1
|
Li S, Yang S, Sun X, Ma T, Zheng Y, Liu X. Nitric Oxide Distribution Correlates with Intraluminal Thrombus in Abdominal Aortic Aneurysm: A Computational Study. Bioengineering (Basel) 2025; 12:191. [PMID: 40001710 PMCID: PMC11851545 DOI: 10.3390/bioengineering12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Intraluminal thrombus (ILT) in the abdominal aortic aneurysm (AAA) is associated with disease progression and complications. This study investigates the relationship between nitric oxide (NO) concentration and ILT in AAA patients using patient-specific computational fluid dynamics (CFD) models. Four AAA patients with ILT were enrolled. Patient-specific models of the aorta and branch arteries were constructed followed by CFD simulations. NO concentration was modeled based on endothelial shear stress response and its transport within the arterial lumen and wall. Hemodynamic parameters, including wall shear stress (WSS) and its derivatives, were analyzed alongside NO distribution. ILT accumulation was primarily located in the infrarenal abdominal aorta. Regions of decreased NO concentration correlated with ILT accumulated areas, whereas regions with decreased TAWSS and increased OSI were less consistent with ILT accumulation. A negative correlation was observed between the thrombus area and NO concentration, with p values of less than 0.001 for four patients. The time-average area NO concentration values of lumen area with ILT were lower than those of non-ILT sections. Spatially, NO was unevenly distributed, with thicker thrombus in regions of lower NO concentration. NO distribution could serve as a better potential personalized marker for thrombosis prediction in AAA compared to WSS-derived parameters.
Collapse
Affiliation(s)
- Siting Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (S.L.)
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China
| | - Shiyi Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (S.Y.)
| | - Xiaoning Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (S.L.)
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China
| | - Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (S.Y.)
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (S.L.)
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (S.Y.)
| |
Collapse
|
2
|
Chertok VM, Kotsyuba AE, Kutafina OP. Reactivity of the Arteries of the Cranial Pia Mater in Old Rats after Experimental Myocardial Infarction. Bull Exp Biol Med 2025; 178:415-418. [PMID: 40131672 DOI: 10.1007/s10517-025-06347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Indexed: 03/27/2025]
Abstract
In 24-month-old male Wistar rats, the endothelium-dependent (ED) and endothelium-independent (EI) responses of the arteries of the cranial pia mater (CPM) of branching orders I-V were studied by vital microscopy 30 days after the modeling of myocardial infarction. Sham-operated animals were used as a control. In both groups, a distinct response of the CPM vessels of different branching orders to vasodilators was observed: in pharmacological tests (acetylcholine, nitroglycerin), a dependence of the ED or EI vascular reactivity on the diameter of the arteries was found. In orders I-II branches, the myogenic ED response predominates, and the EI response of the vessels prevails in orders IV-V branches. In order III branches, both mechanisms were approximately equally developed. In most cases, the vascular reactivity and numerical density of arteries that changed their diameter were significantly lower in rats with myocardial infarction compared to control animals. Thus, in myocardial infarction, systemic disorders of the ED and EI reactivity of the CPM vessels of different diameters caused by endothelial dysfunction have been identified; the combination of these disorders with age-related changes determined rapid depletion of adaptive reserves and increased circulatory hypoxia in the brain. These processes lead to neurodegenerative changes, primarily in the oxygen-sensitive neurons of the frontal cortex, and to cognitive impairments.
Collapse
Affiliation(s)
- V M Chertok
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia.
| | - A E Kotsyuba
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| | - O P Kutafina
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| |
Collapse
|
3
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
4
|
Tawa M, Nakagawa K, Ohkita M. Different sensitivities of porcine coronary arteries and veins to BAY 60-2770, a soluble guanylate cyclase activator. J Pharmacol Sci 2025; 157:1-7. [PMID: 39706640 DOI: 10.1016/j.jphs.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024] Open
Abstract
Nitric oxide (NO)-donor drugs, which stimulate reduced form of soluble guanylate cyclase (sGC), have different efficacy to the arteries and veins. This study examined whether sGC activators, which activate oxidized/apo sGC, also have arteriovenous selectivity similar to that of NO-donor drugs. The mechanical responses of the isolated blood vessels were assessed using the organ chamber technique and protein expression was verified using western blotting. BAY 60-2770 (sGC activator) caused concentration-dependent relaxation in both porcine coronary arteries and veins, with the response being slightly more pronounced in the arteries. In contrast, sodium nitroprusside (NO-donor drug)-induced relaxation of the arteries was slightly weaker than that of the veins. Vasorelaxant responses to 8-Br-cGMP (cGMP analog) did not differ between the arteries and veins. In the presence of ODQ (heme oxidant), the heterogeneities in the responses to BAY 60-2770 and sodium nitroprusside between the arteries and veins disappeared. The sGC expression in the arteries did not differ from that in the veins. These findings suggest that sGC activators, in contrast to NO-donor drugs, have greater effects on the arteries than on the veins. This may be due to differences in the balance of sGC forms expressed in the arteries and veins.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan.
| | - Keisuke Nakagawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan
| | - Mamoru Ohkita
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
5
|
Kots AY, Bian K. Regulation and Pharmacology of the Cyclic GMP and Nitric Oxide Pathway in Embryonic and Adult Stem Cells. Cells 2024; 13:2008. [PMID: 39682756 PMCID: PMC11639989 DOI: 10.3390/cells13232008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarizes recent advances in understanding the role of the nitric oxide (NO) and cyclic GMP (cGMP) pathway in stem cells. The levels of expression of various components of the pathway are changed during the differentiation of pluripotent embryonic stem cells. In undifferentiated stem cells, NO regulates self-renewal and survival predominantly through cGMP-independent mechanisms. Natriuretic peptides influence the growth of undifferentiated stem cells by activating particulate isoforms of guanylyl cyclases in a cGMP-mediated manner. The differentiation, recruitment, survival, migration, and homing of partially differentiated precursor cells of various types are sensitive to regulation by endogenous levels of NO and natriuretic peptides produced by stem cells, within surrounding tissues, and by the application of various pharmacological agents known to influence the cGMP pathway. Numerous drugs and formulations target various components of the cGMP pathway to influence the therapeutic efficacy of stem cell-based therapies. Thus, pharmacological manipulation of the cGMP pathway in stem cells can be potentially used to develop novel strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexander Y. Kots
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| | | |
Collapse
|
6
|
Peyter AC, Muehlethaler V, Tolsa JF. Long-Term Adverse Effects of Perinatal Hypoxia on the Adult Pulmonary Circulation Vary Between Males and Females in a Murine Model. Physiol Res 2024; 73:S541-S556. [PMID: 39589302 PMCID: PMC11627267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/03/2024] [Indexed: 11/27/2024] Open
Abstract
Adverse events during the perinatal period are associated with an increased risk to develop cardiometabolic diseases later in life. We established a murine model to study long-term effects of perinatal hypoxia (PH) on the pulmonary circulation. We previously demonstrated that PH led to an impaired regulation of pulmonary vascular tone in adulthood, linked to alterations in K+ channels in males and in the nitric oxide (NO)/cyclic guanosine monophosphate pathway in females. Moreover, simultaneous administration of inhaled NO (iNO) during PH exposure prevented adverse effects of PH on adult pulmonary vasculature in females. The present study showed that PH induced a significant increase in right ventricular pressure in males and females, and an enhanced sensitivity to acute hypoxia in females. PH significantly reduced acetylcholine-induced relaxation in pulmonary artery, to a greater extent in females than in males. PH led to right ventricular hypertrophy in adulthood, appearing earlier in males than in females. Morphometric measurements showed a significant increase in the number of 25-75-µm pulmonary vessels in male lungs following PH, probably resulting in increased pulmonary vascular resistance. The effects of prolonged hypoxia in adulthood differed between males and females. Perinatal iNO during PH prevented PH-induced alterations in the cardiopulmonary system, whereas perinatal iNO alone could have some adverse effects. Therefore, PH led to long-lasting alterations in the regulation of adult pulmonary circulation, which vary between males and females. In males, the increased pulmonary vascular resistance was associated with morphological changes besides functional alterations, whereas females showed an important pulmonary vascular dysfunction. Keywords: Perinatal hypoxia, Pulmonary circulation, Endothelium-dependent relaxation, Phosphodiesterases, Sex differences.
Collapse
Affiliation(s)
- A-C Peyter
- Neonatal Res Lab, Dept Woman-Mother-Child, Lausanne Univ Hosp and Univ Lausanne, Lausanne, Switzerland.
| | | | | |
Collapse
|
7
|
Liu Z, Fu H, Gan Y, Ye Y, Huang B, Jiang M, Chen J, Li X. UHPLC-Q-Orbitrap HRMS and network analysis to explore the mechanisms of QiShenYiQi dripping pill for treating myocardial infarction. Front Pharmacol 2024; 15:1443560. [PMID: 39555088 PMCID: PMC11563805 DOI: 10.3389/fphar.2024.1443560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
This study focused on examining the protection of QiShenYiQi dripping pills (QSYQ) against myocardial infarction (MI) and investigating its potential mechanisms. Ultra high performance liquid chromatography-q exactive-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was employed to analyze potential active compounds of QSYQ. The targets of these compounds were predicted using an integrated in silico method and cross-referenced with relevant databases to identify associated pathways. Experimental validation was then conducted to confirm the accuracy of the systems pharmacology findings. In the end, network analysis combined with UHPLC screened 13 potential active compounds and obtained 99 targets for the intersection of potential active compounds and diseases. The enrichment analysis results indicated that the cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) signaling pathway might be the mechanism of action of QSYQ in the treatment of MI. Experimental verification demonstrated that QSYQ could alleviate oxidative stress, promote vasodilation, and activate proteins related to the mitochondrial ATP-sensitive potassium channel (KATP) and nitric oxide (NO)-cGMP-PKG signaling pathway. This study provides insights into both the pathogenic mechanisms underlying MI and the molecular mechanisms through which QSYQ may confer protection. Given the role of PKG in regulating myocardial stiffness, it emerges as a promising therapeutic target for myocardial remodeling. We propose that the NO-cGMP-PKG and mitochondrial KATP pathways may serve as candidate therapeutic targets for the development of new interventions for MI.
Collapse
Affiliation(s)
- Zhichao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Huanjie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongkang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yujia Ye
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Binghui Huang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Mingxiu Jiang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Jinhong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaofeng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
9
|
Shin S, Nasim U, O’Connor H, Hong Y. Progress towards permanent respiratory support. Curr Opin Organ Transplant 2024; 29:349-356. [PMID: 38990111 PMCID: PMC11488683 DOI: 10.1097/mot.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW Although lung transplantation stands as the gold standard curative therapy option for end-stage lung disease, the scarcity of available organs poses a significant challenge in meeting the escalating demand. This review provides an overview of recent advancements in ambulatory respiratory assist systems, selective anticoagulation therapies that target the intrinsic pathway, and innovative surface coatings to enable permanent respiratory support as a viable alternative to lung transplantation. RECENT FINDINGS Several emerging ambulatory respiratory assist systems have shown promise in both preclinical and clinical trials. These systems aim to create more biocompatible, compact, and portable forms of extracorporeal membrane oxygenation that can provide long-term respiratory support. Additionally, innovative selective anticoagulation strategies, currently in various stages of preclinical or clinical development, present a promising alternative to currently utilized nonselective anticoagulants. Moreover, novel surface coatings hold the potential to locally prevent artificial surface-induced thrombosis and minimize bleeding risks. SUMMARY This review of recent advancements toward permanent respiratory support summarizes the development of ambulatory respiratory assist systems, selective anticoagulation therapies, and novel surface coatings. The integration of these evolving device technologies with targeted anticoagulation strategies may allow a safe and effective mode of permanent respiratory support for patients with chronic lung disease.
