1
|
Borile G, Zaglia T, E. Lehnart S, Mongillo M. Multiphoton Imaging of Ca 2+ Instability in Acute Myocardial Slices from a RyR2R2474S Murine Model of Catecholaminergic Polymorphic Ventricular Tachycardia. J Clin Med 2021; 10:jcm10132821. [PMID: 34206855 PMCID: PMC8269190 DOI: 10.3390/jcm10132821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a familial stress-induced arrhythmia syndrome, mostly caused by mutations in Ryanodine receptor 2 (RyR2), the sarcoplasmic reticulum (SR) Ca2+ release channel in cardiomyocytes. Pathogenetic mutations lead to gain of function in the channel, causing arrhythmias by promoting diastolic spontaneous Ca2+ release (SCR) from the SR and delayed afterdepolarizations. While the study of Ca2+ dynamics in single cells from murine CPVT models has increased our understanding of the disease pathogenesis, questions remain on the mechanisms triggering the lethal arrhythmias at tissue level. Here, we combined subcellular analysis of Ca2+ signals in isolated cardiomyocytes and in acute thick ventricular slices of RyR2R2474S knock-in mice, electrically paced at different rates (1–5 Hz), to identify arrhythmogenic Ca2+ dynamics, from the sub- to the multicellular perspective. In both models, RyR2R2474S cardiomyocytes had increased propensity to develop SCR upon adrenergic stimulation, which manifested, in the slices, with Ca2+ alternans and synchronous Ca2+ release events in neighboring cardiomyocytes. Analysis of Ca2+ dynamics in multiple cells in the tissue suggests that SCRs beget SCRs in contiguous cells, overcoming the protective electrotonic myocardial coupling, and potentially generating arrhythmia triggering foci. We suggest that intercellular interactions may underscore arrhythmic propensity in CPVT hearts with ‘leaky’ RyR2.
Collapse
Affiliation(s)
- Giulia Borile
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.B.); (T.Z.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.B.); (T.Z.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Stephan E. Lehnart
- Heart Research Heart Research Center Göttingen, Cellular Biophysics and Translational Cardi-Ology Section, Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37073 Göttingen, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37073 Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.B.); (T.Z.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-7923229; Fax: +39-049-7923250
| |
Collapse
|
2
|
Mekies LN, Regev D, Eisen B, Fernandez‐Gracia J, Baskin P, Ben Jehuda R, Shulman R, Reiter I, Palty R, Arad M, Gottlieb E, Binah O. Depressed β-adrenergic inotropic responsiveness and intracellular calcium handling abnormalities in Duchenne Muscular Dystrophy patients' induced pluripotent stem cell-derived cardiomyocytes. J Cell Mol Med 2021; 25:3922-3934. [PMID: 33619882 PMCID: PMC8051742 DOI: 10.1111/jcmm.16341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is an X-linked disease affecting male and rarely adult heterozygous females, resulting in death by the late 20s to early 30s. Previous studies reported depressed left ventricular function in DMD patients which may result from deranged intracellular Ca2+ -handling. To decipher the mechanism(s) underlying the depressed LV function, we tested the hypothesis that iPSC-CMs generated from DMD patients feature blunted positive inotropic response to β-adrenergic stimulation. To test the hypothesis, [Ca2+ ]i transients and contractions were recorded from healthy and DMD-CMs. While in healthy CMs (HC) isoproterenol caused a prominent positive inotropic effect, DMD-CMs displayed a blunted inotropic response. Next, we tested the functionality of the sarcoplasmic reticulum (SR) by measuring caffeine-induced Ca2+ release. In contrast to HC, DMD-CMs exhibited reduced caffeine-induced Ca2+ signal amplitude and recovery time. In support of the depleted SR Ca2+ stores hypothesis, in DMD-CMs the negative inotropic effects of ryanodine and cyclopiazonic acid were smaller than in HC. RNA-seq analyses demonstrated that in DMD CMs the RNA-expression levels of specific subunits of the L-type calcium channel, the β1-adrenergic receptor (ADRβ1) and adenylate cyclase were down-regulated by 3.5-, 2.8- and 3-fold, respectively, which collectively contribute to the depressed β-adrenergic responsiveness.
