1
|
Cooke JP, Youker KA, Lai L. Myocardial Recovery versus Myocardial Regeneration: Mechanisms and Therapeutic Modulation. Methodist Debakey Cardiovasc J 2024; 20:31-41. [PMID: 39184159 PMCID: PMC11342844 DOI: 10.14797/mdcvj.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 08/27/2024] Open
Abstract
Myocardial recovery is characterized by a return toward normal structure and function of the heart after an injury. Mechanisms of myocardial recovery include restoration and/or adaptation of myocyte structure and function, mitochondrial activity and number, metabolic homeostasis, electrophysiological stability, extracellular matrix remodeling, and myocardial perfusion. Myocardial regeneration is an element of myocardial recovery that involves the generation of new myocardial tissue, a process which is limited in adult humans but may be therapeutically augmented. Understanding the mechanisms of myocardial recovery and myocardial regeneration will lead to novel therapies for heart failure.
Collapse
Affiliation(s)
- John P. Cooke
- Houston Methodist Academic Institute, Houston, Texas, US
| | | | - Li Lai
- Houston Methodist Academic Institute, Houston, Texas, US
| |
Collapse
|
2
|
Su C, Ma J, Yao X, Hao W, Gan S, Gao Y, He J, Ren Y, Gao X, Zhu Y, Yang J, Wei M. Tudor-SN promotes cardiomyocyte proliferation and neonatal heart regeneration through regulating the phosphorylation of YAP. Cell Commun Signal 2024; 22:345. [PMID: 38943195 PMCID: PMC11212424 DOI: 10.1186/s12964-024-01715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND The neonatal mammalian heart exhibits considerable regenerative potential following injury through cardiomyocyte proliferation, whereas mature cardiomyocytes withdraw from the cell cycle and lose regenerative capacities. Therefore, investigating the mechanisms underlying neonatal cardiomyocyte proliferation and regeneration is crucial for unlocking the regenerative potential of adult mammalian heart to repair damage and restore contractile function following myocardial injury. METHODS The Tudor staphylococcal nuclease (Tudor-SN) transgenic (TG) or cardiomyocyte-specific knockout mice (Myh6-Tudor-SN -/-) were generated to investigate the role of Tudor-SN in cardiomyocyte proliferation and heart regeneration following apical resection (AR) surgery. Primary cardiomyocytes isolated from neonatal mice were used to assess the influence of Tudor-SN on cardiomyocyte proliferation in vitro. Affinity purification and mass spectrometry were employed to elucidate the underlying mechanism. H9c2 cells and mouse myocardia with either overexpression or knockout of Tudor-SN were utilized to assess its impact on the phosphorylation of Yes-associated protein (YAP), both in vitro and in vivo. RESULTS We previously identified Tudor-SN as a cell cycle regulator that is highly expressed in neonatal mice myocardia but downregulated in adults. Our present study demonstrates that sustained expression of Tudor-SN promotes and prolongs the proliferation of neonatal cardiomyocytes, improves cardiac function, and enhances the ability to repair the left ventricular apex resection in neonatal mice. Consistently, cardiomyocyte-specific knockout of Tudor-SN impairs cardiac function and retards recovery after injury. Tudor-SN associates with YAP, which plays important roles in heart development and regeneration, inhibiting phosphorylation at Ser 127 and Ser 397 residues by preventing the association between Large Tumor Suppressor 1 (LATS1) and YAP, correspondingly maintaining stability and promoting nuclear translocation of YAP to enhance the proliferation-related genes transcription. CONCLUSION Tudor-SN regulates the phosphorylation of YAP, consequently enhancing and prolonging neonatal cardiomyocyte proliferation under physiological conditions and promoting neonatal heart regeneration after injury.
Collapse
Affiliation(s)
- Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jinzheng Ma
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuyang Yao
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Hao
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Shihu Gan
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yixiang Gao
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jinlong He
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Wang X, Baksh SS, Pratt RE, Dzau VJ, Hodgkinson CP. Modifying miRs for effective reprogramming of fibroblasts to cardiomyocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102160. [PMID: 38495845 PMCID: PMC10943962 DOI: 10.1016/j.omtn.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Reprogramming scar fibroblasts into cardiomyocytes has been proposed to reverse the damage associated with myocardial infarction. However, the limited improvement in cardiac function calls for enhanced strategies. We reported enhanced efficacy of our miR reprogramming cocktail miR combo (miR-1, miR-133a, miR-208a, and miR-499) via RNA-sensing receptor stimulation. We hypothesized that we could combine RNA-sensing receptor activation with fibroblast reprogramming by chemically modifying miR combo. To test the hypothesis, miR combo was modified to enhance interaction with the RNA-sensing receptor Rig1 via the addition of a 5'-triphosphate (5'ppp) group. Importantly, when compared with unmodified miR combo, 5'ppp-modified miR combo markedly improved reprogramming efficacy in vitro. Enhanced reprogramming efficacy correlated with a type-I interferon immune response with strong and selective secretion of interferon β (IFNβ). Antibody blocking studies and media replacement experiments indicated that 5'ppp-miR combo utilized IFNβ to enhance fibroblast reprogramming efficacy. In conclusion, miRs can acquire powerful additional roles through chemical modification that potentially increases their clinical applications.
Collapse
Affiliation(s)
- Xinghua Wang
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Syeda S. Baksh
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard E. Pratt
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Victor J. Dzau
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Conrad P. Hodgkinson
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Tsai IT, Sun CK. Stem Cell Therapy against Ischemic Heart Disease. Int J Mol Sci 2024; 25:3778. [PMID: 38612587 PMCID: PMC11011361 DOI: 10.3390/ijms25073778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Ischemic heart disease, which is one of the top killers worldwide, encompasses a series of heart problems stemming from a compromised coronary blood supply to the myocardium. The severity of the disease ranges from an unstable manifestation of ischemic symptoms, such as unstable angina, to myocardial death, that is, the immediate life-threatening condition of myocardial infarction. Even though patients may survive myocardial infarction, the resulting ischemia-reperfusion injury triggers a cascade of inflammatory reactions and oxidative stress that poses a significant threat to myocardial function following successful revascularization. Moreover, despite evidence suggesting the presence of cardiac stem cells, the fact that cardiomyocytes are terminally differentiated and cannot significantly regenerate after injury accounts for the subsequent progression to ischemic cardiomyopathy and ischemic heart failure, despite the current advancements in cardiac medicine. In the last two decades, researchers have realized the possibility of utilizing stem cell plasticity for therapeutic purposes. Indeed, stem cells of different origin, such as bone-marrow- and adipose-derived mesenchymal stem cells, circulation-derived progenitor cells, and induced pluripotent stem cells, have all been shown to play therapeutic roles in ischemic heart disease. In addition, the discovery of stem-cell-associated paracrine effects has triggered intense investigations into the actions of exosomes. Notwithstanding the seemingly promising outcomes from both experimental and clinical studies regarding the therapeutic use of stem cells against ischemic heart disease, positive results from fraud or false data interpretation need to be taken into consideration. The current review is aimed at overviewing the therapeutic application of stem cells in different categories of ischemic heart disease, including relevant experimental and clinical outcomes, as well as the proposed mechanisms underpinning such observations.