Collapse
Affiliation(s)
- Suji Shin
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Umar Nasim
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Hassana O’Connor
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Yeahwa Hong
- Department of Biomedical Engineering, Carnegie Mellon University
- Department of Surgery, the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (PA), USA
- Department of Cardiothoracic Surgery, the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (PA), USA
| |
Collapse
|
10
|
Villa-Martínez E, Rios A, Gutiérrez-Vidal R, Escalante B. Potentiation of anti-angiogenic eNOS-siRNA transfection by ultrasound-mediated microbubble destruction in ex vivo rat aortic rings. PLoS One 2024; 19:e0308075. [PMID: 39088581 PMCID: PMC11293687 DOI: 10.1371/journal.pone.0308075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
Nitric oxide (NO) regulates vascular homeostasis and plays a key role in revascularization and angiogenesis. The endothelial nitric oxide synthase (eNOS) enzyme catalyzes NO production in endothelial cells. Overexpression of the eNOS gene has been implicated in pathologies with dysfunctional angiogenic processes, such as cancer. Therefore, modulating eNOS gene expression using small interfering RNAs (siRNAs) represents a viable strategy for antitumor therapy. siRNAs are highly specific to the target gene, thus reducing off-target effects. Given the widespread distribution of endothelium and the crucial physiological role of eNOS, localized delivery of nucleic acid to the affected area is essential. Therefore, the development of an efficient eNOS-siRNA delivery carrier capable of controlled release is imperative for targeting specific vascular regions, particularly those associated with tumor vascular growth. Thus, this study aims to utilize ultrasound-mediated microbubble destruction (UMMD) technology with cationic microbubbles loaded with eNOS-siRNA to enhance transfection efficiency and improve siRNA delivery, thereby preventing sprouting angiogenesis. The efficiency of eNOS-siRNA transfection facilitated by UMMD was assessed using bEnd.3 cells. Synthesis of nitric oxide and eNOS protein expression were also evaluated. The silencing of eNOS gene in a model of angiogenesis was assayed using the rat aortic ring assay. The results showed that from 6 to 24 h, the transfection of fluorescent siRNA with UMMD was twice as high as that of lipofection. Moreover, transfection of eNOS-siRNA with UMMD enhanced the knockdown level (65.40 ± 4.50%) compared to lipofectamine (40 ± 1.70%). Silencing of eNOS gene with UMMD required less amount of eNOS-siRNA (42 ng) to decrease the level of eNOS protein expression (52.30 ± 0.08%) to the same extent as 79 ng of eNOS-siRNA using lipofectamine (56.30 ± 0.10%). NO production assisted by UMMD was reduced by 81% compared to 67% reduction transfecting with lipofectamine. This diminished NO production led to higher attenuation of aortic ring outgrowth. Three-fold reduction compared to lipofectamine transfection. In conclusion, we propose the combination of eNOS-siRNA and UMMD as an efficient, safe, non-viral nucleic acid transfection strategy for inhibition of tumor progression.
Collapse
Affiliation(s)
- Elisa Villa-Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Amelia Rios
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Roxana Gutiérrez-Vidal
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
- Programa de Investigadoras e Investigadores por México, CONAHCyT/Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| |
Collapse
|
11
|
Lu G, Guo H, Zhang Y, Zhang M, Zhang T, Hu G, Zhang Q. Graphene Far-Infrared Irradiation Can Effectively Relieve the Blood Pressure Level of Rat Untr-HT in Primary Hypertension. Int J Mol Sci 2024; 25:6675. [PMID: 38928382 PMCID: PMC11204347 DOI: 10.3390/ijms25126675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Graphene, when electrified, generates far-infrared radiation within the wavelength range of 4 μm to 14 μm. This range closely aligns with the far-infrared band (3 μm to 15 μm), which produces unique physiological effects. Contraction and relaxation of vascular smooth muscle play a significant role in primary hypertension, involving the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate pathway and the renin-angiotensin-aldosterone system. This study utilized spontaneously hypertensive rats (SHRs) as an untr-HT to investigate the impact of far-infrared radiation at specific wavelengths generated by electrified graphene on vascular smooth muscle and blood pressure. After 7 weeks, the blood pressure of the untr-HT group rats decreased significantly with a notable reduction in the number of vascular wall cells and the thickness of the vascular wall, as well as a decreased ratio of vessel wall thickness to lumen diameter. Additionally, blood flow perfusion significantly increased, and the expression of F-actin in vascular smooth muscle myosin decreased significantly. Serum levels of angiotensin II (Ang-II) and endothelin 1 (ET-1) were significantly reduced, while nitric oxide synthase (eNOS) expression increased significantly. At the protein level, eNOS expression decreased significantly, while α-SMA expression increased significantly in aortic tissue. At the gene level, expressions of eNOS and α-SMA in aortic tissue significantly increased. Furthermore, the content of nitric oxide (NO) in the SHR's aortic tissue increased significantly. These findings confirm that graphene far-infrared radiation enhances microcirculation, regulates cytokines affecting vascular smooth muscle contraction, and modifies vascular morphology and smooth muscle phenotype, offering relief for primary hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qian Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (G.L.); (H.G.); (Y.Z.); (M.Z.); (T.Z.); (G.H.)
| |
Collapse
|
12
|
Peyter AC, Beaumann M, Delhaes F, Joye S, Menétrey S, Baud D, Tolsa JF. Fetal sex and the relative reactivity of human umbilical vein and arteries are key determinants in potential beneficial effects of phosphodiesterase inhibitors. J Appl Physiol (1985) 2024; 136:1526-1545. [PMID: 38695358 PMCID: PMC11365547 DOI: 10.1152/japplphysiol.00540.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 06/16/2024] Open
Abstract
Intrauterine growth restriction (IUGR) is a common complication of pregnancy. We previously demonstrated that IUGR is associated with an impaired nitric oxide (NO)-induced relaxation in the human umbilical vein (HUV) of growth-restricted females compared to appropriate for gestational age (AGA) newborns. We found that phosphodiesterase (PDE) inhibition improved NO-induced relaxation in HUV, suggesting that PDEs could represent promising targets for therapeutic intervention. This study aimed to investigate the effects of PDE inhibition on human umbilical arteries (HUAs) compared to HUV. Umbilical vessels were collected in IUGR and AGA term newborns. NO-induced relaxation was studied using isolated vessel tension experiments in the presence or absence of the nonspecific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). PDE1B, PDE1C, PDE3A, PDE4B, and PDE5A were investigated by Western blot. NO-induced vasodilation was similar between IUGR and AGA HUAs. In HUAs precontracted with serotonin, IBMX enhanced NO-induced relaxation only in IUGR females, whereas in HUV IBMX increased NO-induced relaxation in all groups except IUGR males. In umbilical vessels preconstricted with the thromboxane A2 analog U46619, IBMX improved NO-induced relaxation in all groups to a greater extent in HUV than HUAs. However, the PDE protein content was higher in HUAs than HUV in all study groups. Therefore, the effects of PDE inhibition depend on the presence of IUGR, fetal sex, vessel type, and vasoconstrictors implicated. Despite a higher PDE protein content, HUAs are less sensitive to IBMX than HUV, which could lead to adverse effects of PDE inhibition in vivo by impairment of the fetoplacental hemodynamics.NEW & NOTEWORTHY The effects of phosphodiesterase inhibition on the umbilical circulation depend on the presence of intrauterine growth restriction, the fetal sex, vessel type, and vasoconstrictors implicated. The human umbilical vascular tone regulation is complex and depends on the amount and activity of specific proteins but also probably on the subcellular organization mediating protein interactions. Therefore, therapeutic interventions using phosphodiesterase inhibitors to improve the placental-fetal circulation should consider fetal sex and both umbilical vein and artery reactivity.
Collapse
Affiliation(s)
- Anne-Christine Peyter
- Neonatal Research Laboratory, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Manon Beaumann
- Neonatal Research Laboratory, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Flavien Delhaes
- Neonatal Research Laboratory, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sébastien Joye
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Steeve Menétrey
- Neonatal Research Laboratory, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David Baud
- Clinic of Gynecology and Obstetrics, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-François Tolsa
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Tabish TA, Hussain MZ, Zervou S, Myers WK, Tu W, Xu J, Beer I, Huang WE, Chandrawati R, Crabtree MJ, Winyard PG, Lygate CA. S-nitrosocysteamine-functionalised porous graphene oxide nanosheets as nitric oxide delivery vehicles for cardiovascular applications. Redox Biol 2024; 72:103144. [PMID: 38613920 PMCID: PMC11026843 DOI: 10.1016/j.redox.2024.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom.
| | - Mian Zahid Hussain
- School of Natural Sciences and Catalysis Research Centre, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich (TUM), Lichtenbergstraße 4, 85748, Garching, Germany
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom
| | - William K Myers
- Centre for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom; James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Irina Beer
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom; Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Paul G Winyard
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
14
|
Abstract
Elevated blood pressure is a well-established risk factor for age-related cognitive decline. Long linked to cognitive impairment on vascular bases, increasing evidence suggests a potential association of hypertension with the neurodegenerative pathology underlying Alzheimer disease. Hypertension is well known to disrupt the structural and functional integrity of the cerebral vasculature. However, the mechanisms by which these alterations lead to brain damage, enhance Alzheimer pathology, and promote cognitive impairment remain to be established. Furthermore, critical questions concerning whether lowering blood pressure by antihypertensive medications prevents cognitive impairment have not been answered. Recent developments in neurovascular biology, brain imaging, and epidemiology, as well as new clinical trials, have provided insights into these critical issues. In particular, clinical and basic findings on the link between neurovascular dysfunction and the pathobiology of neurodegeneration have shed new light on the overlap between vascular and Alzheimer pathology. In this review, we will examine the progress made in the relationship between hypertension and cognitive impairment and, after a critical evaluation of the evidence, attempt to identify remaining knowledge gaps and future research directions that may advance our understanding of one of the leading health challenges of our time.
Collapse
Affiliation(s)
- Anthony Pacholko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
15
|
Choi YJ, Choi WC, Jeon GR, Kim JH, Kim MS, Kim JH. Characteristics of Far-Infrared Ray Emitted from Functional Loess Bio-Balls and Its Effect on Improving Blood Flow. Bioengineering (Basel) 2024; 11:380. [PMID: 38671801 PMCID: PMC11048564 DOI: 10.3390/bioengineering11040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
XRD diffraction and IR absorption were investigated for raw loess powder and heat-treated loess powder. Raw loess retains its useful minerals, but loses their beneficial properties when calcined at 850 °C and 1050 °C. To utilize the useful minerals, loess balls were made using a low-temperature wet-drying method. The radiant energy and transmittance were measured for the loess balls. Far-infrared ray (FIR) emitted from loess bio-balls is selectively absorbed as higher vibrational energy by water molecules. FIR can raise the body's core temperature, thereby improving blood flow through the body's thermoregulatory mechanism. In an exploratory study with 40 participants, when the set temperature of the loess ball mat was increased from 25 °C to 50 °C, blood flow increased by 39.01%, from 37.48 mL/min to 52.11 mL/min, in the left middle finger; in addition, it increased by 39.62%, from 37.15 mL/min to 51.87 mL/min, in the right middle finger. The FIR emitted from loess balls can be widely applied, in various forms, to diseases related to blood flow, such as cold hands and feet, diabetic foot, muscle pain, and menstrual pain.
