1
|
Matkovich SJ, Dorn GW. Feed My Heart or Eat It. J Am Coll Cardiol 2016; 68:1572-4. [DOI: 10.1016/j.jacc.2016.07.740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
|
2
|
Cai WF, Liu GS, Lam CK, Florea S, Qian J, Zhao W, Pritchard T, Haghighi K, Lebeche D, Lu LJ, Deng J, Fan GC, Hajjar RJ, Kranias EG. Up-regulation of micro-RNA765 in human failing hearts is associated with post-transcriptional regulation of protein phosphatase inhibitor-1 and depressed contractility. Eur J Heart Fail 2015; 17:782-93. [PMID: 26177627 DOI: 10.1002/ejhf.323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/18/2015] [Accepted: 04/17/2015] [Indexed: 11/09/2022] Open
Abstract
AIMS Impaired sarcoplasmic reticulum (SR) Ca(2+) cycling and depressed contractility, a hallmark of human and experimental heart failure, has been partially attributed to increased protein phosphatase 1 (PP-1) activity, associated with down-regulation of its endogenous inhibitor-1. The levels and activity of inhibitor-1 are reduced in failing hearts, contributing to dephosphorylation and inactivation of key calcium cycling proteins. Therefore, we investigated the mechanisms that mediate decreases in inhibitor-1 by post-transcriptional modification. METHODS AND RESULTS Bioinformatics revealed that 17 human microRNAs may serve as modulators of inhibitor-1. However, real-time PCR analysis identified only one of these microRNAs, miR-765, as being increased in human failing hearts concomitant with decreased inhibitor-1 levels. Expression of miR-765 in HEK293 cells or mouse ventricular myocytes confirmed suppression of inhibitor-1 levels through binding of this miR-765 to the 3'-untranslated region of inhibitor-1 mRNA. To determine the functional significance of miR-765 in Ca(2+) cycling, pri-miR-765 as well as a non-translated nucleotide sequence (miR-Ctrl) were expressed in adult mouse ventricular myocytes. The inhibitor-1 expression levels were decreased, accompanied by enhanced PP-1 activity in the miR-765 cardiomyocytes, and these reflected depressed contractile mechanics and Ca(2+) transients, compared with the miR-Ctrl group. The depressive effects were associated with decreases in the phosphorylation of phospholamban and SR Ca(2+) load. These miR-765 negative inotropic effects were abrogated in inhibitor-1-deficient cardiomyocytes, suggesting its apparent specificity for inhibitor-1. CONCLUSIONS miR-765 levels are increased in human failing hearts. Such increases may contribute to depressed cardiac function through reduced inhibitor-1 expression and enhanced PP-1 activity, associated with reduced SR Ca(2+) load.
Collapse
Affiliation(s)
- Wen-Feng Cai
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Guan-Sheng Liu
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chi Keung Lam
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stela Florea
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jiang Qian
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wen Zhao
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tracy Pritchard
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Djamel Lebeche
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, USA
| | - Long Jason Lu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Jingyuan Deng
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Molecular Biology Division, Center for Basic Research, Foundation for Biomedical Research of the Academy of Athens, Athens, Greece
| |
Collapse
|
3
|
Taki FA, Pan X, Zhang B. Revisiting Chaos Theorem to Understand the Nature of miRNAs in Response to Drugs of Abuse. J Cell Physiol 2015; 230:2857-68. [PMID: 25966899 DOI: 10.1002/jcp.25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Abstract
Just like Matryoshka dolls, biological systems follow a hierarchical order that is based on dynamic bidirectional communication among its components. In addition to the convoluted inter-relationships, the complexity of each component spans several folds. Therefore, it becomes rather challenging to investigate phenotypes resulting from these networks as it requires the integration of reductionistic and holistic approaches. One dynamic system is the transcriptome which comprises a variety of RNA species. Some, like microRNAs, have recently received a lot of attention. miRNAs are very pleiotropic and have been considered as therapeutic and diagnostic candidates in the biomedical fields. In this review, we survey miRNA profiles in response to drugs of abuse (DA) using 118 studies. After providing a summary of miRNAs related to substance use disorders (SUD), general patterns of miRNA signatures are compared among studies for single or multiple drugs of abuse. Then, current challenges and drawbacks in the field are discussed. Finally, we provide support for considering miRNAs as a chaotic system in normal versus disrupted states particularly in SUD and propose an integrative approach for studying and analyzing miRNA data.
