, 50121 Florence, Italy
- Consigliere Delegato per la Ricerca Fondazione per il Tuo Cuore-Heart Care Foundation, 50121 Florence, Italy
| |
Collapse
|
2
|
Krüger DN, Pannucci P, Wesley CD, Neutel CHG, Martinet W, De Meyer GRY, Hill SJ, Woolard J, Franssen C, Guns PJ. Acute vascular and cardiac effects of lenvatinib in mice. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:14. [PMID: 39934897 DOI: 10.1186/s40959-025-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) receptor signalling are used in cancer therapy to inhibit angiogenesis. Unfortunately, VEGF inhibitors are known to induce severe hypertension in patients. This study aimed to elucidate the impact of the TKI lenvatinib on blood pressure, arterial stiffness, vascular reactivity, as well as cardiac function in a short-term murine model to shed light on potential contributors to cardiovascular (CV) toxicities associated with VEGF inhibition. METHODS Male C57BL/6J mice were randomly divided into 2 cohorts, either treated for 4 days with lenvatinib 4 mg/kg/day or 40% hydroxypropyl β-cyclodextrin as control. In an additional study, mice were subjected to a 4-day treatment followed by a 4-day wash-out, with echocardiography and blood pressure measurements performed on day 2 and 7. Subsequently, ex vivo vascular reactivity of thoracic aortic segments was determined. RESULTS Lenvatinib induced hypertension and arterial stiffness (i.e., increased pulse wave velocity), starting from day 2 of treatment. Further, left ventricular ejection fraction was reduced and the ventricle dilated upon treatment. Lenvatinib induced neither endothelial dysfunction nor impaired vascular smooth muscle cell reactivity to nitric oxide (NO). Interestingly, lenvatinib demonstrated a concentration-dependent increase in ATP-mediated relaxation. In addition, after the 4-day wash-out period, lenvatinib-treated mice did not show complete remission of hypertension. However, arterial stiffness, ATP-mediated relaxation and cardiac adaptation were recovered. CONCLUSION This comprehensive investigation provides valuable insights into the interplay between VEGF inhibition, vascular function and cardiac outcomes, emphasising the need for nuanced understanding and further exploration of the differential effects of lenvatinib on the CV system. Additionally, the study proposes a synergistic formation between VEGF and ATP, indicating an enhanced response via P2Yx receptor signalling.
Collapse
Affiliation(s)
- Dustin N Krüger
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium.
- Infla-Med Centre of Excellence of the University of Antwerp, Antwerp, Belgium.
| | - Patrizia Pannucci
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Callan D Wesley
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
- Infla-Med Centre of Excellence of the University of Antwerp, Antwerp, Belgium
| | - Cedric H G Neutel
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
- Infla-Med Centre of Excellence of the University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
- Infla-Med Centre of Excellence of the University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
- Infla-Med Centre of Excellence of the University of Antwerp, Antwerp, Belgium
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, University of Antwerp, Antwerp, B-2610, Belgium
- Infla-Med Centre of Excellence of the University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, B-2650, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
- Infla-Med Centre of Excellence of the University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Tong J, Senechal I, Ramalingam S, Lyon AR. Risk Assessment Prior to Cardiotoxic Anticancer Therapies in 7 Steps. Br J Hosp Med (Lond) 2025; 86:1-21. [PMID: 39862029 DOI: 10.12968/hmed.2024.0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
The burdens of cardiovascular (CV) diseases and cardiotoxic side effects of cancer treatment in oncology patients are increasing in parallel. The European Society of Cardiology (ESC) 2022 Cardio-Oncology guidelines recommend the use of standardized risk stratification tools to determine the risk of cardiotoxicity associated with different anticancer treatment modalities and the severity of their complications. The use of the Heart Failure Association-International Cardio-Oncology Society (HFA-ICOS) is essential for assessing risk prior to starting cancer treatment, and validation of these methods has been performed in patients receiving anthracyclines, human epidermal receptor 2 (HER2)-targeted therapies and breakpoint cluster region-abelson oncogene locus (BCR-ABL) inhibitors. The benefits of performing baseline CV risk assessment and stratification include early recognition of cardiotoxicities, personalisation of cancer treatment and monitoring strategies, and allocation of cardioprotection to those at the highest risk. This review summarizes the key points of risk stratification in these patients. The steps include identifying the target population, assessing nonmodifiable and modifiable CV risk factors, reviewing previous oncologic therapies and CV histories, and performing baseline investigations. In summary, this review aims to provide general physicians with a simple 7-step guide that will help steer and navigate them through cardiac risk evaluation of potentially cardiotoxic oncologic treatment strategies.
Collapse
Affiliation(s)
- Jieli Tong
- Cardio-Oncology Centre of Excellence, Royal Brompton Hospital, London, UK
- Department of Cardiology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Isabelle Senechal
- Cardio-Oncology Centre of Excellence, Royal Brompton Hospital, London, UK
| | | | - Alexander R Lyon
- Cardio-Oncology Centre of Excellence, Royal Brompton Hospital, London, UK
| |
Collapse
|
4
|
Jung M, Choo E, Li S, Deng Z, Li J, Li M, Basran S, Lee S, Langston ME, Chung BI. Increased risk of cardiovascular disease among kidney cancer survivors: a nationwide population-based cohort study. Front Oncol 2024; 14:1420333. [PMID: 39070148 PMCID: PMC11272517 DOI: 10.3389/fonc.2024.1420333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Background Cardiovascular disease (CVD) is a major concern of morbidity and mortality among cancer survivors. However, few evidence exists on the short- and long-term risk of CVD in kidney cancer (KCa) survivors. Methods In this nationwide, large population-based retrospective cohort study, we used the Korean national health insurance and medical checkup survey linkage database (2007-2021), drawn from the entire Korean population. We included adults diagnosed with KCa as the first primary cancer and matched them to an individual without KCa at a 1:5 ratio. The primary outcome was CVD incidence, including myocardial infarction, stroke, atrial fibrillation, heart failure, peripheral arterial occlusion, and venous thromboembolism (VTE). We evaluated CVD risk at 6 months, 1 year, and 5 years following cancer diagnosis, using Fine-Gray competing risk models that accounted for death as a competing factor. Results A total of 149,232 participants were included (KCa survivors: N=20,093 and matched non-KCa individuals: N=129,139). After 6-month follow-up, KCa survivors showed an increased risk of CVD compared to the general population (subdistribution hazard ratio (HR) 2.70, 95% confidence interval (CI) 2.31-3.15). After 1 year, KCa survivors had a higher risk of CVD (HR=1.77, 95% CI: 1.56-2.00). After 5 years, this elevated CVD risk remained (HR=1.10, 95% CI: 1.03-1.18), with VTE identified as the primary contributing disease (HR=3.05, 95% CI:2.59-3.59). Conclusion KCa survivors had an increased risk of CVD up to 5 years after cancer diagnosis compared to the general population. Our findings emphasize the importance of comprehensive healthcare management for both CVD and KCa throughout cancer survivorship.