Collapse
Affiliation(s)
- Yeon Jin Choi
- R&D Center, Hanwool Bio, Yangsan 50561, Republic of Korea; (Y.J.C.); (W.C.C.)
| | - Woo Cheol Choi
- R&D Center, Hanwool Bio, Yangsan 50561, Republic of Korea; (Y.J.C.); (W.C.C.)
| | - Gye Rok Jeon
- R&D Center, eXsolit, Yangsan 50611, Republic of Korea; (G.R.J.); (J.H.K.)
| | - Jae Ho Kim
- R&D Center, eXsolit, Yangsan 50611, Republic of Korea; (G.R.J.); (J.H.K.)
| | | | - Jae Hyung Kim
- R&D Center, Hanwool Bio, Yangsan 50561, Republic of Korea; (Y.J.C.); (W.C.C.)
| |
Collapse
|
16
|
Quagliariello V, Berretta M, Bisceglia I, Giacobbe I, Iovine M, Giordano V, Arianna R, Barbato M, Izzo F, Maurea C, Canale ML, Paccone A, Inno A, Scherillo M, Gabrielli D, Maurea N. The sGCa Vericiguat Exhibit Cardioprotective and Anti-Sarcopenic Effects through NLRP-3 Pathways: Potential Benefits for Anthracycline-Treated Cancer Patients. Cancers (Basel) 2024; 16:1487. [PMID: 38672567 PMCID: PMC11047880 DOI: 10.3390/cancers16081487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Anthracycline-induced cardiomyopathies and sarcopenia are frequently seen in cancer patients, affecting their overall survival and quality of life; therefore, new cardioprotective and anti-sarcopenic strategies are needed. Vericiguat is a new oral guanylate cyclase activator that reduces heart failure hospitalizations or cardiovascular death. This study highlighted the potential cardioprotective and anti-sarcopenic properties of vericiguat during anthracycline therapy. Human cardiomyocytes and primary skeletal muscle cells were exposed to doxorubicin (DOXO) with or without a pre-treatment with vericiguat. Mitochondrial cell viability, LDH, and Cytochrome C release were performed to study cytoprotective properties. Intracellular Ca++ content, TUNEL assay, cGMP, NLRP-3, Myd-88, and cytokine intracellular levels were quantified through colorimetric and selective ELISA methods. Vericiguat exerts significant cytoprotective and anti-apoptotic effects during exposure to doxorubicin. A drastic increase in cGMP expression and reduction in NLRP-3, MyD-88 levels were also seen in Vericiguat-DOXO groups vs. DOXO groups (p < 0.001) in both cardiomyocytes and human muscle cells. GCa vericiguat reduces cytokines and chemokines involved in heart failure and sarcopenia. The findings that emerged from this study could provide the rationale for further preclinical and clinical investigations aimed at reducing anthracycline cardiotoxicity and sarcopenia in cancer patients.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Rome, Italy;
| | - Ilaria Giacobbe
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Vienna Giordano
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Raffaele Arianna
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Matteo Barbato
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Francesca Izzo
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Carlo Maurea
- ASL NA1, U.O.C. Neurology and Stroke Unit, Ospedale del Mare, 80147 Naples, Italy;
| | | | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy;
| | - Marino Scherillo
- Cardiologia Interventistica e UTIC, A.O. San Pio, Presidio Ospedaliero Gaetano Rummo, 82100 Benevento, Italy;
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Roma-Fondazione per Il Tuo Cuore-Heart Care Foundation, 00152 Roma, Italy;
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| |
Collapse
|
17
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
18
|
Carrillo-López N, Panizo S, Martín-Carro B, Mayo Barrallo JC, Román-García P, García-Castro R, Fernández-Gómez JM, Hevia-Suárez MÁ, Martín-Vírgala J, Fernández-Villabrille S, Martínez-Arias L, Vázquez SB, Calleros Basilio L, Naves-Díaz M, Cannata-Andía JB, Quirós-González I, Alonso-Montes C, Fernández-Martín JL. Redox Metabolism and Vascular Calcification in Chronic Kidney Disease. Biomolecules 2023; 13:1419. [PMID: 37759819 PMCID: PMC10526886 DOI: 10.3390/biom13091419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Vascular calcification (VC) is a common complication in patients with chronic kidney disease which increases their mortality. Although oxidative stress is involved in the onset and progression of this disorder, the specific role of some of the main redox regulators, such as catalase, the main scavenger of H2O2, remains unclear. In the present study, epigastric arteries of kidney transplant recipients, a rat model of VC, and an in vitro model of VC exhibiting catalase (Cts) overexpression were analysed. Pericalcified areas of human epigastric arteries had increased levels of catalase and cytoplasmic, rather than nuclear runt-related transcription factor 2 (RUNX2). In the rat model, advanced aortic VC concurred with lower levels of the H2O2-scavenger glutathione peroxidase 3 compared to controls. In an early model of calcification using vascular smooth muscle cells (VSMCs), Cts VSMCs showed the expected increase in total levels of RUNX2. However, Cts VMSCs also exhibited a lower percentage of the nucleus stained for RUNX2 in response to calcifying media. In this early model of VC, we did not observe a dysregulation of the mitochondrial redox state; instead, an increase in the general redox state was observed in the cytoplasm. These results highlight the complex role of antioxidant enzymes as catalase by regulation of RUNX2 subcellular location delaying the onset of VC.
Collapse
Affiliation(s)
- Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Juan Carlos Mayo Barrallo
- Department of Cellular Morphology and Biology, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad Oviedo, 33006 Oviedo, Spain;
| | - Pablo Román-García
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
| | - Raúl García-Castro
- Department of Nephrology, Hospital Juaneda Miramar, Red Asistencial Juaneda, 07011 Palma de Mallorca, Spain;
| | - Jesús María Fernández-Gómez
- UGC of Urology, Hospital Universitario Central de Asturias, Universidad de Oviedo, 33011 Oviedo, Spain; (J.M.F.-G.); (M.Á.H.-S.)
- Department of Surgery and Medical Surgical Specialities, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Miguel Ángel Hevia-Suárez
- UGC of Urology, Hospital Universitario Central de Asturias, Universidad de Oviedo, 33011 Oviedo, Spain; (J.M.F.-G.); (M.Á.H.-S.)
- Department of Surgery and Medical Surgical Specialities, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julia Martín-Vírgala
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Sara Barrio Vázquez
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
| | - Laura Calleros Basilio
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - Jorge Benito Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
- Department of Medicine, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Isabel Quirós-González
- Department of Cellular Morphology and Biology, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad Oviedo, 33006 Oviedo, Spain;
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| | - José Luis Fernández-Martín
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (B.M.-C.); (P.R.-G.); (J.M.-V.); (S.F.-V.); (L.M.-A.); (S.B.V.); (M.N.-D.); (C.A.-M.); (J.L.F.-M.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28029 Madrid, Spain;
| |
Collapse
|
19
|
López-Rodulfo IM, Villa-Martínez E, Rios A, Escalante B. Caveolin Delivered by Ultrasound-Mediated Microbubble Destruction Prevents Endothelial Cell Proliferation. Cell Mol Bioeng 2023; 16:219-229. [PMID: 37456788 PMCID: PMC10338419 DOI: 10.1007/s12195-023-00763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/29/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The nitric oxide synthase (eNOS) is an important regulator of vascular homeostasis. eNOS is modulated by intracellular mechanisms that include protein-protein interaction with Caveolin-1 (Cav). Cav binds to and impairs eNOS activation reducing vascular permeability and angiogenesis. Blocking of eNOS by Cav has been proposed as therapeutic antiangiogenic approach. However, the efficient and controlled delivery of the peptide requires to be solved. Methods The effect of antennapedia (AP)-Cav loaded into microbubbles (MBs) and delivered by ultrasound-mediated microbubble destruction (UMMD) into brain endothelial cells (bEnd.3 cells) was evaluated on NO production using DAF2-DA, cell migration assessed by the wound healing assay, cell proliferation with BrdU, and ex-vivo angiogenesis in rat aortic rings. Results An enhanced inhibitory effect of AP-Cav was observed on cells treated with UMMD. MBs and ultrasound disruption delivery of AP-Cav increased acetylcholine-induced NO release, wound healing, cell proliferation, and angiogenesis inhibition on bEnd.3 cells, compared to free AP-Cav administration. Conclusion We demonstrated that the delivery of Cav via AP-Cav-loaded MBs and UMMD may be an administration method for Cav that would increase its therapeutic potential by enhancing efficacy and cellular specificity.
Collapse
Affiliation(s)
- Iván M. López-Rodulfo
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
- Present Address: Aarhus Universitet, Nordre Ringgade 1, 8000 Aarhus C, Denmark
| | - Elisa Villa-Martínez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
| | - Amelia Rios
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
| |
Collapse
|
20
|
Zhong X, Li Z, Xu Q, Peng H, Su Y, Le K, Shu Z, Liao Y, Ma Z, Pan X, Xu S, Zhou S. Short-chain acyl-CoA dehydrogenase is a potential target for the treatment of vascular remodelling. J Hypertens 2023; 41:775-793. [PMID: 36883465 DOI: 10.1097/hjh.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme in the fatty acid oxidation process, is not only involved in ATP synthesis but also regulates the production of mitochondrial reactive oxygen species (ROS) and nitric oxide synthesis. The purpose of this study was to investigate the possible role of SCAD in hypertension-associated vascular remodelling. METHODS In-vivo experiments were performed on spontaneously hypertensive rats (SHRs, ages of 4 weeks to 20 months) and SCAD knockout mice. The aorta sections of hypertensive patients were used for measurement of SCAD expression. In-vitro experiments with t-butylhydroperoxide (tBHP), SCAD siRNA, adenovirus-SCAD (MOI 90) or shear stress (4, 15 dynes/cm 2 ) were performed using human umbilical vein endothelial cells (HUVECs). RESULTS Compared with age-matched Wistar rats, aortic SCAD expression decreased gradually in SHRs with age. In addition, aerobic exercise training for 8 weeks could significantly increase SCAD expression and enzyme activity in the aortas of SHRs while decreasing vascular remodelling in SHRs. SCAD knockout mice also exhibited aggravated vascular remodelling and cardiovascular dysfunction. Likewise, SCAD expression was also decreased in tBHP-induced endothelial cell apoptosis models and the aortas of hypertensive patients. SCAD siRNA caused HUVEC apoptosis in vitro , whereas adenovirus-mediated SCAD overexpression (Ad-SCAD) protected against HUVEC apoptosis. Furthermore, SCAD expression was decreased in HUVECs exposed to low shear stress (4 dynes/cm 2 ) and increased in HUVECs exposed to 15 dynes/cm 2 compared with those under static conditions. CONCLUSION SCAD is a negative regulator of vascular remodelling and may represent a novel therapeutic target for vascular remodelling.