Collapse
Affiliation(s)
- Faten A Taki
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
4
|
Karbassi E, Vondriska TM. How the proteome packages the genome for cardiovascular development. Proteomics 2014; 14:2115-26. [PMID: 25074278 DOI: 10.1002/pmic.201400131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/24/2014] [Accepted: 07/28/2014] [Indexed: 11/09/2022]
Abstract
The devastating impact of congenital heart defects has made mechanisms of vertebrate heart and vascular development an active area of study. Because myocyte death is a common feature of acquired cardiovascular diseases and the adult heart does not regenerate, the need exists to understand whether features of the developing heart and vasculature-which are more plastic-can be exploited therapeutically in the disease setting. We know that a core network of transcription factors governs commitment to the cardiovascular lineage, and recent studies using genetic loss-of-function approaches and unbiased genomic studies have revealed the role for various chromatin modulatory events. We reason that chromatin structure itself is a causal feature that influences transcriptome complexity along a developmental continuum, and the purpose of this article is to highlight the areas in which 'omics technologies have the potential to reveal new principles of phenotypic plasticity in development. We review the major mechanisms of chromatin structural regulation, highlighting what is known about their actions to control cardiovascular differentiation. We discuss emergent mechanisms of regulation that have been identified on the basis of genomic and proteomic studies of cardiac nuclei and identify current challenges to an integrated understanding of chromatin structure and cardiovascular phenotype.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Departments of Anesthesiology, Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
5
|
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A 2014; 111:12264-9. [PMID: 25071214 DOI: 10.1073/pnas.1410622111] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The vast majority of mammalian DNA does not encode for proteins but instead is transcribed into noncoding (nc)RNAs having diverse regulatory functions. The poorly characterized subclass of long ncRNAs (lncRNAs) can epigenetically regulate protein-coding genes by interacting locally in cis or distally in trans. A few reports have implicated specific lncRNAs in cardiac development or failure, but precise details of lncRNAs expressed in hearts and how their expression may be altered during embryonic heart development or by adult heart disease is unknown. Using comprehensive quantitative RNA sequencing data from mouse hearts, livers, and skin cells, we identified 321 lncRNAs present in the heart, 117 of which exhibit a cardiac-enriched pattern of expression. By comparing lncRNA profiles of normal embryonic (∼E14), normal adult, and hypertrophied adult hearts, we defined a distinct fetal lncRNA abundance signature that includes 157 lncRNAs differentially expressed compared with adults (fold-change ≥ 50%, false discovery rate = 0.02) and that was only poorly recapitulated in hypertrophied hearts (17 differentially expressed lncRNAs; 13 of these observed in embryonic hearts). Analysis of protein-coding mRNAs from the same samples identified 22 concordantly and 11 reciprocally regulated mRNAs within 10 kb of dynamically expressed lncRNAs, and reciprocal relationships of lncRNA and mRNA levels were validated for the Mccc1 and Relb genes using in vitro lncRNA knockdown in C2C12 cells. Network analysis suggested a central role for lncRNAs in modulating NFκB- and CREB1-regulated genes during embryonic heart growth and identified multiple mRNAs within these pathways that are also regulated, but independently of lncRNAs.