Collapse
Affiliation(s)
- I-Ting Tsai
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Cheuk-Kwan Sun
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City 80794, Taiwan
| |
Collapse
|
5
|
Perveen S, Vanni R, Lo Iacono M, Rastaldo R, Giachino C. Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration. Cells 2023; 12:1166. [PMID: 37190075 PMCID: PMC10136631 DOI: 10.3390/cells12081166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cardiac diseases are the foremost cause of morbidity and mortality worldwide. The heart has limited regenerative potential; therefore, lost cardiac tissue cannot be replenished after cardiac injury. Conventional therapies are unable to restore functional cardiac tissue. In recent decades, much attention has been paid to regenerative medicine to overcome this issue. Direct reprogramming is a promising therapeutic approach in regenerative cardiac medicine that has the potential to provide in situ cardiac regeneration. It consists of direct cell fate conversion of one cell type into another, avoiding transition through an intermediary pluripotent state. In injured cardiac tissue, this strategy directs transdifferentiation of resident non-myocyte cells (NMCs) into mature functional cardiac cells that help to restore the native tissue. Over the years, developments in reprogramming methods have suggested that regulation of several intrinsic factors in NMCs can help to achieve in situ direct cardiac reprogramming. Among NMCs, endogenous cardiac fibroblasts have been studied for their potential to be directly reprogrammed into both induced cardiomyocytes and induced cardiac progenitor cells, while pericytes can transdifferentiate towards endothelial cells and smooth muscle cells. This strategy has been indicated to improve heart function and reduce fibrosis after cardiac injury in preclinical models. This review summarizes the recent updates and progress in direct cardiac reprogramming of resident NMCs for in situ cardiac regeneration.
Collapse
Affiliation(s)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | | | | | | |
Collapse
|
6
|
Direct cardiac reprogramming: basics and future challenges. Mol Biol Rep 2023; 50:865-871. [PMID: 36308583 DOI: 10.1007/s11033-022-07913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heart failure is the leading cause of morbidity and mortality worldwide and is characterized by reduced cardiac function. Currently, cardiac transplantation therapy is applied for end-stage heart failure, but it is limited by the number of available donors. METHODS AND RESULTS Following an assessment of available literature, a narrative review was conducted to summarizes the current status and challenges of cardiac reprogramming for clinical application. Scientists have developed different regenerative treatment strategies for curing heart failure, including progenitor cell delivery and pluripotent cell delivery. Recently, a novel strategy has emerged that directly reprograms cardiac fibroblast into a functional cardiomyocyte. In this treatment, transcription factors are first identified to reprogram fibroblast into a cardiomyocyte. After that, microRNA and small molecules show great potential to optimize the reprogramming process. Some challenges regarding cell reprogramming in humans are conversion efficiency, virus utilization, immature and heterogenous induced cardiomyocytes, technical reproducibility issues, and physiological effects of depleted fibroblasts on myocardial tissue. CONCLUSION Several strategies have shown positive results in direct cardiac reprogramming. However, direct cardiac reprogramming still needs improvement if it is used as a mainstay therapy in humans, and challenges need to be overcome before cardiac reprogramming can be considered a viable therapeutic strategy. Further advances in cardiac reprogramming studies are needed in cardiac regenerative therapy.
Collapse
|
7
|
Bonavida V, Ghassemi K, Ung G, Inouye K, Thankam FG, Agrawal DK. Novel Approaches to Program Cells to Differentiate into Cardiomyocytes in Myocardial Regeneration. Rev Cardiovasc Med 2022; 23:392. [PMID: 39076655 PMCID: PMC11270456 DOI: 10.31083/j.rcm2312392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/31/2024] Open
Abstract
With heart failure (HF) being one of the leading causes of hospitalization and death worldwide, multiple stem cell therapies have been attempted to accelerate the regeneration of the infarct zone. Versatile strategies have emerged to establish the cell candidates of cardiomyocyte lineage for regenerative cardiology. This article illustrates critical insights into the emerging technologies, current approaches, and translational promises on the programming of diverse cell types for cardiac regeneration.
Collapse
Affiliation(s)
- Victor Bonavida
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kaitlyn Ghassemi
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Gwendolyn Ung
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Keiko Inouye
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
8
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Gao X, Li H, Wang X, Ren Z, Tian Y, Zhao J, Qi W, Wang H, Yu Y, Gong R, Chen H, Ji H, Yang F, Ma W, Liu Y. Light Emitting Diodes Irradiation Regulates miRNA-877-3p to Promote Cardiomyocyte Proliferation. Int J Med Sci 2022; 19:1254-1264. [PMID: 35928721 PMCID: PMC9346386 DOI: 10.7150/ijms.70743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022] Open
Abstract
Mammalian cardiomyocytes (CMs) maintain a low capacity for self-renewal in adulthood, therefore the induction of CMs cycle re-entry is an important approach to promote myocardial repair after injury. Recently, photobiomodulation (PBM) has been used to manipulate physiological activities of various tissues and organs by non-invasive means. Here, we demonstrate that conditioned PBM using light-emitting diodes with a wavelength of 630 nm (LED-Red) was capable of promoting the proliferation of neonatal CMs. Further studies showed that low-power LED-Red affected the expression of miR-877-3p and promoted the proliferation of CMs. In contrast, silencing of miR-877-3p partially abolished the pro-proliferative actions of LED-Red irradiation on CMs. Mechanistically, GADD45g was identified as a downstream target gene of miR-877-3p. Conditioned LED-Red irradiation also inhibited the expression of GADD45g in neonatal CMs. Moreover, GADD45g siRNA reversed the positive effect of LED-Red on the proliferation of neonatal CMs. Taken together, conditioned LED-Red irradiation increased miR-877-3p expression and promoted the proliferation of neonatal CMs by targeting GADD45g. This finding provides a new insight into the role of LED-Red irradiation in neonatal CMs biology and suggests its potential application in myocardial injury repair.