Collapse
Affiliation(s)
- Xiaoyi Zhong
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Zhonghong Li
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Qingping Xu
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Huan Peng
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Yongshao Su
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Kang Le
- Sickle Cell Branch, National heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaohui Shu
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Yingqin Liao
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Zhichao Ma
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Xuediao Pan
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Sigui Zhou
- School of Chinese Materia Medica, GuangDong Pharmaceutical University
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou, China
| |
Collapse
|
21
|
Mukherjee D, Previs RA, Haines CN, Abo MA, Juras PK, Strickland KC, Chakraborty B, Artham S, Whitaker R, Hebert KL, Fontenot J, Patierno SR, Freedman JA, Lau FH, Burow M, Chang CY, McDonnell DP. Ca 2+ /Calmodulin Dependent Protein Kinase Kinase-2 (CaMKK2) promotes Protein Kinase G (PKG)-dependent actin cytoskeletal assembly to increase tumor metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.536051. [PMID: 37131673 PMCID: PMC10153149 DOI: 10.1101/2023.04.17.536051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Triple-negative breast cancers (TNBCs) tend to become highly invasive early during cancer development. Despite some successes in the initial treatment of patients diagnosed with early-stage localized TNBC, the rate of metastatic recurrence remains high with poor long-term survival outcomes. Here we show that elevated expression of the serine/threonine-kinase, Calcium/Calmodulin (CaM)-dependent protein kinase kinase-2 (CaMKK2), is highly correlated with tumor invasiveness. We determined that genetic disruption of CaMKK2 expression, or inhibition of its activity, disrupted spontaneous metastatic outgrowth from primary tumors in murine xenograft models of TNBC. High-grade serous ovarian cancer (HGSOC), a high-risk, poor-prognosis ovarian cancer subtype, shares many genetic features with TNBC, and importantly, CaMKK2 inhibition effectively blocked metastatic progression in a validated xenograft model of this disease. Probing the mechanistic links between CaMKK2 and metastasis we defined the elements of a new signaling pathway that impacts actin cytoskeletal dynamics in a manner which increases cell migration/invasion and metastasis. Notably, CaMKK2 increases the expression of the phosphodiesterase PDE1A which decreases the cGMP-dependent activity of protein kinase G1 (PKG1). This inhibition of PKG1 results in decreased phosphorylation of Vasodilator-Stimulated Phosphoprotein (VASP), which in its hypophosphorylated state binds to and regulates F-actin assembly to facilitate contraction/cell movement. Together, these data establish a targetable CaMKK2-PDE1A-PKG1-VASP signaling pathway that controls cancer cell motility and metastasis. Further, it credentials CaMKK2 as a therapeutic target that can be exploited in the discovery of agents for use in the neoadjuvant/adjuvant setting to restrict tumor invasiveness in patients diagnosed with early-stage TNBC or localized HGSOC.
Collapse
|
22
|
Lee J, Kim D, Park S, Baek S, Jung J, Kim T, Han DK. Nitric Oxide-Releasing Bioinspired Scaffold for Exquisite Regeneration of Osteoporotic Bone via Regulation of Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205336. [PMID: 36581472 PMCID: PMC9951336 DOI: 10.1002/advs.202205336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Osteoporotic bone regeneration is a challenging process which involves the occurrence of sophisticated interactions. Although various polymeric scaffolds have been proposed for bone repair, research on osteoporotic bone regeneration remains practically limited. In particular, achieving satisfactory bone regeneration when using osteoporotic drugs is challenging including bisphosphonates. Here, a novel nitric oxide-releasing bioinspired scaffold with bioactive agents for the exquisite regeneration of osteoporotic bone is proposed. The bone-like biomimetic poly(lactic-co-glycolic acid) scaffold is first prepared in combination with organic/inorganic ECM and magnesium hydroxide as the base implant material. Nanoparticles containing bioactive agents of zinc oxide (ZO), alendronate, and BMP2 are incorporated to the biomimetic scaffold to impart multifunctionality such as anti-inflammation, angiogenesis, anti-osteoclastogenesis, and bone regeneration. Especially, nitric oxide (NO) generated from ZO stimulates the activity of cGMP and protein kinase G; in addition, ZO downregulates the RANKL/osteoprotegerin ratio by suppressing the Wnt/β-catenin signaling pathway. The new bone is formed much better in the osteoporotic rat model than in the normal model through the regulation of bone homeostasis via the scaffold. These synergistic effects suggest that such a bioinspired scaffold could be a comprehensive way to regenerate exceptionally osteoporotic bones.
Collapse
Affiliation(s)
- Jun‐Kyu Lee
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
| | - Da‐Seul Kim
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
- School of Integrative EngineeringChung‐Ang University84 Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - So‐Yeon Park
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
- Division of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeongbuk‐guSeoul02841Republic of Korea
| | - Seung‐Woon Baek
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
- Department of Biomedical EngineeringSKKU Institute for ConvergenceSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐gu, Suwon‐siGyeonggi‐do16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSKKU Institute for ConvergenceSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐gu, Suwon‐siGyeonggi‐do16419Republic of Korea
| | - Ji‐Won Jung
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
| | - Tae‐Hyung Kim
- School of Integrative EngineeringChung‐Ang University84 Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Dong Keun Han
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
| |
Collapse
|
23
|
Kaplinsky E, Perrone S, Barbagelata A. Emerging concepts in heart failure management and treatment: focus on vericiguat. Drugs Context 2023; 12:dic-2022-5-5. [PMID: 36660012 PMCID: PMC9828868 DOI: 10.7573/dic.2022-5-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/26/2022] [Indexed: 01/04/2023] Open
Abstract
The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway is dysregulated in patients with heart failure (HF) resulting in myocardial and vascular dysfunction that contributes to its progression. Vericiguat is a novel direct sGC stimulator that targets in at least two ways the NO-sGC-cGMP pathway with the subsequent restoration of cGMP activity. The VICTORIA trial assessed the effects of vericiguat (versus placebo) in 5050 patients with chronic HF (NYHA class II-IV), left ventricular ejection fraction (LVEF) <45%, elevated natriuretic peptide levels and a recent HF decompensation (hospitalized or outpatient intravenous diuretics). After a median follow-up of 10.8 months, a lower risk (10% reduction) of the primary combined outcome (cardiovascular death or HF hospitalization) was achieved (HR 0.90, 95% CI 0.83-0.98; p=0.02). The composite endpoint was driven by HF hospitalizations (HR 0.9, 95% CI 0.81-1.00; p=0.048) whilst CV death reduction was not statistically significant on its own. The target dose was achieved in 89% of patients treated with vericiguat, and no significant differences were observed in the rates of syncope or hypotension. The VICTORIA trial showed that vericiguat was safe, well tolerated and without need of laboratory testing. The aim of this review is to provide comprehensive information about vericiguat in terms of its differential mechanism of action and clinical data particularly focused on the VICTORIA trial. A comparison is also made with DAPA-HF and EMPEROR-Reduced considering that, in all these contemporary trials, a new study medication was added to the standard triple HF therapy. This is a relevant issue because the VICTORIA trial had a significant but less powerful effect than DAPA-HF and EMPEROR-Reduced on HF outcomes in a setting of more severe disease, higher event rate and shorter follow-up. In addition, relevant data on other previous studies are also provided in both HF with reduced LVEF (SOCRATES-Reduced) and HF with preserved LVEF (SOCRATES-Preserved and VITALITY-Preserved). This article is part of the Emerging concepts in heart failure management and treatment Special Issue: https://www.drugsincontext.com/special_issues/emerging-concepts-in-heart-failure-management-and-treatment.
Collapse
Affiliation(s)
- Edgardo Kaplinsky
- Cardiology Unit, Medicine Department, Hospital Municipal de Badalona, Spain
| | - Sergio Perrone
- Catholic University Argentina/Fleni Institute, Buenos Aires, Argentina
| | - Alejandro Barbagelata
- Catholic University Argentina/Fleni Institute, Buenos Aires, Argentina,Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
24
|
Su C, Lu Y, Wang Z, Guo J, Hou Y, Wang X, Qin Z, Gao J, Sun Z, Dai Y, Liu Y, Liu G, Xian X, Cui X, Zhang J, Tang J. Atherosclerosis: The Involvement of Immunity, Cytokines and Cells in Pathogenesis, and Potential Novel Therapeutics. Aging Dis 2022:AD.2022.1208. [PMID: 37163428 PMCID: PMC10389830 DOI: 10.14336/ad.2022.1208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/08/2022] [Indexed: 05/12/2023] Open
Abstract
As a leading contributor to coronary artery disease (CAD) and stroke, atherosclerosis has become one of the major cardiovascular diseases (CVD) negatively impacting patients worldwide. The endothelial injury is considered to be the initial step of the development of atherosclerosis, resulting in immune cell migration and activation as well as inflammatory factor secretion, which further leads to acute and chronic inflammation. In addition, the inflammation and lipid accumulation at the lesions stimulate specific responses from different types of cells, contributing to the pathological progression of atherosclerosis. As a result, recent studies have focused on using molecular biological approaches such as gene editing and nanotechnology to mediate cellular response during atherosclerotic development for therapeutic purposes. In this review, we systematically discuss inflammatory pathogenesis during the development of atherosclerosis from a cellular level with a focus on the blood cells, including all types of immune cells, together with crucial cells within the blood vessel, such as smooth muscle cells and endothelial cells. In addition, the latest progression of molecular-cellular based therapy for atherosclerosis is also discussed. We hope this review article could be beneficial for the clinical management of atherosclerosis.
Collapse
Affiliation(s)
- Chang Su
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yongzheng Lu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zeyu Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jiacheng Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yachen Hou
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Xiaofang Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhen Qin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jiamin Gao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhaowei Sun
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yichen Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yu Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, Peking University, Beijing, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jinying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Biological Assessment of the NO-Dependent Endothelial Function. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227921. [PMID: 36432022 PMCID: PMC9698916 DOI: 10.3390/molecules27227921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is implicated in numerous physiological processes, including vascular homeostasis. Reduced NO bioavailability is a hallmark of endothelial dysfunction, a prequel to many cardiovascular diseases. Biomarkers of an early NO-dependent endothelial dysfunction obtained from routine venous blood sampling would be of great interest but are currently lacking. The direct measurement of circulating NO remains a challenge due by its high reactivity and short half-life. The current techniques measure stable products from the NO signaling pathway or metabolic end products of NO that do not accurately represent its bioavailability and, therefore, endothelial function per se. In this review, we will concentrate on an original technique of low temperature electron paramagnetic resonance spectroscopy capable to directly measure the 5-α-coordinated heme nitrosyl-hemoglobin in the T (tense) state (5-α-nitrosyl-hemoglobin or HbNO) obtained from fresh venous human erythrocytes. In humans, HbNO reflects the bioavailability of NO formed in the vasculature from vascular endothelial NOS or exogenous NO donors with minor contribution from erythrocyte NOS. The HbNO signal is directly correlated with the vascular endothelial function and inversely correlated with vascular oxidative stress. Pilot studies support the validity of HbNO measurements both for the detection of endothelial dysfunction in asymptomatic subjects and for the monitoring of such dysfunction in patients with known cardiovascular disease. The impact of therapies or the severity of diseases such as COVID-19 infection involving the endothelium could also be monitored and their incumbent risk of complications better predicted through serial measurements of HbNO.