Collapse
|
6
|
Affiliation(s)
- Gerald W Dorn
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
7
|
Tolonen AM, Magga J, Szabó Z, Viitala P, Gao E, Moilanen AM, Ohukainen P, Vainio L, Koch WJ, Kerkelä R, Ruskoaho H, Serpi R. Inhibition of Let-7 microRNA attenuates myocardial remodeling and improves cardiac function postinfarction in mice. Pharmacol Res Perspect 2014; 2:e00056. [PMID: 25505600 PMCID: PMC4186442 DOI: 10.1002/prp2.56] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/14/2022] Open
Abstract
The members of lethal-7 (Let-7) microRNA (miRNA) family are involved in regulation of cell differentiation and reprogramming of somatic cells into induced pluripotent stem cells. However, their function in the heart is not known. In this study, we examined the effect of inhibiting the function of Let-7c miRNA on the progression of postinfarction left ventricular (LV) remodeling in mice. Myocardial infarction was induced with permanent ligation of left anterior descending coronary artery with a 4-week follow-up period. Let-7c miRNA was inhibited with a specific antagomir administered intravenously. The inhibition of Let-7c miRNA downregulated the levels of mature Let-7c miRNA and its other closely related members of Let-7 family in the heart and resulted in increased expression of pluripotency-associated genes Oct4 and Sox2 in cardiac fibroblasts in vitro and in adult mouse heart in vivo. Importantly, Let-7c inhibitor prevented the deterioration of cardiac function postinfarction, as demonstrated by preserved LV ejection fraction and elevated cardiac output. Improvement in cardiac function by Let-7c inhibitor postinfarction was associated with decreased apoptosis, reduced fibrosis, and reduction in the number of discoidin domain receptor 2–positive fibroblasts, while the number of c-kit+ cardiac stem cells and Ki-67+ proliferating cells remained unaltered. In conclusion, inhibition of Let-7 miRNA may be beneficial for the prevention of postinfarction LV remodeling and progression of heart failure.
Collapse
Affiliation(s)
- Anna-Maria Tolonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Johanna Magga
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Zoltán Szabó
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Pirkko Viitala
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine Philadelphia, Pennsylvania
| | - Anne-Mari Moilanen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Pauli Ohukainen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Laura Vainio
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland
| | - Walter J Koch
- Center for Translational Medicine, Temple University School of Medicine Philadelphia, Pennsylvania
| | - Risto Kerkelä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Medical Research Center Oulu Oulu, Finland
| | - Heikki Ruskoaho
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Division of Pharmacology and Pharmacotherapy, University of Helsinki Helsinki, Finland
| | - Raisa Serpi
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu Oulu, Finland
| |
Collapse
|
8
|
Affiliation(s)
- Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute, Houston, TX
| | | |
Collapse
|
9
|
The Editors. Recent Developments in Cardiovascular Genetics. Circ Res 2013; 113:e88-91. [DOI: 10.1161/circresaha.113.302634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Abstract
RATIONALE MicroRNAs modestly suppress their direct mRNA targets, and these direct effects are amplified by modulation of gene transcription pathways. Consequently, indirect mRNA modulatory effects of microRNAs to increase or decrease mRNAs greatly outnumber direct target suppressions. Because microRNAs are products of transcription, the potential exists for microRNAs that regulate transcription to regulate other microRNAs. OBJECTIVE Determine whether cardiac-expressed microRNAs regulate expression of other cardiac microRNAs, and measure the impact of microRNA-mediated microRNA regulation on indirect regulation of nontarget mRNAs. METHODS AND RESULTS Transgenic expression of pre-microRNAs was used to generate mouse hearts expressing 6- to 16-fold normal levels of microRNA (miR)-143, miR-378, and miR-499. Genome-wide mRNA and microRNA signatures were established using deep sequencing; expression profiles provoked by each microRNA were defined. miR-143 suppressed its direct cardiac mRNA target hexokinase 2, but exhibited little indirect target regulation and did not regulate other cardiac microRNAs. Both miR-378 and miR-499 indirectly regulated hundreds of cardiac mRNAs and 15 to 30 cardiac microRNAs. MicroRNA overexpression did not alter normal processing of either transgenic or endogenous cardiac microRNAs, and microRNA-mediated regulation of other microRNAs encoded within parent genes occurred in tandem with parent mRNAs. MicroRNA regulation by miR-378 and miR-499 was stimulus specific, and contributed to observed mRNA downregulation. CONCLUSIONS MicroRNAs that modulate cardiac transcription can indirectly regulate other microRNAs. Transcriptional modulation by microRNAs, and microRNA-mediated microRNA regulation, help explain how small direct effects of microRNAs are amplified to generate striking phenotypes.
