1
|
Zhao Y, Li Z, Ma H, Pan Z, Cai B, Zhang C, Jiao J. METTL3-Mediated m 6A mRNA Modification Facilitates Neointimal Hyperplasia in Arteriovenous Fistula. Arterioscler Thromb Vasc Biol 2025. [PMID: 40401375 DOI: 10.1161/atvbaha.124.321014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/02/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis in patients with end-stage renal disease, yet its long-term patency is threatened by neointimal hyperplasia (NIH). N6-methyladenosine, a prevalent RNA modification catalyzed by METTL3 (methyltransferase-like 3), plays a regulatory role in cardiovascular remodeling. Our previous studies found that N6-methyladenosine methyltransferase METTL3 mediated cardiomyocyte proliferation and heart repair after myocardial ischemia. However, its impact on AVF-related NIH remains unclear. METHODS We examined m6A levels and METTL3 expression in human and murine AVF tissues. Using smooth muscle cell-specific METTL3 conditional knockout and METTL3-overexpressing (adeno-associated virus-METTL3) mouse models, we evaluated NIH formation. In vitro, we analyzed vascular smooth muscle cell proliferation, migration, phenotypic switching, and ferroptosis. m6A epitranscriptomic microarray and RNA stability assays were used to explore downstream targets and mechanisms. RESULTS METTL3 was significantly upregulated in AVF tissues and vascular smooth muscle cells undergoing dedifferentiation. METTL3 deletion attenuated, while overexpression exacerbated, NIH in vivo. METTL3 enhanced vascular smooth muscle cell proliferation, migration, and phenotypic switching, while suppressing ferroptosis. Mechanistically, METTL3 increased m6A modification of SLC7A11 (solute carrier family 7 member 11) mRNA, stabilized its transcript, and promoted translation via recruitment of the m6A reader YTHDF1 (YTH N6-methyladenosine RNA-binding protein 1). Silencing SLC7A11 or YTHDF1 abrogated METTL3-induced phenotypic changes and ferroptosis resistance. CONCLUSIONS The METTL3-YTHDF1-SLC7A11 axis facilitates AVF NIH by regulating vascular smooth muscle cell dedifferentiation and ferroptosis. These findings uncover a novel epitranscriptional mechanism and suggest a potential therapeutic target for AVF stenosis.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
| | - Zhaozheng Li
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
| | - Huimin Ma
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
| | - Zhenwei Pan
- Harbin Medical University, China. (Z.P., B.C.)
| | - Benzhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Department of Clinical Pharmacology (the Heilongjiang Key Laboratory of Drug Research) (B.C.)
- Harbin Medical University, China. (Z.P., B.C.)
| | - Chengwei Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, China (Y.Z., Z.L., H.M., C.Z., J.J.)
- Institute of Nephrology, Harbin Medical University, China (J.J.)
| |
Collapse
|
2
|
Li Y, Hu H, Chu C, Yang J. Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review). Int J Mol Med 2025; 55:40. [PMID: 39749702 PMCID: PMC11758895 DOI: 10.3892/ijmm.2024.5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca2+ and CVD has been extensively studied. Ca2+ movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis. It is also involved in pathological processes such as cardiomyocyte apoptosis, hypertrophy and fibrosis in CVD. The selective mitochondrial calcium uniporter complex (MCU complex) located in the inner membrane is essential for mitochondrial Ca2+ uptake. Therefore, the MCU complex is a potential therapeutic target for CVD. In this review, recent research progress on the pathophysiological mechanisms and therapeutic potential of the MCU complex in various CVDs was summarized, including myocardial ischemia‑reperfusion injury, pulmonary arterial hypertension, other peripheral vascular diseases, myocardial remodeling and arrhythmias. This review contributes to a deeper understanding of these mechanisms at the molecular level and highlights potential intervention targets for CVD treatment in clinical practice.
Collapse
Affiliation(s)
- Yaling Li
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Hongmin Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| |
Collapse
|
3
|
Sukhorukov VS, Baranich TI, Egorova AV, Akateva AV, Okulova KM, Ryabova MS, Skvortsova KA, Dmitriev OV, Mudzhiri NM, Voronkov DN, Illarioshkin SN. Mitochondrial Dynamics in Brain Cells During Normal and Pathological Aging. Int J Mol Sci 2024; 25:12855. [PMID: 39684566 DOI: 10.3390/ijms252312855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mitochondrial dynamics significantly play a major role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The dysregulation of mitochondrial biogenesis and function, characterized by impaired fission and fusion processes mediated by a number of proteins, in particular, Drp1, Mfn1, Mfn2, Opa1, and PGC-1α, contributes to neuronal vulnerability and degeneration. Insufficient mitophagy and disrupted mitochondrial transport exacerbate oxidative stress and neurotoxicity. Emerging therapeutic strategies that target mitochondrial dynamics, including various pharmacological agents, demonstrate potential for restoring mitochondrial balance and enhancing neuroprotection. This growing body of research underscores the importance of mitochondrial health in developing effective interventions for neurodegenerative conditions. This review highlights well-established links between the disruption of mitochondrial dynamics and the development of neurodegenerative processes. We also discuss different therapeutic strategies that target mitochondrial function in neurons that have been proposed as perspective neuroprotective treatments.
Collapse
Affiliation(s)
- Vladimir S Sukhorukov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Tatiana I Baranich
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anna V Egorova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anastasia V Akateva
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Kseniia M Okulova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Maria S Ryabova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Krisitina A Skvortsova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Oscar V Dmitriev
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Natalia M Mudzhiri
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Dmitry N Voronkov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Sergey N Illarioshkin
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| |
Collapse
|
4
|
Shi J, Jin Y, Lin S, Li X, Zhang D, Wu J, Qi Y, Li Y. Mitochondrial non-energetic function and embryonic cardiac development. Front Cell Dev Biol 2024; 12:1475603. [PMID: 39435335 PMCID: PMC11491369 DOI: 10.3389/fcell.2024.1475603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The initial contraction of the heart during the embryonic stage necessitates a substantial energy supply, predominantly derived from mitochondrial function. However, during embryonic heart development, mitochondria influence beyond energy supplementation. Increasing evidence suggests that mitochondrial permeability transition pore opening and closing, mitochondrial fusion and fission, mitophagy, reactive oxygen species production, apoptosis regulation, Ca2+ homeostasis, and cellular redox state also play critical roles in early cardiac development. Therefore, this review aims to describe the essential roles of mitochondrial non-energetic function embryonic cardiac development.
Collapse
Affiliation(s)
- Jingxian Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuxi Jin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Yan L, Luo X, Hang C, YuWang, Zhang Z, Xu S, Du L. Unraveling the Mfn2-Warburg effect nexus: a therapeutic strategy to combat pulmonary arterial hypertension arising from catch-up growth after IUGR. Respir Res 2024; 25:328. [PMID: 39223619 PMCID: PMC11370119 DOI: 10.1186/s12931-024-02957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The interplay between intrauterine and early postnatal environments has been associated with an increased risk of cardiovascular diseases in adulthood, including pulmonary arterial hypertension (PAH). While emerging evidence highlights the crucial role of mitochondrial pathology in PAH, the specific mechanisms driving fetal-originated PAH remain elusive. METHODS AND RESULTS To elucidate the role of mitochondrial dynamics in the pathogenesis of fetal-originated PAH, we established a rat model of postnatal catch-up growth following intrauterine growth restriction (IUGR) to induce pulmonary arterial hypertension (PAH). RNA-seq analysis of pulmonary artery samples from the rats revealed dysregulated mitochondrial metabolic genes and pathways associated with increased pulmonary arterial pressure and pulmonary arterial remodeling in the RC group (postnatal catch-up growth following IUGR). In vitro experiments using pulmonary arterial smooth muscle cells (PASMCs) from the RC group demonstrated elevated proliferation, migration, and impaired mitochondrial functions. Notably, reduced expression of Mitofusion 2 (Mfn2), a mitochondrial outer membrane protein involved in mitochondrial fusion, was observed in the RC group. Reconstitution of Mfn2 resulted in enhanced mitochondrial fusion and improved mitochondrial functions in PASMCs of RC group, effectively reversing the Warburg effect. Importantly, Mfn2 reconstitution alleviated the PAH phenotype in the RC group rats. CONCLUSIONS Imbalanced mitochondrial dynamics, characterized by reduced Mfn2 expression, plays a critical role in the development of fetal-originated PAH following postnatal catch-up growth after IUGR. Mfn2 emerges as a promising therapeutic strategy for managing IUGR-catch-up growth induced PAH.
Collapse
Affiliation(s)
- Lingling Yan
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaofei Luo
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chengcheng Hang
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, Zhejiang Province, People's Republic of China
| | - YuWang
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ziming Zhang
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shanshan Xu
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lizhong Du
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
6
|
Qian L, Koval OM, Endoni BT, Juhr D, Stein CS, Allamargot C, Lin LH, Guo DF, Rahmouni K, Boudreau RL, Streeter J, Thiel WH, Grumbach IM. MIRO1 controls energy production and proliferation of smooth muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607854. [PMID: 39185180 PMCID: PMC11343164 DOI: 10.1101/2024.08.13.607854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background The outer mitochondrial Rho GTPase 1, MIRO1, mediates mitochondrial motility within cells, but implications for vascular smooth muscle cell (VSMC) physiology and its roles invascular diseases, such as neointima formation following vascular injury are widely unknown. Methods An in vivo model of selective Miro1 deletion in VSMCs was generated, and the animals were subjected to carotid artery ligation. The molecular mechanisms relevant to VSMC proliferation were then explored in explanted VSMCs by imaging mitochondrial positioning and cristae structure and assessing the effects on ATP production, metabolic function and interactions with components of the electron transport chain (ETC). Results MIRO1 was robustly expressed in VSMCs within human atherosclerotic plaques and promoted VSMC proliferation and neointima formation in mice by blocking cell-cycle progression at G1/S, mitochondrial positioning, and PDGF-induced ATP production and respiration; overexpression of a MIRO1 mutant lacking the EF hands that are required for mitochondrial mobility did not fully rescue these effects. At the ultrastructural level, Miro1 deletion distorted the mitochondrial cristae and reduced the formation of super complexes and the activity of ETC complex I. Conclusions Mitochondrial motility is essential for VSMC proliferation and relies on MIRO1. The EF-hands of MIRO1 regulate the intracellular positioning of mitochondria. Additionally, the absence of MIRO1 leads to distorted mitochondrial cristae and reduced ATP generation. Our findings demonstrate that motility is linked to mitochondrial ATP production. We elucidated two unrecognized mechanisms through which MIRO1 influences cell proliferation by modulating mitochondria: first, by managing mitochondrial placement via Ca2+-dependent EF hands, and second, by affecting cristae structure and ATP synthesis.