Collapse
MESH Headings
- Adrenergic Agents/pharmacology
- Adult
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Differentiation
- Female
- Gene Expression Regulation
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Male
- Middle Aged
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA-Seq
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Sarcoplasmic Reticulum/drug effects
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/pathology
Collapse
Affiliation(s)
- Lucy N. Mekies
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Danielle Regev
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Binyamin Eisen
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Jonatan Fernandez‐Gracia
- Department of Cell Biology and Cancer ScienceRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Polina Baskin
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ronen Ben Jehuda
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Rita Shulman
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Irina Reiter
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Raz Palty
- Department of BiochemistryRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Michael Arad
- Leviev Heart CenterSheba Medical CenterRamat GanIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer ScienceRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ofer Binah
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
3
|
Hallas T, Eisen B, Shemer Y, Ben Jehuda R, Mekies LN, Naor S, Schick R, Eliyahu S, Reiter I, Vlodavsky E, Katz YS, Õunap K, Lorber A, Rodenburg R, Mandel H, Gherghiceanu M, Binah O. Investigating the cardiac pathology of SCO2-mediated hypertrophic cardiomyopathy using patients induced pluripotent stem cell-derived cardiomyocytes. J Cell Mol Med 2017; 22:913-925. [PMID: 29193756 PMCID: PMC5783844 DOI: 10.1111/jcmm.13392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/11/2017] [Indexed: 01/13/2023] Open
Abstract
Mutations in SCO2 are among the most common causes of COX deficiency, resulting in reduced mitochondrial oxidative ATP production capacity, often leading to hypertrophic cardiomyopathy (HCM). To date, none of the recent pertaining reports provide deep understanding of the SCO2 disease pathophysiology. To investigate the cardiac pathology of the disease, we were the first to generate induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) from SCO2-mutated patients. For iPSC generation, we reprogrammed skin fibroblasts from two SCO2 patients and healthy controls. The first patient was a compound heterozygote to the common E140K mutation, and the second was homozygote for the less common G193S mutation. iPSC were differentiated into cardiomyocytes through embryoid body (EB) formation. To test the hypothesis that the SCO2 mutation is associated with mitochondrial abnormalities, and intracellular Ca2+ -overload resulting in functional derangements and arrhythmias, we investigated in SCO2-mutated iPSC-CMs (compared to control cardiomyocytes): (i) the ultrastructural changes; (ii) the inotropic responsiveness to β-adrenergic stimulation, increased [Ca2+ ]o and angiotensin-II (AT-II); and (iii) the Beat Rate Variability (BRV) characteristics. In support of the hypothesis, we found in the mutated iPSC-CMs major ultrastructural abnormalities and markedly attenuated response to the inotropic interventions and caffeine, as well as delayed afterdepolarizations (DADs) and increased BRV, suggesting impaired SR Ca2+ handling due to attenuated SERCA activity caused by ATP shortage. Our novel results show that iPSC-CMs are useful for investigating the pathophysiological mechanisms underlying the SCO2 mutation syndrome.
Collapse
Affiliation(s)
- Tova Hallas
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ronen Ben Jehuda
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel.,Department of Biotechnology, Technion, Haifa, Israel
| | - Lucy N Mekies
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shulamit Naor
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Revital Schick
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sivan Eliyahu
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Irina Reiter
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Eugene Vlodavsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Yeshayahu Shai Katz
- Rappaport Faculty of Medicine, Technion, Haifa, Israel.,Department of Anesthesiology, Rambam Health Care Campus, Haifa, Israel
| | - Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Avraham Lorber
- Rappaport Faculty of Medicine, Technion, Haifa, Israel.,Department of Pediatric Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Disorders, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hanna Mandel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel.,Metabolic Unit, Department of Pediatrics, Rambam Health Care Campus, Haifa, Israel
| | | | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Technion, Haifa, Israel.,The Rappaport Institute, Technion, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
4
|