Collapse
Affiliation(s)
- Minji Jung
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
| | - Eunjung Choo
- Department of Clinical Pharmacy, School of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Shufeng Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
- Department of Dermatology, Stanford University Medical Center, Stanford, CA, United States
| | - Zhengyi Deng
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
| | - Mingyi Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, United States
| | - Satvir Basran
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
| | - Sukhyang Lee
- Department of Clinical Pharmacy, School of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Marvin E. Langston
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, United States
| | - Benjamin I. Chung
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
5
|
Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:159-182. [PMID: 38774006 PMCID: PMC11103046 DOI: 10.1016/j.jaccao.2024.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 05/24/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for type 2 diabetes mellitus, have demonstrated efficacy in reducing cardiovascular events, particularly heart failure, in patients with and without diabetes. An intriguing research area involves exploring the potential application of SGLT2 inhibitors in cardio-oncology, aiming to mitigate the cardiovascular adverse events associated with anticancer treatments. These inhibitors present a unique dual nature, offering both cardioprotective effects and anticancer properties, conferring a double benefit for cardio-oncology patients. In this review, the authors first examine the established cardioprotective effects of SGLT2 inhibitors in heart failure and subsequently explore the existing body of evidence, including both preclinical and clinical studies, that supports the use of SGLT2 inhibitors in the context of cardio-oncology. The authors further discuss the mechanisms through which SGLT2 inhibitors protect against cardiovascular toxicity secondary to cancer treatment. Finally, they explore the potential anticancer effects of SGLT2 inhibitors along with their proposed mechanisms.
Collapse
Affiliation(s)
- Mohamed S. Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y. George
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mary R. Daniel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne H. Blaes
- Division of Hematology/Oncology/Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Wang W, Li G, Ma J, Fan X, Lu J, Sun Q, Yao J, He Q. Microvascular rarefaction caused by the NOTCH signaling pathway is a key cause of TKI-apatinib-induced hypertension and cardiac damage. Front Pharmacol 2024; 15:1346905. [PMID: 38405666 PMCID: PMC10885812 DOI: 10.3389/fphar.2024.1346905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
With the advancement of tumour-targeted therapy technology, the survival of cancer patients has continued to increase, and cardiovascular events have gradually become an important cause of death in cancer patients. This phenomenon occurs due to adverse cardiovascular reactions caused by the cardiovascular toxicity of antitumour therapy. Moreover, the increase in the proportion of elderly patients with cancer and cardiovascular diseases is due to the extension of life expectancy. Hypertension is the most common cardiovascular side effect of small molecule tyrosine kinase inhibitors (TKIs). The increase in blood pressure induced by TKIs and subsequent cardiovascular complications and events affect the survival and quality of life of patients and partly offset the benefits of antitumour therapy. Many studies have confirmed that in the pathogenesis of hypertension, arterioles and capillary thinness are involved in its occurrence and development. Our previous findings showing that apatinib causes microcirculation rarefaction of the superior mesenteric artery and impaired microvascular growth may inspire new therapeutic strategies for treating hypertension. Thus, by restoring microvascular development and branching patterns, total peripheral resistance and blood pressure are reduced. Therefore, exploring the key molecular targets of TKIs that inhibit the expression of angiogenic factors and elucidating the specific molecular mechanism involved are key scientific avenues for effectively promoting endothelial cell angiogenesis and achieving accurate repair of microcirculation injury in hypertension patients.
Collapse
Affiliation(s)
- WenJuan Wang
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Guodong Li
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jie Ma
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Fan
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianzhong Lu
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qiyin Sun
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jiafang Yao
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qingjian He
- Department of Breast and Thyroid Surgery, The First People’s Hospital of Huzhou City, Huzhou, China
| |
Collapse
|
7
|
Narayan V, Liu T, Song Y, Mitchell J, Sicks J, Gareen I, Sun L, Denduluri S, Fisher C, Manikowski J, Wojtowicz M, Vadakara J, Haas N, Margulies KB, Ky B. Early Increases in Blood Pressure and Major Adverse Cardiovascular Events in Patients With Renal Cell Carcinoma and Thyroid Cancer Treated With VEGFR TKIs. J Natl Compr Canc Netw 2023; 21:1039-1049.e10. [PMID: 37856199 PMCID: PMC10695474 DOI: 10.6004/jnccn.2023.7047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/19/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Although VEGFR tyrosine kinase inhibitors (TKIs) are a preferred systemic treatment approach for patients with advanced renal cell carcinoma (RCC) and thyroid carcinoma (TC), treatment-related cardiovascular (CV) toxicity is an important contributor to morbidity. However, the clinical risk assessment and impact of CV toxicities, including early significant hypertension, among real-world advanced cancer populations receiving VEGFR TKI therapies remain understudied. METHODS In a multicenter, retrospective cohort study across 3 large and diverse US health systems, we characterized baseline hypertension and CV comorbidity in patients with RCC and those with TC who are newly initiating VEGFR TKI therapy. We also evaluated baseline patient-, treatment-, and disease-related factors associated with the risk for treatment-related early hypertension (within 6 weeks of TKI initiation) and major adverse CV events (MACE), accounting for the competing risk of death in an advanced cancer population, after VEGFR TKI initiation. RESULTS Between 2008 and 2020, 987 patients (80.3% with RCC, 19.7% with TC) initiated VEGFR TKI therapy. The baseline prevalence of hypertension was high (61.5% and 53.6% in patients with RCC and TC, respectively). Adverse CV events, including heart failure and cerebrovascular accident, were common (occurring in 14.9% of patients) and frequently occurred early (46.3% occurred within 1 year of VEGFR TKI initiation). Baseline hypertension and Black race were the primary clinical factors associated with increased acute hypertensive risk within 6 weeks of VEGFR TKI initiation. However, early significant "on-treatment" hypertension was not associated with MACE. CONCLUSIONS These multicenter, real-world findings indicate that hypertensive and CV morbidities are highly prevalent among patients initiating VEGFR TKI therapies, and baseline hypertension and Black race represent the primary clinical factors associated with VEGFR TKI-related early significant hypertension. However, early on-treatment hypertension was not associated with MACE, and cancer-specific CV risk algorithms may be warranted for patients initiating VEGFR TKIs.
