1
|
Zhang S, Zhang ZY, Sui BD, Zheng CX, Fu Y. The epigenetic landscape of mesenchymal stem cell and extracellular vesicle therapy. Trends Cell Biol 2025:S0962-8924(25)00088-1. [PMID: 40300990 DOI: 10.1016/j.tcb.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 05/01/2025]
Abstract
Mesenchymal stem cell (MSC) therapy shows great potential for treating tissue impairments and immune disorders. Epigenetic regulation is a core molecular signature that ensures long-lasting memory in MSC functional modulation and mediates therapeutic efficacy. Studies reveal that transplanted MSCs drive epigenetic changes in recipient cells, which contributes to restoration of organismal and microenvironmental homeostasis. Extracellular vesicles (EVs) derived from MSCs, including exosomes and apoptotic vesicles (apoVs), enable the transfer of epigenetic regulators, orchestrating intercellular epigenetic reprogramming and signaling modulation in both local and systemic microenvironments. Here, the epigenetic regulation of MSC and EV therapies is reviewed, together with current challenges, aiming to deepen the understanding of donor-recipient communication and inspire next-generation approaches to counteract tissue defects and diseases.
Collapse
Affiliation(s)
- Sha Zhang
- College of Basic Medicine, Shaanxi Key Laboratory of Research on TCM Physical Constitution and Diseases Prevention and Treatment, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zong-Yu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110001, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Yu Fu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
2
|
Zheng Q, Liu Y, Guo M, Zhang X, Zhang Q, Yu XY, Lin Z. Discovery of therapeutic targets in cardiovascular diseases using high-throughput chromosome conformation capture (Hi-C). Front Genet 2025; 16:1515010. [PMID: 40182924 PMCID: PMC11966399 DOI: 10.3389/fgene.2025.1515010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Epigenetic changes have been associated with several cardiovascular diseases. In recent years, epigenetic inheritance based on spatial changes has gradually attracted attention. Alterations in three-dimensional chromatin structures have been shown to regulate gene expression and influence disease onset and progression. High-throughput Chromosome Conformation Capture (Hi-C) is a powerful method to detect spatial chromatin conformation changes. Since its development, Hi-C technology has been widely adopted for discovering novel therapeutic targets in cardiovascular research. In this review, we summarize key targets identified by Hi-C in cardiovascular diseases and discuss their potential implications for epigenetic therapy.
Collapse
Affiliation(s)
- Quan Zheng
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Ying Liu
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Pharmacology, School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Minghao Guo
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Xin Zhang
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qingbin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xi-Yong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongxiao Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Theisen B, Holtz A, Rajagopalan V. Noncoding RNAs and Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Cardiac Arrhythmic Brugada Syndrome. Cells 2023; 12:2398. [PMID: 37830612 PMCID: PMC10571919 DOI: 10.3390/cells12192398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Hundreds of thousands of people die each year as a result of sudden cardiac death, and many are due to heart rhythm disorders. One of the major causes of these arrhythmic events is Brugada syndrome, a cardiac channelopathy that results in abnormal cardiac conduction, severe life-threatening arrhythmias, and, on many occasions, death. This disorder has been associated with mutations and dysfunction of about two dozen genes; however, the majority of the patients do not have a definite cause for the diagnosis of Brugada Syndrome. The protein-coding genes represent only a very small fraction of the mammalian genome, and the majority of the noncoding regions of the genome are actively transcribed. Studies have shown that most of the loci associated with electrophysiological traits are located in noncoding regulatory regions and are expected to affect gene expression dosage and cardiac ion channel function. Noncoding RNAs serve an expanding number of regulatory and other functional roles within the cells, including but not limited to transcriptional, post-transcriptional, and epigenetic regulation. The major noncoding RNAs found in Brugada Syndrome include microRNAs; however, others such as long noncoding RNAs are also identified. They contribute to pathogenesis by interacting with ion channels and/or are detectable as clinical biomarkers. Stem cells have received significant attention in the recent past, and can be differentiated into many different cell types including those in the heart. In addition to contractile and relaxational properties, BrS-relevant electrophysiological phenotypes are also demonstrated in cardiomyocytes differentiated from stem cells induced from adult human cells. In this review, we discuss the current understanding of noncoding regions of the genome and their RNA biology in Brugada Syndrome. We also delve into the role of stem cells, especially human induced pluripotent stem cell-derived cardiac differentiated cells, in the investigation of Brugada syndrome in preclinical and clinical studies.