Collapse
Affiliation(s)
- Lan Qian
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Olha M. Koval
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Benney T. Endoni
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
- Interdisciplinary Program in Molecular Medicine, University of Iowa
| | - Denise Juhr
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Colleen S. Stein
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | | | - Li-Hsien Lin
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa
| | - Kamal Rahmouni
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
- Interdisciplinary Program in Molecular Medicine, University of Iowa
- Department of Neuroscience and Pharmacology, University of Iowa
- Veterans Affairs Healthcare System, Iowa City, IA 52246, USA
| | - Ryan L. Boudreau
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Jennifer Streeter
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - William H. Thiel
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City IA 52242, USA
- Veterans Affairs Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
7
|
Zhang T, Cao RJ, Niu JL, Chen ZH, Mu SQ, Cao T, Pang JX, Dong LH. G6PD maintains the VSMC synthetic phenotype and accelerates vascular neointimal hyperplasia by inhibiting the VDAC1-Bax-mediated mitochondrial apoptosis pathway. Cell Mol Biol Lett 2024; 29:47. [PMID: 38589823 PMCID: PMC11003121 DOI: 10.1186/s11658-024-00566-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Rui-Jie Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiang-Ling Niu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhi-Huan Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tong Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie-Xin Pang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Li-Hua Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
8
|
Toda Y, Ong SB, Yano T, Kuno A, Kouzu H, Sato T, Ohwada W, Tatekoshi Y, Ogawa T, Shimizu M, Tanno M, Furuhashi M. Downregulation of Mitochondrial Fusion Protein Expression Affords Protection from Canonical Necroptosis in H9c2 Cardiomyoblasts. Int J Mol Sci 2024; 25:2905. [PMID: 38474152 DOI: 10.3390/ijms25052905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Necroptosis, a form of necrosis, and alterations in mitochondrial dynamics, a coordinated process of mitochondrial fission and fusion, have been implicated in the pathogenesis of cardiovascular diseases. This study aimed to determine the role of mitochondrial morphology in canonical necroptosis induced by a combination of TNFα and zVAD (TNF/zVAD) in H9c2 cells, rat cardiomyoblasts. Time-course analyses of mitochondrial morphology showed that mitochondria were initially shortened after the addition of TNF/zVAD and then their length was restored, and the proportion of cells with elongated mitochondria at 12 h was larger in TNF/zVAD-treated cells than in non-treated cells (16.3 ± 0.9% vs. 8.0 ± 1.2%). The knockdown of dynamin-related protein 1 (Drp1) and fission 1, fission promoters, and treatment with Mdivi-1, a Drp-1 inhibitor, had no effect on TNF/zVAD-induced necroptosis. In contrast, TNF/zVAD-induced necroptosis was attenuated by the knockdown of mitofusin 1/2 (Mfn1/2) and optic atrophy-1 (Opa1), proteins that are indispensable for mitochondrial fusion, and the attenuation of necroptosis was not canceled by treatment with Mdivi-1. The expression of TGFβ-activated kinase (TAK1), a negative regulator of RIP1 activity, was upregulated and the TNF/zVAD-induced RIP1-Ser166 phosphorylation, an index of RIP1 activity, was mitigated by the knockdown of Mfn1/2 or Opa1. Pharmacological TAK1 inhibition attenuated the protection afforded by Mfn1/2 and Opa1 knockdown. In conclusion, the inhibition of mitochondrial fusion increases TAK1 expression, leading to the attenuation of canonical necroptosis through the suppression of RIP1 activity.
Collapse
Affiliation(s)
- Yuki Toda
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics (MEDT), Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, China
- Hong Kong Children's Hospital (HKCH), Hong Kong Hub of Paediatric Excellence (HK HOPE), Kowloon Bay, Hong Kong, China
- Neural, Vascular, and Metabolic Biology Thematic Research Program, School of Biomedical Sciences (SBS), Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
- Department of Cell Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Yuki Tatekoshi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Toshifumi Ogawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
- Department of Cell Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Masaki Shimizu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| |
Collapse
|
9
|
Colpman P, Dasgupta A, Archer SL. The Role of Mitochondrial Dynamics and Mitotic Fission in Regulating the Cell Cycle in Cancer and Pulmonary Arterial Hypertension: Implications for Dynamin-Related Protein 1 and Mitofusin2 in Hyperproliferative Diseases. Cells 2023; 12:1897. [PMID: 37508561 PMCID: PMC10378656 DOI: 10.3390/cells12141897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Mitochondria, which generate ATP through aerobic respiration, also have important noncanonical functions. Mitochondria are dynamic organelles, that engage in fission (division), fusion (joining) and translocation. They also regulate intracellular calcium homeostasis, serve as oxygen-sensors, regulate inflammation, participate in cellular and organellar quality control and regulate the cell cycle. Mitochondrial fission is mediated by the large GTPase, dynamin-related protein 1 (Drp1) which, when activated, translocates to the outer mitochondrial membrane (OMM) where it interacts with binding proteins (Fis1, MFF, MiD49 and MiD51). At a site demarcated by the endoplasmic reticulum, fission proteins create a macromolecular ring that divides the organelle. The functional consequence of fission is contextual. Physiological fission in healthy, nonproliferating cells mediates organellar quality control, eliminating dysfunctional portions of the mitochondria via mitophagy. Pathological fission in somatic cells generates reactive oxygen species and triggers cell death. In dividing cells, Drp1-mediated mitotic fission is critical to cell cycle progression, ensuring that daughter cells receive equitable distribution of mitochondria. Mitochondrial fusion is regulated by the large GTPases mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2), which fuse the OMM, and optic atrophy 1 (OPA-1), which fuses the inner mitochondrial membrane. Mitochondrial fusion mediates complementation, an important mitochondrial quality control mechanism. Fusion also favors oxidative metabolism, intracellular calcium homeostasis and inhibits cell proliferation. Mitochondrial lipids, cardiolipin and phosphatidic acid, also regulate fission and fusion, respectively. Here we review the role of mitochondrial dynamics in health and disease and discuss emerging concepts in the field, such as the role of central versus peripheral fission and the potential role of dynamin 2 (DNM2) as a fission mediator. In hyperproliferative diseases, such as pulmonary arterial hypertension and cancer, Drp1 and its binding partners are upregulated and activated, positing mitochondrial fission as an emerging therapeutic target.
Collapse
Affiliation(s)
- Pierce Colpman
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
10
|
Liu P, Gao S, Li Z, Pan S, Luo G, Ji Z. Endothelial progenitor cell-derived exosomes inhibit pulmonary artery smooth muscle cell in vitro proliferation and resistance to apoptosis by modulating the Mitofusin-2 and Ras-Raf-ERK1/2 signaling pathway. Eur J Pharmacol 2023; 949:175725. [PMID: 37068578 DOI: 10.1016/j.ejphar.2023.175725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) mainly occurs as a result of abnormal proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Endothelial progenitor cell (EPC)-derived exosomes (Exos) (EPC-Exos) relieve PAH. However, there is still insufficient knowledge of whether EPC-Exos contribute to the pathological process of PAH, especially for PASMC repair. This study aimed to determine the effects of EPC-Exos on the proliferation, migration, and apoptosis of PASMCs and explore the possible underlying molecular mechanisms through bioinformatics analysis and in vitro testing. Bioinformatics analysis showed that the Ras signaling pathway and Exos were crucial in PAH. The PAH differential microRNAs (miRNAs) and miRNAs identified in EPC-Exos were intersected to obtain miR-21-5p. A target gene prediction program predicted mitofusin-2 (Mfn2) as a potential target of miR-21-5p. Cellular experiments demonstrated that EPC-Exos attenuated the viability, proliferation, migration, and apoptosis resistance of PASMCs under hypoxia. Mechanistically, EPC-Exos significantly upregulated Mfn2 expression and attenuated Ras-Raf-ERK1/2 signaling pathway activity. In conclusion, EPC-Exos suppress cell viability, proliferation, and migration and promote apoptosis in PASMCs under hypoxic conditions. It is possible to transport miR-21-5p to improve the expression of Mfn2 and inhibit the Ras-Raf-ERK1/2 signaling pathway directly or by targeting the expression of Mfn2. EPC-Exos are a potential therapeutic candidate for the treatment of PAH.
Collapse
Affiliation(s)
- Panpan Liu
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Shuai Gao
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Zhixin Li
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Silin Pan
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China.
| | - Gang Luo
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Zhixian Ji
- Heart center, Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| |
Collapse
|
11
|
Yang Z, Sun L, Wang H. Identification of mitophagy-related genes with potential clinical utility in myocardial infarction at transcriptional level. Front Cardiovasc Med 2023; 10:1166324. [PMID: 37304955 PMCID: PMC10250750 DOI: 10.3389/fcvm.2023.1166324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Myocardial infarction (MI) ranks among the most prevalent cardiovascular diseases. Insufficient blood flow to the coronary arteries always leads to ischemic necrosis of the cardiac muscle. However, the mechanism of myocardial injury after MI remains unclear. This article aims to explore the potential common genes between mitophagy and MI and to construct a suitable prediction model. Methods Two Gene Expression Omnibus (GEO) datasets (GSE62646 and GSE59867) were used to screen the differential expression genes in peripheral blood. SVM, RF, and LASSO algorithm were employed to find MI and mitophagy-related genes. Moreover, DT, KNN, RF, SVM and LR were conducted to build the binary models, and screened the best model to further external validation (GSE61144) and internal validation (10-fold cross validation and Bootstrap), respectively. The performance of various machine learning models was compared. In addition, immune cell infiltration correlation analysis was conducted with MCP-Counter and CIBERSORT. Results We finally identified ATG5, TOMM20, MFN2 transcriptionally differed between MI and stable coronary artery diseases. Both internal and external validation supported that these three genes could accurately predict MI withAUC = 0.914 and 0.930 by logistic regression, respectively. Additionally, functional analysis suggested that monocytes and neutrophils might be involved in mitochondrial autophagy after myocardial infarction. Conclusion The data showed that the transcritional levels of ATG5, TOMM20 and MFN2 in patients with MI were significantly different from the control group, which might be helpful to further accurately diagnose diseases and have potential application value in clinical practice.