Campbell AS, Johnstone SR, Baillie GS, Smith G. β-Adrenergic modulation of myocardial conduction velocity: Connexins vs. sodium current. J Mol Cell Cardiol 2014; 77:147-54. [DOI: 10.1016/j.yjmcc.2014.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/15/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022]
|
5
|
Åström-Olsson K, Li L, Olofsson CS, Borén J, Öhlin H, Grip L. Impact of hypoxia, simulated ischemia and reperfusion in HL-1 cells on the expression of FKBP12/FKBP12.6 and intracellular calcium dynamics. Biochem Biophys Res Commun 2012; 422:732-8. [PMID: 22618235 DOI: 10.1016/j.bbrc.2012.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022]
Abstract
AIMS To establish a cardiac cell culture model for simulated ischemia and reperfusion and in this model investigate the impact of simulated ischemia and reperfusion on expression of the calcium handling proteins FKBP12 and FKBP12.6, and intracellular calcium dynamics. METHODS HL-1 cell cultures were exposed to normoxia (as control), hypoxia, simulated ischemia (HEDA) or HEDA+reactive oxygen species (ROS) for up to 24 h and after HEDA, with or without ROS, followed or not by simulated reperfusion (REPH) for 6 h. Viability was analyzed with a trypan blue exclusion method. Cell lysates were analyzed with real-time PCR and Western blot (WB) for FKBP12 and FKBP12.6. Intracellular Ca(2+)measurements were performed using dual-wavelength ratio imaging in fura-2 loaded cells. RESULTS A time-dependent drop in viability was shown after HEDA (P<0.001). Viability was not further influenced by addition of ROS or REPH. The general patterns of FKBP12 and FKBP12.6 mRNA expression showed upregulation after hypoxia, downregulation after ischemia and normalization after reperfusion, which was partially attenuated if ROS was added during HEDA. The protein contents were unaffected after hypoxia, tended to increase after ischemia and, for FKBP12.6, a further increase after reperfusion was shown. Hypoxia or HEDA, with or without REPH, resulted in a decreased amplitude of the Ca(2+) peak in response to caffeine. In addition, cells subjected to HEDA for 3 h or HEDA for 3 h followed by 6 h of REPH displayed irregular Ca(2+) oscillations with a decreased frequency. CONCLUSION A threshold for cell survival with respect to duration of ischemia was established in our cell line model. Furthermore, we could demonstrate disturbances of calcium handling in the sarcoplasmic reticulum as well as alterations in the expressions of the calcium handling proteins FKBP12 and FKBP12.6, why this model may be suitable for further studies on ischemia and reperfusion with respect to calcium handling of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Karin Åström-Olsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
6
|
Ke J, Xiao X, Chen F, He L, Dai MS, Wang XP, Chen B, Chen M, Zhang CT. Function of the CaMKII-ryanodine receptor signaling pathway in rabbits with left ventricular hypertrophy and triggered ventricular arrhythmia. World J Emerg Med 2012; 3:65-70. [PMID: 25215041 DOI: 10.5847/wjem.j.issn.1920-8642.2012.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Calcium calmodulin-dependent kinase II (CaMKII) can be more active in patients with left ventricular hypertrophy (LVH), which in turn causes phosphorylation of ryanodine receptors, resulting in inactivation and the instability of intracellular calcium homeostasis. The present study aimed to determine the effect of CaMKII-ryanodine receptor pathway signaling in rabbits with left ventricular hypertrophy and triggered ventricular arrhythmia. METHODS Forty New Zealand rabbits were randomized into four groups (10 per group): sham group, LVH group, KN-93 group (LVH+KN-93), and ryanodine group (LVH+ryanodine). Rabbits in the LVH, KN-93, and ryanodine groups were used to establish a left ventricular hypertrophy model by the coarctation of the abdominal aorta, while those in the sham group did not undergo the coarctation. After eight weeks, action potentials (APs) were recorded simultaneously in the endocardium and epicardium, and a transmural electrocardiogram (ECG) was also recorded in the rabbit left ventricular wedge model. Drugs were administered to the animals in the KN-93 and ryanodine groups, and the frequency of triggered APs and ventricular tachycardia was recorded after the rabbits were given isoprenaline (1 μmol/L) and high-frequency stimulation. RESULTS The frequency (animals/group) of triggered APs was 0/10 in the sham group, 10/10 in the LVH group, 4/10 in the KN-93 group, and 1/10 in the ryanodine group. The frequencies of ventricular tachycardia were 0/10, 9/10, 3/10, and 1/10, respectively. The frequencies of polymorphic ventricular tachycardia or ventricular fibrillation were 0/10, 7/10, 2/10, and 1/10, respectively. The frequencies of triggered ventricular arrhythmias in the KN-93 and ryanodine groups were much lower than those in the LVH group (P<0.05). CONCLUSIONS KN-93 and ryanodine can effectively reduce the occurrence of triggered ventricular arrhythmia in rabbits with LVH. The CaMKII-ryanodine signaling pathway can be used as a new means of treating ventricular arrhythmia.
