1
|
van Kampen A, Levine RA, Borger MA. Is mitral annular disjunction the cause of arrhythmogenic mitral valve prolapse? Eur Heart J 2025:ehaf264. [PMID: 40272106 DOI: 10.1093/eurheartj/ehaf264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Affiliation(s)
- Antonia van Kampen
- Leipzig Heart Center, University Clinic of Cardiac Surgery, Struempellstrasse 39, D-04289 Leipzig, Germany
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Borger
- Leipzig Heart Center, University Clinic of Cardiac Surgery, Struempellstrasse 39, D-04289 Leipzig, Germany
| |
Collapse
|
2
|
Delanoë K, Salaun E, Rieu R, Côté N, Pibarot P, Stanová V. Advanced Silicon Modeling of Native Mitral Valve Physiology: A New Standard for Device and Procedure Testing. Bioengineering (Basel) 2025; 12:397. [PMID: 40281757 PMCID: PMC12024820 DOI: 10.3390/bioengineering12040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Mitral valve regurgitation is among the most prevalent valvular heart diseases and increases with age. Percutaneous therapy has emerged for the management of mitral regurgitation in high surgical risk patients. However, the long-term consequences of these interventions are still not fully understood due to their novelty and the difficulty of developing a strategy specific to the patient's anatomy and/or pathology. To optimize these outcomes, an in vitro patient-specific approach could provide important insights for the most suitable strategy to use according to the patient profile. To ensure the reliability of this in vitro approach, the aim of this study was to reproduce the physiological behavior of the healthy native mitral valve for future applications. To do so, different silicon combinations reproducing the physiological anatomy of a healthy mitral valve were developed and tested under physiological hemodynamic conditions in a cardiac simulator. The hemodynamic and biomechanical behaviors of each mitral valve model were analyzed and compared to the physiological values provided in the literature. This study identified EcoFlex 00-50 and DragonSkin 10 (Smooth-On Inc., Easton, PA, USA) as the optimal silicon combination resulting in physiological strain values and hemodynamic parameters. These findings could be useful for future patient-specific applications, helping in the optimization of percutaneous mitral valve therapy.
Collapse
Affiliation(s)
- Katell Delanoë
- Institut Universitaire de Cardiologie et de Pneumologie de Québec—Université Laval, Québec, QC G1V 4G5, Canada; (K.D.); (E.S.); (N.C.); (P.P.)
| | - Erwan Salaun
- Institut Universitaire de Cardiologie et de Pneumologie de Québec—Université Laval, Québec, QC G1V 4G5, Canada; (K.D.); (E.S.); (N.C.); (P.P.)
| | - Régis Rieu
- Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, LBA UMR T24, 13015 Marseille, France;
| | - Nancy Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec—Université Laval, Québec, QC G1V 4G5, Canada; (K.D.); (E.S.); (N.C.); (P.P.)
| | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec—Université Laval, Québec, QC G1V 4G5, Canada; (K.D.); (E.S.); (N.C.); (P.P.)
| | - Viktória Stanová
- Institut Universitaire de Cardiologie et de Pneumologie de Québec—Université Laval, Québec, QC G1V 4G5, Canada; (K.D.); (E.S.); (N.C.); (P.P.)
| |
Collapse
|
3
|
Kang J, van Kampen A, Dieterlen MT, Spampinato R, Sundt T, Melnitchouk S, Levine RA, Borger MA. Arrhythmic Mitral Valve Prolapse: Pathophysiology, Diagnostics, and Management Strategies. Semin Thorac Cardiovasc Surg 2025:S1043-0679(25)00042-5. [PMID: 40189179 DOI: 10.1053/j.semtcvs.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Mitral valve prolapse (MVP) is a common disease in which ventricular arrhythmias/sudden cardiac death can be the first symptom of presentation. This review article explores the current understanding of underlying pathological mechanisms leading to an increased risk for ventricular arrhythmias in the setting of MVP and elaborates on the current evidence regarding the diagnosis and management of the disease.