Collapse
Affiliation(s)
- Xinlu Gao
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hanjing Li
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuxiu Wang
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhongyu Ren
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanan Tian
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingxuan Zhao
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenyi Qi
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongbo Wang
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Yu
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rui Gong
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongyang Chen
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haoyu Ji
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Wenya Ma
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Liu
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
miRNA in cardiac development and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:14. [PMID: 34060005 PMCID: PMC8166991 DOI: 10.1186/s13619-021-00077-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Ischemic heart disease is one of the main causes of morbidity and mortality in the world. In adult mammalian hearts, most cardiomyocytes are terminally differentiated and have extremely limited capacity of proliferation, making it impossible to regenerate the heart after injuries such as myocardial infarction. MicroRNAs (miRNAs), a class of non-coding single-stranded RNA, which are involved in mRNA silencing and the regulation of post-transcriptional gene expression, have been shown to play a crucial role in cardiac development and cardiomyocyte proliferation. Muscle specific miRNAs such as miR-1 are key regulators of cardiomyocyte maturation and growth, while miR-199-3p and other miRNAs display potent activity to induce proliferation of cardiomyocytes. Given their small size and relative pleiotropic effects, miRNAs have gained significant attraction as promising therapeutic targets or tools in cardiac regeneration. Increasing number of studies demonstrated that overexpression or inhibition of specific miRNAs could induce cardiomyocyte proliferation and cardiac regeneration. Some common targets of pro-proliferation miRNAs, such as the Hippo-Yap signaling pathway, were identified in multiple species, highlighting the power of miRNAs as probes to dissect core regulators of biological processes. A number of miRNAs have been shown to improve heart function after myocardial infarction in mice, and one trial in swine also demonstrated promising outcomes. However, technical difficulties, especially in delivery methods, and adverse effects, such as uncontrolled proliferation, remain. In this review, we summarize the recent progress in miRNA research in cardiac development and regeneration, examine the mechanisms of miRNA regulating cardiomyocyte proliferation, and discuss its potential as a new strategy for cardiac regeneration therapy.
Collapse
|
11
|
Tang Y, Zhao L, Yu X, Zhang J, Qian L, Jin J, Lu R, Zhou Y. Inhibition of EZH2 primes the cardiac gene activation via removal of epigenetic repression during human direct cardiac reprogramming. Stem Cell Res 2021; 53:102365. [PMID: 34087994 PMCID: PMC8238038 DOI: 10.1016/j.scr.2021.102365] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease, until now, is still the leading cause of death in the United States. Due to the limited regenerative capacity of adult hearts, the damage caused by heart injury cannot be reversed and eventually progress into heart failure. In need of cardiovascular disease treatment, many therapies aimed at either cell transplantation or cell regeneration have been proposed. Direct reprogramming of somatic cells into induced cardiomyocytes (iCMs) is considered to be a promising strategy for regenerative medicine. The induction of cardiomyocytes from non-myocytes can be achieved efficiently via ectopic expression of reprogramming factors both in vitro and in vivo in the mouse model, however, the generation of human induced cardiomyocyte-like cells (hiCMs) remains challenging. The inefficiency of hiCMs production called for the identification of the additional epigenetic memories in non-myocytes which might be damping the hiCM reprogramming. Here, we conducted an unbiased loss-of-function screening focusing on epigenetic regulators and identified enhancer of zeste homolog 2 (EZH2) as an important epigenetic barrier during hiCM reprogramming. We found that the removal of EZH2 via genetic knockdown or treatment of EZH2 selective degrader significantly increased the hiCM reprogramming efficiency and led to profound activation of cardiac genes and repression of collagen and extracellular matrix genes. Furthermore, EZH2 inhibitors targeting its catalytic activity also promotes hiCM reprogramming, suggesting that EZH2 may restrain cardiac conversion through H3K27me3-mediated gene repression. Indeed, genomic profiling of H3K27me3 revealed a subset of cardiac genes that remain repressed with high levels of H3K27me3 despite of the delivery of the reprogramming factors. Inhibition of EZH2, however, leads to reduced H3K27me3 occupancy and robust activation of these cardiac genes. Taken together, our data suggested that EZH2 inhibition facilitates the activation of cardiac genes in fibroblasts and eases the production of hiCMs.
Collapse
Affiliation(s)
- Yawen Tang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lianzhong Zhao
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
12
|
Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration. Signal Transduct Target Ther 2021; 6:31. [PMID: 33500391 PMCID: PMC7838318 DOI: 10.1038/s41392-020-00413-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
With the high morbidity and mortality rates, cardiovascular diseases have become one of the most concerning diseases worldwide. The heart of adult mammals can hardly regenerate naturally after injury because adult cardiomyocytes have already exited the cell cycle, which subseqently triggers cardiac remodeling and heart failure. Although a series of pharmacological treatments and surgical methods have been utilized to improve heart functions, they cannot replenish the massive loss of beating cardiomyocytes after injury. Here, we summarize the latest research progress in cardiac regeneration and heart repair through altering cardiomyocyte fate plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions. First, residual cardiomyocytes in damaged hearts re-enter the cell cycle to acquire the proliferative capacity by the modifications of cell cycle-related genes or regulation of growth-related signals. Additionally, non-cardiomyocytes such as cardiac fibroblasts, were shown to be reprogrammed into cardiomyocytes and thus favor the repair of damaged hearts. Moreover, pluripotent stem cells have been shown to transform into cardiomyocytes to promote heart healing after myocardial infarction (MI). Furthermore, in vitro and in vivo studies demonstrated that environmental oxygen, energy metabolism, extracellular factors, nerves, non-coding RNAs, etc. play the key regulatory functions in cardiac regeneration. These findings provide the theoretical basis of targeting cellular fate plasticity to induce cardiomyocyte proliferation or formation, and also provide the clues for stimulating heart repair after injury.