Collapse
Affiliation(s)
- Jun Ke
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Xing Xiao
- Integrated Department, Tongji Hospital Affiliated to Tongji Medical College of Huazhong Science Technology University, Wuhan 430030, China
| | - Feng Chen
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Li He
- Department of Cardiology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong Science Technology University, Wuhan 430030, China
| | - Mu-Sen Dai
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Xiao-Ping Wang
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Bing Chen
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Min Chen
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Cun-Tai Zhang
- Integrated Department, Tongji Hospital Affiliated to Tongji Medical College of Huazhong Science Technology University, Wuhan 430030, China
| |
Collapse
|
7
|
Bovo E, Mazurek SR, Blatter LA, Zima AV. Regulation of sarcoplasmic reticulum Ca²⁺ leak by cytosolic Ca²⁺ in rabbit ventricular myocytes. J Physiol 2011; 589:6039-50. [PMID: 21986204 PMCID: PMC3286684 DOI: 10.1113/jphysiol.2011.214171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/05/2011] [Indexed: 01/01/2023] Open
Abstract
Sarcoplasmic reticulum (SR) Ca(2+) leak determines SR Ca(2+) content and, therefore, the amplitude of global Ca(2+) transients in ventricular myocytes. However, it remains unresolved to what extent Ca(2+) leak can be modulated by cytosolic [Ca(2+)] ([Ca(2+)](i)). Here, we studied the effects of [Ca(2+)](i) on SR Ca(2+) leak in permeabilized rabbit ventricular myocytes. Using confocal microscopy we monitored SR Ca(2+) leak as the change in [Ca(2+)](SR) (with Fluo-5N) after complete SERCA inhibition with thapsigargin (10 μm). Increasing [Ca(2+)](i) from 150 to 250 nM significantly increased SR Ca(2+) leak over the entire range of [Ca(2+)](SR). This increase was associated with an augmentation of both Ca(2+) spark- and non-spark-mediated Ca(2+) leak. Further increasing [Ca(2+)](i) to 350 nM led to rapid [Ca](2+)](SR) depletion due to the occurrence of Ca(2+) waves. The augmentation of SR Ca(2+) leak by high [Ca(2+)](i) was insensitive to inhibition of Ca(2+)-calmodulin-dependent protein kinase II. In contrast, lowering [Ca(2+)](i) to 50 nM markedly decreased SR Ca(2+) leak rate and nearly abolished Ca(2+) sparks. When the ryanodine receptor (RyR) was completely inhibited with ruthenium red (50 μM), changes in [Ca(2+)](i) between 50 and 350 nM did not produce any significant effect on SR Ca(2+) leak, indicating that [Ca(2+)](i) alters SR Ca(2+) leak solely by regulating RyR activity. In summary, [Ca(2+)](i) in the range of 50-350 nM has a significant effect on SR Ca(2+) leak rate mainly via direct regulation of RyR activity. As RyR activity depends highly on [Ca(2+)](i) and [Ca(2+)](SR), SR Ca(2+) leak remains relatively constant during the declining phase of the Ca(2+) transient when [Ca(2+)](SR) and [Ca(2+)](i) change in opposite directions.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
8
|
Shan J, Kushnir A, Betzenhauser MJ, Reiken S, Li J, Lehnart SE, Lindegger N, Mongillo M, Mohler PJ, Marks AR. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice. J Clin Invest 2010; 120:4388-98. [PMID: 21099118 DOI: 10.1172/jci32726] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/29/2010] [Indexed: 01/08/2023] Open
Abstract
During the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to β-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine receptor/calcium release channel (RyR2) required for muscle contraction. PKA phosphorylation of RyR2 enhances channel activity by sensitizing the channel to cytosolic calcium (Ca²+). Here, we found that mice harboring RyR2 channels that cannot be PKA phosphorylated (referred to herein as RyR2-S2808A+/+ mice) exhibited blunted heart rate and cardiac contractile responses to catecholamines (isoproterenol). The isoproterenol-induced enhancement of ventricular myocyte Ca²+ transients and fractional shortening (contraction) and the spontaneous beating rate of sinoatrial nodal cells were all blunted in RyR2-S2808A+/+ mice. The blunted cardiac response to catecholamines in RyR2-S2808A+/+ mice resulted in impaired exercise capacity. RyR2-S2808A+/+ mice were protected against chronic catecholaminergic-induced cardiac dysfunction. These studies identify what we believe to be new roles for PKA phosphorylation of RyR2 in both the heart rate and contractile responses to acute catecholaminergic stimulation.
