1
|
Dougherty PG, Karpurapu M, Koley A, Lukowski JK, Qian Z, Nirujogi TS, Rusu L, Chung S, Hummon AB, Li HW, Christman JW, Pei D. A Peptidyl Inhibitor that Blocks Calcineurin-NFAT Interaction and Prevents Acute Lung Injury. J Med Chem 2020; 63:12853-12872. [PMID: 33073986 PMCID: PMC8011862 DOI: 10.1021/acs.jmedchem.0c01236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory lung disease with a high morbidity and mortality rate, for which no pharmacologic treatment is currently available. Our previous studies discovered that a pivotal step in the disease process is the activation of the nuclear factor of activated T cells (NFAT) c3 in lung macrophages, suggesting that inhibitors against the upstream protein phosphatase calcineurin should be effective for prevention/treatment of ARDS. Herein, we report the development of a highly potent, cell-permeable, and metabolically stable peptidyl inhibitor, CNI103, which selectively blocks the interaction between calcineurin and NFATc3, through computational and medicinal chemistry. CNI103 specifically inhibited calcineurin signaling in vitro and in vivo and exhibited a favorable pharmacokinetic profile, broad tissue distribution following different routes of administration, and minimal toxicity. Our data indicate that CNI103 is a promising novel treatment for ARDS and other inflammatory diseases.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Entrada Therapeutics, 50 Northern Avenue, Boston, MA 02210, United States
| | - Manjula Karpurapu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
| | - Jessica K. Lukowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Entrada Therapeutics, 50 Northern Avenue, Boston, MA 02210, United States
| | - Teja Srinivas Nirujogi
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
- East Liverpool City Hospital, 425 W 5th Street, East Liverpool, Ohio 43920, United States
| | - Luiza Rusu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Sangwoon Chung
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, United States
| | - Hao W. Li
- Columbia Center for Translational Immunology, Columbia University, 650 W. 168 Street, New York, New York 10032, United States
| | - John W. Christman
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
| |
Collapse
|
2
|
Kitamura N, Shindo M, Ohtsuka J, Nakamura A, Tanokura M, Hiroi T, Kaminuma O. Identification of novel interacting regions involving calcineurin and nuclear factor of activated T cells. FASEB J 2020; 34:3197-3208. [PMID: 31909857 DOI: 10.1096/fj.201902229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/19/2019] [Indexed: 11/11/2022]
Abstract
Nuclear factor of activated T cells (NFAT) leads to the transcription of diverse inducible genes involved in many biological processes; therefore, aberrant NFAT expression is responsible for the development and exacerbation of various disorders. Since five isoforms of NFAT (NFATc1-c4, NFAT5) exhibit distinct and overlapping functions, selective control of a part, but not all, of NFAT family members is desirable. By comparing the binding activity of each NFATc1-c4 with its regulatory enzyme, calcineurin (CN), using a quantitative immunoprecipitation assay, we found a new CN-binding region (CNBR) selectively functioning in NFATc1 and NFATc4. This region, termed CNBR3, is located between two preexisting CNBR1 and CNBR2, within the Ca2+ regulatory domain. The nuclear translocation of NFATc1 but not NFATc2 in T cells was suppressed by ectopic expression of CNBR3 and, accordingly, NFATc1-dependent cytokine expression was downregulated. Through competition assays using NFATc1-derived partial peptides and mass spectrometry with photoaffinity technology, we identified 18 amino acids in NFATc1 (Arg258 to Pro275 ) and 13 amino acids in CN catalytic subunit (CNA) (Asn77 to Gly89 ) responsible for CNA/CNBR3 binding in which Cys263 and Asp82 , respectively, played crucial roles. The possible selective regulation of NFAT-mediated biological processes by targeting this new CN/NFAT-binding region is suggested.