Collapse
Affiliation(s)
- Vivek Narayan
- Department of Medicine, Division of Hematology/Medical Oncology, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Tao Liu
- Center for Statistical Sciences, Department of Biostatistics, Brown University School of Public Health, Providence, RI
| | - Yunjie Song
- Center for Statistical Sciences, Department of Biostatistics, Brown University School of Public Health, Providence, RI
| | - Joshua Mitchell
- Cardiovascular Division, Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, MO
| | - JoRean Sicks
- Center for Statistical Sciences, Department of Biostatistics, Brown University School of Public Health, Providence, RI
| | - Ilana Gareen
- Center for Statistical Sciences, Department of Biostatistics, Brown University School of Public Health, Providence, RI
| | - Lova Sun
- Department of Medicine, Division of Hematology/Medical Oncology, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Srinivas Denduluri
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ciaran Fisher
- Geisinger Cancer Institute, Geisinger Medical Center, Danville, PA
| | - Jesse Manikowski
- Geisinger Cancer Institute, Geisinger Medical Center, Danville, PA
| | - Mark Wojtowicz
- Geisinger Cancer Institute, Geisinger Medical Center, Danville, PA
| | - Joseph Vadakara
- Geisinger Cancer Institute, Geisinger Medical Center, Danville, PA
| | - Naomi Haas
- Department of Medicine, Division of Hematology/Medical Oncology, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Kenneth B Margulies
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bonnie Ky
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Nukala SB, Jousma J, Yan G, Han Z, Kwon Y, Cho Y, Liu C, Gagnon K, Pinho S, Rehman J, Shao NY, Ong SB, Lee WH, Ong SG. Modulation of lncRNA links endothelial glycocalyx to vascular dysfunction of tyrosine kinase inhibitor. Cardiovasc Res 2023; 119:1997-2013. [PMID: 37267414 PMCID: PMC10439712 DOI: 10.1093/cvr/cvad087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 06/04/2023] Open
Abstract
AIMS Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored. METHODS AND RESULTS We performed lncRNA expression profiling to identify potential lncRNAs that are dysregulated in human-induced pluripotent stem cell-derived ECs (iPSC-ECs) treated with sunitinib. We show that the lncRNA hyaluronan synthase 2 antisense 1 (HAS2-AS1) is significantly diminished in sunitinib-treated iPSC-ECs. Sunitinib was found to down-regulate HAS2-AS1 by an epigenetic mechanism involving hypermethylation. Depletion of HAS2-AS1 recapitulated sunitinib-induced detrimental effects on iPSC-ECs, whereas CRISPR-mediated activation of HAS2-AS1 reversed sunitinib-induced dysfunction. We confirmed that HAS2-AS1 stabilizes the expression of its sense gene HAS2 via an RNA/mRNA heteroduplex formation. Knockdown of HAS2-AS1 led to reduced synthesis of hyaluronic acid (HA) and up-regulation of ADAMTS5, an enzyme involved in extracellular matrix degradation, resulting in disruption of the endothelial glycocalyx which is critical for ECs. In vivo, sunitinib-treated mice showed reduced coronary flow reserve, accompanied by a reduction in Has2os and degradation of the endothelial glycocalyx. Finally, we identified that treatment with high molecular-weight HA can prevent the deleterious effects of sunitinib both in vitro and in vivo by preserving the endothelial glycocalyx. CONCLUSIONS Our findings highlight the importance of lncRNA-mediated regulation of the endothelial glycocalyx as an important determinant of sunitinib-induced vascular toxicity and reveal potential novel therapeutic avenues to attenuate sunitinib-induced vascular dysfunction.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Gege Yan
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Zhenbo Han
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Youjeong Kwon
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Chuyu Liu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Keith Gagnon
- Division of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, 1245 Lincoln Drive Carbondale, IL 62901-4413, USA
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale IL 62901, USA
| | - Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Jalees Rehman
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 840 S Wood Street, Chicago, IL 60612, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), 9/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, 10/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children's Hospital (HKCH), 8/F, Tower A,1 Shing Cheong Road, Kowloon Bay, Hong Kong, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 North 5th Street, Phoenix, AZ 85004, USA
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), 9/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
| |
Collapse
|
9
|
Mittal R, Krishnan M P S, Saxena R, Sampath A, Goyal B. Non-coding RNAs, cancer treatment and cardiotoxicity: A triad of new hope. Cancer Treat Res Commun 2023; 36:100750. [PMID: 37531735 DOI: 10.1016/j.ctarc.2023.100750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The global health landscape has experienced a shift towards non-communicable diseases, with cardiovascular diseases and cancer as leading causes of mortality. Although advancements in healthcare have led to an increase in life expectancy, they have concurrently resulted in a greater burden of chronic health conditions. Unintended consequences of anticancer therapies on various tissues, particularly the cardiovascular system, contribute to elevated morbidity and mortality rates that are not directly attributable to cancer. Consequently, the field of cardio-oncology has emerged to address the prevalence of CVD in cancer survivors and the cardiovascular toxicity associated with cancer therapies. Non-coding RNAs (ncRNAs) have been found to play a crucial role in early diagnosis, prognosis, and therapeutics within the realm of cardio-oncology. This comprehensive review evaluates the risk assessment of cancer survivors concerning the acquisition of adverse cardiovascular consequences, investigates the association of ncRNAs with CVD in patients undergoing cancer treatment, and delves into the role of ncRNAs in the diagnosis, treatment, and prevention of CVD in patients with a history of anti-cancer therapy. A thorough understanding of the pathogenesis of cancer therapy-related cardiovascular disease and the involvement of ncRNAs in cardio-oncology will enable healthcare professionals to provide anticancer treatment with minimized cardiovascular side effects, thereby improving patient outcomes. Ultimately, this comprehensive analysis aims to provide valuable insights into the complex interplay between cancer and cardiovascular diseases, facilitating the development of more effective diagnostic, therapeutic, and preventive strategies in the burgeoning field of cardio-oncology.
Collapse
Affiliation(s)
- Rishabh Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Sarath Krishnan M P
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Rahul Saxena
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Ananyan Sampath
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India; Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India
| | - Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India.
| |
Collapse
|
10
|
Anker SD, Usman MS, Anker MS, Butler J, Böhm M, Abraham WT, Adamo M, Chopra VK, Cicoira M, Cosentino F, Filippatos G, Jankowska EA, Lund LH, Moura B, Mullens W, Pieske B, Ponikowski P, Gonzalez-Juanatey JR, Rakisheva A, Savarese G, Seferovic P, Teerlink JR, Tschöpe C, Volterrani M, von Haehling S, Zhang J, Zhang Y, Bauersachs J, Landmesser U, Zieroth S, Tsioufis K, Bayes-Genis A, Chioncel O, Andreotti F, Agabiti-Rosei E, Merino JL, Metra M, Coats AJS, Rosano GMC. Patient phenotype profiling in heart failure with preserved ejection fraction to guide therapeutic decision making. A scientific statement of the Heart Failure Association, the European Heart Rhythm Association of the European Society of Cardiology, and the European Society of Hypertension. Eur J Heart Fail 2023; 25:936-955. [PMID: 37461163 DOI: 10.1002/ejhf.2894] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/26/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a highly heterogeneous clinical syndrome affected in its development and progression by many comorbidities. The left ventricular diastolic dysfunction may be a manifestation of various combinations of cardiovascular, metabolic, pulmonary, renal, and geriatric conditions. Thus, in addition to treatment with sodium-glucose cotransporter 2 inhibitors in all patients, the most effective method of improving clinical outcomes may be therapy tailored to each patient's clinical profile. To better outline a phenotype-based approach for the treatment of HFpEF, in this joint position paper, the Heart Failure Association of the European Society of Cardiology, the European Heart Rhythm Association and the European Hypertension Society, have developed an algorithm to identify the most common HFpEF phenotypes and identify the evidence-based treatment strategy for each, while taking into account the complexities of multiple comorbidities and polypharmacy.