Collapse
Affiliation(s)
- Jagdip Kang
- University Department of Cardiac Surgery, Heart Center Leipzig, Leipzig, Germany; Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antonia van Kampen
- University Department of Cardiac Surgery, Heart Center Leipzig, Leipzig, Germany
| | | | - Ricardo Spampinato
- University Department of Cardiac Surgery, Heart Center Leipzig, Leipzig, Germany
| | - Thoralf Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael A Borger
- University Department of Cardiac Surgery, Heart Center Leipzig, Leipzig, Germany.
| |
Collapse
|
4
|
Opriş EC, Suciu H, Puşcaş AI, Flămând S, Harpa MM, Opriş CI, Jung I, Popa CO, Neeter KAS, Gurzu S. Significance of inflammation-related markers and histopathological features in mitral valve regurgitation. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:713-722. [PMID: 39957033 PMCID: PMC11924903 DOI: 10.47162/rjme.65.4.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 02/18/2025]
Abstract
The lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), platelet-to-neutrophil ratio (PNR), C-reactive protein (CRP)-to-lymphocyte ratio (CLR) and fibrinogen-to-albumin ratio (FAR) are well-known indicators of the systemic inflammatory response (SIR). Less is known about the association of SIR with the echocardiographic parameters and the histopathological (HP) aspects of the mitral valve in patients who have undergone cardiac surgery to repair or replace the mitral valve. Information on serum parameters, transesophageal echocardiography findings, and HP results was obtained from 166 patients who had undergone cardiac surgery to address mitral valve regurgitation. Among these patients, 30 were diagnosed with mitral valve prolapse, with 15 cases showing mitral valve flail or chordae rupture. The possible association between SIR, echocardiographic aspects of mitral valve flail and the HP aspect was checked. Fibrosis, hyalinization and myxoid degeneration of the valve were scored under microscope. Hyalinization of the mitral valve had a significant positive association with LMR and PLR (p=0.041 and p=0.03, respectively) and with NLR (p=0.093). A higher fibrosis degree was present in the valves without flail compared with those with flail (p=0.000). The monocyte average values of the group without flail were statistically significantly higher than those in the flail group (p=0.029). An increase of one unit in the value of monocytes was found to decrease the chances of flail [odds ratio (OR) 0.017, p=0.068, significant at p<0.1 level]. SIR parameters can be used to appraise inflammation status in mitral valve disease and to establish the risk of chordae rupture/flail in the case of mitral valve prolapse.
Collapse
Affiliation(s)
- Elena Carmen Opriş
- Department of Pathology, Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science, and Technology, Târgu Mureş, Romania; ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mangini F, Scarcia M, Biederman RWW, Calbi R, Spinelli F, Casavecchia G, Brunetti ND, Gravina M, Fiore C, Suma S, Milo M, Turchetti C, Pesce E, Caramia R, Lombardi F, Grimaldi M. Cardiac magnetic resonance imaging in the evaluation and management of mitral valve prolapse - a comprehensive review. Echocardiography 2024; 41:e15894. [PMID: 39078395 DOI: 10.1111/echo.15894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024] Open
Abstract
Mitral valve prolapse is a common valve disorder that usually has a benign prognosis unless there is significant regurgitation or LV impairment. However, a subset of patients are at an increased risk of ventricular arrhythmias and sudden cardiac death, which has led to the recognition of "arrhythmic mitral valve prolapse" as a clinical entity. Emerging risk factors include mitral annular disjunction and myocardial fibrosis. While echocardiography remains the primary method of evaluation, cardiac magnetic resonance has become crucial in managing this condition. Cine magnetic resonance sequences provide accurate characterization of prolapse and annular disjunction, assessment of ventricular volumes and function, identification of early dysfunction and remodeling, and quantitative assessment of mitral regurgitation when integrated with flow imaging. However, the unique strength of magnetic resonance lies in its ability to identify tissue changes. T1 mapping sequences identify diffuse fibrosis, in turn related to early ventricular dysfunction and remodeling. Late gadolinium enhancement sequences detect replacement fibrosis, an independent risk factor for ventricular arrhythmias and sudden cardiac death. There are consensus documents and reviews on the use of cardiac magnetic resonance specifically in arrhythmic mitral valve prolapse. However, in this article, we propose an algorithm for the broader use of cardiac magnetic resonance in managing this condition in various scenarios. Future advancements may involve implementing techniques for tissue characterization and flow analysis, such as 4D flow imaging, to identify patients with ventricular dysfunction and remodeling, increased arrhythmic risk, and more accurate grading of mitral regurgitation, ultimately benefiting patient selection for surgical therapy.