Collapse
Affiliation(s)
- Benjamin Theisen
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Austin Holtz
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Viswanathan Rajagopalan
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
- Arkansas Biosciences Institute, Jonesboro, AR 72401, USA
| |
Collapse
|
4
|
Zhang L, Yang Y, Zhang L, Ma J, Sun R, Tian Y, Yuan X, Liu B, Yu T, Jiang Z. Identification of long non-coding RNA in formaldehyde-induced cardiac dysplasia in rats. Food Chem Toxicol 2023; 174:113653. [PMID: 36758786 DOI: 10.1016/j.fct.2023.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Formaldehyde exposure during pregnancy can cause fetal congenital heart disease (CHD). However, the regulatory mechanism remains unclear. Studies on the biology of long non-coding RNAs (lncRNAs) show that lncRNAs can influence cardiac development and disease. However, expression patterns and regulatory mechanisms of action of lncRNAs in formaldehyde-induced CHD remain unclear. We used high-throughput sequencing strategies as a means of identifying lncRNA expression profiles in heart tissues of normal and formaldehyde-exposed newborn rats. Overall, 763 differentially expressed lncRNAs were identified, including 325 and 438 that were respectively up-regulated and down-regulated. GO and KEGG analyses indicated that the Ras and hedgehog signaling pathways may be important regulatory pathways in CHD caused by exposure to formaldehyde. A lncRNA-miRNA-mRNA co-expression network was constructed and a key miRNA, rno-miR-665, was identified. Furthermore, qRT-PCR analysis verified that the novel lncRNAs: MSTRG.27313.2, MSTRG.30629.2, MSTRG.36520.33, MSTRG.91234.1, and MSTRG.91233.9, were upregulated in the formaldehyde-exposed group. These differentially expressed lncRNAs identified during formaldehyde-induced CHD in newborn rats help explain CHD pathogenesis and provide an effective reference for diagnosing and treating CHD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, Linyi, 276000, PR China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Xiaoli Yuan
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Bingyu Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Road No. 38 Dengzhou, Qingdao, 266021, PR China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China.
| |
Collapse
|
5
|
Wang G, Ye H, Wang X, Liu B. Polycomb repressive complex 2 controls cardiac cell fate decision via interacting with RNA: Promiscuously or well-ordered. Front Genet 2022; 13:1011228. [PMID: 36313464 PMCID: PMC9614146 DOI: 10.3389/fgene.2022.1011228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
The epigenetic landscape determines cell fate during heart development. Polycomb repressive complex 2 (PRC2) mediates histone methyltransferase activity during cardiac cell differentiation. The PRC2 complex contains the proteins embryonic ectoderm development (EED), suppressor of zeste (SUZ12), the chromatin assembly factor 1 (CAF1) histone-binding proteins RBBP4 and RBBP7, and the histone methyltransferase called enhancer of zeste (EZH2 or EZH1), which incorporates the Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain. Cardiac PRC2-deficient mice display lethal congenital heart malformations. The dynamic process of cardiac cell fate decisions is controlled by PRC2 and the PRC2-mediated epigenetic landscape. Although specific individual long noncoding RNAs (lncRNAs) including Braveheart were widely reported to regulate the recruitments of PRC2 to their specific targets, a promiscuous RNA binding profile by PRC2 was also identified to play an essential role in cardiac cell fate decision. In this review, we focus on RNA-mediated PRC2 recruitment machinery in the process of cardiac cell fate decisions. The roles of individual lncRNAs which recruit PRC2, as well as promiscuous RNA binding by PRC2 in heart development are summarized. Since the binding priority of RNAs with different primary and secondary structures differs in its affinity to PRC2, the competitive relationship between individual lncRNAs binding and promiscuous RNA binding by PRC2 may be important for understanding the machinery by which biding of individual lncRNA and promiscuous RNA by PRC2 coordinately control the well-ordered dynamic cardiac cell lineage differentiation process.