Collapse
Affiliation(s)
- Stefan D Anker
- Department of Cardiology, Deutsches Herzzentrum der Charité (Campus CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), and German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | | | - Markus S Anker
- Deutsches Herzzentrum der Charité, Klinik fär Kardiologie, Angiologie und Intensivmedizin (Campus CBF), Berlin Institute of Health Center for Regenerative Therapies (BCRT), and German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany
| | | | - Marianna Adamo
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | | | | | - Francesco Cosentino
- Department of Medicine, Karolinska Institutet, and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Brenda Moura
- Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal; Serviço de Cardiologia, Hospital das Forças Armadas-Pólo do Porto, Porto, Portugal
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost Limburg, Genk and Faculty of Medicine and Life Sciences, University Hasselt, Belgium
| | - Burkert Pieske
- Berlin-Brandenburgische Gesellschaft für Herz-Kreislauferkrankungen (BBGK), Berlin, Germany
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Cardiology Department, Wroclaw Medical University, Wroclaw, Poland
| | - Jose R Gonzalez-Juanatey
- Cardiology Department, Hospital Clínico Universitario, Santiago de Compostela, IDIS, CIBERCV, Santiago de Compostela, Spain
| | - Amina Rakisheva
- Department of Cardiology, Scientific Institution of Cardiology and Internal Diseases, Almaty, Kazakhstan
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Petar Seferovic
- Department Faculty of Medicine, University of Belgrade, Belgrade & Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - John R Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California, San Francisco, CA, USA
| | - Carsten Tschöpe
- Department of Cardiology, Deutsches Herzzentrum der Charité (Campus CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), and German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine (CVK), Charité Universitätsmedizin, Berlin, Germany
| | - Maurizio Volterrani
- Cardio-Pulmonary Department, San Raffaele Open University of Rome; Exercise Science and Medicine, IRCCS San Raffaele - Rome, Italy
| | | | - Jian Zhang
- Fuwai Hospital Chinese Academic of Medical Science, Beijing, China
| | - Yuhui Zhang
- Fuwai Hospital Chinese Academic of Medical Science, Beijing, China
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Klinik fär Kardiologie, Angiologie und Intensivmedizin (Campus CBF), Berlin Institute of Health Center for Regenerative Therapies (BCRT), and German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| | - Shelley Zieroth
- Section of Cardiology, Max Rady College of Medicine, University of Manitoba Winnipeg, Winnipeg, Manitoba, Canada
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, CIBERCV, Barcelona, Spain
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu', University of Medicine Carol Davila, Bucharest, Romania
| | - Felicita Andreotti
- Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Catholic University Medical School, Rome, Italy
| | - Enrico Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Jose L Merino
- Department of Cardiology, La Paz University Hospital, IdiPaz, Universidad Autonoma, Madrid, Spain
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe M C Rosano
- Cardio-Pulmonary Department, San Raffaele Open University of Rome; Exercise Science and Medicine, IRCCS San Raffaele - Rome, Italy
| |
Collapse
|
11
|
Drăgan A, Sinescu I. The Role of the Cardiac Biomarkers in the Renal Cell Carcinoma Multidisciplinary Management. Diagnostics (Basel) 2023; 13:1912. [PMID: 37296764 PMCID: PMC10253077 DOI: 10.3390/diagnostics13111912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Renal cell carcinoma, an aggressive malignancy, is often incidentally diagnosed. The patient remains asymptomatic to the late stage of the disease, when the local or distant metastases are already present. Surgical treatment remains the choice for these patients, although the plan must adapt to the characteristics of the patients and the extension of the neoplasm. Systemic therapy is sometimes needed. It includes immunotherapy, target therapy, or both, with a high level of toxicity. Cardiac biomarkers have prognosis and monitoring values in this setting. Their role in postoperative identification of myocardial injury and heart failure already have been demonstrated, as well as their importance in preoperative evaluation from the cardiac point of view and the progression of renal cancer. The cardiac biomarkers are also part of the new cardio-oncologic approach to establishing and monitoring systemic therapy. They are complementary tests for assessment of the baseline toxicity risk and tools to guide therapy. The goal must be to continue the treatment as long as possible with the initiation and optimisation of the cardiological treatment. Cardiac atrial biomarkers are reported to have also antitumoral and anti-inflammatory properties. This review aims to present the role of cardiac biomarkers in the multidisciplinary management of renal cell carcinoma patients.
Collapse
Affiliation(s)
- Anca Drăgan
- Department of Cardiovascular Anaesthesiology and Intensive Care, Prof. C.C. Iliescu Emergency Institute for Cardiovascular Diseases, 258 Fundeni Road, 022328 Bucharest, Romania
| | - Ioanel Sinescu
- Department of Urological Surgery, Dialysis and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Road, 022328 Bucharest, Romania;
- Department of Uronephrology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| |
Collapse
|
12
|
Butel-Simoes LE, Haw TJ, Williams T, Sritharan S, Gadre P, Herrmann SM, Herrmann J, Ngo DTM, Sverdlov AL. Established and Emerging Cancer Therapies and Cardiovascular System: Focus on Hypertension-Mechanisms and Mitigation. Hypertension 2023; 80:685-710. [PMID: 36756872 PMCID: PMC10023512 DOI: 10.1161/hypertensionaha.122.17947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cardiovascular disease and cancer are 2 of the leading causes of death worldwide. Although improvements in outcomes have been noted for both disease entities, the success of cancer therapies has come at the cost of at times very impactful adverse events such as cardiovascular events. Hypertension has been noted as both, a side effect as well as a risk factor for the cardiotoxicity of cancer therapies. Some of these dynamics are in keeping with the role of hypertension as a cardiovascular risk factor not only for heart failure, but also for the development of coronary and cerebrovascular disease, and kidney disease and its association with a higher morbidity and mortality overall. Other aspects such as the molecular mechanisms underlying the amplification of acute and long-term cardiotoxicity risk of anthracyclines and increase in blood pressure with various cancer therapeutics remain to be elucidated. In this review, we cover the latest clinical data regarding the risk of hypertension across a spectrum of novel anticancer therapies as well as the underlying known or postulated pathophysiological mechanisms. Furthermore, we review the acute and long-term implications for the amplification of the development of cardiotoxicity with drugs not commonly associated with hypertension such as anthracyclines. An outline of management strategies, including pharmacological and lifestyle interventions as well as models of care aimed to facilitate early detection and more timely management of hypertension in patients with cancer and survivors concludes this review, which overall aims to improve both cardiovascular and cancer-specific outcomes.
Collapse
Affiliation(s)
- Lloyd E Butel-Simoes
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Tatt Jhong Haw
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Trent Williams
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Shanathan Sritharan
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Payal Gadre
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Doan TM Ngo
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Aaron L Sverdlov
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| |
Collapse
|
13
|
Oikawa M, Ishida T, Takeishi Y. Cancer therapeutics-related cardiovascular dysfunction: Basic mechanisms and clinical manifestation. J Cardiol 2023; 81:253-259. [PMID: 35589463 DOI: 10.1016/j.jjcc.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023]
Abstract
Although recent advances in cancer treatment improve cancer prognosis, cancer therapeutics-related cardiovascular dysfunction (CTRCD) significantly contributes to the global burden of cardiovascular disease. CTRCD causes two crucial issues: first, premature treatment interruption or discontinuation of chemotherapy; second, the development of congestive heart failure during and after cancer treatment. Thus, early detection and prompt treatment of CTRCD may improve the prognosis in cancer patients. This review covers representative anticancer drugs, including anthracyclines, human epidermal growth factor 2 inhibitors, tyrosine kinase inhibitors, proteasome inhibitors, and immune checkpoint inhibitors. We focus on the molecular mechanisms of CTRCD and various approaches to diagnosis, prevention, monitoring, and treatment.
Collapse
Affiliation(s)
- Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, 1-Hikarigaoka, Fukushima, Fukushima prefecture 960-1295, Japan.
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, 1-Hikarigaoka, Fukushima, Fukushima prefecture 960-1295, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, 1-Hikarigaoka, Fukushima, Fukushima prefecture 960-1295, Japan
| |
Collapse
|
14
|
Franczyk B, Rysz J, Ławiński J, Ciałkowska-Rysz A, Gluba-Brzózka A. Cardiotoxicity of Selected Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Renal Cell Carcinoma. Biomedicines 2023; 11:181. [PMID: 36672689 PMCID: PMC9855533 DOI: 10.3390/biomedicines11010181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most frequent malignant neoplasms of the kidney. The therapeutic options available for the treatment of advanced or metastatic RCC include vascular endothelial growth factor receptor (VEGFR)-targeted molecules, for example, tyrosine kinase inhibitors (TKI). Various VEGFR-TKIs proved to be effective in the treatment of patients with solid tumours. The combination of two drugs may prove most beneficial in the treatment of metastatic RCC; however, it also enhances the risk of toxicity compared to monotherapy. Specific VEGFR-TKIs (e.g., sunitinib, sorafenib or pazopanib) may increase the rate of cardiotoxicity in metastatic settings. VEGF inhibitors modulate multiple signalling pathways; thus, the identification of the mechanism underlying cardiotoxicity appears challenging. VEGF signalling is vital for the maintenance of cardiomyocyte homeostasis and cardiac function; therefore, its inhibition can be responsible for the reported adverse effects. Disturbed growth factor signalling pathways may be associated with endothelial dysfunction, impaired revascularization, the development of dilated cardiomyopathy, cardiac hypertrophies and altered peripheral vascular load. Patients at high cardiovascular risk at baseline could benefit from clinical follow-up in the first 2-4 weeks after the introduction of targeted molecular therapy; however, there is no consensus concerning the surveillance strategy.