Collapse
Affiliation(s)
- Francesco Mangini
- Department of Cardiology, Ospedale Regionale "Miulli", Acquaviva delle Fonti, BA, Italy
| | - Maria Scarcia
- Department of Cardiology, Ospedale Regionale "Miulli", Acquaviva delle Fonti, BA, Italy
| | - Robert W W Biederman
- Cardiology Department, Roper St Francis Healthcare, Charleston, South Carolina, USA
| | - Roberto Calbi
- Department of Cardiology, Ospedale Regionale "Miulli", Acquaviva delle Fonti, BA, Italy
| | - Francesco Spinelli
- Department of Cardiology, Ospedale Regionale "Miulli", Acquaviva delle Fonti, BA, Italy
| | | | | | - Matteo Gravina
- Radiology Department, University of Foggia, Foggia, Italy
| | - Corrado Fiore
- Department of Cardiology, Citta di Lecce Hospital, Novoli (Lecce), Puglia, Italy
| | - Sergio Suma
- Department of Cardiology, Azienda Ospedaliero Universitaria di Parma, Parma, Italy
| | - Maria Milo
- Department of Cardiology, Ospedale "Di Summa - Perrino," ASL Br, Brindisi, Italy
| | | | - Ernesto Pesce
- Madonna della Bruna Outpatients Clinic, Matera, Italy
| | - Remo Caramia
- Department of Anesthesiology, Ospedale "Camberlingo," ASL Br, Francavilla Fontana, Italy
| | - Francesca Lombardi
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Milano, Lombardia, Italy
| | - Massimo Grimaldi
- Department of Cardiology, Ospedale Regionale "Miulli", Acquaviva delle Fonti, BA, Italy
| |
Collapse
|
6
|
Badau Riebel CI, Agoston-Coldea L. Left Ventricular Fibrosis by Cardiac Magnetic Resonance Tissue Characterization in Chronic Mitral Regurgitation Patients. J Clin Med 2024; 13:3877. [PMID: 38999443 PMCID: PMC11242255 DOI: 10.3390/jcm13133877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Left ventricular remodeling in chronic mitral regurgitation (MR) encompasses two types of myocardial fibrosis: replacement fibrosis, identified by late gadolinium enhancement (LGE), and diffuse interstitial fibrosis, assessed by pre- and postcontrast T1 mapping techniques. These may explain irreversible LV dysfunction after MR correction. We aimed to assess the presence of myocardial fibrosis in patients with moderate and severe MR with no criteria for surgery versus mild MR controls. Methods: We enrolled 137 patients with chronic primary MR and 130 controls; all underwent cardiac magnetic resonance, and were followed up in a median of 2.9 years to assess mortality and the need for mitral valve replacement. Results: Patients in the study group displayed significantly higher degrees of LGE (28.4% vs 7.69%, p < 0.05), higher native T1 values (1167 ± 58.5 versus 971 ± 51.4 (p < 0.05)), and higher extracellular volumes compared to controls (32.3% ± 3.5 versus 23.9 ± 2.2, (p < 0.05)). The composite outcome occurred in 28 patients in the study group (20.4%), and significantly higher with LGE+ (78.5%). Replacement fibrosis (HR = 1.83, 95% CI, p < 0.01) and interstitial fibrosis (HR = 1.61, 95% CI, p < 0.01) were independent predictors for the composite outcome. Conclusions: Patients with moderate and severe MR with no criteria for surgery still exhibit a significant degree of both replacement and interstitial fibrosis, with prognostic implications.