Collapse
Affiliation(s)
- Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Heng Ye
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Bugnon LA, Edera AA, Prochetto S, Gerard M, Raad J, Fenoy E, Rubiolo M, Chorostecki U, Gabaldón T, Ariel F, Di Persia LE, Milone DH, Stegmayer G. Secondary structure prediction of long noncoding RNA: review and experimental comparison of existing approaches. Brief Bioinform 2022; 23:6606044. [PMID: 35692094 DOI: 10.1093/bib/bbac205] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION In contrast to messenger RNAs, the function of the wide range of existing long noncoding RNAs (lncRNAs) largely depends on their structure, which determines interactions with partner molecules. Thus, the determination or prediction of the secondary structure of lncRNAs is critical to uncover their function. Classical approaches for predicting RNA secondary structure have been based on dynamic programming and thermodynamic calculations. In the last 4 years, a growing number of machine learning (ML)-based models, including deep learning (DL), have achieved breakthrough performance in structure prediction of biomolecules such as proteins and have outperformed classical methods in short transcripts folding. Nevertheless, the accurate prediction for lncRNA still remains far from being effectively solved. Notably, the myriad of new proposals has not been systematically and experimentally evaluated. RESULTS In this work, we compare the performance of the classical methods as well as the most recently proposed approaches for secondary structure prediction of RNA sequences using a unified and consistent experimental setup. We use the publicly available structural profiles for 3023 yeast RNA sequences, and a novel benchmark of well-characterized lncRNA structures from different species. Moreover, we propose a novel metric to assess the predictive performance of methods, exclusively based on the chemical probing data commonly used for profiling RNA structures, avoiding any potential bias incorporated by computational predictions when using dot-bracket references. Our results provide a comprehensive comparative assessment of existing methodologies, and a novel and public benchmark resource to aid in the development and comparison of future approaches. AVAILABILITY Full source code and benchmark datasets are available at: https://github.com/sinc-lab/lncRNA-folding. CONTACT lbugnon@sinc.unl.edu.ar.
Collapse
Affiliation(s)
- L A Bugnon
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - A A Edera
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - S Prochetto
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.,IAL, CONICET, Ciudad Universitaria UNL, (3000) Santa Fe, Argentina
| | - M Gerard
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - J Raad
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - E Fenoy
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - M Rubiolo
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - U Chorostecki
- Barcelona Supercomputing Center (BSC-CNS), Institute of Research in Biomedicine (IRB), Spain
| | - T Gabaldón
- Barcelona Supercomputing Center (BSC-CNS), Institute of Research in Biomedicine (IRB), Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - F Ariel
- IAL, CONICET, Ciudad Universitaria UNL, (3000) Santa Fe, Argentina
| | - L E Di Persia
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - D H Milone
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - G Stegmayer
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| |
Collapse
|
7
|
Fu W, Ren H, Shou J, Liao Q, Li L, Shi Y, Jose PA, Zeng C, Wang WE. Loss of NPPA-AS1 promotes heart regeneration by stabilizing SFPQ-NONO heteromer-induced DNA repair. Basic Res Cardiol 2022; 117:10. [PMID: 35247074 DOI: 10.1007/s00395-022-00921-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/31/2023]
Abstract
The role of long non-coding RNA (lncRNA) in endogenous cardiac regeneration remains largely elusive. The mammalian cardiomyocyte is capable of regeneration for a brief period after birth. This fact allows the exploration of the roles of critical lncRNAs in the regulation of cardiac regeneration. Through a cardiac regeneration model by apical resection (AR) of the left ventricle in neonatal mice, we identified an lncRNA named natriuretic peptide A antisense RNA 1 (NPPA-AS1), which negatively regulated cardiomyocyte proliferation. In neonates, NPPA-AS1 deletion did not affect heart development, but was sufficient to prolong the postnatal window of regeneration after AR. In adult mice, NPPA-AS1 deletion improved cardiac function and reduced infarct size after myocardial infarction (MI), associated with a significant improvement in cardiomyocyte proliferation. Further analysis showed that NPPA-AS1 interacted with DNA repair-related molecule splicing factor, proline- and glutamine-rich (SFPQ). A heteromer of SFPQ and non-POU domain-containing octamer-binding protein (NONO) was required for double-strand DNA break repair, but NPPA-AS1 was competitively bound with SFPQ due to the overlapped binding sites of SFPQ and NONO. NPPA-AS1 deletion promoted the binding of SFPQ-NONO heteromer, decreased DNA damage, and activated cardiomyocyte cell cycle re-entry. Together, loss of NPPA-AS1 promoted cardiomyocyte proliferation by stabilizing SFPQ-NONO heteromer-induced DNA repair and exerted a therapeutic effect against MI in adult mice. Consequently, NPPA-AS1 may be a novel target for stimulating cardiac regeneration to treat MI.
Collapse
Affiliation(s)
- Wenbin Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Jialing Shou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Pedro A Jose
- Division of Kidney Diseases & Hypertension, Department of Medicine and Department of Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China. .,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China. .,Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China. .,Department of Cardiology, Chongqing General Hospital, Chongqing, People's Republic of China. .,Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China.