Collapse
Affiliation(s)
- Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| |
Collapse
|
15
|
Muhandiramge J, Zalcberg JR, van Londen GJ, Warner ET, Carr PR, Haydon A, Orchard SG. Cardiovascular Disease in Adult Cancer Survivors: a Review of Current Evidence, Strategies for Prevention and Management, and Future Directions for Cardio-oncology. Curr Oncol Rep 2022; 24:1579-1592. [PMID: 35796941 PMCID: PMC9606033 DOI: 10.1007/s11912-022-01309-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease is long-term complication of both cancer and anti-cancer treatment and can have significant ramifications for health-related quality of life and mortality. This narrative review explores the current evidence linking cardiovascular disease and cancer, as well as exploring strategies for the prevention and management of cardiovascular disease, and outlines future opportunities in the field of cardio-oncology. RECENT FINDINGS Cancer confers risk for various cardiovascular diseases including heart failure, cardiomyopathy, arrhythmia, coronary heart disease, stroke, venous thromboembolism, and valvular heart disease. Cancer treatment, in particular agents such as platinum-based chemotherapy, anthracyclines, hormonal treatments, and thoracic radiotherapy, further increases risk. While cardiovascular disease can be identified early and effectively managed in cancer survivors, cardiovascular screening and management does not typically feature in routine long-term cancer care of adult cancer survivors. Cancer and cancer treatment can accelerate the development of cardiovascular disease. Further research into screening and management strategies for cardiovascular disease, along with evidence-based guidelines, is required to ensure adult cancer survivors receive appropriate long-term care.
Collapse
Affiliation(s)
- Jaidyn Muhandiramge
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
- Austin Health, Heidelberg, VIC, Australia.
| | - John R Zalcberg
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
- Department of Medical Oncology, Alfred Hospital, Melbourne, VIC, Australia
| | - G J van Londen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erica T Warner
- Clinical and Translational Epidemiology Unit, MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Prudence R Carr
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Andrew Haydon
- Department of Medical Oncology, Alfred Hospital, Melbourne, VIC, Australia
| | - Suzanne G Orchard
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| |
Collapse
|
16
|
Zhang X, Sun Y, Zhang Y, Fang F, Liu J, Xia Y, Liu Y. Cardiac Biomarkers for the Detection and Management of Cancer Therapy-Related Cardiovascular Toxicity. J Cardiovasc Dev Dis 2022; 9:372. [PMID: 36354771 PMCID: PMC9696384 DOI: 10.3390/jcdd9110372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2023] Open
Abstract
Cardiotoxicity is one of the major side effects of anti-cancer therapy affecting the overall prognosis of patients and possibly leading to the discontinuation of chemotherapy. Traditional cardiovascular tests such as electrocardiography and transthoracic echocardiography have limited sensitivity and specificity for the early detection of myocardial injury. Cardiovascular imaging generally detects cancer therapy-related cardiac dysfunction (CTRCD) at advanced stages, whereas biomarkers are inexpensive, easily detected, reproducible, and capable of detecting even minimal cardiomyocyte damage or mild hemodynamic fluctuations. The presence of circulating cardiac biomarkers has been investigated as early indicators of cardiotoxicity and predictors of subsequent CTRCD. Currently, the most frequently used cardiac biomarkers are cardiac troponin (cTn) and natriuretic peptides (NPs). This review presents the evidence gathered so far regarding the usefulness and limitations of cardiac biomarkers in the field of cardio-oncology.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Yuxi Sun
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanli Zhang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Fengqi Fang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Yunlong Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| |
Collapse
|
17
|
VEGF Receptor Inhibitor-Induced Hypertension: Emerging Mechanisms and Clinical Implications. Curr Oncol Rep 2022; 24:463-474. [PMID: 35179707 PMCID: PMC9218917 DOI: 10.1007/s11912-022-01224-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW While vascular endothelial growth factor receptor inhibitors (VEGFRis) have dramatically improved cancer survival, these drugs cause hypertension in a majority of patients. This side effect is often dose limiting and increases cardiovascular mortality in cancer survivors. This review summarizes recent advances in our understanding of the molecular mechanisms and clinical findings that impact management of VEGFRi-induced hypertension. RECENT FINDINGS Recent studies define new connections between endothelial dysfunction and VEGFRi-induced hypertension, including the balance between nitric oxide, oxidative stress, endothelin signaling, and prostaglandins and the potential role of microparticles, vascular smooth muscle cells, vascular stiffness, and microvessel rarefaction. Data implicating genetic polymorphisms that might identify patients at risk for VEGFRi-induced hypertension and the growing body of literature associating VEGFRi-induced hypertension with antitumor efficacy are reviewed. These recent advances have implications for the future of cardio-oncology clinics and the management of VEGFRi-induced hypertension.
Collapse
|
18
|
Jacobs JA, Jahangir E, Ryan JJ. Differentiating pulmonary hypertension associated with protein kinase inhibitors. Pulm Circ 2022; 12:e12075. [PMID: 35795494 PMCID: PMC9248793 DOI: 10.1002/pul2.12075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/11/2022] Open
Abstract
Protein kinase inhibitors (PKIs) have been implicated in pulmonary vascular toxicities including risk factors for at least three of the five World Health Organization groups of pulmonary hypertension (PH). These toxicities include direct drug-induced pulmonary arterial hypertension, an increase in cardiomyopathies, and an increase in interstitial lung disease. On- and off-target toxicities are common within multitargeted PKIs leading to cardiopulmonary toxicities. This review highlights the incidence, possible mechanisms, and management strategies for each group of possible PKI-induced PH. Future identification and clarification of protein kinase pathways for both mechanisms of toxicity and pathophysiology for PH could lead to improvements in patient care in oncology and pulmonary vascular diseases.
Collapse
Affiliation(s)
- Joshua A. Jacobs
- Department of PharmacyUniversity of Utah HealthSalt Lake CityUtahUSA
| | - Eiman Jahangir
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt UniversityNashvilleTennesseeUSA
| | - John J. Ryan
- Division of Cardiovascular Medicine, Department of MedicineUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
19
|
Yokoyama H, Shioyama W, Shintani T, Maeda S, Hirobe S, Maeda M, Sakata Y, Fujio Y. Vascular Endothelial Growth Factor Receptor Inhibitors Impair Left Ventricular Diastolic Functions. Int Heart J 2021; 62:1297-1304. [PMID: 34853223 DOI: 10.1536/ihj.21-307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) frequently induce cardiovascular adverse events, though VEGFR-TKIs contribute to the improvement of the prognosis of patients with malignancies. It is widely accepted that VEGFR-TKIs impair left ventricular systolic functions; however, their effects on diastolic functions remain to be fully elucidated. The purpose of this study was to analyze the impact of VEGFR-TKIs on left ventricular diastolic functions. This study was designed as a retrospective single-center cohort study in Japan. We assessed 24 cases who received VEGFR-TKI monotherapy (sunitinib, sorafenib, pazopanib, axitinib) with left ventricular ejection fraction (LVEF) above 50% during the therapy at the Osaka University Hospital from January 2008 to June 2019. Left ventricular diastolic functions were evaluated by the change in echocardiographic parameters before and after the VEGFR-TKI treatment. Both septal e' and lateral e's decreased after treatment (septal e': before, 6.1 ± 1.8; after, 5.0 ± 1.9; n = 21, P < 0.01; lateral e': before, 8.7 ± 2.8; after, 6.9 ± 2.3; n = 21, P < 0.01). E/A declined after VEGFR-TKIs administration, though not statistically significantly. In 20 cases with at least one risk factor for heart failure with preserved ejection fraction (HFpEF), E/A significantly decreased (0.87 ± 0.34 versus 0.68 ± 0.14; P < 0.05) as well as the septal and lateral e's. These results suggest that treatment with VEGFR-TKIs impairs left ventricular diastolic functions in patients with preserved LVEF, especially in those with risk factors for HFpEF.