Collapse
Affiliation(s)
| | - Lucia Agoston-Coldea
- Department of Cardiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania;
- Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania
| |
Collapse
|
7
|
Perazzolo Marra M, Cecere A, Cipriani A, Migliore F, Zorzi A, De Lazzari M, Lorenzoni G, Cecchetto A, Brunetti G, Graziano F, Pittorru R, Motta R, De Conti G, Bauce B, Corrado D, Gregori D, Iliceto S. Determinants of Ventricular Arrhythmias in Mitral Valve Prolapse. JACC Clin Electrophysiol 2024; 10:670-681. [PMID: 38340116 DOI: 10.1016/j.jacep.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Mitral valve prolapse (MVP) may be associated with ventricular arrhythmias (VA) even in the absence of significant valvular regurgitation. Curling, mitral annulus disjunction (MAD) and myocardial fibrosis (late gadolinium enhancement [LGE]) may account for arrhythmogenesis. OBJECTIVES This study investigated the determinants of VA in patients with MVP without significant regurgitation. METHODS This study included 108 patients with MVP (66 female; median age: 48 years) without valve regurgitation. All patients underwent 12-lead electrocardiography, 12-lead 24-hour electrocardiographic Holter monitoring, exercise stress test, and cardiac magnetic resonance. Patients were divided into 2 groups (arrhythmic and no-arrhythmic MVP), according to the presence of VA with a right bundle branch block pattern. RESULTS The 62 patients (57%) with arrhythmic MVP showed: 1) higher MAD (median length: 6.0 vs 3.2 mm; P = 0.017); 2) higher prevalence of curling (79% vs 52%; P = 0.012); and 3) higher prevalence of left ventricular LGE (79% vs 52%; P = 0.012). Mediation analysis showed that curling had both a direct (P = 0.03) and indirect effect mediated by LGE (P = 0.04) on VA, whereas the association between MAD and VA was completely mediated by LGE. Patients with severe VA showed more pronounced morphofunctional alterations, in terms of MAD (7.0 vs 4.6 mm; P = 0.004) and presence and severity of curling (respectively, 91% vs 64%; P = 0.010; and 4 vs 3 mm; P = 0.004), compared to those without severe VA. CONCLUSIONS In patients with MVP the occurrence of VA with right bundle branch block morphology is the expression of more severe morphologic, mechanical, and tissue alterations. Curling has both a direct and an indirect effect on VA.
Collapse
Affiliation(s)
- Martina Perazzolo Marra
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| | - Annagrazia Cecere
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Federico Migliore
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Manuel De Lazzari
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giulia Lorenzoni
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, Padua, Italy
| | - Antonella Cecchetto
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giulia Brunetti
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Francesca Graziano
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Raimondo Pittorru
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Raffaella Motta
- Radiology Unit, University of Padua-Azienda Ospedaliera, Padua, Italy
| | - Giorgio De Conti
- Radiology Unit, University of Padua-Azienda Ospedaliera, Padua, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, Padua, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Park MH, van Kampen A, Zhu Y, Melnitchouk S, Levine RA, Borger MA, Woo YJ. Neochordal Goldilocks: Analyzing the biomechanics of neochord length on papillary muscle forces suggests higher tolerance to shorter neochordae. J Thorac Cardiovasc Surg 2024; 167:e78-e89. [PMID: 37160219 DOI: 10.1016/j.jtcvs.2023.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Estimating neochord lengths during mitral valve repair is challenging, because approximation must be performed largely based on intuition and surgical experience. Little data exist on quantifying the effects of neochord length misestimation. We aimed to evaluate the impact of neochord length on papillary muscle forces and mitral valve hemodynamics, which is especially pertinent because increased forces have been linked to aberrant mitral valve biomechanics. METHODS Porcine mitral valves (n = 8) were mounted in an ex vivo heart simulator, and papillary muscles were fixed to high-resolution strain gauges while hemodynamic data were recorded. We used an adjustable system to modulate neochord