Collapse
Affiliation(s)
- Zhikai Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Sun
- The NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Hua Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Inagaki S, Suzuki Y, Kawasaki K, Kondo R, Imaizumi Y, Yamamura H. Mitofusin 1 and 2 differentially regulate mitochondrial function underlying Ca 2+ signaling and proliferation in rat aortic smooth muscle cells. Biochem Biophys Res Commun 2023; 645:137-146. [PMID: 36689810 DOI: 10.1016/j.bbrc.2023.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Mitochondria play a substantial role in cytosolic Ca2+ buffering and energy metabolism. We recently demonstrated that mitofusin 2 (Mfn2) regulated Ca2+ signaling by tethering mitochondria and sarcoplasmic reticulum (SR), and thus, facilitated mitochondrial function and the proliferation of vascular smooth muscle cells (VSMCs). However, the physiological role of mitofusin 1 (Mfn1) on Ca2+ signaling and mitochondrial function remains unclear. Herein, the roles of Mfn1 and Mfn2 in mitochondrial function underlying Ca2+ signaling, ATP production, and cell proliferation were examined in rat aortic smooth muscle A10 cells. Following an arginine vasopressin-induced increase in cytosolic Ca2+ concentration ([Ca2+]cyt), Mfn2 siRNA (siMfn2) reduced cytosolic Ca2+ removal and mitochondrial Ca2+ uptake. However, Mfn1 siRNA (siMfn1) attenuated mitochondrial Ca2+ uptake, facilitated Ca2+ removal from mitochondria, and resulted in increased [Ca2+]cyt, which was mediated by the downregulation of mitochondrial Ca2+ uniporter (MCU) expression and the upregulation of mitochondrial Na+/Ca2+ exchanger (NCLX) expression. Furthermore, siMfn1 increased the mitochondrial membrane potential, ATP production by adenine nucleotide translocase (ANT), and cell proliferation, whereas siMfn2 exhibited the opposite responses. In conclusion, Mfn1 modulates the expressions of MCU, NCLX, and ANT, and Mfn2 tethers mitochondria to SR, which demonstrates their different mitochondrial functions for Ca2+ signaling, ATP production, and the proliferation of VSMCs.
Collapse
Affiliation(s)
- Sou Inagaki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Keisuke Kawasaki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan.
| |
Collapse
|
13
|
Zhu T, Hu Q, Yuan Y, Yao H, Zhang J, Qi J. Mitochondrial dynamics in vascular remodeling and target-organ damage. Front Cardiovasc Med 2023; 10:1067732. [PMID: 36860274 PMCID: PMC9970102 DOI: 10.3389/fcvm.2023.1067732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Vascular remodeling is the pathological basis for the development of many cardiovascular diseases. The mechanisms underlying endothelial cell dysfunction, smooth muscle cell phenotypic switching, fibroblast activation, and inflammatory macrophage differentiation during vascular remodeling remain elusive. Mitochondria are highly dynamic organelles. Recent studies showed that mitochondrial fusion and fission play crucial roles in vascular remodeling and that the delicate balance of fusion-fission may be more important than individual processes. In addition, vascular remodeling may also lead to target-organ damage by interfering with the blood supply to major body organs such as the heart, brain, and kidney. The protective effect of mitochondrial dynamics modulators on target-organs has been demonstrated in numerous studies, but whether they can be used for the treatment of related cardiovascular diseases needs to be verified in future clinical studies. Herein, we summarize recent advances regarding mitochondrial dynamics in multiple cells involved in vascular remodeling and associated target-organ damage.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxun Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai, China,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Yanggang Yuan
- Department of Nephrology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huijuan Yao
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Jian Zhang,
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jia Qi,
| |
Collapse
|
14
|
Morciano G, Boncompagni C, Ramaccini D, Pedriali G, Bouhamida E, Tremoli E, Giorgi C, Pinton P. Comprehensive Analysis of Mitochondrial Dynamics Alterations in Heart Diseases. Int J Mol Sci 2023; 24:ijms24043414. [PMID: 36834825 PMCID: PMC9961104 DOI: 10.3390/ijms24043414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The most common alterations affecting mitochondria, and associated with cardiac pathological conditions, implicate a long list of defects. They include impairments of the mitochondrial electron transport chain activity, which is a crucial element for energy formation, and that determines the depletion of ATP generation and supply to metabolic switches, enhanced ROS generation, inflammation, as well as the dysregulation of the intracellular calcium homeostasis. All these signatures significantly concur in the impairment of cardiac electrical characteristics, loss of myocyte contractility and cardiomyocyte damage found in cardiac diseases. Mitochondrial dynamics, one of the quality control mechanisms at the basis of mitochondrial fitness, also result in being dysregulated, but the use of this knowledge for translational and therapeutic purposes is still in its infancy. In this review we tried to understand why this is, by summarizing methods, current opinions and molecular details underlying mitochondrial dynamics in cardiac diseases.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
- Correspondence: (G.M.); (P.P.); Tel.: +05-32-455-802 (G.M. & P.P.)
| | | | | | - Gaia Pedriali
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Esmaa Bouhamida
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Elena Tremoli
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
- Correspondence: (G.M.); (P.P.); Tel.: +05-32-455-802 (G.M. & P.P.)
| |
Collapse
|
15
|
Breault NM, Wu D, Dasgupta A, Chen KH, Archer SL. Acquired disorders of mitochondrial metabolism and dynamics in pulmonary arterial hypertension. Front Cell Dev Biol 2023; 11:1105565. [PMID: 36819102 PMCID: PMC9933518 DOI: 10.3389/fcell.2023.1105565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is an orphan disease of the cardiopulmonary unit that reflects an obstructive pulmonary vasculopathy and presents with hypertrophy, inflammation, fibrosis, and ultimately failure of the right ventricle (RVF). Despite treatment using pulmonary hypertension (PH)-targeted therapies, persistent functional impairment reduces the quality of life for people with PAH and death from RVF occurs in approximately 40% of patients within 5 years of diagnosis. PH-targeted therapeutics are primarily vasodilators and none, alone or in combination, are curative. This highlights a need to therapeutically explore molecular targets in other pathways that are involved in the pathogenesis of PAH. Several candidate pathways in PAH involve acquired mitochondrial dysfunction. These mitochondrial disorders include: 1) a shift in metabolism related to increased expression of pyruvate dehydrogenase kinase and pyruvate kinase, which together increase uncoupled glycolysis (Warburg metabolism); 2) disruption of oxygen-sensing related to increased expression of hypoxia-inducible factor 1α, resulting in a state of pseudohypoxia; 3) altered mitochondrial calcium homeostasis related to impaired function of the mitochondrial calcium uniporter complex, which elevates cytosolic calcium and reduces intramitochondrial calcium; and 4) abnormal mitochondrial dynamics related to increased expression of dynamin-related protein 1 and its binding partners, such as mitochondrial dynamics proteins of 49 kDa and 51 kDa, and depressed expression of mitofusin 2, resulting in increased mitotic fission. These acquired mitochondrial abnormalities increase proliferation and impair apoptosis in most pulmonary vascular cells (including endothelial cells, smooth muscle cells and fibroblasts). In the RV, Warburg metabolism and induction of glutaminolysis impairs bioenergetics and promotes hypokinesis, hypertrophy, and fibrosis. This review will explore our current knowledge of the causes and consequences of disordered mitochondrial function in PAH.
Collapse
Affiliation(s)
- Nolan M. Breault
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Danchen Wu
- Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| | - Asish Dasgupta
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON, Canada,Queen’s Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| |
Collapse
|
16
|
Ji QX, Zeng FY, Zhou J, Wu WB, Wang XJ, Zhang Z, Zhang GY, Tong J, Sun DY, Zhang JB, Cao WX, Shen FM, Lu JJ, Li DJ, Wang P. Ferroptotic stress facilitates smooth muscle cell dedifferentiation in arterial remodelling by disrupting mitochondrial homeostasis. Cell Death Differ 2023; 30:457-474. [PMID: 36477078 PMCID: PMC9950429 DOI: 10.1038/s41418-022-01099-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Smooth muscle cell (SMC) phenotypic switch from a quiescent 'contractile' phenotype to a dedifferentiated and proliferative state underlies the development of cardiovascular diseases (CVDs); however, our understanding of the mechanism is still incomplete. In the present study, we explored the potential role of ferroptosis, a novel nonapoptotic form of cell death, in SMC phenotypic switch and related neointimal formation. We found that ferroptotic stress was triggered in cultured dedifferentiated SMCs and arterial neointimal tissue of wire-injured mice. Moreover, pro-ferroptosis stress was activated in arterial neointimal tissue of clinical patients who underwent carotid endarterectomy. Blockade of ferroptotic stress via administration of a pharmacological inhibitor or by global genetic overexpression of glutathione peroxidase-4 (GPX4), a well-established anti-ferroptosis molecule, delayed SMC phenotype switch and arterial remodelling. Conditional SMC-specific gene delivery of GPX4 using adreno-associated virus in the carotid artery inhibited ferroptosis and prevented neointimal formation. Conversely, ferroptosis stress directly triggered dedifferentiation of SMCs. Transcriptomics analysis demonstrated that inhibition of ferroptotic stress mainly targets the mitochondrial respiratory chain and oxidative phosphorylation. Mechanistically, ferroptosis inhibition corrected the disrupted mitochondrial homeostasis in dedifferentiated SMCs, including enhanced mitochondrial ROS production, dysregulated mitochondrial dynamics, and mitochondrial hyperpolarization, and ultimately inhibited SMC phenotypic switch and growth. Copper-diacetyl-bisN4-methylthiosemicarbazone (CuATSM), an agent used for clinical molecular imaging and that potently inhibits ferroptosis, prevented SMC phenotypic switch, neointimal formation and arterial inflammation in mice. These results indicate that pro-ferroptosis stress is likely to promote SMC phenotypic switch during neointimal formation and imply that inhibition of ferroptotic stress may be a promising translational approach to treat CVDs with SMC phenotype switch.
Collapse
Affiliation(s)
- Qing-Xin Ji
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei-Yan Zeng
- Department of Pharmacology, Shanghai Forth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Cardiac Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Bin Wu
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Xu-Jie Wang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Tong
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di-Yang Sun
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Jia-Bao Zhang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Wen-Xiang Cao
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China.
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China.
| |
Collapse
|
17
|
Qin HL, Bao JH, Tang JJ, Xu DY, Shen L. Arterial remodeling: the role of mitochondrial metabolism in vascular smooth muscle cells. Am J Physiol Cell Physiol 2023; 324:C183-C192. [PMID: 36468843 DOI: 10.1152/ajpcell.00074.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arterial remodeling is a common pathological basis of cardiovascular diseases such as atherosclerosis, vascular restenosis, hypertension, pulmonary hypertension, aortic dissection, and aneurysm. Vascular smooth muscle cells (VSMCs) are not only the main cellular components in the middle layer of the arterial wall but also the main cells involved in arterial remodeling. Dedifferentiated VSMCs lose their contractile properties and are converted to a synthetic, secretory, proliferative, and migratory phenotype, playing key roles in the pathogenesis of arterial remodeling. As mitochondria are the main site of biological oxidation and energy transformation in eukaryotic cells, mitochondrial numbers and function are very important in maintaining the metabolic processes in VSMCs. Mitochondrial dysfunction and oxidative stress are novel triggers of the phenotypic transformation of VSMCs, leading to the onset and development of arterial remodeling. Therefore, pharmacological measures that alleviate mitochondrial dysfunction reverse arterial remodeling by ameliorating VSMCs metabolic dysfunction and phenotypic transformation, providing new options for the treatment of cardiovascular diseases related to arterial remodeling. This review summarizes the relationship between mitochondrial dysfunction and cardiovascular diseases associated with arterial remodeling and then discusses the potential mechanism by which mitochondrial dysfunction participates in pathological arterial remodeling. Furthermore, maintaining or improving mitochondrial function may be a new intervention strategy to prevent the progression of arterial remodeling.