Collapse
Affiliation(s)
- Haruka Yokoyama
- Project of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Wataru Shioyama
- Department of Internal Medicine, Division of Cardiovascular Medicine, Shiga University of Medical Science
| | | | - Shinichiro Maeda
- Project of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University.,Department of Pharmacy, Osaka University Hospital
| | - Sachiko Hirobe
- Project of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University.,Department of Pharmacy, Osaka University Hospital.,Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University
| | - Makiko Maeda
- Project of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University.,Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University
| | - Yasushi Fujio
- Project of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University.,Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University
| |
Collapse
|
20
|
Hahn VS, Zhang KW, Sun L, Narayan V, Lenihan DJ, Ky B. Heart Failure With Targeted Cancer Therapies: Mechanisms and Cardioprotection. Circ Res 2021; 128:1576-1593. [PMID: 33983833 DOI: 10.1161/circresaha.121.318223] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncology has seen growing use of newly developed targeted therapies. Although this has resulted in dramatic improvements in progression-free and overall survival, challenges in the management of toxicities related to longer-term treatment of these therapies have also become evident. Although a targeted approach often exploits the differences between cancer cells and noncancer cells, overlap in signaling pathways necessary for the maintenance of function and survival in multiple cell types has resulted in systemic toxicities. In particular, cardiovascular toxicities are of important concern. In this review, we highlight several targeted therapies commonly used across a variety of cancer types, including HER2 (human epidermal growth factor receptor 2)+ targeted therapies, tyrosine kinase inhibitors, immune checkpoint inhibitors, proteasome inhibitors, androgen deprivation therapies, and MEK (mitogen-activated protein kinase kinase)/BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors. We present the oncological indications, heart failure incidence, hypothesized mechanisms of cardiotoxicity, and potential mechanistic rationale for specific cardioprotective strategies.
Collapse
Affiliation(s)
- Virginia S Hahn
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD (V.S.H.)
| | - Kathleen W Zhang
- Cardio-Oncology Center of Excellence, Washington University, St Louis, MO (K.W.Z., D.J.L.)
| | - Lova Sun
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Vivek Narayan
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel J Lenihan
- Cardio-Oncology Center of Excellence, Washington University, St Louis, MO (K.W.Z., D.J.L.)
| | - Bonnie Ky
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Division of Cardiovascular Medicine (B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Division of Biostatistics (B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
21
|
Mäki-Petäjä KM, McGeoch A, Yang LL, Hubsch A, McEniery CM, Meyer PAR, Mir F, Gajendragadkar P, Ramenatte N, Anandappa G, Franco SS, Bond SJ, Schönlieb CB, Boink Y, Brune C, Wilkinson IB, Jodrell DI, Cheriyan J. Mechanisms Underlying Vascular Endothelial Growth Factor Receptor Inhibition-Induced Hypertension: The HYPAZ Trial. Hypertension 2021; 77:1591-1599. [PMID: 33775123 PMCID: PMC7610566 DOI: 10.1161/hypertensionaha.120.16454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kaisa M Mäki-Petäjä
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
| | - Adam McGeoch
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
| | - Lucy L Yang
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
| | - Annette Hubsch
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
| | - Carmel M McEniery
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
| | - Paul A R Meyer
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
- Department of Medical Ophthalmology, Cambridge University Hospitals NHS Foundation Trust, U.K
| | - Fraz Mir
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
| | - Parag Gajendragadkar
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
| | - Nicola Ramenatte
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, U.K
| | | | - Sara Santos Franco
- GlaxoSmithKline R&D Clinical Unit, Addenbrooke’s Hospital, Cambridge, U.K
| | - Simon J Bond
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, U.K
| | | | - Yoeri Boink
- Department of Applied Mathematics, University of Twente, Netherlands
- Multi-Modality Medical Imaging group, Technical Medical Centre, University of Twente, Netherlands
| | - Christoph Brune
- Department of Applied Mathematics, University of Twente, Netherlands
| | - Ian B Wilkinson
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, U.K
| | - Duncan I. Jodrell
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, U.K
- Department of Oncology, University of Cambridge, U.K
| | - Joseph Cheriyan
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, U.K
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, U.K
| |
Collapse
|
22
|
van Dorst DC, Dobbin SJ, Neves KB, Herrmann J, Herrmann SM, Versmissen J, Mathijssen RH, Danser AJ, Lang NN. Hypertension and Prohypertensive Antineoplastic Therapies in Cancer Patients. Circ Res 2021; 128:1040-1061. [PMID: 33793337 PMCID: PMC8011349 DOI: 10.1161/circresaha.121.318051] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of a wide range of novel antineoplastic therapies has improved the prognosis for patients with a wide range of malignancies, which has increased the number of cancer survivors substantially. Despite the oncological benefit, cancer survivors are exposed to short- and long-term adverse cardiovascular toxicities associated with anticancer therapies. Systemic hypertension, the most common comorbidity among cancer patients, is a major contributor to the increased risk for developing these adverse cardiovascular events. Cancer and hypertension have common risk factors, have overlapping pathophysiological mechanisms and hypertension may also be a risk factor for some tumor types. Many cancer therapies have prohypertensive effects. Although some of the mechanisms by which these antineoplastic agents lead to hypertension have been characterized, further preclinical and clinical studies are required to investigate the exact pathophysiology and the optimal management of hypertension associated with anticancer therapy. In this way, monitoring and management of hypertension before, during, and after cancer treatment can be improved to minimize cardiovascular risks. This is vital to optimize cardiovascular health in patients with cancer and survivors, and to ensure that advances in terms of cancer survivorship do not come at the expense of increased cardiovascular toxicities.
Collapse
Affiliation(s)
- Daan C.H. van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (D.C.H.v.D., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute (D.C.H.v.D., R.H.J.M.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stephen J.H. Dobbin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.J.H.D., K.B.N., N.N.L.)
| | - Karla B. Neves
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.J.H.D., K.B.N., N.N.L.)
| | - Joerg Herrmann
- Department of Cardiovascular Medicine (J.H.), Mayo Clinic, Rochester, MN
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension (S.M.H.), Mayo Clinic, Rochester, MN
| | - Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (D.C.H.v.D., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Hospital Pharmacy (J.V.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ron H.J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute (D.C.H.v.D., R.H.J.M.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A.H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (D.C.H.v.D., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ninian N. Lang
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.J.H.D., K.B.N., N.N.L.)
| |
Collapse
|
23
|
Sunitinib-induced oxidative imbalance and retinotoxic effects in rats. Life Sci 2020; 257:118072. [PMID: 32659367 DOI: 10.1016/j.lfs.2020.118072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
Abstract
AIMS Sunitinib (Su), a tyrosine kinase inhibitor, is one of the most commonly used anti-angiogenic drugs. Some studies have described retinal detachment and photoreceptor damage following systemic exposure to Su, despite beneficial effects achieved with local treatment of ocular pathologies. The aim of this study was to explore the role of NADPH oxidase system and oxidative stress in eyes from Su-treated animals. MAIN METHODS Male Wistar rats were administered 25 mg Su/kg body weight/day incorporated in the chow for 3 weeks. Upon treatment completion, NADPH oxidase activity and ROS levels were measured in ocular tissue by chemiluminescence and dihydroethidium (DHE) staining, respectively. The expression of NADPH oxidase isoforms (NOX1, NOX2 and NOX4), antioxidant enzymes and endothelial/inducible nitric oxidase isoforms (eNOS/iNOS) in the eyecup and/or retina were measured via immunofluorescence, immunoblotting and RT-qPCR. KEY FINDINGS NADPH oxidase activity/expression increased in eyecup and retinas from Su-treated rats. Immunohistofluorescence studies in retinal layer confirmed a higher signal of NADPH oxidase isoforms after Su treatment. Treated animals also presented with reductions in NO levels and eNOS expression, whereas iNOS was upregulated. Finally, a significant depletion of antioxidant enzyme glutathione peroxidase was measured in eyecups of rats following Su exposure, and the opposite pattern was seen for glutathione reductase and superoxide dismutase. SIGNIFICANCE This study demonstrates that Su treatment is associated with NADPH oxidase-derived oxidative stress in the eye. Long-term treatment of Su should be properly monitored to avoid retinotoxic effects that might result in ocular pathologies and sight-threatening conditions.