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China. .,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Yang A, Chen H, Lin J, Han M, Yuan X, Zhang T, Nian Q, Peng M, Li D, Wu C, He X. Comprehensive analysis of peripheral blood non-coding RNAs identifies a diagnostic panel for fungal infection after transplantation. Bioengineered 2022; 13:4039-4050. [PMID: 35129049 PMCID: PMC8974173 DOI: 10.1080/21655979.2022.2032963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The occurrence of fungal infection seriously affects the survival and life quality of transplanted patients. The accurate diagnosis is of particular importance in the early stage of infection. To develop a novel diagnostic method for this kind of patient, we established a post-transplant immunosuppressed mice model with fungus inoculation and collected their peripheral blood at specific time points after infection. After screening by microarray, differentially expressed miRNAs and lncRNAs were selected and homologously analyzed with those of human beings from the gene database. These miRNAs and lncRNAs candidates were validated by qRT-PCR in peripheral blood samples from transplanted patients. We found that, compared with normal transplanted patients, the levels of miR-215 and miR-let-7 c were up-regulated in the plasma of patients with fungal infection (P < 0.01), while levels of miR-154, miR-193a, NR_027669.1, and NR_036506.1 were down-regulated in their peripheral blood mononuclear cells (P < 0.01). Principal component analysis shows that the expression pattern of the above RNAs was different between the two groups. A 6-noncoding-RNA detection panel was established by the support vector machine analysis, whose area under the ROC curve was 0.927. The accuracy, precision, sensitivity, and specificity of this model were 0.928, 0.919, 0.944, and 0.910, respectively. Though our detection panel has excellent diagnostic efficacy, its clinical application value still needs to be further confirmed by multi-center prospective clinical trials.
Collapse
Affiliation(s)
- Anli Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huadi Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jianwei Lin
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital, Shenzhen, China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaopeng Yuan
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Tao Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qingwei Nian
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Mengran Peng
- Dermatology Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dian Li
- Department of Data Science, Dana Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
9
|
Li H, Trager LE, Liu X, Hastings MH, Xiao C, Guerra J, To S, Li G, Yeri A, Rodosthenous R, Silverman MG, Das S, Ambardekar AV, Bristow MR, Gonzalez-Rosa JM, Rosenzweig A. lncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth. Circulation 2022; 145:1218-1233. [PMID: 35114812 PMCID: PMC9056949 DOI: 10.1161/circulationaha.121.056850] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The heart grows in response to pathological and physiological stimuli. The former often precedes cardiomyocyte loss and heart failure; the latter paradoxically protects the heart and enhances cardiomyogenesis. The mechanisms underlying these differences remain incompletely understood. While long noncoding RNAs (lncRNAs) are important in cardiac development and disease, less is known about their roles in physiological hypertrophy or cardiomyogenesis. METHODS RNA sequencing was applied to hearts from mice after eight weeks voluntary exercise-induced physiological hypertrophy and cardiomyogenesis or transverse aortic constriction (TAC) for two or eight weeks to induce pathological hypertrophy or heart failure. The top lncRNA candidate was overexpressed in hearts with adeno-associated virus (AAV) vectors and inhibited with antisense locked nucleic acid (LNA)-GapmeRs to examine its function. Downstream effectors were identified through promoter analyses and binding assays. The functional roles of a novel downstream effector, dachsous cadherin-related 2 (DCHS2), were examined through transgenic overexpression in zebrafish and cardiac-specific deletion in Cas9-knockin mice. RESULTS We identified exercise-regulated cardiac lncRNAs, termed lncExACTs. lncExACT1 was evolutionarily conserved and decreased in exercised hearts but increased in human and experimental heart failure. Cardiac lncExACT1 overexpression caused pathological hypertrophy and heart failure, while lncExACT1 inhibition induced physiological hypertrophy and cardiomyogenesis, protecting against cardiac fibrosis and dysfunction. lncExACT1 functioned by regulating microRNA-222, calcineurin signaling, and Hippo/Yap1 signaling through DCHS2. Cardiomyocyte DCHS2 overexpression in zebrafish induced pathological hypertrophy and impaired cardiac regeneration, promoting scarring after injury. In contrast, murine DCHS2 deletion induced physiological hypertrophy and promoted cardiomyogenesis. CONCLUSIONS These studies identify lncExACT1-DCHS2 as a novel pathway regulating cardiac hypertrophy and cardiomyogenesis. lncExACT1-DCHS2 acts as a master switch toggling the heart between physiological and pathological growth to determine functional outcomes, providing a potentially tractable therapeutic target for harnessing the beneficial effects of exercise.