lengths. Optimal length was qualitatively verified by a single experienced operator, and neochordae were randomly lengthened or shortened in 1-mm increments up to ±5 mm from the optimal length. RESULTS Optimal length neochordae resulted in the lowest peak composite papillary muscle forces (6.94 ± 0.29 N), significantly different from all lengths greater than ±1 mm. Both longer and shorter neochordae increased forces linearly according to difference from optimal length. Both peak papillary muscle forces and mitral regurgitation scaled more aggressively for longer versus shorter neochordae by factors of 1.6 and 6.9, respectively. CONCLUSIONS Leveraging precision ex vivo heart simulation, we found that millimeter-level neochord length differences can result in significant differences in papillary muscle forces and mitral regurgitation, thereby altering valvular biomechanics. Differences in lengthened versus shortened neochordae scaling of forces and mitral regurgitation may indicate different levels of biomechanical tolerance toward longer and shorter neochordae. Our findings highlight the need for more thorough biomechanical understanding of neochordal mitral valve repair.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Mechanical Engineering, Stanford University, Stanford, Calif
| | - Antonia van Kampen
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Bioengineering, Stanford University, Stanford, Calif
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Michael A Borger
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Bioengineering, Stanford University, Stanford, Calif.
| |
Collapse
|
9
|
Sturla F, Votta E. Biomechanical imbalance of neochordal forces: the dark side of mitral valve prolapse repair. Eur J Cardiothorac Surg 2024; 65:ezae073. [PMID: 38439543 DOI: 10.1093/ejcts/ezae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Affiliation(s)
- Francesco Sturla
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Emiliano Votta
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
10
|
Spampinato RA, Marin-Cuartas M, van Kampen A, Fahr F, Sieg F, Strotdrees E, Jahnke C, Klaeske K, Wiesner K, Morningstar JE, Nagata Y, Izquierdo-Garcia D, Dieterlen MT, Norris RA, Levine RA, Paetsch I, Borger MA. Left ventricular fibrosis and CMR tissue characterization of papillary muscles in mitral valve prolapse patients. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:213-224. [PMID: 37891450 DOI: 10.1007/s10554-023-02985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE Mitral valve prolapse (MVP) is associated with left ventricle (LV) fibrosis, including the papillary muscles (PM), which is in turn linked to malignant arrhythmias. This study aims to evaluate comprehensive tissue characterization of the PM by cardiovascular magnetic resonance (CMR) imaging and its association with LV fibrosis observed by intraoperative biopsies. METHODS MVP patients with indication for surgery due to severe mitral regurgitation (n = 19) underwent a preoperative CMR with characterization of the PM: dark-appearance on cine, T1 mapping, conventional bright blood (BB) and dark blood (DB) late gadolinium enhancement (LGE). CMR T1 mapping was performed on 21 healthy volunteers as controls. LV inferobasal myocardial biopsies were obtained in MVP patients and compared to CMR findings. RESULTS MVP patients (54 ± 10 years old, 14 male) had a dark-appearance of the PM with higher native T1 and extracellular volume (ECV) values compared with healthy volunteers (1096 ± 78ms vs. 994 ± 54ms and 33.9 ± 5.6% vs. 25.9 ± 3.1%, respectively, p < 0.001). Seventeen MVP patients (89.5%) had fibrosis by biopsy. BB-LGE + in LV and PM was identified in 5 (26.3%) patients, while DB-LGE + was observed in LV in 9 (47.4%) and in PM in 15 (78.9%) patients. DB-LGE + in PM was the only technique that showed no difference with detection of LV fibrosis by biopsy. Posteromedial PM was more frequently affected than the anterolateral (73.7% vs. 36.8%, p = 0.039) and correlated with biopsy-proven LV fibrosis (Rho 0.529, p = 0.029). CONCLUSIONS CMR imaging in MVP patients referred for surgery shows a dark-appearance of the PM with higher T1 and ECV values compared with healthy volunteers. The presence of a positive DB-LGE at the posteromedial PM by CMR may serve as a better predictor of biopsy-proven LV inferobasal fibrosis than conventional CMR techniques.