Collapse
|
24
|
Abstract
In the field of cardio-oncology, it is well recognised that despite the benefits of chemotherapy in treating and possibly curing cancer, it can cause catastrophic damage to bystander tissues resulting in a range of potentially of life-threatening cardiovascular toxicities, and leading to a number of damaging side effects including heart failure and myocardial infarction. Cardiotoxicity is responsible for significant morbidity and mortality in the long-term in oncology patients, specifically due to left ventricular dysfunction. There is increasing emphasis on the early use of biomarkers in order to detect the cardiotoxicity at a stage before it becomes irreversible. The most important markers of cardiac injury are cardiac troponin and natriuretic peptides, whilst markers of inflammation such as interleukin-6, C-reactive protein, myeloperoxidase, Galectin-3, growth differentiation factor-15 are under investigation for their use in detecting cardiotoxicity early. In addition, microRNAs, genome-wide association studies and proteomics are being studied as novel markers of cardiovascular injury or inflammation. The aim of this literature review is to discuss the evidence base behind the use of these biomarkers for the detection of cardiotoxicity.
Collapse
|
25
|
Narayan V, Harrison M, Cheng H, Kenfield S, Aggarwal R, Kwon D, McKay R, Hauger R, Hart N, Conzen S, Borno H, Jim H, Dicker A, Dorff T, Moslehi J, Mucci L, Parsons JK, Saad F, Soule H, Morgans A, Ryan CJ. Improving research for prostate cancer survivorship: A statement from the Survivorship Research in Prostate Cancer (SuRECaP) working group. Urol Oncol 2020; 38:83-93. [DOI: 10.1016/j.urolonc.2019.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/16/2019] [Accepted: 10/08/2019] [Indexed: 12/26/2022]
|
26
|
Cardiovascular toxicities of therapy for genitourinary malignancies. Urol Oncol 2020; 38:121-128. [DOI: 10.1016/j.urolonc.2019.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
|
27
|
Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, Herrmann J, Porter C, Lyon AR, Lancellotti P, Patel A, DeCara J, Mitchell J, Harrison E, Moslehi J, Witteles R, Calabro MG, Orecchia R, de Azambuja E, Zamorano JL, Krone R, Iakobishvili Z, Carver J, Armenian S, Ky B, Cardinale D, Cipolla CM, Dent S, Jordan K, ESMO Guidelines Committee. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol 2020; 31:171-190. [PMID: 31959335 PMCID: PMC8019325 DOI: 10.1016/j.annonc.2019.10.023] [Citation(s) in RCA: 630] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer and cardiovascular (CV) disease are the most prevalent diseases in the developed world. Evidence increasingly shows that these conditions are interlinked through common risk factors, coincident in an ageing population, and are connected biologically through some deleterious effects of anticancer treatment on CV health. Anticancer therapies can cause a wide spectrum of short- and long-term cardiotoxic effects. An explosion of novel cancer therapies has revolutionised this field and dramatically altered cancer prognosis. Nevertheless, these new therapies have introduced unexpected CV complications beyond heart failure. Common CV toxicities related to cancer therapy are defined, along with suggested strategies for prevention, detection and treatment. This ESMO consensus article proposes to define CV toxicities related to cancer or its therapies and provide guidance regarding prevention, screening, monitoring and treatment of CV toxicity. The majority of anticancer therapies are associated with some CV toxicity, ranging from asymptomatic and transient to more clinically significant and long-lasting cardiac events. It is critical however, that concerns about potential CV damage resulting from anticancer therapies should be weighed against the potential benefits of cancer therapy, including benefits in overall survival. CV disease in patients with cancer is complex and treatment needs to be individualised. The scope of cardio-oncology is wide and includes prevention, detection, monitoring and treatment of CV toxicity related to cancer therapy, and also ensuring the safe development of future novel cancer treatments that minimise the impact on CV health. It is anticipated that the management strategies discussed herein will be suitable for the majority of patients. Nonetheless, the clinical judgment of physicians remains extremely important; hence, when using these best clinical practices to inform treatment options and decisions, practitioners should also consider the individual circumstances of their patients on a case-by-case basis.
Collapse
Affiliation(s)
- G. Curigliano
- European Institute of Oncology IRCCS, Milan
- Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - D. Lenihan
- Cardiovascular Division, Cardio-Oncology Center of Excellence, Washington University Medical Center, St. Louis
| | - M. Fradley
- Cardio-oncology Program, Division of Cardiovascular Medicine, Morsani College of Medicine and H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa
| | - S. Ganatra
- Cardio-Oncology Program, Lahey Medical Center, Burlington
| | - A. Barac
- Cardio-Oncology Program, Medstar Heart and Vascular Institute and MedStar Georgetown Cancer Institute, Georgetown University Hospital, Washington DC
| | - A. Blaes
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis
| | | | - C. Porter
- University of Kansas Medical Center, Lawrence, USA
| | - A. R. Lyon
- Royal Brompton Hospital and Imperial College, London, UK
| | - P. Lancellotti
- GIGA Cardiovascular Sciences, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, University Hospital of Liège, Liège, Belgium
| | - A. Patel
- Morsani College of Medicine, University of South Florida, Tampa
| | - J. DeCara
- Medicine Section of Cardiology, University of Chicago, Chicago
| | - J. Mitchell
- Washington University Medical Center, St. Louis
| | - E. Harrison
- HCA Memorial Hospital and University of South Florida, Tampa
| | - J. Moslehi
- Vanderbilt University School of Medicine, Nashville
| | - R. Witteles
- Division of Cardiovascular Medicine, Falk CVRC, Stanford University School of Medicine, Stanford, USA
| | - M. G. Calabro
- Department of Anesthesia and Intensive Care, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | | | - E. de Azambuja
- Institut Jules Bordet and L’Université Libre de Bruxelles, Brussels, Belgium
| | | | - R. Krone
- Division of Cardiology, Washington University, St. Louis, USA
| | - Z. Iakobishvili
- Clalit Health Services, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J. Carver
- Division of Cardiology, Abramson Cancer Center, Hospital of the University of Pennsylvania, Philadelphia
| | - S. Armenian
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte
| | - B. Ky
- University of Pennsylvania School of Medicine, Philadelphia, USA
| | - D. Cardinale
- Cardioncology Unit, European Institute of Oncology, IRCCS, Milan
| | - C. M. Cipolla
- Cardiology Department, European Institute of Oncology, IRCCS, Milan, Italy
| | - S. Dent
- Duke Cancer Institute, Duke University, Durham, USA
| | - K. Jordan
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - ESMO Guidelines Committee
- Correspondence to: ESMO Guidelines Committee, ESMO Head Office, Via Ginevra 4, CH-6900 Lugano, Switzerland, (ESMO Guidelines Committee)
| |
Collapse
|
28
|
Waliany S, Sainani KL, Park LS, Zhang CA, Srinivas S, Witteles RM. Increase in Blood Pressure Associated With Tyrosine Kinase Inhibitors Targeting Vascular Endothelial Growth Factor. JACC: CARDIOONCOLOGY 2019; 1:24-36. [PMID: 34396159 PMCID: PMC8352203 DOI: 10.1016/j.jaccao.2019.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