Collapse
Affiliation(s)
- Haobo Li
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lena E Trager
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xiaojun Liu
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Margaret H Hastings
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chunyang Xiao
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Justin Guerra
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Samantha To
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Guoping Li
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ashish Yeri
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rodosthenis Rodosthenous
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael G Silverman
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Saumya Das
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Amrut V Ambardekar
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michael R Bristow
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Juan Manuel Gonzalez-Rosa
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Anthony Rosenzweig
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Bisserier M, Saffran N, Brojakowska A, Sebastian A, Evans AC, Coleman MA, Walsh K, Mills PJ, Garikipati VNS, Arakelyan A, Hadri L, Goukassian DA. Emerging Role of Exosomal Long Non-coding RNAs in Spaceflight-Associated Risks in Astronauts. Front Genet 2022; 12:812188. [PMID: 35111205 PMCID: PMC8803151 DOI: 10.3389/fgene.2021.812188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
During spaceflight, astronauts are exposed to multiple unique environmental factors, particularly microgravity and ionizing radiation, that can cause a range of harmful health consequences. Over the past decades, increasing evidence demonstrates that the space environment can induce changes in gene expression and RNA processing. Long non-coding RNA (lncRNA) represent an emerging area of focus in molecular biology as they modulate chromatin structure and function, the transcription of neighboring genes, and affect RNA splicing, stability, and translation. They have been implicated in cancer development and associated with diverse cardiovascular conditions and associated risk factors. However, their role on astronauts' health after spaceflight remains poorly understood. In this perspective article, we provide new insights into the potential role of exosomal lncRNA after spaceflight. We analyzed the transcriptional profile of exosomes isolated from peripheral blood plasma of three astronauts who flew on various Shuttle missions between 1998-2001 by RNA-sequencing. Computational analysis of the transcriptome of these exosomes identified 27 differentially expressed lncRNAs with a Log2 fold change, with molecular, cellular, and clinical implications.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nathaniel Saffran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Angela Clare Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Kenneth Walsh
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Paul J. Mills
- Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, San Diego, CA, United States
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Arsen Arakelyan
- Bioinformatics Group, The Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
11
|
Xie L, Zhang Q, Mao J, Zhang J, Li L. The Roles of lncRNA in Myocardial Infarction: Molecular Mechanisms, Diagnosis Biomarkers, and Therapeutic Perspectives. Front Cell Dev Biol 2021; 9:680713. [PMID: 34604208 PMCID: PMC8481623 DOI: 10.3389/fcell.2021.680713] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, long non-coding RNAs (lncRNAs) have been demonstrated to be associated with many physiological and pathological processes in cardiac. Recent studies have shown that lncRNAs are expressed dynamically in cardiovascular diseases and participate in regulation through a variety of molecular mechanisms, which have become a critical part of the epigenetic and transcriptional regulatory pathways in heart development, as well as the initiation and progress of myocardial infarction. In this review, we summarized some current research about the roles of lncRNAs in heart development and myocardial infarction, with the emphasis on molecular mechanisms of pathological responses, and highlighted their functions in the secondary changes of myocardial infarction. We also discussed the possibility of lncRNAs as novel diagnostic biomarkers and potential therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Luhan Xie
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Mao
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Zhang
- Department of Teaching Affairs, Dalian Medical University, Dalian, China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Kong Y, Han B, Zhang L, Liu Q, Zheng G, Guo K, Chen Q, Chen Z. Long noncoding RNA NONHSAT177112.1 aggravates inflammation and apoptosis in LPS-treated human cardiomyocytes. Epigenomics 2021; 13:411-422. [PMID: 33641342 DOI: 10.2217/epi-2020-0345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To explore the roles of lncRNA NONHSAT177112.1 in the inflammatory injury of human cardiomyocytes (HCMs) induced by lipopolysaccharide (LPS). Materials & methods: The sublocalization of NONHSAT177112.1 was detected by FISH. HCMs were stimulated with LPS to induce inflammatory injury. NONHSAT177112.1 expression was detected by quantitative real-time PCR. Cell apoptosis and viability were detected by flow cytometry and CCK-8 assays. The expression of inflammatory cytokines and myocardial enzymes were detected by PCR and ELISA. Results: NONHSAT177112.1 is expressed in the nucleus and cytoplasm. NONHSAT177112.1 showed dynamic expression that first increased and then decreased during LPS stimulation. NONHSAT177112.1 knockdown reversed the promotion effect of LPS on inflammatory injury. Conversely, NONHSAT177112.1 overexpression exerted the opposite effects. Conclusion: NONHSAT177112.1 aggravates inflammatory injury in LPS-treated HCMs.