Collapse
Affiliation(s)
- Jian Shan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nichols CB, Rossow CF, Navedo MF, Westenbroek RE, Catterall WA, Santana LF, McKnight GS. Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res 2010; 107:747-56. [PMID: 20671242 DOI: 10.1161/circresaha.109.216127] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Sympathetic stimulation of the heart increases the force of contraction and rate of ventricular relaxation by triggering protein kinase (PK)A-dependent phosphorylation of proteins that regulate intracellular calcium. We hypothesized that scaffolding of cAMP signaling complexes by AKAP5 is required for efficient sympathetic stimulation of calcium transients. OBJECTIVE We examined the function of AKAP5 in the β-adrenergic signaling cascade. METHODS AND RESULTS We used calcium imaging and electrophysiology to examine the sympathetic response of cardiomyocytes isolated from wild type and AKAP5 mutant animals. The β-adrenergic regulation of calcium transients and the phosphorylation of substrates involved in calcium handling were disrupted in AKAP5 knockout cardiomyocytes. The scaffolding protein, AKAP5 (also called AKAP150/79), targets adenylyl cyclase, PKA, and calcineurin to a caveolin 3-associated complex in ventricular myocytes that also binds a unique subpopulation of Ca(v)1.2 L-type calcium channels. Only the caveolin 3-associated Ca(v)1.2 channels are phosphorylated by PKA in response to sympathetic stimulation in wild-type heart. However, in the AKAP5 knockout heart, the organization of this signaling complex is disrupted, adenylyl cyclase 5/6 no longer associates with caveolin 3 in the T-tubules, and noncaveolin 3-associated calcium channels become phosphorylated after β-adrenergic stimulation, although this does not lead to an enhanced calcium transient. The signaling domain created by AKAP5 is also essential for the PKA-dependent phosphorylation of ryanodine receptors and phospholamban. CONCLUSIONS These findings identify an AKAP5-organized signaling module that is associated with caveolin 3 and is essential for sympathetic stimulation of the calcium transient in adult heart cells.
Collapse
Affiliation(s)
- C Blake Nichols
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Congestive heart failure is a leading cause of morbidity and mortality. Congestive heart failure is marked by atrial and ventricular enlargements and reduced cardiac contractility and an association with an increased incidence of atrial and ventricular arrhythmias and sudden cardiac death. Dysfunctional ion channel function is one of the major underlying mechanisms of the reduced contractility and arrhythmias. In this review, we explore the utility of ion channels, transporters, and pumps as targets for the treatment of heart failure, focusing predominantly on the treatment for reduced contractility and arrhythmias.
Collapse
|
11
|
Ryanodine receptor studies using genetically engineered mice. FEBS Lett 2010; 584:1956-65. [PMID: 20214899 DOI: 10.1016/j.febslet.2010.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 11/20/2022]
Abstract
Ryanodine receptors (RyR) regulate intracellular Ca(2+) release in many cell types and have been implicated in a number of inherited human diseases. Over the past 15 years genetically engineered mouse models have been developed to elucidate the role that RyRs play in physiology and pathophysiology. To date these models have implicated RyRs in fundamental biological processes including excitation-contraction coupling and long term plasticity as well as diseases including malignant hyperthermia, cardiac arrhythmias, heart failure, and seizures. In this review we summarize the RyR mouse models and how they have enhanced our understanding of the RyR channels and their roles in cellular physiology and disease.
Collapse
|
12
|
Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 2010; 47:297-314. [PMID: 20189643 DOI: 10.1016/j.ceca.2010.02.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/17/2022]
Abstract
Homeostatic control of the endoplasmic reticulum (ER) both as the site for protein handling (synthesis, folding, trafficking, disaggregation and degradation) and as a Ca2+ store is of crucial importance for correct functioning of the cell. Disturbance of the homeostatic control mechanisms leads to a vast array of severe pathologies. The Ca2+ content of the ER is a dynamic equilibrium between active uptake via Ca2+ pumps and Ca2+ release by a number of highly regulated Ca2+-release channels. Regulation of the Ca2+-release channels is very complex and several mechanisms are still poorly understood or controversial. There is increasing evidence that a number of unrelated proteins, either by themselves or in association with other Ca2+ channels, can provide additional Ca2+-leak pathways. The ER is a dynamic organelle and changes in its size and components have been described, either as a result of (de)differentiation processes affecting the secretory capacity of cells, or as a result of adaptation mechanisms to diverse stress conditions such as the unfolded protein response and autophagy. In this review we want to give an overview of the current knowledge of the (short-term) regulatory mechanisms that affect Ca2+-release and Ca2+-leak pathways and of the (long-term) adaptations in ER size and capacity. Understanding of the consequences of these mechanisms for cellular Ca2+ signaling could provide a huge therapeutic potential.