Objectives This study quantified the change in blood pressure (BP) during antivascular endothelial growth factor (VEGF) tyrosine kinase inhibitor (TKI) therapy, compared BPs between TKIs, and analyzed change in BP during antihypertensive therapy. Background TKIs targeting VEGF are associated with hypertension. The absolute change in BP during anti-VEGF TKI treatment is not well characterized outside clinical trials. Methods A retrospective single-center study included patients with metastatic renal cell carcinoma who received anti-VEGF TKIs between 2007 and 2018. Mixed models analyzed 3,088 BPs measured at oncology clinics. Results In 228 patients (baseline systolic blood pressure [SBP] 130.2 ± 16.3 mm Hg, diastolic blood pressure [DBP] 76.8 ± 9.3 mm Hg), anti-VEGF TKIs were associated with mean increases in SBP of 8.5 mm Hg (p < 0.0001) and DBP of 6.7 mm Hg (p <0.0001). Of the anti-VEGF TKIs evaluated, axitinib was associated with the greatest BP increase, with an increase in SBP of 12.6 mm Hg (p < 0.0001) and in DBP of 10.3 mm Hg (p < 0.0001) relative to baseline. In pairwise comparisons between agents, axitinib was associated with greater SBPs than cabozantinib by 8.4 mm Hg (p = 0.004) and pazopanib by 5.1 mm Hg (p = 0.01). Subsequent anti-VEGF TKI courses were associated with small increases in DBP, but not SBP, relative to the first course. During anti-VEGF TKI therapy, calcium-channel blockers and potassium-sparing diuretic agents were associated with the largest BP reductions, with decreases in SBP of 5.6 mm Hg (p < 0.0001) and 9.9 mm Hg (p = 0.007), respectively. Conclusions Anti-VEGF TKIs are associated with increased BP; greatest increases are observed with axitinib. Calcium-channel blockers and potassium-sparing diuretic agents were associated with the largest reductions in BP.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ARB, angiotensin II receptor blocker
- BP, blood pressure
- CCB, calcium-channel blocker
- CTCAE, Common Terminology Criteria for Adverse Events
- DBP, diastolic blood pressure
- SBP, systolic blood pressure
- TKI, tyrosine kinase inhibitor
- VEGF, vascular endothelial growth factor
- antiangiogenic therapy
- antihypertensive agents
- blood pressure
- calcium-channel blockers
- diuretics
- eGFR, estimated glomerular filtration rate
- hypertension
- mRCC, metastatic renal cell carcinoma
- renal cell cancer
- treatment-related hypertension
- tyrosine kinase inhibitors
- vascular endothelial growth factor inhibitors
Collapse
Affiliation(s)
- Sarah Waliany
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Kristin L Sainani
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, USA
| | - Lesley S Park
- Center for Population Health Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Chiyuan Amy Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Sandy Srinivas
- Division of Medical Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Ronald M Witteles
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
29
|
Bottinor WJ, Shuey MM, Manouchehri A, Farber-Eger EH, Xu M, Nair D, Salem JE, Wang TJ, Brittain EL. Renin-Angiotensin-Aldosterone System Modulates Blood Pressure Response During Vascular Endothelial Growth Factor Receptor Inhibition. JACC: CARDIOONCOLOGY 2019; 1:14-23. [PMID: 32984850 PMCID: PMC7513950 DOI: 10.1016/j.jaccao.2019.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objectives This study postulated that antihypertensive therapy with renin-angiotensin-aldosterone system (RAAS) inhibition may mitigate vascular endothelial growth factor inhibitor (VEGFi)–mediated increases in blood pressure more effectively than other antihypertensive medications in patients receiving VEGFi therapy. Background VEGFi therapy is commonly used in the treatment of cancer. One common side effect of VEGFi therapy is elevated blood pressure. Evidence suggests that the RAAS may be involved in VEGFi-mediated increases in blood pressure. Methods This retrospective cohort analysis was performed using a de-identified version of the electronic health record at Vanderbilt University Medical Center in Nashville, Tennessee. Subjects with cancer who were exposed to VEGFi therapy were identified, and blood pressure and medication data were extracted. Changes in mean systolic and diastolic blood pressure in response to VEGFi therapy in patients receiving RAAS inhibitor (RAASi) therapy before VEGFi initiation were compared with changes in mean systolic and diastolic blood pressure in patients not receiving RAASi therapy before VEGFi initiation. Results Mean systolic and diastolic blood pressure rose in both groups after VEGFi use; however, patients who had RAASi therapy before VEGFi initiation had a significantly lower increase in systolic blood pressure as compared with patients with no RAASi therapy (2.46 mm Hg [95% confidence interval: 0.7 to 4.2] compared with 4.56 mm Hg [95% confidence interval: 3.5 to 5.6], respectively; p = 0.034). Conclusions In a real-world clinical population, RAASi therapy before VEGFi initiation may ameliorate VEGFi-mediated increases in blood pressure. Randomized clinical trials are needed to further our understanding of the role of RAASi therapy in VEGFi-mediated increases in blood pressure.
Collapse
Affiliation(s)
- Wendy J Bottinor
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Megan M Shuey
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ali Manouchehri
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric H Farber-Eger
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Meng Xu
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Devika Nair
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joe-Elie Salem
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Clinical Pharmacology, University of the Sorbonne, Assistance Publique Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale CIC 14-21, Pitié-Salpêtrière Hospital, Paris, France
| | - Thomas J Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Evan L Brittain
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
30
|
Abstract
As cancer therapies improve, the population of survivors of cancer has increased, and the long-term effects of cancer treatments have become more apparent. Cardiotoxicity is a well-established adverse effect of many antineoplastic agents. Hypertension is common in survivors of cancer, can be caused or worsened by certain agents, and has been shown to increase the risk of other cardiovascular diseases including heart failure. Pretreatment risk assessment and careful monitoring of blood pressure during therapy is essential. Aggressive management of preexisting or incident hypertension in survivors of cancer is paramount to decrease the risk of heart failure and other cardiovascular diseases in these patients.
Collapse
Affiliation(s)
- Lauren J Hassen
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, 3rd Floor, Columbus, OH 43210-1267, USA.
| | - Daniel J Lenihan
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Cardio-Oncology Center of Excellence, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, Campus Box 8086, St Louis, MO 63110, USA
| | - Ragavendra R Baliga
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Cardio-Oncology Center of Excellence, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, 200 DHLRI, Columbus, OH 43210-1267, USA
| |
Collapse
|
31
|
Sweitzer NK. Apophenia and the Crafting of a Circulation: Heart Failure Issue. Circ Heart Fail 2019; 11:e005027. [PMID: 29664410 DOI: 10.1161/circheartfailure.118.005027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nancy K Sweitzer
- From the Division of Cardiovascular Medicine, Sarver Heart Center, University of Arizona, Tucson.
| |
Collapse
|
32
|
Li C, Zou R, Zhang H, Wang Y, Qiu B, Qiu S, Wang W, Xu Y. Upregulation of phosphoinositide 3-kinase prevents sunitinib-induced cardiotoxicity in vitro and in vivo. Arch Toxicol 2019; 93:1697-1712. [DOI: 10.1007/s00204-019-02448-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
|
33
|
Abdelgawad IY, Grant MKO, Zordoky BN. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019; 11:nu11030627. [PMID: 30875799 PMCID: PMC6471701 DOI: 10.3390/nu11030627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|