Collapse
Affiliation(s)
- Ricardo A Spampinato
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany.
| | - Mateo Marin-Cuartas
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Antonia van Kampen
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Fahr
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Franz Sieg
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Elfriede Strotdrees
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Cosima Jahnke
- Department of Cardiology and Electrophysiology, Leipzig Heart Center, Leipzig, Germany
| | - Kristin Klaeske
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Karoline Wiesner
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Jordan E Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Yasufumi Nagata
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Izquierdo-Garcia
- The Institute for Innovation in Imaging, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ingo Paetsch
- Department of Cardiology and Electrophysiology, Leipzig Heart Center, Leipzig, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| |
Collapse
|
11
|
Yajima S, Zhu Y, Stark CJ, Wilkerson RJ, Park MH, Stefan E, Woo YJ. Chordal force profile after neochordal repair of anterior mitral valve prolapse: An ex vivo study. JTCVS OPEN 2023; 15:164-172. [PMID: 37808060 PMCID: PMC10556825 DOI: 10.1016/j.xjon.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 10/10/2023]
Abstract
Objective This study aimed to biomechanically evaluate the force profiles on the anterior primary and secondary chordae after neochord repair for anterior valve prolapse with varied degrees of residual mitral regurgitation using an ex vivo heart simulator. Methods The experiment used 8 healthy porcine mitral valves. Chordal forces were measured using fiber Bragg grating sensors on primary and secondary chordae from A2 segments. The anterior valve prolapse model was generated by excising 2 primary chordae at the A2 segment. Neochord repair was performed with 2 pairs of neochords. Varying neochord lengths simulated postrepair residual mitral regurgitation with regurgitant fraction at >30% (moderate), 10% to 30% (mild), and <10% (perfect repair). Results Regurgitant fractions of baseline, moderate, mild, and perfect repair were 4.7% ± 0.8%, 35.8% ± 2.1%, 19.8% ± 2.0%, and 6.0% ± 0.7%, respectively (P < .001). Moderate had a greater peak force of the anterior primary chordae (0.43 ± 0.06 N) than those of baseline (0.19 ± 0.04 N; P = .011), mild (0.23 ± 0.05 N; P = .041), and perfect repair (0.21 ± 0.03 N; P = .006). In addition, moderate had a greater peak force of the anterior secondary chordae (1.67 ± 0.17 N) than those of baseline (0.64 ± 0.13 N; P = .003), mild (0.84 ± 0.24 N; P = .019), and perfect repair (0.68 ± 0.14 N; P = .001). No significant differences in peak and average forces on both primary and secondary anterior chordae were observed between the baseline and perfect repair as well as the mild and perfect repair. Conclusions Moderate residual mitral regurgitation after neochord repair was associated with increased anterior primary and secondary chordae forces in our ex vivo anterior valve prolapse model. This difference in chordal force profile may influence long-term repair durability, providing biomechanical evidence in support of obtaining minimal regurgitation when repairing mitral anterior valve prolapse.
Collapse
Affiliation(s)
- Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
- Department of Bioengineering, Stanford University, Stanford, Calif
| | - Charles J. Stark
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | | | - Matthew H. Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
- Department of Mechanical Engineering, Stanford University, Stanford, Calif
| | - Elde Stefan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
- Department of Bioengineering, Stanford University, Stanford, Calif
| |
Collapse
|
12
|
van Kampen A, Morningstar JE, Goudot G, Ingels N, Wenk JF, Nagata Y, Yaghoubian KM, Norris RA, Borger MA, Melnitchouk S, Levine RA, Jensen MO. Utilization of Engineering Advances for Detailed Biomechanical Characterization of the Mitral-Ventricular Relationship to Optimize Repair Strategies: A Comprehensive Review. Bioengineering (Basel) 2023; 10:601. [PMID: 37237671 PMCID: PMC10215167 DOI: 10.3390/bioengineering10050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The geometrical details and biomechanical relationships of the mitral valve-left ventricular apparatus are very complex and have posed as an area of research interest for decades. These characteristics play a major role in identifying and perfecting the optimal approaches to treat diseases of this system when the restoration of biomechanical and mechano-biological conditions becomes the main target. Over the years, engineering approaches have helped to revolutionize the field in this regard. Furthermore, advanced modelling modalities have contributed greatly to the development of novel devices and less invasive strategies. This article provides an overview and narrative of the evolution of mitral valve therapy with special focus on two diseases frequently encountered by cardiac surgeons and interventional cardiologists: ischemic and degenerative mitral regurgitation.