Collapse
|
13
|
Theis JL, Vogler G, Missinato MA, Li X, Nielsen T, Zeng XXI, Martinez-Fernandez A, Walls SM, Kervadec A, Kezos JN, Birker K, Evans JM, O'Byrne MM, Fogarty ZC, Terzic A, Grossfeld P, Ocorr K, Nelson TJ, Olson TM, Colas AR, Bodmer R. Patient-specific genomics and cross-species functional analysis implicate LRP2 in hypoplastic left heart syndrome. eLife 2020; 9:e59554. [PMID: 33006316 PMCID: PMC7581429 DOI: 10.7554/elife.59554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital heart diseases (CHDs), including hypoplastic left heart syndrome (HLHS), are genetically complex and poorly understood. Here, a multidisciplinary platform was established to functionally evaluate novel CHD gene candidates, based on whole-genome and iPSC RNA sequencing of a HLHS family-trio. Filtering for rare variants and altered expression in proband iPSCs prioritized 10 candidates. siRNA/RNAi-mediated knockdown in healthy human iPSC-derived cardiomyocytes (hiPSC-CM) and in developing Drosophila and zebrafish hearts revealed that LDL receptor-related protein LRP2 is required for cardiomyocyte proliferation and differentiation. Consistent with hypoplastic heart defects, compared to patents the proband's iPSC-CMs exhibited reduced proliferation. Interestingly, rare, predicted-damaging LRP2 variants were enriched in a HLHS cohort; however, understanding their contribution to HLHS requires further investigation. Collectively, we have established a multi-species high-throughput platform to rapidly evaluate candidate genes and their interactions during heart development, which are crucial first steps toward deciphering oligogenic underpinnings of CHDs, including hypoplastic left hearts.
Collapse
Affiliation(s)
- Jeanne L Theis
- Cardiovascular Genetics Research LaboratoryRochesterUnited States
| | - Georg Vogler
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Maria A Missinato
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Tanja Nielsen
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
- Doctoral Degrees and Habilitations, Department of Biology, Chemistry, and Pharmacy, Freie Universität BerlinBerlinGermany
| | - Xin-Xin I Zeng
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | | | - Stanley M Walls
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Anaïs Kervadec
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - James N Kezos
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Katja Birker
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Megan M O'Byrne
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Zachary C Fogarty
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - André Terzic
- Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Center for Regenerative Medicine, Mayo ClinicRochesterUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Paul Grossfeld
- University of California San Diego, Rady’s HospitalSan DiegoUnited States
- Division of General Internal Medicine, Mayo ClinicRochesterUnited States
| | - Karen Ocorr
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Timothy J Nelson
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Center for Regenerative Medicine, Mayo ClinicRochesterUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Alexandre R Colas
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Rolf Bodmer
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| |
Collapse
|
14
|
Affiliation(s)
- Mark A Sussman
- Department of Biology & Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
15
|
Paoletti C, Divieto C, Chiono V. Impact of Biomaterials on Differentiation and Reprogramming Approaches for the Generation of Functional Cardiomyocytes. Cells 2018; 7:E114. [PMID: 30134618 PMCID: PMC6162411 DOI: 10.3390/cells7090114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022] Open
Abstract
The irreversible loss of functional cardiomyocytes (CMs) after myocardial infarction (MI) represents one major barrier to heart regeneration and functional recovery. The combination of different cell sources and different biomaterials have been investigated to generate CMs by differentiation or reprogramming approaches although at low efficiency. This critical review article discusses the role of biomaterial platforms integrating biochemical instructive cues as a tool for the effective generation of functional CMs. The report firstly introduces MI and the main cardiac regenerative medicine strategies under investigation. Then, it describes the main stem cell populations and indirect and direct reprogramming approaches for cardiac regenerative medicine. A third section discusses the main techniques for the characterization of stem cell differentiation and fibroblast reprogramming into CMs. Another section describes the main biomaterials investigated for stem cell differentiation and fibroblast reprogramming into CMs. Finally, a critical analysis of the scientific literature is presented for an efficient generation of functional CMs. The authors underline the need for biomimetic, reproducible and scalable biomaterial platforms and their integration with external physical stimuli in controlled culture microenvironments for the generation of functional CMs.
Collapse
Affiliation(s)
- Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.
| | - Carla Divieto
- Division of Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin, Italy.
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.
| |
Collapse
|
16
|
Patra C, Boccaccini A, Engel F. Vascularisation for cardiac tissue engineering: the extracellular matrix. Thromb Haemost 2017; 113:532-47. [DOI: 10.1160/th14-05-0480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
SummaryCardiovascular diseases present a major socio-economic burden. One major problem underlying most cardiovascular and congenital heart diseases is the irreversible loss of contractile heart muscle cells, the cardiomyocytes. To reverse damage incurred by myocardial infarction or by surgical correction of cardiac malformations, the loss of cardiac tissue with a thickness of a few millimetres needs to be compensated. A promising approach to this issue is cardiac tissue engineering. In this review we focus on the problem of in vitro vascularisation as implantation of cardiac patches consisting of more than three layers of cardiomyocytes (> 100 μm thick) already results in necrosis. We explain the need for vascularisation and elaborate on the importance to include non-myocytes in order to generate functional vascularised cardiac tissue. We discuss the potential of extracellular matrix molecules in promoting vascularisation and introduce nephronectin as an example of a new promising candidate. Finally, we discuss current biomaterial- based approaches including micropatterning, electrospinning, 3D micro-manufacturing technology and porogens. Collectively, the current literature supports the notion that cardiac tissue engineering is a realistic option for future treatment of paediatric and adult patients with cardiac disease.
Collapse
|
17
|
Talkhabi M, Zonooz ER, Baharvand H. Boosters and barriers for direct cardiac reprogramming. Life Sci 2017; 178:70-86. [PMID: 28427897 DOI: 10.1016/j.lfs.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/08/2017] [Accepted: 04/16/2017] [Indexed: 12/16/2022]
Abstract
Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming.