Collapse
Affiliation(s)
- Scot J Matkovich
- Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
11
|
Rosa-Garrido M, Karbassi E, Monte E, Vondriska TM. Regulation of chromatin structure in the cardiovascular system. Circ J 2013; 77:1389-98. [PMID: 23575346 DOI: 10.1253/circj.cj-13-0176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has been appreciated for some time that cardiovascular disease involves large-scale transcriptional changes in various cell types. What has become increasingly clear only in the past few years, however, is the role of chromatin remodeling in cardiovascular phenotypes in normal physiology, as well as in development and disease. This review summarizes the state of the chromatin field in terms of distinct mechanisms to regulate chromatin structure in vivo, identifying when these modes of regulation have been demonstrated in cardiovascular tissues. We describe areas in which a better understanding of chromatin structure is leading to new insights into the fundamental biology of cardiovascular disease.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- Department of Anesthesiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
The Editors. Circulation Research
Thematic Synopsis. Circ Res 2013. [DOI: 10.1161/circresaha.113.300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Biophysical Forces Modulate the Costamere and Z-Disc for Sarcomere Remodeling in Heart Failure. BIOPHYSICS OF THE FAILING HEART 2013. [DOI: 10.1007/978-1-4614-7678-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs. Proc Natl Acad Sci U S A 2012; 109:19864-9. [PMID: 23150554 DOI: 10.1073/pnas.1214996109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA-mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu.
Collapse
|
16
|
|
17
|
Mitochondrial dynamics in heart disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:233-41. [PMID: 22450031 DOI: 10.1016/j.bbamcr.2012.03.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/28/2012] [Accepted: 03/08/2012] [Indexed: 11/21/2022]
Abstract
Mitochondrial fission and fusion have been observed, and their importance revealed, in almost every tissue and cell type except adult cardiac myocytes. As each human heart is uniquely dependent upon mitochondria to generate massive amounts of ATP that fuel its approximately 38 million contractions per year, it seems odd that cardiac myocytes are the sole exception to the general rule that mitochondrial dynamism is important to function. Here, I briefly review the mechanisms for mitochondrial fusion and fission and examine current data that dispel the previous notion that mitochondrial fusion is dispensable in the heart. Rare and generally overlooked examples of cardiomyopathies linked either to naturally-occurring mutations or to experimentally-induced mutagenesis of mitochondrial fusion/fission genes are described. New findings from genetically targeted Drosophila and mouse models wherein mitochondrial fusion deficiency has specifically been induced in cardiac myocytes are discussed. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
|
18
|
Dorn GW, Matkovich SJ, Eschenbacher WH, Zhang Y. A human 3' miR-499 mutation alters cardiac mRNA targeting and function. Circ Res 2012; 110:958-67. [PMID: 22374132 DOI: 10.1161/circresaha.111.260752] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE MyomiRs miR-499, miR-208a and miR-208b direct cardiac myosin gene expression. Sequence complementarity between miRs and their mRNA targets determines miR effects, but the functional consequences of human myomiR sequence variants are unknown. OBJECTIVE To identify and investigate mutations in human myomiRs in order to better understand how and to what extent naturally-occurring sequence variation can impact miR-mRNA targeting and end-organ function. METHODS AND RESULTS Screening of ≈2,600 individual DNAs for myomiR sequence variants identified a rare mutation of miR-499, u17c in the 3' end, well outside the seed region thought to determine target recognition. In vitro luciferase reporter analysis showed that the 3' miR-499 mutation altered suppression of a subset of artificial and natural mRNA targets. Cardiac-specific transgenic expression was used to compare consequences of wild-type and mutant miR-499. Both wild-type and mutant miR-499 induced heart failure in mice, but miR-499 c17 misdirected recruitment of a subset of miR-499 target mRNAs to cardiomyocyte RNA-induced silencing complexes, altering steady-state cardiac mRNA and protein make-up and favorably impacting cardiac function. In vitro analysis of miR-499 target site mutations and modeling of binding energies revealed abnormal miR-mRNA duplex configurations induced by the c17 mutation. CONCLUSIONS A naturally occurring miR-499 mutation outside the critical seed sequence modifies mRNA targeting and end-organ function. This first description of in vivo effects from a natural human miR mutation outside the seed sequence supports comprehensive studies of individual phenotypes or disease-modification conferred by miR mutations.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine and Center for Pharmacogenomics, 660 S. Euclid Ave., Campus Box 8220, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|