Collapse
Affiliation(s)
- Antonia van Kampen
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Leipzig Heart Centre, University Clinic of Cardiac Surgery, 02189 Leipzig, Germany
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, University of South Carolina, Charleston, SC 29425, USA
| | - Guillaume Goudot
- Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Neil Ingels
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jonathan F. Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40508, USA;
| | - Yasufumi Nagata
- Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Koushiar M. Yaghoubian
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, University of South Carolina, Charleston, SC 29425, USA
| | - Michael A. Borger
- Leipzig Heart Centre, University Clinic of Cardiac Surgery, 02189 Leipzig, Germany
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Morten O. Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
13
|
Nagata Y, Bertrand PB, Baliyan V, Kochav J, Kagan RD, Ujka K, Alfraidi H, van Kampen A, Morningstar JE, Dal-Bianco JP, Melnitchouk S, Holmvang G, Borger MA, Moore R, Hua L, Sultana R, Calle PV, Yum B, Guerrero JL, Neilan TG, Picard MH, Kim J, Delling FN, Hung J, Norris RA, Weinsaft JW, Levine RA. Abnormal Mechanics Relate to Myocardial Fibrosis and Ventricular Arrhythmias in Patients With Mitral Valve Prolapse. Circ Cardiovasc Imaging 2023; 16:e014963. [PMID: 37071717 PMCID: PMC10108844 DOI: 10.1161/circimaging.122.014963] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/08/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND The relation between ventricular arrhythmia and fibrosis in mitral valve prolapse (MVP) is reported, but underlying valve-induced mechanisms remain unknown. We evaluated the association between abnormal MVP-related mechanics and myocardial fibrosis, and their association with arrhythmia. METHODS We studied 113 patients with MVP with both echocardiogram and gadolinium cardiac magnetic resonance imaging for myocardial fibrosis. Two-dimensional and speckle-tracking echocardiography evaluated mitral regurgitation, superior leaflet and papillary muscle displacement with associated exaggerated basal myocardial systolic curling, and myocardial longitudinal strain. Follow-up assessed arrhythmic events (nonsustained or sustained ventricular tachycardia or ventricular fibrillation). RESULTS Myocardial fibrosis was observed in 43 patients with MVP, predominantly in the basal-midventricular inferior-lateral wall and papillary muscles. Patients with MVP with fibrosis had greater mitral regurgitation, prolapse, and superior papillary muscle displacement with basal curling and more impaired inferior-posterior basal strain than those without fibrosis (P<0.001). An abnormal strain pattern with distinct peaks pre-end-systole and post-end-systole in inferior-lateral wall was frequent in patients with fibrosis (81 versus 26%, P<0.001) but absent in patients without MVP with basal inferior-lateral wall fibrosis (n=20). During median follow-up of 1008 days, 36 of 87 patients with MVP with >6-month follow-up developed ventricular arrhythmias associated (univariable) with fibrosis, greater prolapse, mitral annular disjunction, and double-peak strain. In multivariable analysis, double-peak strain showed incremental risk of arrhythmia over fibrosis. CONCLUSIONS Basal inferior-posterior myocardial fibrosis in MVP is associated with abnormal MVP-related myocardial mechanics, which are potentially associated with ventricular arrhythmia. These associations suggest pathophysiological links between MVP-related mechanical abnormalities and myocardial fibrosis, which also may relate to ventricular arrhythmia and offer potential imaging markers of increased arrhythmic risk.