Collapse
|
26
|
Li G, Ling M, Yu K, Yang W, Liu Q, He L, Cai X, Zhong M, Mai Z, Sun R, Xiao Y, Yu Z, Wang X. Synergetic delivery of artesunate and isosorbide 5-mononitrate with reduction-sensitive polymer nanoparticles for ovarian cancer chemotherapy. J Nanobiotechnology 2022; 20:471. [PMID: 36335352 PMCID: PMC9636721 DOI: 10.1186/s12951-022-01676-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
Ovarian cancer is a highly fatal gynecologic malignancy worldwide. Chemotherapy remains the primary modality both for primary and maintenance treatments of ovarian cancer. However, the progress in developing chemotherapeutic agents for ovarian cancer has been slow in the past 20 years. Thus, new and effective chemotherapeutic drugs are urgently needed for ovarian cancer treatment. A reduction-responsive synergetic delivery strategy (PSSP@ART-ISMN) with co-delivery of artesunate and isosorbide 5-mononitrate was investigated in this research study. PSSP@ART-ISMN had various effects on tumor cells, such as (i) inducing the production of reactive oxygen species (ROS), which contributes to mitochondrial damage; (ii) providing nitric oxide and ROS for the tumor cells, which further react to generate highly toxic reactive nitrogen species (RNS) and cause DNA damage; and (iii) arresting cell cycle at the G0/G1 phase and inducing apoptosis. PSSP@ART-ISMN also demonstrated excellent antitumor activity with good biocompatibility in vivo. Taken together, the results of this work provide a potential delivery strategy for chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Guang Li
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Mingjian Ling
- Southern Medical University Shenzhen Stomatology Hospital (Pingshan), Shenzhen, 518000 China
| | - Kunyi Yu
- grid.513392.fShenzhen Longhua District Central Hospital, Shenzhen, 518110 China
| | - Wei Yang
- grid.417404.20000 0004 1771 3058Zhujiang Hospital of Southern Medical University, Guangzhou, 510280 China
| | - Qiwen Liu
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Lijuan He
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Xuzi Cai
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Min Zhong
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Ziyi Mai
- grid.284723.80000 0000 8877 7471School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515 China
| | - Rui Sun
- grid.284723.80000 0000 8877 7471School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515 China
| | - Yuanling Xiao
- grid.417404.20000 0004 1771 3058Department of Gynecology, Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Zhiqiang Yu
- grid.284723.80000 0000 8877 7471Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018 China
| | - Xuefeng Wang
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| |
Collapse
|
27
|
Corro R, Urquijo CF, Aguila O, Villa E, Santana J, Rios A, Escalante B. Use of Nitric Oxide Donor-Loaded Microbubble Destruction by Ultrasound in Thrombus Treatment. Molecules 2022; 27:7218. [PMID: 36364039 PMCID: PMC9654162 DOI: 10.3390/molecules27217218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2023] Open
Abstract
In the presence of a vascular thrombus, the recovery of blood flow and vascular recanalization are very important to prevent tissue damage. An alternative procedure to thrombolysis is required for patients who are unable to receive surgery or thrombolytic drugs due to other physical conditions. Recently, the performance of thrombolysis combined with microbubbles has become an attractive and effective therapeutic procedure. Indeed, in a recent study, we demonstrated that, upon exposure to ultrasound, liposomes loaded with nitric oxide release agonists conjugated to microbubbles; therefore, there is potential to release the agonist in a controlled manner into specific tissues. This means that the effect of the agonist is potentiated, decreasing interactions with other tissues, and reducing the dose required to induce nitric-oxide-dependent vasodilation. In the present study, we hypothesized that a liposome microbubble delivery system can be used as a hydrophilic agonist carrier for the nitric oxide donor spermine NONOate, to elicit femoral vasodilation and clot degradation. Therefore, we used spermine-NONOate-loaded microbubbles to evaluate the effect of ultrasound-mediated microbubble disruption (UMMD) on thromboembolic femoral artery recanalization. We prepared spermine NONOate-loaded microbubbles and tested their effect on ex vivo preparations, hypothesizing that ultrasound-induced microbubble disruption is associated with the vasorelaxation of aortic rings. Thrombolysis was demonstrated in aorta blood-flow recovery after disruption by spermine NONOate-loaded microbubbles via ultrasound application in the region where the thrombus is located. Our study provides an option for the clinical translation of NO donors to therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bruno Escalante
- Cinvestav Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca 66600, Mexico
| |
Collapse
|
28
|
Ma J, Chen X. Advances in pathogenesis and treatment of essential hypertension. Front Cardiovasc Med 2022; 9:1003852. [PMID: 36312252 PMCID: PMC9616110 DOI: 10.3389/fcvm.2022.1003852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases and the leading cause of premature death worldwide. However, the pathogenesis of the hypertension, especially essential hypertension, is complex and requires in-depth studies. Recently, new findings about essential hypertension have emerged, and these may provide important theoretical bases and therapeutic tools to break through the existing bottleneck of essential hypertension. In this review, we demonstrated important advances in the different pathogenesis areas of essential hypertension, and highlighted new treatments proposed in these areas, hoping to provide insight for the prevention and treatment of the essential hypertension.
Collapse
|
29
|
Guo J, Yu X, Liu Y, Lu L, Zhu D, Zhang Y, Li L, Zhang P, Gao Q, Lu X, Sun M. Prenatal hypothyroidism diminished exogenous NO-mediated diastolic effects in fetal rat thoracic aorta smooth muscle via increased oxidative stress. Reprod Toxicol 2022; 113:52-61. [PMID: 35970333 DOI: 10.1016/j.reprotox.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Maternal hypothyroidism is an important problem of modern healthcare and is reported to increase the risk of cardiovascular diseases in the offspring later in life. However, it is unclear whether hypothyroidism during pregnancy causes vascular damage in the fetal period. We established the prenatal hypothyroidism rat model and collected the fetuses at the 21th day of gestation (GD21). Thyroid hormone concentrations in maternal and offspring blood serum were assessed by enzyme-linked immunosorbent assay (ELISA). The thoracic aortas of the fetuses were isolated for microvessel functional testing and histochemical stainings. qPCR and Western blot were performed to access mRNA and protein expression. We found that the concentrations of thyroid hormones in the serum of pregnant rats and fetuses were significantly suppressed at GD21. The responses of the fetal thoracic aortas to SNP were significantly attenuated in the PTU group. However, no statistical difference was found between the two groups when treated with either inhibitor (ODQ) or activator (BAY58-2667) of sGC. The production of O2-• in the arterial wall was significantly increased in hypothyroid fetuses. Moreover, the level of NADPH oxidase (NOX) was increased, while superoxide dismutase 2 (SOD2) was down-regulated in the PTU group, ultimately contributing to the increased production of superoxide. Additionally, decreased SNP-mediated vasodilation found in fetal vessels was improved by either NOX inhibitor (Apocynin) or SOD mimic (Tempol). These results indicate that increased oxidative stress is probably the cause of the diminished diastolic effect of exogenous NO in the thoracic artery of prenatal hypothyroidism exposed fetuses.
Collapse
Affiliation(s)
- Jun Guo
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yanping Liu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Likui Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Dan Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yingying Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Lingjun Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Pengjie Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xiyuan Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| |
Collapse
|
30
|
Maslov LN, Naryzhnaya NV, Sementsov AS, Derkachev IA, Gusakova SV, Sarybaev A. Role of Nitric Oxide Synthase in the Infarct-Limiting Effect of Normobaric Hypoxia. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Therapeutic augmentation of NO-sGC-cGMP signalling: lessons learned from pulmonary arterial hypertension and heart failure. Heart Fail Rev 2022; 27:1991-2003. [PMID: 35437713 DOI: 10.1007/s10741-022-10239-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 01/14/2023]
Abstract
The nitric oxide (NO)-guanylate cyclase (GC)-cyclic guanosine monophosphate (cGMP) pathway plays an important role in cardiovascular, pulmonary and renal function. Phosphodiesterase-5 inhibitors (PDE-5i) inhibit cGMP degradation, whereas both soluble guanylate cyclase (sGC) stimulators and sGC activators directly increase sGC. PDE-5i (e.g. sildenafil, tadalafil) and sGC stimulators (e.g. riociguat, vericiguat) have been extensively used in pulmonary artery hypertension (PAH) and heart failure (HF). PDE-5i have also been used in end-stage HF before and after left ventricular (LV) assist device (LVAD) implantation. Augmentation of NO-GC-cGMP signalling with PDE-5i causes selective pulmonary vasodilation, which is highly effective in PAH but may have controversial, potentially adverse effects in HF, including pre-LVAD implant due to device unmasking of PDE-5i-induced RV dysfunction. In contrast, retrospective analyses have demonstrated that PDE-5i have beneficial effects when initiated post LVAD implant due to the improved haemodynamics of the supported LV and the pleiotropic actions of these compounds. sGC stimulators, in turn, are effective both in PAH and in HF due to their balanced pulmonary and systemic vasodilation, and as such they are preferable to PDE-5i if the use of a pulmonary vasodilator is needed in HF patients, including those listed for LVAD implantation. Regarding the effectiveness of PDE-5i and sGC stimulators when initiated post LVAD implant, these two groups of compounds should be tested in a randomized control trial.
Collapse
|
32
|
Durgin BG, Wood KC, Hahn SA, McMahon B, Baust JJ, Straub AC. Smooth muscle cell CYB5R3 preserves cardiac and vascular function under chronic hypoxic stress. J Mol Cell Cardiol 2022; 162:72-80. [PMID: 34536439 PMCID: PMC8766905 DOI: 10.1016/j.yjmcc.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
Chronic hypoxia is a major driver of cardiovascular complications, including heart failure. The nitric oxide (NO) - soluble guanylyl cyclase (sGC) - cyclic guanosine monophosphate (cGMP) pathway is integral to vascular tone maintenance. Specifically, NO binds its receptor sGC within vascular smooth muscle cells (SMC) in its reduced heme (Fe2+) form to increase intracellular cGMP production, activate protein kinase G (PKG) signaling, and induce vessel relaxation. Under chronic hypoxia, oxidative stress drives oxidation of sGC heme (Fe2+→Fe3+), rendering it NO-insensitive. We previously showed that cytochrome b5 reductase 3 (CYB5R3) in SMC is a sGC reductase important for maintaining NO-dependent vasodilation and conferring resilience to systemic hypertension and sickle cell disease-associated pulmonary hypertension. To test whether CYB5R3 may be protective in the context of chronic hypoxia, we subjected SMC-specific CYB5R3 knockout mice (SMC CYB5R3 KO) to 3 weeks hypoxia and assessed vascular and cardiac function using echocardiography, pressure volume loops and wire myography. Hypoxic stress caused 1) biventricular hypertrophy in both WT and SMC CYB5R3 KO, but to a larger degree in KO mice, 2) blunted vasodilation to NO-dependent activation of sGC in coronary and pulmonary arteries of KO mice, and 3) decreased, albeit still normal, cardiac function in KO mice. Overall, these data indicate that SMC CYB5R3 deficiency potentiates bilateral ventricular hypertrophy and blunts NO-dependent vasodilation under chronic hypoxia conditions. This implicates that SMC CYB5R3 KO mice post 3-week hypoxia have early stages of cardiac remodeling and functional changes that could foretell significantly impaired cardiac function with longer exposure to hypoxia.