Collapse
Affiliation(s)
- Noriko Kitamura
- Allergy and Immunology Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mayumi Shindo
- Center for Basic Technology Research, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jun Ohtsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takachika Hiroi
- Allergy and Immunology Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Osamu Kaminuma
- Allergy and Immunology Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Tang T, Lu Q, Yang X, Liu X, Liao R, Zhang Y, Yang Z. Roles of the tacrolimus-dependent transcription factor IRF4 in acute rejection after liver transplantation. Int Immunopharmacol 2015; 28:257-263. [PMID: 26093273 DOI: 10.1016/j.intimp.2015.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/29/2015] [Accepted: 06/08/2015] [Indexed: 01/21/2023]
Abstract
Acute rejection is a serious and life-threatening complication of liver transplantation (LTx). Tacrolimus (TAC) is a potent immunosuppressant used in experimental and clinical transplantation. Interferon regulatory factor 4 (IRF4) plays key roles as a transcription factor in the immune response. This study explored the role of IRF4 in acute rejection after LTx using TAC treatment. Here, LTx was performed in DA (RT1(n)) and Lewis (LEW) (RT1(l)) rats. The recipients were immunosuppressed with TAC (1.5mg/kg/day subcutaneously) or saline. Liver grafts were harvested 1, 3, 5, 7, and 10 days after LTx for histology, immunohistochemistry, western blotting and real-time PCR. Splenic mononuclear cells were activated with different doses of TAC. The nuclear factor of activated T cells (NFAT) signal pathway and CD4+ T subset-related transcription factors were assessed. The results showed that TAC treatment prolonged the survival of liver allografts in recipients, significantly attenuated hepatic tissue injury and improved liver function. IRF4 expression in grafts was down-regulated after TAC treatment. TAC inhibited the expression of IRF4, NFAT, Foxp3 and RORγt in splenic mononuclear cells in vitro. In conclusions, our studies showed that TAC attenuated acute rejection responses after LTx. This attenuation might depend on the TAC-NFAT-IRF4 signal pathway, which is crucial for the function of T helper subsets (Treg and Th17 cells) in acute rejection after LTx. These findings contribute to our understanding of the immune pharmacological mechanism of TAC to prevent rejection in LTx rats.
Collapse
Affiliation(s)
- Tengqian Tang
- The Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, China
| | - Qian Lu
- The Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, China
| | - Xing Yang
- The Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, China; The Institute of Hepatobiliary Surgery, 324 Hospital of People's Liberation Army (PLA), China
| | - Xiangde Liu
- The Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, China
| | - Rui Liao
- The Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, China
| | - Yujun Zhang
- The Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, China
| | - Zhanyu Yang
- The Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, China.
| |
Collapse
|
4
|
Quintero A, Lin W, Hermann S, Zhang Y. Light Induced Inhibition of Protein Phosphatase Calcineurin. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Liu X, Zhao Q, Peng X, Xia S, Shen W, Zong Y, Cheng J, Wu W, Zhang M, Du F, Xu W, Qian H, Shao Q. PTD-mediated intracellular delivery of mutant NFAT minimum DNA binding domain inhibited the proliferation of T cells. Int Immunopharmacol 2014; 19:110-8. [DOI: 10.1016/j.intimp.2014.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 12/01/2022]
|
6
|
Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2012; 109:16258-63. [PMID: 22991461 DOI: 10.1073/pnas.1203870109] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several lines of evidence suggest nuclear factor of activated T-cells (NFAT) to control regulatory T cells: thymus-derived naturally occurring regulatory T cells (nTreg) depend on calcium signals, the Foxp3 gene harbors several NFAT binding sites, and the Foxp3 (Fork head box P3) protein interacts with NFAT. Therefore, we investigated the impact of NFAT on Foxp3 expression. Indeed, the generation of peripherally induced Treg (iTreg) by TGF-β was highly dependent on NFAT expression because the ability of CD4(+) T cells to differentiate into iTreg diminished markedly with the number of NFAT family members missing. It can be concluded that the expression of Foxp3 in TGF-β-induced iTreg depends on the threshold value of NFAT rather than on an individual member present. This is specific for iTreg development, because frequency of nTreg remained unaltered in mice lacking NFAT1, NFAT2, or NFAT4 alone or in combination. Different from expectation, however, the function of both nTreg and iTreg was independent on robust NFAT levels, reflected by less nuclear NFAT in nTreg and iTreg. Accordingly, absence of one or two NFAT members did not alter suppressor activity in vitro or during colitis and transplantation in vivo. This scenario emphasizes an inhibition of high NFAT activity as treatment for autoimmune diseases and in transplantation, selectively targeting the proinflammatory conventional T cells, while keeping Treg functional.
Collapse
|