Collapse
Affiliation(s)
- Yasufumi Nagata
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Philippe B. Bertrand
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Vinit Baliyan
- Department of Radiology (V.B., G.H.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jonathan Kochav
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Ruth D. Kagan
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Kristian Ujka
- School of Cardiovascular Disease, University of Pisa, Italy (K.U.)
| | - Hassan Alfraidi
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Antonia van Kampen
- Cardiac Surgery (A.v.K., S.M.), Massachusetts General Hospital, Harvard Medical School, Boston
- University Department for Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Saxony, Germany (A.v.K., M.A.B.)
| | - Jordan E. Morningstar
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston (J.E.M., R.M., R.A.N.)
| | - Jacob P. Dal-Bianco
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Serguei Melnitchouk
- Cardiac Surgery (A.v.K., S.M.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Godtfred Holmvang
- Department of Radiology (V.B., G.H.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael A. Borger
- University Department for Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Saxony, Germany (A.v.K., M.A.B.)
| | - Reece Moore
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston (J.E.M., R.M., R.A.N.)
| | - Lanqi Hua
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Razia Sultana
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Pablo Villar Calle
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Brian Yum
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - J. Luis Guerrero
- Surgical Cardiovascular Laboratory (J.L.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Tomas G. Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston (T.G.N.)
| | - Michael H. Picard
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jiwon Kim
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Francesca N. Delling
- Division of Cardiovascular Medicine, University of California, San Francisco (F.N.D.)
| | - Judy Hung
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Russell A. Norris
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston (J.E.M., R.M., R.A.N.)
| | - Jonathan W. Weinsaft
- Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medical College, New York, NY (J. Kochav, R.D.K., R.S., P.V.C., B.Y., J. Kim, J.W.W.)
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory (Y.N., P.B.B., H.A., J.P.D.-B., L.H., M.H.P., J.H., R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
14
|
Dieterlen MT, Klaeske K, Spampinato R, Marin-Cuartas M, Wiesner K, Morningstar J, Norris RA, Melnitchouk S, Levine RA, van Kampen A, Borger MA. Histopathological insights into mitral valve prolapse-induced fibrosis. Front Cardiovasc Med 2023; 10:1057986. [PMID: 36960475 PMCID: PMC10028262 DOI: 10.3389/fcvm.2023.1057986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Mitral valve prolapse (MVP) is a cardiac valve disease that not only affects the mitral valve (MV), provoking mitral regurgitation, but also leads to maladaptive structural changes in the heart. Such structural changes include the formation of left ventricular (LV) regionalized fibrosis, especially affecting the papillary muscles and inferobasal LV wall. The occurrence of regional fibrosis in MVP patients is hypothesized to be a consequence of increased mechanical stress on the papillary muscles and surrounding myocardium during systole and altered mitral annular motion. These mechanisms appear to induce fibrosis in valve-linked regions, independent of volume-overload remodeling effects of mitral regurgitation. In clinical practice, quantification of myocardial fibrosis is performed with cardiovascular magnetic resonance (CMR) imaging, even though CMR has sensitivity limitations in detecting myocardial fibrosis, especially in detecting interstitial fibrosis. Regional LV fibrosis is clinically relevant because even in the absence of mitral regurgitation, it has been associated with ventricular arrhythmias and sudden cardiac death in MVP patients. Myocardial fibrosis may also be associated with LV dysfunction following MV surgery. The current article provides an overview of current histopathological studies investigating LV fibrosis and remodeling in MVP patients. In addition, we elucidate the ability of histopathological studies to quantify fibrotic remodeling in MVP and gain deeper understanding of the pathophysiological processes. Furthermore, molecular changes such as alterations in collagen expression in MVP patients are reviewed.
Collapse
Affiliation(s)
- Maja-Theresa Dieterlen
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Kristin Klaeske
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Ricardo Spampinato
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Mateo Marin-Cuartas
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Karoline Wiesner
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Jordan Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Antonia van Kampen
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael A. Borger
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| |
Collapse
|