Collapse
Affiliation(s)
- Hua-Li Qin
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing-Hui Bao
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Jun Tang
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Shen
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Mitochondrial Dysfunction and Oxidative Stress in Hereditary Ectopic Calcification Diseases. Int J Mol Sci 2022; 23:ijms232315288. [PMID: 36499615 PMCID: PMC9738718 DOI: 10.3390/ijms232315288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Ectopic calcification (EC) is characterized by an abnormal deposition of calcium phosphate crystals in soft tissues such as blood vessels, skin, and brain parenchyma. EC contributes to significant morbidity and mortality and is considered a major health problem for which no effective treatments currently exist. In recent years, growing emphasis has been placed on the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of EC. Impaired mitochondrial respiration and increased levels of reactive oxygen species can be directly linked to key molecular pathways involved in EC such as adenosine triphosphate homeostasis, DNA damage signaling, and apoptosis. While EC is mainly encountered in common diseases such as diabetes mellitus and chronic kidney disease, studies in rare hereditary EC disorders such as pseudoxanthoma elasticum or Hutchinson-Gilford progeria syndrome have been instrumental in identifying the precise etiopathogenetic mechanisms leading to EC. In this narrative review, we describe the current state of the art regarding the role of mitochondrial dysfunction and oxidative stress in hereditary EC diseases. In-depth knowledge of aberrant mitochondrial metabolism and its local and systemic consequences will benefit the research into novel therapies for both rare and common EC disorders.
Collapse
|
19
|
Milani M, Pihán P, Hetz C. Mitochondria-associated niches in health and disease. J Cell Sci 2022; 135:285141. [DOI: 10.1242/jcs.259634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
ABSTRACT
The appreciation of the importance of interorganelle contacts has steadily increased over the past decades. Advances in imaging, molecular biology and bioinformatic techniques allowed the discovery of new mechanisms involved in the interaction and communication between organelles, providing novel insights into the inner works of a cell. In this Review, with the mitochondria under the spotlight, we discuss the most recent findings on the mechanisms mediating the communication between organelles, focusing on Ca2+ signaling, lipid exchange, cell death and stress responses. Notably, we introduce a new integrative perspective to signaling networks that is regulated by interorganelle interactions – the mitochondria-associated niches – focusing on the link between the molecular determinants of contact sites and their functional outputs, rather than simply physical and structural communication. In addition, we highlight the neuropathological and metabolic implications of alterations in mitochondria-associated niches and outline how this concept might improve our understanding of multi-organelle interactions.
Collapse
Affiliation(s)
- Mateus Milani
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile 1 , Santiago 8380000 , Chile
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO) 2 , Santiago 7750000 , Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile 3 , Santiago 8380000 , Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile 1 , Santiago 8380000 , Chile
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO) 2 , Santiago 7750000 , Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile 3 , Santiago 8380000 , Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile 1 , Santiago 8380000 , Chile
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO) 2 , Santiago 7750000 , Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile 3 , Santiago 8380000 , Chile
- Buck Institute for Research on Aging 4 , Novato, CA 94945 , USA
| |
Collapse
|
20
|
Jiang M, Liu Z, Shao J, Zhou J, Wang H, Song C, Li X, Wang L, Xu Q, Liu X, Lin L, Zhang R. Estrogen receptor α regulates phenotypic switching and proliferation of vascular smooth muscle cells through the NRF1-OMI-mitophagy signaling pathway under simulated microgravity. Front Physiol 2022; 13:1039913. [DOI: 10.3389/fphys.2022.1039913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Vascular remodeling during microgravity exposure results in postflight cardiovascular deconditioning and orthostatic intolerance in astronauts. To clarify the underlying mechanism, we investigated whether estrogen receptor α (ERα)-NRF1-OMI-mitophagy signaling was involved in the dedifferentiation and proliferation of vascular smooth muscle cells (VSMCs) under simulated microgravity. Phenotypic markers, mtDNA copy number and mitochondrial biogenesis, mitochondrial dynamics and mitophagy in rat thoracic artery smooth muscle cells were examined. Four-week hindlimb unweighting (HU) was used to simulate microgravity in rats and 10% serum was used to induce VSMCs dedifferentiation in vitro. The effects of ERα-NRF1-OMI signaling on mitophagy, phenotypic switching and proliferation of VSMCs, and cerebrovascular remodeling in HU rats were studied by genetic manipulation and chronic drug intervention. We found that ERα is positively associated with contractile phenotype switching but inversely correlated with synthetic phenotype switching and proliferation of VSMCs both in vivo and in vitro. During the dedifferentiation process of VSMCs, reduced mtDNA copy number, disturbed mitochondrial biogenesis and respiration, and perturbed fission-fusion-mitophagy signaling were detected, which were reversed by ERα overexpression. Mechanistically, the ERα downstream protein OMI preserved the mitochondrial Parkin level by increasing its protein stability, thereby protecting mitophagy. In line with this, we found that activating ERα signaling by propyl pyrazole triol (PPT) could alleviate the synthetic phenotype switching and proliferation of HU rat cerebral VSMCs by reestablishing fission-fusion-mitophagy hemostasis. The current study clarified a novel mechanism by which inhibited ERα-NRF1-OMI-mitophagy signaling resulted in synthetic phenotype switching and proliferation of VSMCs and cerebrovascular remodeling under simulated microgravity.
Collapse
|
21
|
Liu YZ, Li ZX, Zhang LL, Wang D, Liu YP. Phenotypic plasticity of vascular smooth muscle cells in vascular calcification: Role of mitochondria. Front Cardiovasc Med 2022; 9:972836. [PMID: 36312244 PMCID: PMC9597684 DOI: 10.3389/fcvm.2022.972836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC) is an important hallmark of cardiovascular disease, the osteo-/chondrocyte phenotype differentiation of vascular smooth muscle cells (VSMCs) is the main cause of vascular calcification. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the VSMCs calcification. Mitochondrial participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular calcium homeostasis, apoptosis, and signal transduction. Mitochondrial dysfunction under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and metabolic disorders, which further lead to abnormal phenotypic differentiation of VSMCs. In this review, we summarize existing studies targeting mitochondria as a treatment for VC, and focus on VSMCs, highlighting recent progress in determining the roles of mitochondrial processes in regulating the phenotype transition of VSMCs, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, mitochondrial energy metabolism, and mitochondria/ER interactions. Along these lines, the impact of mitochondrial homeostasis on VC is discussed.
Collapse
|
22
|
Cheng L, Wang Z, Nie L, Yang C, Huang H, Lin J, Zhuo D. Comprehensive analysis of MFN2 as a prognostic biomarker associated with immune cell infiltration in renal clear cell carcinoma. Int Immunopharmacol 2022; 111:109169. [PMID: 36007389 DOI: 10.1016/j.intimp.2022.109169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Treatment of advanced kidney renal clear cell carcinoma (KIRC) remains challenging in clinic. The functional role and prognostic significance of MFN2 in KIRC are still unclear. METHODS In this study, we first performed a bioinformatic analysis to determine the expression level and prognostic value of MFN2 in KIRC using The Cancer Genome Atlas (TCGA) dataset, and then validated the MFN2 mRNA expression in our cohort of clinical tissue samples and cell lines of KIRC via RT-qPCR. Cox regression model was used to identify the independent prognostic factors. A nomogram was constructed to predict the prognosis of KIRC patients. Gene set enrichment analysis (GSEA) was performed to predict the involved functional pathways of MFN2 co-expressed genes. The association between MFN2 expression level and immune cell infiltration was assessed using the TIMER and the TIDISB databases. In addition, cell proliferation and migration abilities of two KIRC cell lines with MFN2 overexpression were evaluated by MTS and wound healing assays, respectively. RESULTS Downregulation of MFN2 was observed in KIRC tissues and cell lines compared to the normal controls. Kaplan-Meier curve analysis indicated an inferior survival outcomes in KIRC patients with lower MFN2 expression, uncovering the tumor-suppressive role of MFN2 in KIRC. Cox regression results showed that higher MFN2 expression was one of the independent protective factors in KIRC. Besides, function predictive analysis revealed that MFN2 co-expressed genes were enriched in the biological processes of energy metabolism and autophagy. Moreover, MFN2 expression was observed to be significantly associated with immune cell infiltration and a variety of markers of tumor infiltrating immune cells (TIICs) including multiple immune checkpoints in KIRC tissues. Finally, MFN2 overexpression significantly inhibited cell proliferation and migration abilities of two KIRC cell lines examined. CONCLUSION Generally, our data suggested that MFN2 may serve as a potential prognostic biomarker and therapeutic target in KIRC.
Collapse
Affiliation(s)
- Li Cheng
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zicheng Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Liang Nie
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Chenglin Yang
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Houbao Huang
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Dong Zhuo
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China.
| |
Collapse
|
23
|
Lin J, Duan J, Wang Q, Xu S, Zhou S, Yao K. Mitochondrial Dynamics and Mitophagy in Cardiometabolic Disease. Front Cardiovasc Med 2022; 9:917135. [PMID: 35783853 PMCID: PMC9247260 DOI: 10.3389/fcvm.2022.917135] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a key role in cellular metabolism. Mitochondrial dynamics (fusion and fission) and mitophagy, are critical to mitochondrial function. Fusion allows organelles to share metabolites, proteins, and mitochondrial DNA, promoting complementarity between damaged mitochondria. Fission increases the number of mitochondria to ensure that they are passed on to their offspring during mitosis. Mitophagy is a process of selective removal of excess or damaged mitochondria that helps improve energy metabolism. Cardiometabolic disease is characterized by mitochondrial dysfunction, high production of reactive oxygen species, increased inflammatory response, and low levels of ATP. Cardiometabolic disease is closely related to mitochondrial dynamics and mitophagy. This paper reviewed the mechanisms of mitochondrial dynamics and mitophagy (focus on MFN1, MFN2, OPA1, DRP1, and PINK1 proteins) and their roles in diabetic cardiomyopathy, myocardial infarction, cardiac hypertrophy, heart failure, atherosclerosis, and obesity.