Collapse
Affiliation(s)
- Mahmood Talkhabi
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Elmira Rezaei Zonooz
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
18
|
Cai CL, Molkentin JD. The Elusive Progenitor Cell in Cardiac Regeneration: Slip Slidin' Away. Circ Res 2017; 120:400-406. [PMID: 28104772 DOI: 10.1161/circresaha.116.309710] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
The adult human heart is unable to regenerate after various forms of injury, suggesting that this organ lacks a biologically meaningful endogenous stem cell pool. However, injecting the infarcted area of the adult mammalian heart with exogenously prepared progenitor cells of various types has been reported to create new myocardium by the direct conversion of these progenitor cells into cardiomyocytes. These reports remain controversial because follow-up studies from independent laboratories failed to observe such an effect. Also, the exact nature of various putative myocyte-producing progenitor cells remains elusive and undefined across laboratories. By comparison, the field has gradually worked toward a consensus viewpoint that proposes that the adult mammalian myocardium can undergo a low level of new cardiomyocyte renewal of ≈1% per year, which is primarily because of proliferation of existing cardiomyocytes but not from the differentiation of putative progenitor cells. This review will weigh the emerging evidence, suggesting that the adult mammalian heart lacks a definable myocyte-generating progenitor cell of biological significance.
Collapse
Affiliation(s)
- Chen-Leng Cai
- From the Department of Developmental and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.-L.C.); and Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center and Howard Hughes Medical Institute, OH (J.D.M.).
| | - Jeffery D Molkentin
- From the Department of Developmental and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.-L.C.); and Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center and Howard Hughes Medical Institute, OH (J.D.M.).
| |
Collapse
|
19
|
Affiliation(s)
- Alan S.L. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Gigi C.G. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Timothy K. Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| |
Collapse
|
20
|
Calderon D, Bardot E, Dubois N. Probing early heart development to instruct stem cell differentiation strategies. Dev Dyn 2016; 245:1130-1144. [PMID: 27580352 DOI: 10.1002/dvdy.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
Scientists have studied organs and their development for centuries and, along that path, described models and mechanisms explaining the developmental principles of organogenesis. In particular, with respect to the heart, new fundamental discoveries are reported continuously that keep changing the way we think about early cardiac development. These discoveries are driven by the need to answer long-standing questions regarding the origin of the earliest cells specified to the cardiac lineage, the differentiation potential of distinct cardiac progenitor cells, and, very importantly, the molecular mechanisms underlying these specification events. As evidenced by numerous examples, the wealth of developmental knowledge collected over the years has had an invaluable impact on establishing efficient strategies to generate cardiovascular cell types ex vivo, from either pluripotent stem cells or via direct reprogramming approaches. The ability to generate functional cardiovascular cells in an efficient and reliable manner will contribute to therapeutic strategies aimed at alleviating the increasing burden of cardiovascular disease and morbidity. Here we will discuss the recent discoveries in the field of cardiac progenitor biology and their translation to the pluripotent stem cell model to illustrate how developmental concepts have instructed regenerative model systems in the past and promise to do so in the future. Developmental Dynamics 245:1130-1144, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Damelys Calderon
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Evan Bardot
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Nicole Dubois
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
21
|
Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov 2016; 15:620-638. [PMID: 27339799 DOI: 10.1038/nrd.2016.89] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of the functions of cardiac fibroblasts has moved beyond their roles in heart structure and extracellular matrix generation and now includes their contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts also have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development.
Collapse
|
22
|
Affiliation(s)
- Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Ebert AD, Diecke S, Chen IY, Wu JC. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? EMBO Mol Med 2016; 7:1090-103. [PMID: 26183451 PMCID: PMC4568945 DOI: 10.15252/emmm.201504395] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and induced cardiomyocytes (iCMs). The application of these patient-specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease-specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options.
Collapse
Affiliation(s)
- Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max Delbrück Center, Berlin, Germany Berlin Institute of Health, Berlin, Germany
| | - Ian Y Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
Ma H, Liu J, Qian L. Fat for fostering: Regenerating injured heart using local adipose tissue. EBioMedicine 2016; 7:25-6. [PMID: 27322455 PMCID: PMC4909638 DOI: 10.1016/j.ebiom.2016.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/28/2023] Open
Affiliation(s)
- Hong Ma
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
25
|
Zhou Y, Wang L, Vaseghi HR, Liu Z, Lu R, Alimohamadi S, Yin C, Fu JD, Wang GG, Liu J, Qian L. Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell 2016; 18:382-95. [PMID: 26942853 PMCID: PMC4779178 DOI: 10.1016/j.stem.2016.02.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/01/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023]
Abstract
Direct reprogramming of induced cardiomyocytes (iCMs) suffers from low efficiency and requires extensive epigenetic repatterning, although the underlying mechanisms are largely unknown. To address these issues, we screened for epigenetic regulators of iCM reprogramming and found that reducing levels of the polycomb complex gene Bmi1 significantly enhanced induction of beating iCMs from neonatal and adult mouse fibroblasts. The inhibitory role of Bmi1 in iCM reprogramming is mediated through direct interactions with regulatory regions of cardiogenic genes, rather than regulation of cell proliferation. Reduced Bmi1 expression corresponded with increased levels of the active histone mark H3K4me3 and reduced levels of repressive H2AK119ub at cardiogenic loci, and de-repression of cardiogenic gene expression during iCM conversion. Furthermore, Bmi1 deletion could substitute for Gata4 during iCM reprogramming. Thus, Bmi1 acts as a critical epigenetic barrier to iCM production. Bypassing this barrier simplifies iCM generation and increases yield, potentially streamlining iCM production for therapeutic purposes.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haley Ruth Vaseghi
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ziqing Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sahar Alimohamadi
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chaoying Yin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ji-Dong Fu
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109, USA
| | - Greg G Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Berthiaume J, Kirk J, Ranek M, Lyon R, Sheikh F, Jensen B, Hoit B, Butany J, Tolend M, Rao V, Willis M. Pathophysiology of Heart Failure and an Overview of Therapies. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
27
|
Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ, Bridges CR. The role of microRNAs in cardiac development and regenerative capacity. Am J Physiol Heart Circ Physiol 2015; 310:H528-41. [PMID: 26702142 DOI: 10.1152/ajpheart.00181.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022]
Abstract
The mammalian heart has long been considered to be a postmitotic organ. It was thought that, in the postnatal period, the heart underwent a transition from hyperplasic growth (more cells) to hypertrophic growth (larger cells) due to the conversion of cardiomyocytes from a proliferative state to one of terminal differentiation. This hypothesis was gradually disproven, as data were published showing that the myocardium is a more dynamic tissue in which cardiomyocyte karyokinesis and cytokinesis produce new cells, leading to the hyperplasic regeneration of some of the muscle mass lost in various pathological processes. microRNAs have been shown to be critical regulators of cardiomyocyte differentiation and proliferation and may offer the novel opportunity of regenerative hyperplasic therapy. Here we summarize the relevant processes and recent progress regarding the functions of specific microRNAs in cardiac development and regeneration.