Collapse
Affiliation(s)
- Brittany G Durgin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Scott A Hahn
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Brenda McMahon
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jeffrey J Baust
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
33
|
Zhao X, Tian J, Liu Y, Ye Z, Xu M, Huang R, Song X. TLR4-Myd88 pathway upregulated caveolin-1 expression contributes to coronary artery spasm. Vascul Pharmacol 2021; 142:106947. [PMID: 34822994 DOI: 10.1016/j.vph.2021.106947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
AIM To study the role of toll-like receptors 4-myeloid differentiation factor 88 (TLR4-Myd88) dependent caveolin-1 (Cav-1) expression modulation in coronary artery spasm (CAS) and explore the underlying pathogenic mechanisms. METHODS AND RESULTS Lipopolysaccharide (LPS) and acetylcholine (Ach) were used to develop the in vitro and in vivo models mimicking the physiological CAS microenvironment. LPS-induced upregulation of Cav-1 expression in mouse coronary and aorta endothelial cells was shown by western blot and immunofluorescence (IF) staining (p < 0.01). Caveolin-1-knockout (Cav-1-/-) mice had reduced aortic inflammation after LPS challenge, and fewer ST segment changes were observed through electrocardiogram (ECG) monitoring compared to wild type mice after LPS and ACh administration. In vitro, pretreating human umbilical vein endothelial cells (HUVECs) with siCav-1 to knock down Cav-1 expression reduced the endothelial inflammation following LPS challenge. SiCav-1 also partially reversed the attenuated Ca2+ concentration after LPS and ACh administration compared to the control group, which was evaluated by fluorescent molecular probing for Ca2+ alternation monitoring (p < 0.05). TLR4 and Myd88 downregulation by siRNA partially blocked the increased Cav-1 mRNA and protein expressions following LPS treatment, as well as partially reversed the decreased NO production evaluated by nitrate reductase method and the impaired Ca2+ concentration of endothelial cells induced by LPS and ACh. CONCLUSION These findings suggested that Cav-1, which was upregulated by TLR4-Myd88, served as an important modulator of CAS microenvironment establishment in vivo and in vitro, making it a potential pharmacologic target for the treatment of vasospasm via reduced endothelial cell inflammation.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Yue Liu
- Cardiovascular Disease Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing 100050, PR China
| | - Mingyue Xu
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing 100050, PR China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing 100050, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China.
| |
Collapse
|
34
|
Toral M, de la Fuente-Alonso A, Campanero MR, Redondo JM. The NO signalling pathway in aortic aneurysm and dissection. Br J Pharmacol 2021; 179:1287-1303. [PMID: 34599830 DOI: 10.1111/bph.15694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that NO is a central mediator in diseases associated with thoracic aortic aneurysm, such as Marfan syndrome. The progressive dilation of the aorta in thoracic aortic aneurysm ultimately leads to aortic dissection. Unfortunately, current medical treatments have neither halt aortic enlargement nor prevented rupture, leaving surgical repair as the only effective treatment. There is therefore a pressing need for effective therapies to delay or even avoid the need for surgical repair in thoracic aortic aneurysm patients. Here, we summarize the mechanisms through which NO signalling dysregulation causes thoracic aortic aneurysm, particularly in Marfan syndrome. We discuss recent advances based on the identification of new Marfan syndrome mediators related to pathway overactivation that represent potential disease biomarkers. Likewise, we propose iNOS, sGC and PRKG1, whose pharmacological inhibition reverses aortopathy in Marfan syndrome mice, as targets for therapeutic intervention in thoracic aortic aneurysm and are candidates for clinical trials.
Collapse
Affiliation(s)
- Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrea de la Fuente-Alonso
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
35
|
Liu L, Wang Q, Liao H, Ye J, Huang J, Li S, Peng H, Yu X, Wen H, Wang X. Soluble microneedle patch with photothermal and NO-release properties for painless and precise treatment of ischemic perforator flaps. J Mater Chem B 2021; 9:7725-7733. [PMID: 34586148 DOI: 10.1039/d1tb00491c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin necrosis is the most serious complication of flap plastic surgery, which means the failure of the operation. Systemic administration rarely benefits the local area and can lead to side effects, while topical administration has poor permeability due to the skin barrier function. Currently, few of these common medical interventions can totally respond to the blood supply of the skin after surgery. Herein, a soluble microneedle (MN) patch made of hyaluronic acid was used to target the ischemic area in a painless and precise manner for transdermal drug delivery. Based on the important role of nitric oxide (NO) in angiogenesis, the thermosensitive NO donor (BNN6) and gold nanorods (GNRs) acting as photothermal agents were introduced into the microneedles (MNs). The hyperthermia induced by GNRs under near infrared (NIR, 808 nm) irradiation could enhance the penetration of drugs and facilitate NO release from BNN6. A series of corresponding experiments proved that the system played a significant promotion role in vascular regeneration, providing a painless, precise and NO-assisted treatment method for the ischemic perforator flaps.
Collapse
Affiliation(s)
- Lubing Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Qingqing Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| | - Huaiwei Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Jing Ye
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| | - Jinjun Huang
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Shisheng Li
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Haichuan Peng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| | - Xiang Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| | - Huicai Wen
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| |
Collapse
|
36
|
Tamis A, Drapaca CS. Modeling NO Biotransport in Brain Using a Space-Fractional Reaction-Diffusion Equation. Front Physiol 2021; 12:644149. [PMID: 34248655 PMCID: PMC8267530 DOI: 10.3389/fphys.2021.644149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) is a small gaseous molecule that is involved in some critical biochemical processes in the body such as the regulation of cerebral blood flow and pressure. Infection and inflammatory processes such as those caused by COVID-19 produce a disequilibrium in the NO bioavailability and/or a delay in the interactions of NO with other molecules contributing to the onset and evolution of cardiocerebrovascular diseases. A link between the SARS-CoV-2 virus and NO is introduced. Recent experimental observations of intracellular transport of metabolites in the brain and the NO trapping inside endothelial microparticles (EMPs) suggest the possibility of anomalous diffusion of NO, which may be enhanced by disease processes. A novel space-fractional reaction-diffusion equation to model NO biotransport in the brain is further proposed. The model incorporates the production of NO by synthesis in neurons and by mechanotransduction in the endothelial cells, and the loss of NO due to its reaction with superoxide and interaction with hemoglobin. The anomalous diffusion is modeled using a generalized Fick’s law that involves spatial fractional order derivatives. The predictive ability of the proposed model is investigated through numerical simulations. The implications of the methodology for COVID-19 outlined in the section “Discussion” are purely exploratory.
Collapse
Affiliation(s)
- Andrew Tamis
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| | - Corina S Drapaca
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
37
|
Li BH, Fang KF, Lin PH, Zhang YH, Huang YX, Jie H. Effect of sacubitril valsartan on cardiac function and endothelial function in patients with chronic heart failure with reduced ejection fraction. Clin Hemorheol Microcirc 2021; 77:425-433. [PMID: 33386797 DOI: 10.3233/ch-201032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of the present study was to observe the effect of sacubitril valsartan on cardiac function and vascular endothelial function in patients with chronic heart failure with reduced ejection fraction (HFrEF). METHODS A total of 80 patients with HFrEF were randomly divided into an observation group and a control group, with 40 patients in each group. Sacubitril valsartan was added to the conventional treatment in the observation group, and perindopril was added to the conventional treatment in the control group. Both groups were treated continuously for 12 weeks. The left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), flow-mediated vasodilatory function (FMD) of the brachial artery, and levels of plasma Ang II, endothelin 1 (ET-1), and calcitonin gene-related peptide (CGRP), together with the serum nitric oxide (NO) and NO synthase (NOS) were compared before and after treatment in the groups. RESULTS Before the treatment, the levels of LVEF, LVEDD, FMD, Ang II, ET-1, CGRP, NO, and NOS in the observation group were not significantly different from those in the control group (P > 0.05). However, the levels of LVEF, FMD, CGRP, NO, and NOS in both groups were significantly higher after the treatment than those before the treatment (P < 0.05) and significantly higher in the observation group than those in the control group. The difference was statistically significant (P < 0.05). Meanwhile, the levels of LVEDD, Ang II, and ET-1 in both groups decreased significantly after the treatment (P < 0.05) and were significantly lower in the observation group than those in the control group. The difference was statistically significant (P < 0.05). CONCLUSION Sacubitril valsartan might improve endothelial function while increasing cardiac function in HFrEF patients.
Collapse
Affiliation(s)
- Bao-Hua Li
- Department of Cardiology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Kuai-Fa Fang
- Department of Cardiology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Pei-Huan Lin
- Department of Cardiology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Yi-Hui Zhang
- Department of Cardiology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Yong-Xiang Huang
- Department of Cardiology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Hai Jie
- Department of Cardiology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| |
Collapse
|
38
|
Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nat Commun 2021; 12:2628. [PMID: 33976159 PMCID: PMC8113458 DOI: 10.1038/s41467-021-22933-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets. Aortic aneurysm and dissection, the major problem linked to Marfan syndrome (MFS), lacks effective pharmacological treatment. Here, the authors show that the NO pathway is overactivated in MFS and that inhibition of guanylate cyclase and cGMP-dependent protein kinase reverts MFS aortopathy in mice.
Collapse
|
39
|
High Magnesium and Sirolimus on Rabbit Vascular Cells-An In Vitro Proof of Concept. MATERIALS 2021; 14:ma14081970. [PMID: 33919969 PMCID: PMC8070902 DOI: 10.3390/ma14081970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022]
Abstract
Drug-eluting bioresorbable scaffolds represent the last frontier in the field of angioplasty and stenting to treat coronary artery disease, one of the leading causes of morbidity and mortality worldwide. In particular, sirolimus-eluting magnesium-based scaffolds were recently introduced in clinical practice. Magnesium alloys are biocompatible and dissolve in body fluids, thus determining high concentrations of magnesium in the local microenvironment. Since magnesium regulates cell growth, we asked whether high levels of magnesium might interfere with the antiproliferative action of sirolimus. We performed in vitro experiments on rabbit coronary artery endothelial and smooth muscle cells (rCAEC and rSMC, respectively). The cells were treated with sirolimus in the presence of different concentrations of extracellular magnesium. Sirolimus inhibits rCAEC proliferation only in physiological concentrations of magnesium, while high concentrations prevent this effect. On the contrary, high extracellular magnesium does not rescue rSMC growth arrest by sirolimus and accentuates the inhibitory effect of the drug on cell migration. Importantly, sirolimus and magnesium do not impair rSMC response to nitric oxide. If translated into a clinical setting, these results suggest that, in the presence of sirolimus, local increases of magnesium concentration maintain normal endothelial proliferative capacity and function without affecting rSMC growth inhibition and response to vasodilators.