Collapse
Affiliation(s)
- Jianguo Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinlong Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyu Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Simin Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Kuiwu Yao
| |
Collapse
|
24
|
Inagaki S, Suzuki Y, Kawasaki K, Kondo R, Imaizumi Y, Yamamura H. Mitofusin 2 positively regulates Ca 2+ signaling by tethering the sarcoplasmic reticulum and mitochondria in rat aortic smooth muscle cells. Am J Physiol Cell Physiol 2022; 323:C295-C305. [PMID: 35704692 DOI: 10.1152/ajpcell.00274.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria buffer cytosolic Ca2+increases following Ca2+ influx from extracellular spaces and Ca2+ release from intracellular Ca2+ store sites under physiological circumstances. Therefore, close contact of mitochondria with the sarcoplasmic reticulum (SR) is required for maintaining Ca2+ homeostasis. Mitofusin 2 (Mfn2) localizes in both mitochondrial and SR membranes, and is hypothesized to optimize the distance and Ca2+ transfer between these organelles. However, the physiological significance of Mfn2 in vascular smooth muscle cells (VSMCs) is poorly understood. In the present study, the role of Mfn2 in the physical and functional couplings between SR and mitochondria was examined in rat aortic smooth muscle cells (rASMCs) by confocal and electron microscope imaging. When Mfn2 was knocked-down using siRNA in rASMCs, the mean distance between these organelles was extended from 16.2 to 21.6 nm. The increase in the cytosolic Ca2+ concentration ([Ca2+]cyt) induced by 100 nM arginine vasopressin (AVP) was not affected by Mfn2 siRNA knockdown, whereas cytosolic Ca2+ removal was slower after Mfn2 knockdown. Following the AVP-induced [Ca2+]cyt increase, mitochondrial Ca2+ uptake and Ca2+ refill into the SR were attenuated by Mfn2 knockdown. In addition, Mfn2-knockdown cells exhibited a loss of mitochondrial membrane potential (ΔΨmito) and lower ATP levels in mitochondria. Moreover, Mfn2 knockdown inhibited cell proliferation. In contrast, Mfn2 overexpression increased ΔΨmito and cell growth. This study strongly suggests that Mfn2 is responsible for SR-mitochondria Ca2+ signaling by tethering mitochondria to SR, thereby regulating ATP production and proliferation of VSMCs.
Collapse
Affiliation(s)
- Sou Inagaki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Keisuke Kawasaki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
25
|
The lncRNA Punisher Regulates Apoptosis and Mitochondrial Homeostasis of Vascular Smooth Muscle Cells via Targeting miR-664a-5p and OPA1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5477024. [PMID: 35663194 PMCID: PMC9159832 DOI: 10.1155/2022/5477024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of various cellular functions. Recent studies have shown that a novel lncRNA termed Punisher is highly expressed in cardiovascular progenitors and has potential role in cardiovascular diseases. However, its role, especially in molecular mechanism, is unclear. In our present study, we observed that Punisher was obviously downregulated in atherosclerotic plaques. Further research proved that it can suppress the apoptosis of VSMCs potentially contributing to the progression of atherosclerosis. Intriguingly, Punisher revealed to regulate mitochondria fission as well as mitochondrial functions induced by hydrogen peroxide (H2O2) in VSMCs. Mechanistically, Punisher was further proved to serve as a ceRNA which directly binds to miR-664a-5p and consequently regulates its target OPA1, and finally contributes to the biological function of VSMCs. Particularly, Punisher overexpression distinctly suppressed neointima formation and VSMC apoptosis in vivo. Encouragingly, these results were in accordance with findings obtained with the clinical evaluation of patients with atherosclerosis. Our data provides the significant relationship among OPA1, mitochondrial homeostasis, VSMC apoptosis, and atherosclerosis. And lncRNA Punisher and miR-664a-5p could serve as the novel and potential targets in the diagnosis and treatment of cardiovascular diseases.
Collapse
|
26
|
Bai Y, Cheng M, Jin J, Zhang H, He L, Zhou W, Zhang S, Xu J. SET8, a novel regulator to ameliorate vascular calcification via activating PI3K/Akt mediated anti-apoptotic effects. Biochem Cell Biol 2021; 100:104-114. [PMID: 34846946 DOI: 10.1139/bcb-2021-0322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that the apoptosis of vascular smooth muscle cells (VSMCs) underlies the mechanism of pathological calcification in patients with chronic kidney disease (CKD). SET domain-containing protein 8 (SET8) is an efficient protein that modulates apoptosis in hepatocellular carcinoma cells, esophageal squamous cells, and neuronal cells by regulating pathological processes, such as cell cycle progression and transcription regulation. However, whether SET8 is involved in high phosphorus-induced vascular calcification by mediating apoptosis remains unclear. Here, we report that SET8 is located both in the nucleus and cytoplasm and is significantly downregulated in calcification models. SET8 deficiency promoted apoptosis of VSMCs, as indicated by the increased Bax/Bcl-2 and cleaved caspase-3/total caspase-3 ratios. Mechanistically, the PI3K/Akt pathway was mediated by SET8, and inhibition of the PI3K/Akt signaling pathway by administering LY294002 or transfecting the Akt phosphorylation-inactivated mutation plasmid increased apoptosis and calcification. Akt phosphorylation constitutively activated mutations can reduce the apoptosis and calcification of VSMCs. Furthermore, exogenous overexpression of SET8 reversed the effect of PI3K/Akt inhibition on VSMC apoptosis and calcification. In summary, our research suggests that SET8 overexpression ameliorates high phosphorus-induced calcification of VSMCs by activating PI3K/Akt mediated anti-apoptotic effects.
Collapse
Affiliation(s)
- Yaling Bai
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Meijuan Cheng
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jingjing Jin
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Huiran Zhang
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Lei He
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Wei Zhou
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Shenglei Zhang
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jinsheng Xu
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
27
|
Li J, Zhang W, Zhou P, Tong X, Guo D, Lin H. Selenium deficiency induced apoptosis via mitochondrial pathway caused by Oxidative Stress in porcine gastric tissues. Res Vet Sci 2021; 144:142-148. [PMID: 34809980 DOI: 10.1016/j.rvsc.2021.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023]
Abstract
Selenium (Se) is an essential nutrient for the body, which can ensure GSH-Px activity and has antioxidant effect. Se deficiency may lead to apoptosis in various tissues and organs in animals. Pigs as major livestock in the farming industry, Se deficiency can cause various types of diseases such as white muscle disease, and mulberry heart disease.The aim of this experiment was to investigate the effect and mechanism of Se deficiency on apoptosis in porcine gastric tissue. Forty weaned piglets were randomly divided into Se deficiency group and control group, and fed with low Se diet and normal diet for six weeks respectively. The histochemical characteristics, antioxidant indexes, apoptotic genes and apoptotic protein expression of gastric cells in Se-deficient piglets were detected. The results of antioxidant index, TUNEL, RT-PCR and Western blot showed that Se deficiency decreased the activities of CAT, SOD and GSH-Px, increased the apoptotic rate of porcine gastric tissue, increased the expression of Bax and Caspase-3, and decreased the expression of Bcl-2. The results demonstrated that Se deficiency could induce apoptosis in porcine gastric tissue cells through oxidative stress-induced mitochondrial pathway. The stomach was a key target of Se deficiency and may play a key role in the response to Se deficiency. Our study may provide new ideas for the prevention and treatment of swine gastric diseases caused by Se deficiency and is beneficial to the development of pig farming industry.
Collapse
Affiliation(s)
- Jiahe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Pei Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaoxue Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Dan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
28
|
Zou W, Ji D, Zhang Z, Yang L, Cao Y. Players in Mitochondrial Dynamics and Female Reproduction. Front Mol Biosci 2021; 8:717328. [PMID: 34708072 PMCID: PMC8542886 DOI: 10.3389/fmolb.2021.717328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial dynamics (fission and fusion) are essential physiological processes for mitochondrial metabolic function, mitochondrial redistribution, and mitochondrial quality control. Various proteins are involved in regulating mitochondrial dynamics. Aberrant expression of these proteins interferes with mitochondrial dynamics and induces a range of diseases. Multiple therapeutic approaches have been developed to treat the related diseases in recent years, but their curative effects are limited. Meanwhile, the role of mitochondrial dynamics in female reproductive function has attracted progressively more attention, including oocyte development and maturation, fertilization, and embryonic development. Here, we reviewed the significance of mitochondrial dynamics, proteins involved in mitochondrial dynamics, and disorders resulting from primary mitochondrial dynamic dysfunction. We summarized the latest therapeutic approaches of hereditary mitochondrial fusion-fission abnormalities and reviewed the recent advances in female reproductive mitochondrial dynamics.
Collapse
Affiliation(s)
- Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
29
|
Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021; 35:974-1015. [PMID: 34314229 PMCID: PMC8905248 DOI: 10.1089/ars.2021.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - William Hughes
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Andreas Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Jo LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
30
|
Zhang X, Xu X, Lu L, Wan X, Qin Y, Ruan W, Lv C, He L, Guo X. A new Mfn-2 related synthetic peptide promotes vascular smooth muscle cell apoptosis via regulating the mitochondrial apoptotic pathway by inhibiting Akt signaling. J Transl Med 2021; 19:395. [PMID: 34538249 PMCID: PMC8451139 DOI: 10.1186/s12967-021-03064-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023] Open
Abstract
Background Restenosis after angioplasty is a major challenge for the treatment of coronary artery diseases. Facilitation of vascular smooth muscle cell (VSMC) apoptosis may be an attractive approach to decrease the incidence of restenosis. We synthesized a 16-amino acid mitofusin-2 (Mfn-2) gene related peptide (MRSP) based on the sequence of the p21ras signature motif, the smallest functional sequence of the Mfn-2 gene with proapoptotic properties in VSMC. We investigated whether MRSP enhanced apoptotic activities to inhibit VSMC accumulation and neointimal hyperplasia in rats with carotid balloon injury. Methods VSMCs were treated with different concentrations of MRSP, the PI3K agonist 740 Y-P and the inhibitor LY294002. Cell apoptosis and related pathway molecules were assessed. MRSP was also given to rats with carotid artery balloon injury. Neointimal hyperplasia and cell apoptotic pathways were detected. Results In vitro experiments revealed that MRSP treatment significantly increased VSMC apoptosis and induced increases in procaspase-9 cleavage, caspase-3 activation, cytochrome c release from mitochondria to the cytoplasm and the Bax/Bcl-2 ratio but not caspase-8 expression, indicating that the mitochondrial apoptotic cascade was activated by MRSP, which might be attributed to suppression of the PI3K/Akt signaling pathway. We further found that the PI3K agonist 740 Y-P prevented and that the inhibitor LY294002 strengthened the proapoptotic effects of MRSP. MRSP strongly inhibited neointimal hyperplasia and VSMC accumulation, but increased VSMC apoptosis in the vascular wall after balloon injury. Moreover, MRSP substantially enhanced Bax and cleaved caspase-3 expression and decreased Bcl-2 levels in intima, accompanied by decreased levels of phosphorylated Akt and PI3K in vivo. Conclusions Taken together, the present study showed that MRSP treatment results in a strong proapoptotic effect by activating the mitochondrial apoptotic cascade through suppression of the PI3K/Akt pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03064-1.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiangyu Xu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weibin Ruan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin He
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
Comparative genomics provides insights into the aquatic adaptations of mammals. Proc Natl Acad Sci U S A 2021; 118:2106080118. [PMID: 34503999 PMCID: PMC8449357 DOI: 10.1073/pnas.2106080118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Divergent lineages can respond to common environmental factors through convergent processes involving shared genomic components or pathways, but the molecular mechanisms are poorly understood. Here, we provide genomic resources and insights into the evolution of mammalian lineages adapting to aquatic life. Our data suggest convergent evolution, for example, in association with thermoregulation through genes associated with a surface heat barrier (NFIA) and internal heat exchange (SEMA3E). Combined with the support of previous reports showing that the UCP1 locus has been lost in many marine mammals independently, our results suggest that the thermostatic strategy of marine mammals shifted from enhancing heat production to limiting heat loss. The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.