Collapse
Affiliation(s)
- Michael G Katz
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York
| | - Anthony S Fargnoli
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and
| | - Andrew P Kendle
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and
| | - Roger J Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York
| | - Charles R Bridges
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and
| |
Collapse
|
28
|
Nim HT, Furtado MB, Costa MW, Kitano H, Rosenthal NA, Boyd SE. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts. PLoS One 2015; 10:e0143274. [PMID: 26673252 PMCID: PMC4684407 DOI: 10.1371/journal.pone.0143274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.
Collapse
Affiliation(s)
- Hieu T. Nim
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Faculty of Information Technology, Monash University, Clayton, VIC, 3800, Australia
- * E-mail: (HTN); (SEB)
| | - Milena B. Furtado
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Mauro W. Costa
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Hiroaki Kitano
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Okinawa Institute of Science and Technology, Onna, Onna-son, Kunigami, Okinawa, Japan
| | - Nadia A. Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- National Heart and Lung Institute, Imperial College London, White City, W12 0NN, United Kingdom
- The Jackson Laboratory, Bar Harbor, ME, 04609, United States of America
| | - Sarah E. Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Faculty of Information Technology, Monash University, Clayton, VIC, 3800, Australia
- * E-mail: (HTN); (SEB)
| |
Collapse
|
29
|
Zuppinger C. 3D culture for cardiac cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1873-81. [PMID: 26658163 DOI: 10.1016/j.bbamcr.2015.11.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 01/26/2023]
Abstract
This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Christian Zuppinger
- Cardiology, Bern University Hospital, Department of Clinical Research, MEM G803b, Murtenstrasse 35, CH-3008, Bern, Switzerland.
| |
Collapse
|
30
|
|
31
|
Doppler SA, Deutsch MA, Lange R, Krane M. Direct Reprogramming-The Future of Cardiac Regeneration? Int J Mol Sci 2015; 16:17368-93. [PMID: 26230692 PMCID: PMC4581198 DOI: 10.3390/ijms160817368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/17/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022] Open
Abstract
Today, the only available curative therapy for end stage congestive heart failure (CHF) is heart transplantation. This therapeutic option is strongly limited by declining numbers of available donor hearts and by restricted long-term performance of the transplanted graft. The disastrous prognosis for CHF with its restricted therapeutic options has led scientists to develop different concepts of alternative regenerative treatment strategies including stem cell transplantation or stimulating cell proliferation of different cardiac cell types in situ. However, first clinical trials with overall inconsistent results were not encouraging, particularly in terms of functional outcome. Among other approaches, very promising ongoing pre-clinical research focuses on direct lineage conversion of scar fibroblasts into functional myocardium, termed “direct reprogramming” or “transdifferentiation.” This review seeks to summarize strategies for direct cardiac reprogramming including the application of different sets of transcription factors, microRNAs, and small molecules for an efficient generation of cardiomyogenic cells for regenerative purposes.
Collapse
Affiliation(s)
- Stefanie A Doppler
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich 80636, Germany.
| | - Marcus-André Deutsch
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich 80636, Germany.
| | - Rüdiger Lange
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich 80636, Germany.
- DZHK (German Center for Cardiovascular Research)-Partner Site Munich Heart Alliance, Munich 80802, Germany.
| | - Markus Krane
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich 80636, Germany.
- DZHK (German Center for Cardiovascular Research)-Partner Site Munich Heart Alliance, Munich 80802, Germany.
| |
Collapse
|
32
|
Thimm TN, Squirrell JM, Liu Y, Eliceiri KW, Ogle BM. Endogenous Optical Signals Reveal Changes of Elastin and Collagen Organization During Differentiation of Mouse Embryonic Stem Cells. Tissue Eng Part C Methods 2015; 21:995-1004. [PMID: 25923353 DOI: 10.1089/ten.tec.2014.0699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Components of the extracellular matrix (ECM) have recently been shown to influence stem cell specification. However, it has been challenging to assess the spatial and temporal dynamics of stem cell-ECM interactions because most methodologies utilized to date require sample destruction or fixation. We examined the efficacy of utilizing the endogenous optical signals of two important ECM proteins, elastin (Eln), through autofluorescence, and type I collagen (ColI), through second harmonic generation (SHG), during mouse embryonic stem cell differentiation. After finding favorable overlap between antibody labeling and the endogenous fluorescent signal of Eln, we used this endogenous signal to map temporal changes in Eln and ColI during murine embryoid body differentiation and found that Eln increases until day 9 and then decreases slightly by day 12, while Col1 steadily increases over the 12-day period. Furthermore, we combined endogenous fluorescence imaging and SHG with antibody labeling of cardiomyocytes to examine the spatial relationship between Eln and ColI accumulation and cardiomyocyte differentiation. Eln was ubiquitously present, with enrichment in regions with cardiomyocyte differentiation, while there was an inverse correlation between ColI and cardiomyocyte differentiation. This work provides an important first step for utilizing endogenous optical signals, which can be visualized in living cells, to understand the relationship between the ECM and cardiomyocyte development and sets the stage for future studies of stem cell-ECM interactions and dynamics relevant to stem cells as well as other cell and tissue types.