Collapse
|
13
|
An antidote for calcium leak: Targeting molecular arrhythmia mechanisms. J Mol Cell Cardiol 2010; 48:279-82. [DOI: 10.1016/j.yjmcc.2009.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/10/2009] [Accepted: 11/10/2009] [Indexed: 11/18/2022]
|
14
|
Lompré AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR. Ca2+ cycling and new therapeutic approaches for heart failure. Circulation 2010; 121:822-30. [PMID: 20124124 DOI: 10.1161/circulationaha.109.890954] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anne-Marie Lompré
- INSERM UMRS956/Université Pierre et Marie Curie, Faculté de Médecine, 91 Boulevard de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
15
|
Beta-adrenergic signaling accelerates and synchronizes cardiac ryanodine receptor response to a single L-type Ca2+ channel. Proc Natl Acad Sci U S A 2009; 106:18028-33. [PMID: 19815510 DOI: 10.1073/pnas.0906560106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As the most prototypical G protein-coupled receptor, beta-adrenergic receptor (betaAR) regulates the pace and strength of heart beating by enhancing and synchronizing L-type channel (LCC) Ca(2+) influx, which in turn elicits greater sarcoplasmic reticulum (SR) Ca(2+) release flux via ryanodine receptors (RyRs). However, whether and how betaAR-protein kinase A (PKA) signaling directly modulates RyR function remains elusive and highly controversial. By using unique single-channel Ca(2+) imaging technology, we measured the response of a single RyR Ca(2+) release unit, in the form of a Ca(2+) spark, to its native trigger, the Ca(2+) sparklet from a single LCC. We found that acute application of the selective betaAR agonist isoproterenol (1 microM, < or = 20 min) increased triggered spark amplitude in an LCC unitary current-independent manner. The increased ratio of Ca(2+) release flux underlying a Ca(2+) spark to SR Ca(2+) content indicated that betaAR stimulation helps to recruit additional RyRs in synchrony. Quantification of sparklet-spark kinetics showed that betaAR stimulation synchronized the stochastic latency and increased the fidelity (i.e., chance of hit) of LCC-RyR intermolecular signaling. The RyR modulation was independent of the increased SR Ca(2+) content. The PKA antagonists Rp-8-CPT-cAMP (100 microM) and H89 (10 microM) both eliminated these effects, indicating that betaAR acutely modulates RyR activation via the PKA pathway. These results demonstrate unequivocally that RyR activation by a single LCC is accelerated and synchronized during betaAR stimulation. This molecular mechanism of sympathetic regulation will permit more fundamental studies of altered betaAR effects in cardiovascular diseases.
Collapse
|
16
|
What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis? J Mol Cell Cardiol 2009; 46:474-81. [DOI: 10.1016/j.yjmcc.2008.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/28/2008] [Accepted: 12/03/2008] [Indexed: 11/22/2022]
|
17
|
Terentyev D, Belevych AE, Terentyeva R, Martin MM, Malana GE, Kuhn DE, Abdellatif M, Feldman DS, Elton TS, Györke S. miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 2009; 104:514-21. [PMID: 19131648 DOI: 10.1161/circresaha.108.181651] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs are small endogenous noncoding RNAs that regulate protein expression by hybridization to imprecise complementary sequences of target mRNAs. Changes in abundance of muscle-specific microRNA, miR-1, have been implicated in cardiac disease, including arrhythmia and heart failure. However, the specific molecular targets and cellular mechanisms involved in the action of miR-1 in the heart are only beginning to emerge. In this study we investigated the effects of increased expression of miR-1 on excitation-contraction coupling and Ca(2+) cycling in rat ventricular myocytes using methods of electrophysiology, Ca(2+) imaging and quantitative immunoblotting. Adenoviral-mediated overexpression of miR-1 in myocytes resulted in a marked increase in the amplitude of the inward Ca(2+) current, flattening of Ca(2+) transients voltage dependence, and enhanced frequency of spontaneous Ca(2+) sparks while reducing the sarcoplasmic reticulum Ca(2+) content as compared with control. In the presence of isoproterenol, rhythmically paced, miR-1-overexpressing myocytes exhibited spontaneous arrhythmogenic oscillations of intracellular Ca(2+), events that occurred rarely in control myocytes under the same conditions. The effects of miR-1 were completely reversed by the CaMKII inhibitor KN93. Although phosphorylation of phospholamban was not altered, miR-1 overexpression increased phosphorylation of the ryanodine receptor (RyR2) at S2814 (Ca(2+)/calmodulin-dependent protein kinase) but not at S2808 (protein kinase A). Overexpression of miR-1 was accompanied by a selective decrease in expression of the protein phosphatase PP2A regulatory subunit B56alpha involved in PP2A targeting to specialized subcellular domains. We conclude that miR-1 enhances cardiac excitation-contraction coupling by selectively increasing phosphorylation of the L-type and RyR2 channels via disrupting localization of PP2A activity to these channels.