Collapse
|
32
|
Cormio A, Busetto GM, Musicco C, Sanguedolce F, Calò B, Chirico M, Falagario UG, Carrieri G, Piccoli C, Cormio L. Mitofusin-2 Down-Regulation Predicts Progression of Non-Muscle Invasive Bladder Cancer. Diagnostics (Basel) 2021; 11:diagnostics11081500. [PMID: 34441434 PMCID: PMC8394056 DOI: 10.3390/diagnostics11081500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Identification of markers predicting disease outcome is a major clinical issue for non-muscle invasive bladder cancer (NMIBC). The present study aimed to determine the role of the mitochondrial proteins Mitofusin-2 (Mfn2) and caseinolytic protease P (ClpP) in predicting the outcome of NMIBC. The study population consisted of patients scheduled for transurethral resection of bladder tumor upon the clinical diagnosis of bladder cancer (BC). Samples of the main bladder tumor and healthy-looking bladder wall from patients classified as NMIBC were tested for Mfn2 and ClpP. The expression levels of these proteins were correlated to disease recurrence, progression. Mfn2 and ClpP expression levels were significantly higher in lesional than in non-lesional tissue. Low-risk NMIBC had significantly higher Mfn2 expression levels and significantly lower ClpP expression levels than high-risk NMIBC; there were no differences in non-lesional levels of the two proteins. Lesional Mfn2 expression levels were significantly lower in patients who progressed whereas ClpP levels had no impact on any survival outcome. Multivariable analysis adjusting for the EORTC scores showed that Mfn2 downregulation was significantly associated with disease progression. In conclusion, Mfn2 and ClpP proteins were found to be overexpressed in BC as compared to non-lesional bladder tissue and Mfn2 expression predicted disease progression.
Collapse
Affiliation(s)
- Antonella Cormio
- Department of Biosciences, Biotechnologies, and Biofarmaceutical, University of Bari, 70126 Bari, Italy;
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
- Correspondence:
| | - Clara Musicco
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy;
| | | | - Beppe Calò
- Department of Urology, Bonomo Hospital, 76123 Andria, Italy;
| | - Marco Chirico
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
| | - Ugo Giovanni Falagario
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
- Department of Urology, Bonomo Hospital, 76123 Andria, Italy;
| |
Collapse
|
33
|
Dasgupta A, Chen KH, Lima PDA, Mewburn J, Wu D, Al-Qazazi R, Jones O, Tian L, Potus F, Bonnet S, Archer SL. PINK1-induced phosphorylation of mitofusin 2 at serine 442 causes its proteasomal degradation and promotes cell proliferation in lung cancer and pulmonary arterial hypertension. FASEB J 2021; 35:e21771. [PMID: 34275172 DOI: 10.1096/fj.202100361r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Impaired mitochondrial fusion, due in part to decreased mitofusin 2 (Mfn2) expression, contributes to unrestricted cell proliferation and apoptosis-resistance in hyperproliferative diseases like pulmonary arterial hypertension (PAH) and non-small cell lung cancer (NSCLC). We hypothesized that Mfn2 levels are reduced due to increased proteasomal degradation of Mfn2 triggered by its phosphorylation at serine 442 (S442) and investigated the potential kinase mediators. Mfn2 expression was decreased and Mfn2 S442 phosphorylation was increased in pulmonary artery smooth muscle cells from PAH patients and in NSCLC cells. Mfn2 phosphorylation was mediated by PINK1 and protein kinase A (PKA), although only PINK1 expression was increased in these diseases. We designed a S442 phosphorylation deficient Mfn2 construct (PD-Mfn2) and a S442 constitutively phosphorylated Mfn2 construct (CP-Mfn2). The effects of these modified Mfn2 constructs on Mfn2 expression and biological function were compared with those of the wildtype Mfn2 construct (WT-Mfn2). WT-Mfn2 increased Mfn2 expression and mitochondrial fusion in both PAH and NSCLC cells resulting in increased apoptosis and decreased cell proliferation. Compared to WT-Mfn2, PD-Mfn2 caused greater Mfn2 expression, suppression of proliferation, apoptosis induction, and cell cycle arrest. Conversely, CP-Mfn2 caused only a small increase in Mfn2 expression and did not restore mitochondrial fusion, inhibit cell proliferation, or induce apoptosis. Silencing PINK1 or PKA, or proteasome blockade using MG132, increased Mfn2 expression, enhanced mitochondrial fusion and induced apoptosis. In a xenotransplantation NSCLC model, PD-Mfn2 gene therapy caused greater tumor regression than did therapy with WT-Mfn2. Mfn2 deficiency in PAH and NSCLC reflects proteasomal degradation triggered by Mfn2-S442 phosphorylation by PINK1 and/or PKA. Inhibiting Mfn2 phosphorylation has potential therapeutic benefit in PAH and lung cancer.
Collapse
Affiliation(s)
- Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Patricia D A Lima
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Translational Institute of Medicine (TIME), Queen's University, Kingston, ON, Canada
| | - Jeffrey Mewburn
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Oliver Jones
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Translational Institute of Medicine (TIME), Queen's University, Kingston, ON, Canada
| | - Lian Tian
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Francois Potus
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Quebec City, QC, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Quebec City, QC, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Translational Institute of Medicine (TIME), Queen's University, Kingston, ON, Canada
| |
Collapse
|
34
|
Li D, Yang S, Xing Y, Pan L, Zhao R, Zhao Y, Liu L, Wu M. Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target. Front Cell Dev Biol 2021; 9:673839. [PMID: 34307357 PMCID: PMC8293691 DOI: 10.3389/fcell.2021.673839] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death worldwide. Atherosclerosis is the underlying pathological basis of CVD. Mitochondrial homeostasis is maintained through the dynamic processes of fusion and fission. Mitochondria are involved in many cellular processes, such as steroid biosynthesis, calcium homeostasis, immune cell activation, redox signaling, apoptosis, and inflammation, among others. Under stress conditions, mitochondrial dynamics, mitochondrial cristae remodeling, and mitochondrial ROS (mitoROS) production increase, mitochondrial membrane potential (MMP) decreases, calcium homeostasis is imbalanced, and mitochondrial permeability transition pore open (mPTP) and release of mitochondrial DNA (mtDNA) are activated. mtDNA recognized by TLR9 can lead to NF-κB pathway activation and pro-inflammatory factor expression. At the same time, TLR9 can also activate NLRP3 inflammasomes and release interleukin, an event that eventually leads to tissue damage and inflammatory responses. In addition, mitochondrial dysfunction may amplify the activation of NLRP3 through the production of mitochondrial ROS, which together aggravate accumulating mitochondrial damage. In addition, mtDNA defects or gene mutation can lead to mitochondrial oxidative stress. Finally, obesity, diabetes, hypertension and aging are risk factors for the progression of CVD, which are closely related to mitochondrial dynamics. Mitochondrial dynamics may represent a new target in the treatment of atherosclerosis. Antioxidants, mitochondrial inhibitors, and various new therapies to correct mitochondrial dysfunction represent a few directions for future research on therapeutic intervention and amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limin Pan
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixi Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Wu D, Dasgupta A, Read AD, Bentley RET, Motamed M, Chen KH, Al-Qazazi R, Mewburn JD, Dunham-Snary KJ, Alizadeh E, Tian L, Archer SL. Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer. Free Radic Biol Med 2021; 170:150-178. [PMID: 33450375 PMCID: PMC8217091 DOI: 10.1016/j.freeradbiomed.2020.12.452] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
The homeostatic oxygen sensing system (HOSS) optimizes systemic oxygen delivery. Specialized tissues utilize a conserved mitochondrial sensor, often involving NDUFS2 in complex I of the mitochondrial electron transport chain, as a site of pO2-responsive production of reactive oxygen species (ROS). These ROS are converted to a diffusible signaling molecule, hydrogen peroxide (H2O2), by superoxide dismutase (SOD2). H2O2 exits the mitochondria and regulates ion channels and enzymes, altering plasma membrane potential, intracellular Ca2+ and Ca2+-sensitization and controlling acute, adaptive, responses to hypoxia that involve changes in ventilation, vascular tone and neurotransmitter release. Subversion of this O2-sensing pathway creates a pseudohypoxic state that promotes disease progression in pulmonary arterial hypertension (PAH) and cancer. Pseudohypoxia is a state in which biochemical changes, normally associated with hypoxia, occur despite normal pO2. Epigenetic silencing of SOD2 by DNA methylation alters H2O2 production, activating hypoxia-inducible factor 1α, thereby disrupting mitochondrial metabolism and dynamics, accelerating cell proliferation and inhibiting apoptosis. Other epigenetic mechanisms, including dysregulation of microRNAs (miR), increase pyruvate dehydrogenase kinase and pyruvate kinase muscle isoform 2 expression in both diseases, favoring uncoupled aerobic glycolysis. This Warburg metabolic shift also accelerates cell proliferation and impairs apoptosis. Disordered mitochondrial dynamics, usually increased mitotic fission and impaired fusion, promotes disease progression in PAH and cancer. Epigenetic upregulation of dynamin-related protein 1 (Drp1) and its binding partners, MiD49 and MiD51, contributes to the pathogenesis of PAH and cancer. Finally, dysregulation of intramitochondrial Ca2+, resulting from impaired mitochondrial calcium uniporter complex (MCUC) function, links abnormal mitochondrial metabolism and dynamics. MiR-mediated decreases in MCUC function reduce intramitochondrial Ca2+, promoting Warburg metabolism, whilst increasing cytosolic Ca2+, promoting fission. Epigenetically disordered mitochondrial O2-sensing, metabolism, dynamics, and Ca2+ homeostasis offer new therapeutic targets for PAH and cancer. Promoting glucose oxidation, restoring the fission/fusion balance, and restoring mitochondrial calcium regulation are promising experimental therapeutic strategies.