Collapse
Affiliation(s)
- Yaru Kong
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Midwifery, Taishan Vocational College of Nursing, Taian, Shandong 271000, China
| | - Bo Han
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Li Zhang
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qingqing Liu
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guanlin Zheng
- Department of Midwifery, Taishan Vocational College of Nursing, Taian, Shandong 271000, China
| | - Keying Guo
- Molecular, Cellular and Developmental Biology, Center for Integrative Biology, University of Toulouse, Toulouse, 31062, France
| | - Qing Chen
- Department of Midwifery, Taishan Vocational College of Nursing, Taian, Shandong 271000, China
| | - Zhongmei Chen
- Department of Midwifery, Taishan Vocational College of Nursing, Taian, Shandong 271000, China
| |
Collapse
|
13
|
Fan J, Li H, Xie R, Zhang X, Nie X, Shi X, Zhan J, Yin Z, Zhao Y, Dai B, Yuan S, Wen Z, Chen C, Wang DW. LncRNA ZNF593-AS Alleviates Contractile Dysfunction in Dilated Cardiomyopathy. Circ Res 2021; 128:1708-1723. [PMID: 33550812 DOI: 10.1161/circresaha.120.318437] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Xiang Nie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Xiaolu Shi
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China (X.S.)
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Zhongwei Yin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Yanru Zhao
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Beibei Dai
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.F., H.L., R.X., X.Z., X.N., J.Z., Z.Y., Y.Z., B.D., S.Y., Z.W., C.C., D.W.W.)
| |
Collapse
|
14
|
Amiodarone inhibits arrhythmias in hypertensive rats by improving myocardial biomechanical properties. Sci Rep 2020; 10:21656. [PMID: 33303869 PMCID: PMC7730129 DOI: 10.1038/s41598-020-78677-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
The prevalence of arrhythmia in patients with hypertension has gradually attracted widespread attention. However, the relationship between hypertension and arrhythmia still lacks more attention. Herein, we explore the biomechanical mechanism of arrhythmia in hypertensive rats and the effect of amiodarone on biomechanical properties. We applied micro-mechanics and amiodarone to stimulate single ventricular myocytes to compare changes of mechanical parameters and the mechanism was investigated in biomechanics. Then we verified the expression changes of genes and long non-coding RNAs (lncRNAs) related to myocardial mechanics to explore the effect of amiodarone on biomechanical properties. The results found that the stiffness of ventricular myocytes and calcium ion levels in hypertensive rats were significantly increased and amiodarone could alleviate the intracellular calcium response and biomechanical stimulation. In addition, experiments showed spontaneously hypertensive rats were more likely to induce arrhythmia and preoperative amiodarone intervention significantly reduced the occurrence of arrhythmias. Meanwhile, high-throughput sequencing showed the genes and lncRNAs related to myocardial mechanics changed significantly in the spontaneously hypertensive rats that amiodarone was injected. These results strengthen the evidence that hypertension rats are prone to arrhythmia with abnormal myocardial biomechanical properties. Amiodarone effectively inhibit arrhythmia by improving the myocardial biomechanical properties and weakening the sensitivity of mechanical stretch stimulation.
Collapse
|
15
|
Yang C, Xiao X, Huang L, Zhou F, Chen LH, Zhao YY, Qu SL, Zhang C. Role of Kruppel-like factor 4 in atherosclerosis. Clin Chim Acta 2020; 512:135-141. [PMID: 33181148 DOI: 10.1016/j.cca.2020.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is one of the chronic progressive diseases, which is caused by vascular injury and promoted by the interaction of various inflammatory factors and inflammatory cells. In recent years, kruppel-like factor 4 (KLF4), a significant transcription factor that participated in cell growth, differentiation and proliferation, has been proved to cause substantial impacts on regulating cardiovascular disease. This paper will give a comprehensive summary to highlight KLF4 as a crucial regulator of foam cell formation, vascular smooth muscle cells (VSMCs) phenotypic transformation, macrophage polarization, endothelial cells inflammation, lymphocyte differentiation and cell proliferation in the process of atherosclerosis. Recent studies show that KLF4 may be an important "molecular switch" in the process of improving vascular injury and inflammation under harmful stimulation, suggesting that KLF4 is a latent disease biomarker for the therapeutic target of atherosclerosis and vascular disease.