Collapse
Affiliation(s)
- Dmitry Terentyev
- Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Cook SA, Clerk A, Sugden PH. Are transgenic mice the 'alkahest' to understanding myocardial hypertrophy and failure? J Mol Cell Cardiol 2008; 46:118-29. [PMID: 19071133 DOI: 10.1016/j.yjmcc.2008.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/21/2008] [Accepted: 11/05/2008] [Indexed: 01/24/2023]
Abstract
Murine transgenesis using cardioselective promoters has become increasingly common in studies of cardiac hypertrophy and heart failure, with expression mediated by pronuclear microinjection being the commonest format. Without wishing to decry their usefulness, in our view, such studies are not necessarily as unambiguous as sometimes portrayed and clarity is not always their consequence. We describe broadly the types of approach undertaken in the heart and point out some of the drawbacks. We provide three arbitrarily-chosen examples where, in spite of a number of often-independent studies, no consensus has yet been achieved. These include glycogen synthase kinase 3, the extracellular signal-regulated kinase pathway and the ryanodine receptor 2. We believe that the transgenic approach should not be viewed in an empyreal light and, depending on the questions asked, we suggest that other experimental systems provide equal (or even more) valuable outcomes.
Collapse
Affiliation(s)
- Stuart A Cook
- NHLI Division, Faculty of Medicine, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
20
|
Yano M, Yamamoto T, Kobayashi S, Ikeda Y, Matsuzaki M. Defective Ca2+ cycling as a key pathogenic mechanism of heart failure. Circ J 2008; 72 Suppl A:A22-30. [PMID: 18772523 DOI: 10.1253/circj.cj-08-0070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structural and functional alterations in the Ca(2+) regulatory proteins present in the sarcoplasmic reticulum (SR) have recently been shown to play a crucial role in the pathogenesis of heart failure (HF), and lethal arrhythmia as well. Chronic activation of the sympathetic nervous system induces abnormalities in both the function and structure of these proteins. For instance, the diastolic Ca(2+) leak through the SR Ca(2+) release channel (ryanodine receptor) reduces the SR Ca(2+) content, inducing contractile dysfunction. Moreover, the Ca(2+) leak provides a substrate for delayed after depolarization that leads to lethal arrhythmia. There is a considerable body of evidence regarding the role of Ca(2+) cycling abnormality in HF.
Collapse
Affiliation(s)
- Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | | | | | | | | |
Collapse
|
21
|
Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 2008; 118:2230-45. [PMID: 18483626 DOI: 10.1172/jci35346] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/09/2008] [Indexed: 11/17/2022] Open
Abstract
The Ca2+ release channel ryanodine receptor 2 (RyR2) is required for excitation-contraction coupling in the heart and is also present in the brain. Mutations in RyR2 have been linked to exercise-induced sudden cardiac death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). CPVT-associated RyR2 mutations result in "leaky" RyR2 channels due to the decreased binding of the calstabin2 (FKBP12.6) subunit, which stabilizes the closed state of the channel. We found that mice heterozygous for the R2474S mutation in Ryr2 (Ryr2-R2474S mice) exhibited spontaneous generalized tonic-clonic seizures (which occurred in the absence of cardiac arrhythmias), exercise-induced ventricular arrhythmias, and sudden cardiac death. Treatment with a novel RyR2-specific compound (S107) that enhances the binding of calstabin2 to the mutant Ryr2-R2474S channel inhibited the channel leak and prevented cardiac arrhythmias and raised the seizure threshold. Thus, CPVT-associated mutant leaky Ryr2-R2474S channels in the brain can cause seizures in mice, independent of cardiac arrhythmias. Based on these data, we propose that CPVT is a combined neurocardiac disorder in which leaky RyR2 channels in the brain cause epilepsy, and the same leaky channels in the heart cause exercise-induced sudden cardiac death.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bridge JHB, Savio-Galimberti E. What are the consequences of phosphorylation and hyperphosphorylation of ryanodine receptors in normal and failing heart? Circ Res 2008; 102:995-7. [PMID: 18467636 DOI: 10.1161/circresaha.108.176172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