Collapse
Affiliation(s)
- Danchen Wu
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Austin D Read
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Rachel E T Bentley
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Mehras Motamed
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Jeffrey D Mewburn
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elahe Alizadeh
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Queen's University, 116 Barrie Street, Kingston, ON, K7L 3J9, Canada
| | - Lian Tian
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Stephen L Archer
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
36
|
Zhang X, Qin Y, Ruan W, Wan X, Lv C, He L, Lu L, Guo X. Targeting inflammation-associated AMPK//Mfn-2/MAPKs signaling pathways by baicalein exerts anti-atherosclerotic action. Phytother Res 2021; 35:4442-4455. [PMID: 34008261 DOI: 10.1002/ptr.7149] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
Inflammatory responses in macrophages, endothelial cells, and vascular smooth muscle cells play crucial roles in the development of atherosclerosis. Baicalein, a flavonoid phytochemical, possesses anti-inflammatory properties, but the underlying mechanisms of its action are not fully understood. The aim of this study was to explore whether baicalein inhibited inflammatory activities in RAW264.7, HUVEC, and MOVAS cells and to analyze its underlying mechanisms. Our results showed that baicalein treatment effectively reduced the levels of IL-6, TNF-α, PAI-1, and MMP-9 released by these cells upon stimulation with Ang II or ox-LDL. We discovered that the molecular mechanisms underlying baicalein suppression of the generation of proinflammatory cytokines were associated with the inhibition of MAPK/NF-κB pathway activity. Moreover, Ang II and ox-LDL intervention decreased the content of Mfn-2 in the three types of cells, but incubation of baicalein alleviated the Ang II/ox-LDL-induced reduction of Mfn-2 levels. Adv-Mfn2 treatment not only increased the expression of Mfn-2 but also reduced the levels of phosphorylated ERK1/2, p38, JNK, and NF-κB, followed by a decrease in the concentrations of IL-6, TNF-α, PAI-1, and MMP-9 in the supernatant. Furthermore, our findings indicated that baicalein treatment markedly suppressed the decrease in AMPK activity induced with Ang II and ox-LDL, and incubation with Compound C reversed the effects of baicalein on AMPK activation and Mfn-2 expression. In conclusion, our data suggest that baicalein shows anti-inflammatory properties, probably by activating the AMPK/Mfn-2 axis, accompanied by inhibition of downstream MAPKs/NF-κB signaling transduction.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weibin Ruan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin He
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) Shanghai Jiaotong University, Shanghai, China
| | - Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Chen L, Liu B, Qin Y, Li A, Gao M, Liu H, Gong G. Mitochondrial Fusion Protein Mfn2 and Its Role in Heart Failure. Front Mol Biosci 2021; 8:681237. [PMID: 34026850 PMCID: PMC8138128 DOI: 10.3389/fmolb.2021.681237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mitofusin 2 (Mfn2) is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial network regulation. It is an essential multifunctional protein that participates in various biological processes under physical and pathological conditions, including mitochondrial fusion, reticulum-mitochondria contacts, mitochondrial quality control, and apoptosis. Mfn2 dysfunctions have been found to contribute to cardiovascular diseases, such as ischemia-reperfusion injury, heart failure, and dilated cardiomyopathy. Here, this review mainly focuses on what is known about the structure and function of Mfn2 and its crucial role in heart failure.
Collapse
Affiliation(s)
- Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Panda S, Behera S, Alam MF, Syed GH. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021; 58:227-242. [PMID: 33775873 DOI: 10.1016/j.mito.2021.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.
Collapse
Affiliation(s)
- Swagatika Panda
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Suchismita Behera
- Institute of Life Sciences, Bhubaneswar, Clinical Proteomics Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gulam Hussain Syed
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
39
|
Phadwal K, Vrahnas C, Ganley IG, MacRae VE. Mitochondrial Dysfunction: Cause or Consequence of Vascular Calcification? Front Cell Dev Biol 2021; 9:611922. [PMID: 33816463 PMCID: PMC8010668 DOI: 10.3389/fcell.2021.611922] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are crucial bioenergetics powerhouses and biosynthetic hubs within cells, which can generate and sequester toxic reactive oxygen species (ROS) in response to oxidative stress. Oxidative stress-stimulated ROS production results in ATP depletion and the opening of mitochondrial permeability transition pores, leading to mitochondria dysfunction and cellular apoptosis. Mitochondrial loss of function is also a key driver in the acquisition of a senescence-associated secretory phenotype that drives senescent cells into a pro-inflammatory state. Maintaining mitochondrial homeostasis is crucial for retaining the contractile phenotype of the vascular smooth muscle cells (VSMCs), the most prominent cells of the vasculature. Loss of this contractile phenotype is associated with the loss of mitochondrial function and a metabolic shift to glycolysis. Emerging evidence suggests that mitochondrial dysfunction may play a direct role in vascular calcification and the underlying pathologies including (1) impairment of mitochondrial function by mineral dysregulation i.e., calcium and phosphate overload in patients with end-stage renal disease and (2) presence of increased ROS in patients with calcific aortic valve disease, atherosclerosis, type-II diabetes and chronic kidney disease. In this review, we discuss the cause and consequence of mitochondrial dysfunction in vascular calcification and underlying pathologies; the role of autophagy and mitophagy pathways in preventing mitochondrial dysfunction during vascular calcification and finally we discuss mitochondrial ROS, DRP1, and HIF-1 as potential novel markers and therapeutic targets for maintaining mitochondrial homeostasis in vascular calcification.
Collapse
Affiliation(s)
- Kanchan Phadwal
- Functional Genetics and Development Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Midlothian, United Kingdom
| | - Christina Vrahnas
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Ian G. Ganley
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Vicky E. MacRae
- Functional Genetics and Development Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
40
|
Li J, Xu MX, Dai Z, Xu T. Mitofusion 2 Overexpression Decreased Proliferation of Human Embryonic Lung Fibroblasts in Acute Respiratory Distress Syndrome through Inhibiting RAS-RAF-1-ERK1/2 Pathway. Curr Med Sci 2021; 40:1092-1098. [PMID: 33428137 DOI: 10.1007/s11596-020-2305-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is one of the most fatal diseases worldwide. Pulmonary fibrosis occurs early in ARDS, and its severity plays a crucial role in ARDS mortality rate. Some studies suggested that fibroproliferation is an essential mechanism in ARDS. Mitofusion2 (Mfn2) overexpression plays a role in inhibiting cell proliferation. However, the role and potential mechanism of Mfn2 on the proliferation of fibroblasts is still unknown. In this study, we aimed at exploring the effect of Mfn2 on the human embryonic lung fibroblasts (HELF) and discussed its related mechanism. The HELF were treated with the Mfn2 overexpressing lentivirus (adv-Mfn2). The cell cycle was detected by flow cytometry. MTT, PCR and Western blotting were used to investigate the effect of Mfn2 on the proliferation of the HELF, collagen expression, the RAS-RAF-1-ERK1/2 pathway and the expression of cycle-related proteins (p21, p27, Rb, Raf-1, p-Raf-1, Erk1/2 and p-Erk1/2). The co-immunoprecipitation assay was used to explore the interaction between Mfn2 and Ras. The results showed that the overexpression of Mfn2 inhibited the proliferation of the HELF and induced the cell cycle arrest at the G0/G1 phase. Meanwhile, Mfn2 also inhibited the expression of collagen I, p-Erk and p-Raf-1. In addition, an interaction between Mfn2 and Ras existed in the HELF. This study suggests that the overexpression of Mfn2 can decrease the proliferation of HELF in ARDS, which was associated with the inhibition of the RAS-RAF-1-ERK1/2 pathway. The results may offer a potential therapeutic intervention for patients with ARDS.
Collapse
Affiliation(s)
- Juan Li
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mei-Xia Xu
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhong Dai
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Xu
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
41
|
Kibel A, Lukinac AM, Dambic V, Juric I, Selthofer-Relatic K. Oxidative Stress in Ischemic Heart Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6627144. [PMID: 33456670 PMCID: PMC7785350 DOI: 10.1155/2020/6627144] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
One of the novel interesting topics in the study of cardiovascular disease is the role of the oxidation system, since inflammation and oxidative stress are known to lead to cardiovascular diseases, their progression and complications. During decades of research, many complex interactions between agents of oxidative stress, oxidation, and antioxidant systems have been elucidated, and numerous important pathophysiological links to na number of disorders and diseases have been established. This review article will present the most relevant knowledge linking oxidative stress to vascular dysfunction and disease. The review will focus on the role of oxidative stress in endotheleial dysfunction, atherosclerosis, and other pathogenetic processes and mechanisms that contribute to the development of ischemic heart disease.
Collapse
Affiliation(s)
- Aleksandar Kibel
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Ana Marija Lukinac
- Department of Rheumatology and Clinical Immunology, Osijek University Hospital, Osijek, Croatia
- Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Vedran Dambic
- Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
- Department for Emergency Medical Services of the Osijek-Baranja county, Osijek, Croatia
| | - Iva Juric
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatic
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| |
Collapse
|
42
|
Gao P, Yan Z, Zhu Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Front Cell Dev Biol 2020; 8:604240. [PMID: 33240899 PMCID: PMC7680862 DOI: 10.3389/fcell.2020.604240] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are physically connected to form dedicated structural domains known as mitochondria-associated ER membranes (MAMs), which participate in fundamental biological processes, including lipid and calcium (Ca2+) homeostasis, mitochondrial dynamics and other related cellular behaviors such as autophagy, ER stress, inflammation and apoptosis. Many studies have proved the importance of MAMs in maintaining the normal function of both organelles, and the abnormal amount, structure or function of MAMs is related to the occurrence of cardiovascular diseases. Here, we review the knowledge regarding the components of MAMs according to their different functions and the specific roles of MAMs in cardiovascular physiology and pathophysiology, focusing on some highly prevalent cardiovascular diseases, including ischemia-reperfusion, diabetic cardiomyopathy, heart failure, pulmonary arterial hypertension and systemic vascular diseases. Finally, we summarize the possible mechanisms of MAM in cardiovascular diseases and put forward some obstacles in the understanding of MAM function we may encounter.
Collapse
Affiliation(s)
- Peng Gao
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
43
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
44
|
Shi Y, Luo P, Yi C, Xie J, Zhang Q. Effects of Mitofusin2 on astrocytes proliferation in vitro induced by scratch injury. Neurosci Lett 2020; 729:134969. [PMID: 32283113 DOI: 10.1016/j.neulet.2020.134969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
Abstract
Reactive astrogliosis, a common phenomenon after central nervous system (CNS) injury, exerts negative effects on neuronal repair and recovery by forming a glial scar. Mitofusin2 (Mfn2), a hyperplasia suppression gene, is a potential target of therapeutics to better control astrogliosis. To simulate traumatic injury of the CNS in vivo, an in vitro scratch injury model was established to investigate the role of Mfn2 in the proliferation of astrocytes in this study. We demonstrated that scratch-injury stimulation upregulated the expression of the markers cyclin D1, PCNA and GFAP and turned quiescent astrocytes into mitotic cells, which may have been via activation of Ras-Raf1-ERK1/2 and PI3K-Akt signaling. Meanwhile, both the gene and protein of Mfn2 were markedly inhibited. Furthermore, overexpression of Mfn2 effectively attenuated astrocyte proliferation and halted the cell cycle, concomitant with marker downregulation and wound healing suppression. Our results demonstrate that overexpression of Mfn2 inhibits the reactive astrogliosis process by blocking the Raf1-ERK1/2 and PI3K-Akt signal pathways. Therapeutic approaches that target Mfn2 may have protective effects against reactive gliosis and glia formation.