Collapse
Affiliation(s)
- Chen Yang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Fan Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
16
|
Alexanian M, Ounzain S. Long Noncoding RNAs in Cardiac Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037374. [PMID: 31932317 DOI: 10.1101/cshperspect.a037374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The exquisite transcriptional control of developmental gene programs is critical for hardwiring the complex expression patterns that govern cell-fate determination and differentiation during heart development. During the past several years, studies have illuminated our understanding of a complex noncoding transcriptional landscape, primarily associated with long noncoding RNAs (lncRNAs), that is implicated in these developmental processes and has begun to reveal key functions of these transcripts. In this review, we discuss the expanding roles for lncRNAs in the earliest points of cardiac development and through differentiation and maturation of multiple cell types within the adult heart. We go on to outline the diverse mechanisms by which cardiovascular lncRNAs orchestrate these transcriptional programs, explore the challenges linked to the study of lncRNAs in developmental phenotypes, and summarize the implications for these molecules in human cardiovascular disorders.
Collapse
Affiliation(s)
| | - Samir Ounzain
- HAYA Therapeutics SA, Lausanne, Vaud 1066, Switzerland
| |
Collapse
|
17
|
Zhang C, Han B, Xu T, Li D. The biological function and potential mechanism of long non-coding RNAs in cardiovascular disease. J Cell Mol Med 2020; 24:12900-12909. [PMID: 33052009 PMCID: PMC7701533 DOI: 10.1111/jcmm.15968] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), as part of the family of non-protein-coding transcripts, are implicated in the occurrence and progression of several cardiovascular diseases (CVDs). With recent advances in lncRNA research, these molecules are purported to regulate gene expression at multiple levels, thereby producing beneficial or detrimental biological effects during CVD pathogenesis. At the transcriptional level, lncRNAs affect gene expression by interacting with DNA and proteins, for example, components of chromatin-modifying complexes, or transcription factors affecting chromatin status. These potential mechanisms suggest that lncRNAs guide proteins to specific gene loci (eg promoter regions), or forestall proteins to specific genomic sites via DNA binding. Additionally, some lncRNAs are required for correct chromatin conformation, which occurs via chromatin looping in enhancer-like models. At the post-transcriptional level, lncRNAs interact with RNA molecules, mainly microRNAs (miRNAs) and mRNAs, potentially regulating CVD pathophysiological processes. Moreover, lncRNAs appear to post-transcriptionally modulate gene expression by participating in mRNA splicing, stability, degradation and translation. Thus, the purpose of this review is to provide a comprehensive summary of lncRNAs implicated in CVD biological processes, with an emphasis on potential mechanisms of action.
Collapse
Affiliation(s)
- Chengmeng Zhang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Bing Han
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
The roles of long noncoding RNAs in myocardial pathophysiology. Biosci Rep 2020; 39:220734. [PMID: 31694052 PMCID: PMC6851514 DOI: 10.1042/bsr20190966] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), more than 200 nt in length, are functional molecules found in various species. These lncRNAs play a vital role in cell proliferation, differentiation, and degeneration and are also involved in pathophysiological processes of cancer and neurodegenerative, autoimmune, and cardiovascular diseases (CVDs). In recent years, emerging challenges for intervention studies on ischemic heart diseases have received much attention. LncRNAs have a key function in the alleviation of myocardial infarction (MI) injury and myocardial ischemia–reperfusion injury. During cardiac hypertrophy (CH) and fibrosis, cardiac cells undergo structural changes and become dysfunctional due to the effects of neurohormonal factors. LncRNAs may serve as important therapeutic targets that promote cardiac remodeling and then retard the development of heart failure (HF). In addition, studies on the roles and mechanisms of action of lncRNAs participating in cardiac pathophysiology via other factors have become the focus of research worldwide. Here, we review the current knowledge on various lncRNAs and their functions in cardiac biology, particularly concentrating on ischemic heart disease, CH, and cardiac fibrosis. We next discuss the predictive value of lncRNAs as diagnostic biomarkers of CVDs.