Collapse
Affiliation(s)
- Terra N Thimm
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jayne M Squirrell
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Yuming Liu
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Kevin W Eliceiri
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin.,2 Morgridge Institute for Research, University of Wisconsin-Madison , Madison, Wisconsin
| | - Brenda M Ogle
- 3 Department of Biomedical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota
| |
Collapse
|
33
|
Torella D, Indolfi C, Nadal-Ginard B. Generation of new cardiomyocytes after injury: de novo formation from resident progenitors vs. replication of pre-existing cardiomyocytes. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:S8. [PMID: 26046095 DOI: 10.3978/j.issn.2305-5839.2015.02.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Daniele Torella
- 1 Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy ; 2 Centre of Human and Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, School of Biomedical Sciences, King's College, London, UK
| | - Ciro Indolfi
- 1 Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy ; 2 Centre of Human and Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, School of Biomedical Sciences, King's College, London, UK
| | - Bernardo Nadal-Ginard
- 1 Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy ; 2 Centre of Human and Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, School of Biomedical Sciences, King's College, London, UK
| |
Collapse
|
34
|
Pasqualini FS, Sheehy SP, Agarwal A, Aratyn-Schaus Y, Parker KK. Structural phenotyping of stem cell-derived cardiomyocytes. Stem Cell Reports 2015; 4:340-7. [PMID: 25733020 PMCID: PMC4375945 DOI: 10.1016/j.stemcr.2015.01.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/27/2022] Open
Abstract
Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the localization of the contractile protein α-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Francesco Silvio Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sean Paul Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ashutosh Agarwal
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Yvonne Aratyn-Schaus
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
35
|
Abstract
Congenital cardiac anesthesiology is a rapidly expanding field at both ends of the life spectrum. The care of the unborn child with congenital heart disease is becoming highly specialized in regional centers that offer advanced imaging techniques, coordinated specialist care, and potentially fetal interventions. As more children with congenital heart disease survive to adulthood, patients and their health care providers are facing new challenges. The growing volume of publications reflects this expanding field of congenital cardiac anesthesiology. This year in review article highlights some developing trends in the literature.
Collapse
|
36
|
Vedantham V, Galang G, Evangelista M, Deo RC, Srivastava D. RNA sequencing of mouse sinoatrial node reveals an upstream regulatory role for Islet-1 in cardiac pacemaker cells. Circ Res 2015; 116:797-803. [PMID: 25623957 DOI: 10.1161/circresaha.116.305913] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE Treatment of sinus node disease with regenerative or cell-based therapies will require a detailed understanding of gene regulatory networks in cardiac pacemaker cells (PCs). OBJECTIVE To characterize the transcriptome of PCs using RNA sequencing and to identify transcriptional networks responsible for PC gene expression. METHODS AND RESULTS We used laser capture microdissection on a sinus node reporter mouse line to isolate RNA from PCs for RNA sequencing. Differential expression and network analysis identified novel sinoatrial node-enriched genes and predicted that the transcription factor Islet-1 is active in developing PCs. RNA sequencing on sinoatrial node tissue lacking Islet-1 established that Islet-1 is an important transcriptional regulator within the developing sinoatrial node. CONCLUSIONS (1) The PC transcriptome diverges sharply from other cardiomyocytes; (2) Islet-1 is a positive transcriptional regulator of the PC gene expression program.
Collapse
Affiliation(s)
- Vasanth Vedantham
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco
| | - Giselle Galang
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco
| | - Melissa Evangelista
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco
| | - Rahul C Deo
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco.
| | - Deepak Srivastava
- From the Gladstone Institute of Cardiovascular Disease, San Francisco, CA (V.V., G.G., M.E., D.S.); and Division of Cardiology, Departments of Medicine (V.V., G.G., R.C.D.), Pediatrics (D.S.), and Biochemistry and Biophysics (R.C.D., D.S.), Institute for Human Genetics, California Institute for Quantitative Biosciences (R.C.D.), and Cardiovascular Research Institute (V.V., G.G., M.E., R.C.D.), University of California, San Francisco.
| |
Collapse
|
37
|
Wang L, Liu Z, Yin C, Asfour H, Chen O, Li Y, Bursac N, Liu J, Qian L. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming. Circ Res 2015; 116:237-44. [PMID: 25416133 PMCID: PMC4299697 DOI: 10.1161/circresaha.116.305547] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/21/2014] [Indexed: 01/14/2023]
Abstract
RATIONALE Generation of induced cardiac myocytes (iCMs) directly from fibroblasts offers great opportunities for cardiac disease modeling and cardiac regeneration. A major challenge of iCM generation is the low conversion rate of fibroblasts to fully reprogrammed iCMs, which could in part be attributed to unbalanced expression of reprogramming factors Gata4 (G), Mef2c (M), and Tbx5 (T) using the current gene delivery approach. OBJECTIVE We aimed to establish a system to express distinct ratios of G, M, T proteins in fibroblasts and determine the effect of G, M, T stoichiometry on iCM reprogramming. METHODS AND RESULTS We took advantage of the inherent feature of the polycistronic system and generated all possible combinations of G, M, T with identical 2A sequences in a single transgene. We demonstrated that each splicing order of G, M, T gave rise to distinct G, M, T protein expression levels. Combinations that resulted in higher protein level of Mef2c with lower levels of Gata4 and Tbx5 significantly enhanced reprogramming efficiency compared with separate G, M, T transduction. Importantly, after further optimization, the MGT vector resulted in more than 10-fold increase in the number of mature beating iCM loci. Molecular characterization revealed that more optimal G, M, T stoichiometry correlated with higher expression of mature cardiac myocyte markers. CONCLUSIONS Our results demonstrate that stoichiometry of G, M, T protein expression influences the efficiency and quality of iCM reprogramming. The established optimal G, M, T expression condition will provide a valuable platform for future iCM studies.
Collapse
Affiliation(s)
- Li Wang
- From the Department of Pathology and Laboratory Medicine (L.W., Z.L., C.Y., O.C., J.L., L.Q.), McAllister Heart Institute (L.W., Z.L., C.Y., O.C., J.L., L.Q,), and Lineberger Comprehensive Cancer Center (L.W., Z.L., C.Y., O.C., J.L., L.Q.), University of North Carolina, Chapel Hill; and Department of Biomedical Engineering, Duke University, Durham, NC (H.A., Y.L., N.B.)
| | - Ziqing Liu
- From the Department of Pathology and Laboratory Medicine (L.W., Z.L., C.Y., O.C., J.L., L.Q.), McAllister Heart Institute (L.W., Z.L., C.Y., O.C., J.L., L.Q,), and Lineberger Comprehensive Cancer Center (L.W., Z.L., C.Y., O.C., J.L., L.Q.), University of North Carolina, Chapel Hill; and Department of Biomedical Engineering, Duke University, Durham, NC (H.A., Y.L., N.B.)