Collapse
Affiliation(s)
- Yulong Shi
- Department of Traumatic Surgery, Tong-Ji Hospital, Tongji Medical College, Jie Fang Avenue 1095, Wuhan, China; Department of Orthopedics, Xinhua Hospital of Hubei Province, Hankou District, Wuhan, China
| | - Peng Luo
- Department of Orthopedics, Xinhua Hospital of Hubei Province, Hankou District, Wuhan, China
| | - Chengla Yi
- Department of Traumatic Surgery, Tong-Ji Hospital, Tongji Medical College, Jie Fang Avenue 1095, Wuhan, China.
| | - Jie Xie
- Department of Traumatic Surgery, Tong-Ji Hospital, Tongji Medical College, Jie Fang Avenue 1095, Wuhan, China
| | - Qian Zhang
- Department of Traumatic Surgery, Tong-Ji Hospital, Tongji Medical College, Jie Fang Avenue 1095, Wuhan, China
| |
Collapse
|
45
|
Ko J, Rounds S, Lu Q. Sustained adenosine exposure causes endothelial mitochondrial dysfunction via equilibrative nucleoside transporters. Pulm Circ 2020; 10:2045894020924994. [PMID: 32523687 PMCID: PMC7235668 DOI: 10.1177/2045894020924994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a potent signaling molecule that has paradoxical effects on lung diseases. We have previously demonstrated that sustained adenosine exposure by inhibition of adenosine degradation impairs lung endothelial barrier integrity and causes intrinsic apoptosis through equilibrative nucleoside transporter1/2-mediated intracellular adenosine signaling. In this study, we further demonstrated that sustained adenosine exposure increased mitochondrial reactive oxygen species and reduced mitochondrial respiration via equilibrative nucleoside transporter1/2, but not via adenosine receptor-mediated signaling. We have previously shown that sustained adenosine exposure activates p38 and c-Jun N-terminal kinases in mitochondria. Here, we show that activation of p38 and JNK partially contributed to sustained adenosine-induced mitochondrial reactive oxygen species production. We also found that sustained adenosine exposure promoted mitochondrial fission and increased mitophagy. Finally, mitochondria-targeted antioxidants prevented sustained adenosine exposure-induced mitochondrial fission and improved cell survival. Our results suggest that inhibition of equilibrative nucleoside transporter1/2 and mitochondria-targeted antioxidants may be potential therapeutic approaches for lung diseases associated with sustained elevated adenosine.
Collapse
Affiliation(s)
- Junsuk Ko
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, USA
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
46
|
Dasgupta A, Wu D, Tian L, Xiong PY, Dunham-Snary KJ, Chen KH, Alizadeh E, Motamed M, Potus F, Hindmarch CCT, Archer SL. Mitochondria in the Pulmonary Vasculature in Health and Disease: Oxygen-Sensing, Metabolism, and Dynamics. Compr Physiol 2020; 10:713-765. [PMID: 32163206 DOI: 10.1002/cphy.c190027] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In lung vascular cells, mitochondria serve a canonical metabolic role, governing energy homeostasis. In addition, mitochondria exist in dynamic networks, which serve noncanonical functions, including regulation of redox signaling, cell cycle, apoptosis, and mitochondrial quality control. Mitochondria in pulmonary artery smooth muscle cells (PASMC) are oxygen sensors and initiate hypoxic pulmonary vasoconstriction. Acquired dysfunction of mitochondrial metabolism and dynamics contribute to a cancer-like phenotype in pulmonary arterial hypertension (PAH). Acquired mitochondrial abnormalities, such as increased pyruvate dehydrogenase kinase (PDK) and pyruvate kinase muscle isoform 2 (PKM2) expression, which increase uncoupled glycolysis (the Warburg phenomenon), are implicated in PAH. Warburg metabolism sustains energy homeostasis by the inhibition of oxidative metabolism that reduces mitochondrial apoptosis, allowing unchecked cell accumulation. Warburg metabolism is initiated by the induction of a pseudohypoxic state, in which DNA methyltransferase (DNMT)-mediated changes in redox signaling cause normoxic activation of HIF-1α and increase PDK expression. Furthermore, mitochondrial division is coordinated with nuclear division through a process called mitotic fission. Increased mitotic fission in PAH, driven by increased fission and reduced fusion favors rapid cell cycle progression and apoptosis resistance. Downregulation of the mitochondrial calcium uniporter complex (MCUC) occurs in PAH and is one potential unifying mechanism linking Warburg metabolism and mitochondrial fission. Mitochondrial metabolic and dynamic disorders combine to promote the hyperproliferative, apoptosis-resistant, phenotype in PAH PASMC, endothelial cells, and fibroblasts. Understanding the molecular mechanism regulating mitochondrial metabolism and dynamics has permitted identification of new biomarkers, nuclear and CT imaging modalities, and new therapeutic targets for PAH. © 2020 American Physiological Society. Compr Physiol 10:713-765, 2020.
Collapse
Affiliation(s)
- Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Lian Tian
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Elahe Alizadeh
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Mehras Motamed
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - François Potus
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada.,Kingston Health Sciences Centre, Kingston, Ontario, Canada.,Providence Care Hospital, Kingston, Ontario, Canada
| |
Collapse
|
47
|
Ballard A, Zeng R, Zarei A, Shao C, Cox L, Yan H, Franco A, Dorn GW, Faccio R, Veis DJ. The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca 2+-NFATc1 axis. J Biol Chem 2020; 295:6629-6640. [PMID: 32165499 DOI: 10.1074/jbc.ra119.012023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Dynamic regulation of the mitochondrial network by mitofusins (MFNs) modulates energy production, cell survival, and many intracellular signaling events, including calcium handling. However, the relative importance of specific mitochondrial functions and their dependence on MFNs vary greatly among cell types. Osteoclasts have many mitochondria, and increased mitochondrial biogenesis and oxidative phosphorylation enhance bone resorption, but little is known about the mitochondrial network or MFNs in osteoclasts. Because expression of each MFN isoform increases with osteoclastogenesis, we conditionally deleted MFN1 and MFN2 (double conditional KO (dcKO)) in murine osteoclast precursors, finding that this increased bone mass in young female mice and abolished osteoclast precursor differentiation into mature osteoclasts in vitro Defective osteoclastogenesis was reversed by overexpression of MFN2 but not MFN1; therefore, we generated mice lacking only MFN2 in osteoclasts. MFN2-deficient female mice had increased bone mass at 1 year and resistance to Receptor Activator of NF-κB Ligand (RANKL)-induced osteolysis at 8 weeks. To explore whether MFN-mediated tethering or mitophagy is important for osteoclastogenesis, we overexpressed MFN2 variants defective in either function in dcKO precursors and found that, although mitophagy was dispensable for differentiation, tethering was required. Because the master osteoclastogenic transcriptional regulator nuclear factor of activated T cells 1 (NFATc1) is calcium-regulated, we assessed calcium release from the endoplasmic reticulum and store-operated calcium entry and found that the latter was blunted in dcKO cells. Restored osteoclast differentiation by expression of intact MFN2 or the mitophagy-defective variant was associated with normalization of store-operated calcium entry and NFATc1 levels, indicating that MFN2 controls mitochondrion-endoplasmic reticulum tethering in osteoclasts.
Collapse
Affiliation(s)
- Anna Ballard
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Rong Zeng
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Allahdad Zarei
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Christine Shao
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Linda Cox
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Hui Yan
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110.,Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Antonietta Franco
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Roberta Faccio
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110.,Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110.,Shriners Hospitals for Children, St. Louis, Missouri 63110
| | - Deborah J Veis
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 .,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri 63110.,Shriners Hospitals for Children, St. Louis, Missouri 63110.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
48
|
Chen Y, Lin J, Chen J, Huang C, Zhang Z, Wang J, Wang K, Wang X. Mfn2 is involved in intervertebral disc degeneration through autophagy modulation. Osteoarthritis Cartilage 2020; 28:363-374. [PMID: 31926268 DOI: 10.1016/j.joca.2019.12.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore whether Mitofusin 2 (Mfn2) is implicated in the pathogenesis of intervertebral disc degeneration (IVDD). METHODS We detected the protein content of Mfn2 in degenerated human nucleus pulposus (NP) tissues and investigated the effects of Mfn2 knockdown and Mfn2 overexpression on rat nucleus pulposus cells (NPCs) under oxidative stress by using a range of biological techniques. Afterwards, we confirmed the effects of Mfn2 overexpression on NPCs in vivo and further evaluated the therapeutic action of adenovirus (AV)-Mfn2 injection in a rodent IVDD model. RESULTS Mfn2 expression was decreased in human NP tissues during IVDD. Mfn2 knockdown aggravated the impairment of autophagic flux, mitochondrial dysfunction and cellular apoptosis in rat NPCs after Tert-Butyl hydroperoxide (TBHP) treatment, while Mfn2 overexpression significantly reversed these alterations. Besides, Mfn2 overexpression promoted an ROS (reactive oxygen species)-dependent mitophagy via PINK1 (PTEN-induced putative kinase 1)/Parkin pathway in TBHP-treated NPCs. Inhibition of autophagy with chloroquine (CQ) disordered the protective effects of Mfn2 overexpression on NPCs. Furthermore, Mfn2 overexpression in discs by AV-Mfn2 injection ameliorated the development of IVDD in rats. CONCLUSION Mfn2 repression is deeply involved in the pathogenesis of IVDD with its impairment on autophagy, leading to the aggravation of mitochondrial dysfunction and apoptotic cell death, which ought to be a promising therapeutic target for IVDD.
Collapse
Affiliation(s)
- Y Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - J Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - J Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - C Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Z Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - J Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - K Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - X Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
49
|
Abstract
Mitochondria regulate major aspects of cell function by producing ATP, contributing to Ca2+ signaling, influencing redox potential, and controlling levels of reactive oxygen species. In this review, we will discuss recent findings that illustrate how mitochondrial respiration, Ca2+ handling, and production of reactive oxygen species affect vascular smooth muscle cell function during neointima formation. We will review mitochondrial fission/fusion as fundamental mechanisms for smooth muscle proliferation, migration, and metabolism and examine the role of mitochondrial mobility in cell migration. In addition, we will summarize novel aspects by which mitochondria regulate apoptosis.
Collapse
Affiliation(s)
- Isabella M Grumbach
- From the Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine (I.M.G., E.K.N.), University of Iowa, Iowa City.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center (I.M.G.), University of Iowa, Iowa City.,Iowa City VA Health Care System (I.M.G.)
| | - Emily K Nguyen
- From the Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine (I.M.G., E.K.N.), University of Iowa, Iowa City
| |
Collapse
|
50
|
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol 2019; 16:33-55. [PMID: 30177752 DOI: 10.1038/s41569-018-0074-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that mitochondrial dysfunction has a major role in the pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts have been focused on the development of agents that specifically target mitochondria for the treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs specifically conceived to modulate mitochondrial functions are currently available for the clinical management of cardiovascular disease. In this Review, we discuss the therapeutic potential of targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have restrained the development of mitochondria-targeting agents thus far, and identify strategies that might empower the full clinical potential of this approach.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.,Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France. .,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|