Collapse
|
40
|
Tripathi R, Sullivan RD, Fan THM, Mehta RM, Gladysheva IP, Reed GL. A Low-Sodium Diet Boosts Ang (1-7) Production and NO-cGMP Bioavailability to Reduce Edema and Enhance Survival in Experimental Heart Failure. Int J Mol Sci 2021; 22:4035. [PMID: 33919841 PMCID: PMC8070795 DOI: 10.3390/ijms22084035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sodium restriction is often recommended in heart failure (HF) to block symptomatic edema, despite limited evidence for benefit. However, a low-sodium diet (LSD) activates the classical renin-angiotensin-aldosterone system (RAAS), which may adversely affect HF progression and mortality in patients with dilated cardiomyopathy (DCM). We performed a randomized, blinded pre-clinical trial to compare the effects of a normal (human-equivalent) sodium diet and a LSD on HF progression in a normotensive model of DCM in mice that has translational relevance to human HF. The LSD reduced HF progression by suppressing the development of pleural effusions (p < 0.01), blocking pathological increases in systemic extracellular water (p < 0.001) and prolonging median survival (15%, p < 0.01). The LSD activated the classical RAAS by increasing plasma renin activity, angiotensin II and aldosterone levels. However, the LSD also significantly up-elevated the counter-regulatory RAAS by boosting plasma angiotensin converting enzyme 2 (ACE2) and angiotensin (1-7) levels, promoting nitric oxide bioavailability and stimulating 3'-5'-cyclic guanosine monophosphate (cGMP) production. Plasma HF biomarkers associated with poor outcomes, such as B-type natriuretic peptide and neprilysin were decreased by a LSD. Cardiac systolic function, blood pressure and renal function were not affected. Although a LSD activates the classical RAAS system, we conclude that the LSD delayed HF progression and mortality in experimental DCM, in part through protective stimulation of the counter-regulatory RAAS to increase plasma ACE2 and angiotensin (1-7) levels, nitric oxide bioavailability and cGMP production.
Collapse
Affiliation(s)
- Ranjana Tripathi
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Ryan D Sullivan
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Tai-Hwang M Fan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Radhika M Mehta
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Inna P Gladysheva
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Guy L Reed
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|
41
|
Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem 2021; 296:100336. [PMID: 33508317 PMCID: PMC7949132 DOI: 10.1016/j.jbc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing heterodimeric enzyme that generates many molecules of cGMP in response to its ligand nitric oxide (NO); sGC thereby acts as an amplifier in NO-driven biological signaling cascades. Because sGC helps regulate the cardiovascular, neuronal, and gastrointestinal systems through its cGMP production, boosting sGC activity and preventing or reversing sGC inactivation are important therapeutic and pharmacologic goals. Work over the last two decades is uncovering the processes by which sGC matures to become functional, how sGC is inactivated, and how sGC is rescued from damage. A diverse group of small molecules and proteins have been implicated in these processes, including NO itself, reactive oxygen species, cellular heme, cell chaperone Hsp90, and various redox enzymes as well as pharmacologic sGC agonists. This review highlights their participation and provides an update on the processes that enable sGC maturation, drive its inactivation, or assist in its recovery in various settings within the cell, in hopes of reaching a better understanding of how sGC function is regulated in health and disease.
Collapse
|
42
|
Paulo M, Costa DEFR, Bonaventura D, Lunardi CN, Bendhack LM. Nitric Oxide Donors as Potential Drugs for the Treatment of Vascular Diseases Due to Endothelium Dysfunction. Curr Pharm Des 2021; 26:3748-3759. [PMID: 32427079 DOI: 10.2174/1381612826666200519114442] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction and consequent vasoconstriction are a common condition in patients with hypertension and other cardiovascular diseases. Endothelial cells produce and release vasodilator substances that play a pivotal role in normal vascular tone. The mechanisms underlying endothelial dysfunction are multifactorial. However, enhanced reactive oxygen species (ROS) production and consequent vasoconstriction instead of endothelium-derived relaxant generation and consequent vasodilatation contribute to this dysfunction considerably. The main targets of the drugs that are currently used to treat vascular diseases concerning enzyme activities and protein functions that are impaired by endothelial nitric oxide synthase (eNOS) uncoupling and ROS production. Nitric oxide (NO) bioavailability can decrease due to deficient NO production by eNOS and/or NO release to vascular smooth muscle cells, which impairs endothelial function. Considering the NO cellular mechanisms, tackling the issue of eNOS uncoupling could avoid endothelial dysfunction: provision of the enzyme cofactor tetrahydrobiopterin (BH4) should elicit NO release from NO donors, to activate soluble guanylyl cyclase. This should increase cyclic guanosine-monophosphate (cGMP) generation and inhibit phosphodiesterases (especially PDE5) that selectively degrade cGMP. Consequently, protein kinase-G should be activated, and K+ channels should be phosphorylated and activated, which is crucial for cell membrane hyperpolarization and vasodilation and/or inhibition of ROS production. The present review summarizes the current concepts about the vascular cellular mechanisms that underlie endothelial dysfunction and which could be the target of drugs for the treatment of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Michele Paulo
- Department Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto- University of Sao Paulo Av. Do Cafe SN, Brazil
| | - Daniela E F R Costa
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Claure N Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Brasilia, Brazil
| | - Lusiane M Bendhack
- Department Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto- University of Sao Paulo Av. Do Cafe SN, Brazil
| |
Collapse
|
43
|
Rao J, Pan Bei H, Yang Y, Liu Y, Lin H, Zhao X. Nitric Oxide-Producing Cardiovascular Stent Coatings for Prevention of Thrombosis and Restenosis. Front Bioeng Biotechnol 2020; 8:578. [PMID: 32671029 PMCID: PMC7326943 DOI: 10.3389/fbioe.2020.00578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular stenting is an effective method for treating cardiovascular diseases (CVDs), yet thrombosis and restenosis are the two major clinical complications that often lead to device failure. Nitric oxide (NO) has been proposed as a promising small molecule in improving the clinical performance of cardiovascular stents thanks to its anti-thrombosis and anti-restenosis ability, but its short half-life limits the full use of NO. To produce NO at lesion site with sufficient amount, NO-producing coatings (including NO-releasing and NO-generating coatings) are fashioned. Its releasing strategy is achieved by introducing exogenous NO storage materials like NO donors, while the generating strategy utilizes the in vivo substances such as S-nitrosothiols (RSNOs) to generate NO flux. NO-producing stents are particularly promising in future clinical use due to their ability to store NO resources or to generate large NO flux in a controlled and efficient manner. In this review, we first introduce NO-releasing and -generating coatings for prevention of thrombosis and restenosis. We then discuss the advantages and drawbacks on releasing and generating aspects, where possible further developments are suggested.
Collapse
Affiliation(s)
- Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Orthopedic Surgery, Fudan University, Shanghai, China
| | - Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Haodong Lin
- General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
44
|
Beaumann M, Delhaes F, Menétrey S, Joye S, Vial Y, Baud D, Magaly JG, Tolsa JF, Peyter AC. Intrauterine growth restriction is associated with sex-specific alterations in the nitric oxide/cyclic GMP relaxing pathway in the human umbilical vein. Placenta 2020; 93:83-93. [PMID: 32250743 DOI: 10.1016/j.placenta.2020.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Intrauterine growth restriction (IUGR) is a leading cause of perinatal mortality and morbidity, and is linked to an increased risk to develop chronic diseases in adulthood. We previously demonstrated that IUGR is associated, in female neonates, with a decreased nitric oxide (NO)-induced relaxation of the umbilical vein (UV). The present study aimed to investigate the contribution of the smooth muscle components of the NO/cyclic GMP (cGMP) pathway to this alteration. METHODS UVs were collected in growth-restricted or appropriate for gestational age (AGA) human term newborns. Soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinase (PKG) were studied by Western blot, cGMP production by ELISA and cyclic nucleotide phosphodiesterases (PDEs) activity using a colorimetric assay. Contribution of PDEs was evaluated using the non-specific PDEs inhibitor 3-isobutyl-1-methylxanthine (IBMX) in isolated vessel tension studies. RESULTS NO-induced relaxation was reduced in IUGR females despite increased sGC protein and activity, and some increase in PKG protein compared to AGA. In males, no significant difference was observed between both groups. In the presence of IBMX, NO-stimulated cGMP production was significantly higher in IUGR than AGA females. Pre-incubation with IBMX significantly improved NO-induced relaxation in all groups and abolished the difference between IUGR and AGA females. CONCLUSION IUGR is associated with sex-specific alterations in the UV's smooth muscle. The impaired NO-induced relaxation observed in growth-restricted females is linked to an imbalance in the NO/cGMP pathway. The beneficial effects of IBMX suggest that PDEs are implicated in such alteration and they could represent promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Manon Beaumann
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland.
| | - Flavien Delhaes
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland.
| | - Steeve Menétrey
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland.
| | - Sébastien Joye
- Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland.
| | - Yvan Vial
- Clinic of Gynecology and Obstetrics, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland.
| | - David Baud
- Clinic of Gynecology and Obstetrics, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland.
| | - Jacquier Goetschmann Magaly
- Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland.
| | - Jean-François Tolsa
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland; Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland.
| | - Anne-Christine Peyter
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland.
| |
Collapse
|
45
|
Impact of cigarette smoking on nitric oxide-sensitive and nitric oxide-insensitive soluble guanylate cyclase-mediated vascular tone regulation. Hypertens Res 2019; 43:178-185. [PMID: 31784677 DOI: 10.1038/s41440-019-0363-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022]
Abstract
Cigarette smoking induces vascular endothelial dysfunction characterized by impaired nitric oxide (NO) bioavailability. There are two types of soluble guanylate cyclase (sGC), which is a cellular target of NO: NO-sensitive reduced form (the heme moiety with a ferrous iron) and NO-insensitive oxidized (the heme moiety with a ferric iron)/heme-free form. This study investigated the influence of cigarette smoking on NO-sensitive and NO-insensitive sGC-mediated vascular tone regulation in organ chamber experiments with isolated rat and human arteries. The rats were subcutaneously administered phosphate-buffered saline (PBS), nicotine-free cigarette smoke extract (N(-)-CSE) or nicotine-containing cigarette smoke extract (N(+)-CSE) for 4 weeks. Plasma thiobarbituric acid reactive substance (TBARS) levels were higher in the N(+)-CSE group than those in the N(-)-CSE group, and TBARS levels for these groups were higher than those for the PBS group. In the aorta and the pulmonary artery in rats administered N(-)-CSE or N(+)-CSE, acetylcholine-induced relaxation was significantly impaired compared with that in rats administered PBS; there was no significant difference in the relaxation between the N(-)-CSE and N(+)-CSE groups. However, sodium nitroprusside (NO-sensitive sGC stimulant)- and BAY 60-2770 (NO-insensitive sGC stimulant)-induced relaxations were not different among the three groups, regardless of the vessel type. In addition, in the human gastroepiploic artery, the relaxant responses to these sGC-targeting drugs were identical between nonsmokers and smokers. These findings suggest that NO-sensitive and NO-insensitive sGC-mediated vascular tone regulation functions normally even in blood vessels damaged by cigarette smoking.