| | - Chaoying Yin
- From the Department of Pathology and Laboratory Medicine (L.W., Z.L., C.Y., O.C., J.L., L.Q.), McAllister Heart Institute (L.W., Z.L., C.Y., O.C., J.L., L.Q,), and Lineberger Comprehensive Cancer Center (L.W., Z.L., C.Y., O.C., J.L., L.Q.), University of North Carolina, Chapel Hill; and Department of Biomedical Engineering, Duke University, Durham, NC (H.A., Y.L., N.B.)
| | - Huda Asfour
- From the Department of Pathology and Laboratory Medicine (L.W., Z.L., C.Y., O.C., J.L., L.Q.), McAllister Heart Institute (L.W., Z.L., C.Y., O.C., J.L., L.Q,), and Lineberger Comprehensive Cancer Center (L.W., Z.L., C.Y., O.C., J.L., L.Q.), University of North Carolina, Chapel Hill; and Department of Biomedical Engineering, Duke University, Durham, NC (H.A., Y.L., N.B.)
| | - Olivia Chen
- From the Department of Pathology and Laboratory Medicine (L.W., Z.L., C.Y., O.C., J.L., L.Q.), McAllister Heart Institute (L.W., Z.L., C.Y., O.C., J.L., L.Q,), and Lineberger Comprehensive Cancer Center (L.W., Z.L., C.Y., O.C., J.L., L.Q.), University of North Carolina, Chapel Hill; and Department of Biomedical Engineering, Duke University, Durham, NC (H.A., Y.L., N.B.)
| | - Yanzhen Li
- From the Department of Pathology and Laboratory Medicine (L.W., Z.L., C.Y., O.C., J.L., L.Q.), McAllister Heart Institute (L.W., Z.L., C.Y., O.C., J.L., L.Q,), and Lineberger Comprehensive Cancer Center (L.W., Z.L., C.Y., O.C., J.L., L.Q.), University of North Carolina, Chapel Hill; and Department of Biomedical Engineering, Duke University, Durham, NC (H.A., Y.L., N.B.)
| | - Nenad Bursac
- From the Department of Pathology and Laboratory Medicine (L.W., Z.L., C.Y., O.C., J.L., L.Q.), McAllister Heart Institute (L.W., Z.L., C.Y., O.C., J.L., L.Q,), and Lineberger Comprehensive Cancer Center (L.W., Z.L., C.Y., O.C., J.L., L.Q.), University of North Carolina, Chapel Hill; and Department of Biomedical Engineering, Duke University, Durham, NC (H.A., Y.L., N.B.)
| | - Jiandong Liu
- From the Department of Pathology and Laboratory Medicine (L.W., Z.L., C.Y., O.C., J.L., L.Q.), McAllister Heart Institute (L.W., Z.L., C.Y., O.C., J.L., L.Q,), and Lineberger Comprehensive Cancer Center (L.W., Z.L., C.Y., O.C., J.L., L.Q.), University of North Carolina, Chapel Hill; and Department of Biomedical Engineering, Duke University, Durham, NC (H.A., Y.L., N.B.)
| | - Li Qian
- From the Department of Pathology and Laboratory Medicine (L.W., Z.L., C.Y., O.C., J.L., L.Q.), McAllister Heart Institute (L.W., Z.L., C.Y., O.C., J.L., L.Q,), and Lineberger Comprehensive Cancer Center (L.W., Z.L., C.Y., O.C., J.L., L.Q.), University of North Carolina, Chapel Hill; and Department of Biomedical Engineering, Duke University, Durham, NC (H.A., Y.L., N.B.).
| |
Collapse
|
38
|
Fu JD, Srivastava D. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine. Circ J 2015; 79:245-54. [PMID: 25744738 DOI: 10.1253/circj.cj-14-1372] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac fibroblasts play critical roles in maintaining normal cardiac function and in cardiac remodeling during pathological conditions such as myocardial infarction (MI). Adult cardiomyocytes (CMs) have little to no regenerative capacity; damaged CMs in the heart after MI are replaced by cardiac fibroblasts that become activated and transform into myofibroblasts, which preserves the structural integrity. Unfortunately, this process typically causes fibrosis and reduces cardiac function. Directly reprogramming adult cardiac fibroblasts into induced CM-like cells (iCMs) holds great promise for restoring heart function. Direct cardiac reprogramming also provides a new research model to investigate which transcription factors and microRNAs control the molecular network that guides cardiac cell fate. We review the approaches and characterization of in vitro and in vivo reprogrammed iCMs from different laboratories, and outline the future directions needed to translate this new approach into a practical therapy for damaged hearts.
Collapse
Affiliation(s)
- Ji-Dong Fu
- Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, USA; Gladstone Institute of Cardiovascular Disease, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | |
Collapse
|
39
|
Abstract
OPINION STATEMENT Reconstitution of cardiac muscle as well as blood vessels to provide sufficient oxygenation and nutrients to the myocardium is an important component of any therapeutic approach for cardiac repair after injury. Recent reports of reprogramming somatic cells directly to cells of another lineage raised the possibility of using cell reprogramming for cardiac regenerative therapy. Here, we provide an overview of the current reprogramming strategies to generate cardiomyocytes (CMs), endothelial cells (ECs) and smooth muscle cells (SMCs), and the implications of these methods for cardiac regeneration. We also discuss the challenges and limitations that need to be addressed for the development of future therapies.
Collapse
|
40
|
Hong KU, Moore JB. Recent advances in cardiac myocyte biology and function. Circ Res 2013; 113:e121-4. [PMID: 24311621 DOI: 10.1161/circresaha.113.302990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kyung U Hong
- From the Department of Medicine, Institute of Molecular Cardiology (K.U.H., J.B.M.) and Department of Medicine, Diabetes and Obesity Center (K.U.H.), University of Louisville, Louisville, KY
| | | |
Collapse
|
41
|
Abstract
The unexpected discovery that somatic cells can be reprogrammed to a pluripotent state yielding induced pluripotent stem cells has made it possible to produce cardiovascular cells exhibiting inherited traits and disorders. Use of these cells in high throughput analyses should broaden our insight into fundamental disease mechanisms and provide many benefits for patients, including new therapeutics and individually tailored therapies. Here we review recent progress in generating induced pluripotent stem cell-based models of cardiovascular disease and their multiple applications in drug development.
Collapse
Affiliation(s)
- Mark Mercola
- Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|