MacDonnell SM, García-Rivas G, Scherman JA, Kubo H, Chen X, Valdivia H, Houser SR. Adrenergic regulation of cardiac contractility does not involve phosphorylation of the cardiac ryanodine receptor at serine 2808. Circ Res 2008; 102:e65-72. [PMID: 18388322 DOI: 10.1161/circresaha.108.174722] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sympathetic nervous system is a critical regulator of cardiac function (heart rate and contractility) in health and disease. Sympathetic nervous system agonists bind to adrenergic receptors that are known to activate protein kinase A, which phosphorylates target proteins and enhances cardiac performance. Recently, it has been proposed that protein kinase A-mediated phosphorylation of the cardiac ryanodine receptor (the Ca(2+) release channel of the sarcoplasmic reticulum at a single residue, Ser2808) is a critical component of sympathetic nervous system regulation of cardiac function. This is a highly controversial hypothesis that has not been confirmed by several independent laboratories. The present study used a genetically modified mouse in which Ser2808 was replaced by alanine (S2808A) to prevent phosphorylation at this site. The effects of isoproterenol (a sympathetic agonist) on ventricular performance were compared in wild-type and S2808A hearts, both in vivo and in isolated hearts. Isoproterenol effects on L-type Ca(2+) current (I(CaL)), sarcoplasmic reticulum Ca(2+) release, and excitation-contraction coupling gain were also measured. Our results showed that isoproterenol caused significant increases in cardiac function, both in vivo and in isolated hearts, and there were no differences in these contractile effects in wild-type and S2808A hearts. Isoproterenol increased I(CaL), the amplitude of the Ca(2+) transient and excitation-contraction coupling gain, but, again, there were no significant differences between wild-type and S2808A myocytes. These results show that protein kinase A phosphorylation of ryanodine receptor Ser2808 does not have a major role in sympathetic nervous system regulation of normal cardiac function.
Collapse
Affiliation(s)
- Scott M MacDonnell
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Abnormalities in heart rhythm continue to cause high rates of illness and death. Better treatment could be provided by solving two main challenges: the early identification of patients who are at risk, and the characterization of molecular pathways that culminate in arrhythmias. By analysing mechanisms that increase susceptibility to arrhythmia in individuals with genetic syndromes, it might be possible to improve current therapies and to develop new ways to treat and prevent common arrhythmias.
Collapse
|
25
|
Zhu M, Gach AA, Liu G, Xu X, Lim CC, Zhang JX, Mao L, Chuprun K, Koch WJ, Liao R, Koren G, Blaxall BC, Mende U. Enhanced calcium cycling and contractile function in transgenic hearts expressing constitutively active G alpha o* protein. Am J Physiol Heart Circ Physiol 2008; 294:H1335-47. [PMID: 18192223 DOI: 10.1152/ajpheart.00584.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In contrast to the other heterotrimeric GTP-binding proteins (G proteins) Gs and Gi, the functional role of G o is still poorly defined. To investigate the role of G alpha o in the heart, we generated transgenic mice with cardiac-specific expression of a constitutively active form of G alpha o1* (G alpha o*), the predominant G alpha o isoform in the heart. G alpha o expression was increased 3- to 15-fold in mice from 5 independent lines, all of which had a normal life span and no gross cardiac morphological abnormalities. We demonstrate enhanced contractile function in G alpha o* transgenic mice in vivo, along with increased L-type Ca2+ channel current density, calcium transients, and cell shortening in ventricular G alpha o*-expressing myocytes compared with wild-type controls. These changes were evident at baseline and maintained after isoproterenol stimulation. Expression levels of all major Ca2+ handling proteins were largely unchanged, except for a modest reduction in Na+/Ca2+ exchanger in transgenic ventricles. In contrast, phosphorylation of the ryanodine receptor and phospholamban at known PKA sites was increased 1.6- and 1.9-fold, respectively, in G alpha o* ventricles. Density and affinity of beta-adrenoceptors, cAMP levels, and PKA activity were comparable in G alpha o* and wild-type myocytes, but protein phosphatase 1 activity was reduced upon G alpha o* expression, particularly in the vicinity of the ryanodine receptor. We conclude that G alpha o* exerts a positive effect on Ca2+ cycling and contractile function. Alterations in protein phosphatase 1 activity rather than PKA-mediated phosphorylation might be involved in hyperphosphorylation of key Ca2+ handling proteins in hearts with constitutive G alpha o activation.
Collapse
Affiliation(s)
- Ming Zhu
- Division of Cardiology, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|