Collapse
|
46
|
Durgin BG, Hahn SA, Schmidt HM, Miller MP, Hafeez N, Mathar I, Freitag D, Sandner P, Straub AC. Loss of smooth muscle CYB5R3 amplifies angiotensin II-induced hypertension by increasing sGC heme oxidation. JCI Insight 2019; 4:129183. [PMID: 31487266 DOI: 10.1172/jci.insight.129183] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/31/2019] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide regulates BP by binding the reduced heme iron (Fe2+) in soluble guanylyl cyclase (sGC) and relaxing vascular smooth muscle cells (SMCs). We previously showed that sGC heme iron reduction (Fe3+ → Fe2+) is modulated by cytochrome b5 reductase 3 (CYB5R3). However, the in vivo role of SMC CYB5R3 in BP regulation remains elusive. Here, we generated conditional smooth muscle cell-specific Cyb5r3 KO mice (SMC CYB5R3-KO) to test if SMC CYB5R3 loss affects systemic BP in normotension and hypertension via regulation of the sGC redox state. SMC CYB5R3-KO mice exhibited a 5.84-mmHg increase in BP and impaired acetylcholine-induced vasodilation in mesenteric arteries compared with controls. To drive sGC oxidation and elevate BP, we infused mice with angiotensin II. We found that SMC CYB5R3-KO mice exhibited a 14.75-mmHg BP increase, and mesenteric arteries had diminished nitric oxide-dependent vasodilation but increased responsiveness to sGC heme-independent activator BAY 58-2667 over controls. Furthermore, acute injection of BAY 58-2667 in angiotensin II-treated SMC CYB5R3-KO mice showed greater BP reduction compared with controls. Together, these data provide the first in vivo evidence to our knowledge that SMC CYB5R3 is an sGC heme reductase in resistance arteries and provides resilience against systemic hypertension development.
Collapse
Affiliation(s)
| | - Scott A Hahn
- Heart, Lung, Blood and Vascular Medicine Institute, and
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute, and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Neha Hafeez
- Heart, Lung, Blood and Vascular Medicine Institute, and
| | | | | | - Peter Sandner
- Bayer AG, Wuppertal, Germany.,Department of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Malek V, Sharma N, Gaikwad AB. Simultaneous inhibition of neprilysin and activation of ACE2 prevented diabetic cardiomyopathy. Pharmacol Rep 2019; 71:958-967. [PMID: 31470292 DOI: 10.1016/j.pharep.2019.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Neprilysin inhibitors (NEPi) are assisting the renin-angiotensin system (RAS) inhibitors in halting diabetic cardiomyopathy (DCM). Away from conventional tactic, a recent report revealed the renoprotective potential of NEPi and angiotensin-converting enzyme (ACE2) activator combination therapy against diabetic nephropathy. However, this combination so far not evaluated against DCM, thus the present investigation aiming the same. METHODS Streptozotocin-induced (55 mg/kg, ip) type 1 diabetic (T1D) male Wistar rats were treated with either monotherapy of thiorphan (0.1 mg/kg/day, po) or diminazene aceturate (5 mg/kg/day, po), or their combination therapy, for four weeks. After hemodynamic measurements, all the rats' heart and plasma were collected for biochemistry, ELISA, histopathology, and immunoblotting. RESULTS Metabolic perturbations and failing cardiac functions associated with diabetes were markedly attenuated by combination therapy. Besides, unfavourable alterations in RAS and natriuretic peptides system (NPS) were corrected by combination therapy. Interestingly, combination therapy significantly increased plasma and heart cGMP levels compared to T1D and monotherapy receiving rats. Moreover, rats receiving combination therapy exhibited significant inhibition of activated NF-κB, TGF-β and apoptotic signalling, and a notable reduction in cardiac fibrosis when compared to T1D rats. Expressions of posttranslational histone modifications markers; H3K4Me2 and its methyltransferases (SET7/9 and RBBP5) were significantly enhanced in T1D hearts, which were significantly reduced by combination therapy. CONCLUSIONS The NEPi and ACE2 activator combination therapy effectively prevented DCM by normalising RAS and NPS activities, increasing cGMP, inhibiting inflammatory, pro-fibrotic and apoptotic signalling, and reversing H3K4Me2 and its methyl transferases expressions.
Collapse
Affiliation(s)
- Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
48
|
Choobdar S, Ahsen ME, Crawford J, Tomasoni M, Fang T, Lamparter D, Lin J, Hescott B, Hu X, Mercer J, Natoli T, Narayan R, DREAM Module Identification Challenge Consortium, Subramanian A, Zhang JD, Stolovitzky G, Kutalik Z, Lage K, Slonim DK, Saez-Rodriguez J, Cowen LJ, Bergmann S, Marbach D. Assessment of network module identification across complex diseases. Nat Methods 2019; 16:843-852. [PMID: 31471613 PMCID: PMC6719725 DOI: 10.1038/s41592-019-0509-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Many bioinformatics methods have been proposed for reducing the complexity of large gene or protein networks into relevant subnetworks or modules. Yet, how such methods compare to each other in terms of their ability to identify disease-relevant modules in different types of network remains poorly understood. We launched the 'Disease Module Identification DREAM Challenge', an open competition to comprehensively assess module identification methods across diverse protein-protein interaction, signaling, gene co-expression, homology and cancer-gene networks. Predicted network modules were tested for association with complex traits and diseases using a unique collection of 180 genome-wide association studies. Our robust assessment of 75 module identification methods reveals top-performing algorithms, which recover complementary trait-associated modules. We find that most of these modules correspond to core disease-relevant pathways, which often comprise therapeutic targets. This community challenge establishes biologically interpretable benchmarks, tools and guidelines for molecular network analysis to study human disease biology.
Collapse
Affiliation(s)
- Sarvenaz Choobdar
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mehmet E Ahsen
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jake Crawford
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Mattia Tomasoni
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tao Fang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Verge Genomics, San Francisco, CA, USA
| | - Junyuan Lin
- Department of Mathematics, Tufts University, Medford, MA, USA
| | - Benjamin Hescott
- College of Computer and Information Science, Northeastern University, Boston, MA, USA
| | - Xiaozhe Hu
- Department of Mathematics, Tufts University, Medford, MA, USA
| | - Johnathan Mercer
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center at the Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ted Natoli
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rajiv Narayan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Jitao D Zhang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Gustavo Stolovitzky
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Institute of Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center at the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Biological Psychiatry, Mental Health Center Sct. Hans, University of Copenhagen, Roskilde, Denmark
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Bioquant, Heidelberg, Germany
- RWTH Aachen University, Faculty of Medicine, Joint Research Center for Computational Biomedicine, Aachen, Germany
| | - Lenore J Cowen
- Department of Computer Science, Tufts University, Medford, MA, USA
- Department of Mathematics, Tufts University, Medford, MA, USA
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Daniel Marbach
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
Collaborators
Fabian Aicheler, Nicola Amoroso, Alex Arenas, Karthik Azhagesan, Aaron Baker, Michael Banf, Serafim Batzoglou, Anaïs Baudot, Roberto Bellotti, Sven Bergmann, Keith A Boroevich, Christine Brun, Stanley Cai, Michael Caldera, Alberto Calderone, Gianni Cesareni, Weiqi Chen, Christine Chichester, Sarvenaz Choobdar, Lenore Cowen, Jake Crawford, Hongzhu Cui, Phuong Dao, Manlio De Domenico, Andi Dhroso, Gilles Didier, Mathew Divine, Antonio Del Sol, Tao Fang, Xuyang Feng, Jose C Flores-Canales, Santo Fortunato, Anthony Gitter, Anna Gorska, Yuanfang Guan, Alain Guénoche, Sergio Gómez, Hatem Hamza, András Hartmann, Shan He, Anton Heijs, Julian Heinrich, Benjamin Hescott, Xiaozhe Hu, Ying Hu, Xiaoqing Huang, V Keith Hughitt, Minji Jeon, Lucas Jeub, Nathan T Johnson, Keehyoung Joo, InSuk Joung, Sascha Jung, Susana G Kalko, Piotr J Kamola, Jaewoo Kang, Benjapun Kaveelerdpotjana, Minjun Kim, Yoo-Ah Kim, Oliver Kohlbacher, Dmitry Korkin, Kiryluk Krzysztof, Khalid Kunji, Zoltàn Kutalik, Kasper Lage, David Lamparter, Sean Lang-Brown, Thuc Duy Le, Jooyoung Lee, Sunwon Lee, Juyong Lee, Dong Li, Jiuyong Li, Junyuan Lin, Lin Liu, Antonis Loizou, Zhenhua Luo, Artem Lysenko, Tianle Ma, Raghvendra Mall, Daniel Marbach, Tomasoni Mattia, Mario Medvedovic, Jörg Menche, Johnathan Mercer, Elisa Micarelli, Alfonso Monaco, Felix Müller, Rajiv Narayan, Oleksandr Narykov, Ted Natoli, Thea Norman, Sungjoon Park, Livia Perfetto, Dimitri Perrin, Stefano Pirrò, Teresa M Przytycka, Xiaoning Qian, Karthik Raman, Daniele Ramazzotti, Emilie Ramsahai, Balaraman Ravindran, Philip Rennert, Julio Saez-Rodriguez, Charlotta Schärfe, Roded Sharan, Ning Shi, Wonho Shin, Hai Shu, Himanshu Sinha, Donna K Slonim, Lionel Spinelli, Suhas Srinivasan, Aravind Subramanian, Christine Suver, Damian Szklarczyk, Sabina Tangaro, Suresh Thiagarajan, Laurent Tichit, Thorsten Tiede, Beethika Tripathi, Aviad Tsherniak, Tatsuhiko Tsunoda, Dénes Türei, Ehsan Ullah, Golnaz Vahedi, Alberto Valdeolivas, Jayaswal Vivek, Christian von Mering, Andra Waagmeester, Bo Wang, Yijie Wang, Barbara A Weir, Shana White, Sebastian Winkler, Ke Xu, Taosheng Xu, Chunhua Yan, Liuqing Yang, Kaixian Yu, Xiangtian Yu, Gaia Zaffaroni, Mikhail Zaslavskiy, Tao Zeng, Jitao D Zhang, Lu Zhang, Weijia Zhang, Lixia Zhang, Xinyu Zhang, Junpeng Zhang, Xin Zhou, Jiarui Zhou, Hongtu Zhu, Junjie Zhu, Guido Zuccon,
Collapse
|
49
|
Pascual-Ramirez J, Koutrouvelis A. The nitric oxide pathway antagonists in septic shock: Meta-analysis of controlled clinical trials. J Crit Care 2019; 51:34-38. [DOI: 10.1016/j.jcrc.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/09/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
50
|
Abstract
Advances in the treatment of heart failure with reduced ejection fraction due to systolic dysfunction are engaging an ever-expanding compendium of molecular signaling targets. Well established approaches modifying hemodynamics and cell biology by neurohumoral receptor blockade are evolving, exploring the role and impact of modulating intracellular signaling pathways with more direct myocardial effects. Even well-tread avenues are being reconsidered with new insights into the signaling engaged and thus opportunity to treat underlying myocardial disease. This review explores therapies that have proven successful, those that have not, those that are moving into the clinic but whose utility remains to be confirmed, and those that remain in the experimental realm. The emphasis is on signaling pathways that are tractable for therapeutic manipulation. Of the approaches yet to be tested in humans, we chose those with a well-established experimental history, where clinical translation may be around the corner. The breadth of opportunities bodes well for the next generation of heart failure therapeutics.
Collapse
Affiliation(s)
| | | | - David A. Kass
- Division of Cardiology, Department of Medicine
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore Maryland, 21205
| |
Collapse
|