Collapse
|
19
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
20
|
Trembinski DJ, Bink DI, Theodorou K, Sommer J, Fischer A, van Bergen A, Kuo CC, Costa IG, Schürmann C, Leisegang MS, Brandes RP, Alekseeva T, Brill B, Wietelmann A, Johnson CN, Spring-Connell A, Kaulich M, Werfel S, Engelhardt S, Hirt MN, Yorgan K, Eschenhagen T, Kirchhof L, Hofmann P, Jaé N, Wittig I, Hamdani N, Bischof C, Krishnan J, Houtkooper RH, Dimmeler S, Boon RA. Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nat Commun 2020; 11:2039. [PMID: 32341350 PMCID: PMC7184724 DOI: 10.1038/s41467-020-15995-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to cardiac (patho)physiology. Aging is the major risk factor for cardiovascular disease with cardiomyocyte apoptosis as one underlying cause. Here, we report the identification of the aging-regulated lncRNA Sarrah (ENSMUST00000140003) that is anti-apoptotic in cardiomyocytes. Importantly, loss of SARRAH (OXCT1-AS1) in human engineered heart tissue results in impaired contractile force development. SARRAH directly binds to the promoters of genes downregulated after SARRAH silencing via RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix forming domain of Sarrah show an increase in apoptosis. One of the direct SARRAH targets is NRF2, and restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. Overexpression of Sarrah in mice shows better recovery of cardiac contractile function after AMI compared to control mice. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a regulator of cardiomyocyte survival.
Collapse
Affiliation(s)
- D Julia Trembinski
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Diewertje I Bink
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Kosta Theodorou
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Janina Sommer
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ariane Fischer
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Anke van Bergen
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Chao-Chung Kuo
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ralf P Brandes
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Tijna Alekseeva
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Boris Brill
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Astrid Wietelmann
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christopher N Johnson
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, USA
| | | | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Stanislas Werfel
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Pharmacology and Toxicology, Technical University Munich, Munich, Germany
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Stefan Engelhardt
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Pharmacology and Toxicology, Technical University Munich, Munich, Germany
| | - Marc N Hirt
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaja Yorgan
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luisa Kirchhof
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Patrick Hofmann
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Nicolas Jaé
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ilka Wittig
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Functional Proteomics, Medical School, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Nazha Hamdani
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Corinne Bischof
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jaya Krishnan
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Reinier A Boon
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Berlin, Germany.
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Pereira IT, Spangenberg L, Cabrera G, Dallagiovanna B. Polysome-associated lncRNAs during cardiomyogenesis of hESCs. Mol Cell Biochem 2020; 468:35-45. [PMID: 32125578 DOI: 10.1007/s11010-020-03709-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/22/2020] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been found to be involved in many biological processes, including the regulation of cell differentiation, but a complete characterization of lncRNA is still lacking. Additionally, there is evidence that lncRNAs interact with ribosomes, raising questions about their functions in cells. Here, we used a developmentally staged protocol to induce cardiogenic commitment of hESCs and then investigated the differential association of lncRNAs with polysomes. Our results identified lncRNAs in both the ribosome-free and polysome-bound fractions during cardiogenesis and showed a very well-defined temporal lncRNA association with polysomes. Clustering of lncRNAs was performed according to the gene expression patterns during the five timepoints analyzed. In addition, differential lncRNA recruitment to polysomes was observed when comparing the differentially expressed lncRNAs in the ribosome-free and polysome-bound fractions or when calculating the polysome-bound vs ribosome-free ratio. The association of lncRNAs with polysomes could represent an additional cytoplasmic role of lncRNAs, e.g., in translational regulation of mRNA expression.
Collapse
Affiliation(s)
- Isabela Tiemy Pereira
- Basic Stem-Cell Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81.350-010, Brazil
| | - Lucia Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Guillermo Cabrera
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Bruno Dallagiovanna
- Basic Stem-Cell Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81.350-010, Brazil.
| |
Collapse
|
22
|
Agha G, Mendelson MM, Ward-Caviness CK, Joehanes R, Huan T, Gondalia R, Salfati E, Brody JA, Fiorito G, Bressler J, Chen BH, Ligthart S, Guarrera S, Colicino E, Just AC, Wahl S, Gieger C, Vandiver AR, Tanaka T, Hernandez DG, Pilling LC, Singleton AB, Sacerdote C, Krogh V, Panico S, Tumino R, Li Y, Zhang G, Stewart JD, Floyd JS, Wiggins KL, Rotter JI, Multhaup M, Bakulski K, Horvath S, Tsao PS, Absher DM, Vokonas P, Hirschhorn J, Fallin MD, Liu C, Bandinelli S, Boerwinkle E, Dehghan A, Schwartz JD, Psaty BM, Feinberg AP, Hou L, Ferrucci L, Sotoodehnia N, Matullo G, Peters A, Fornage M, Assimes TL, Whitsel EA, Levy D, Baccarelli AA. Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease. Circulation 2019; 140:645-657. [PMID: 31424985 PMCID: PMC6812683 DOI: 10.1161/circulationaha.118.039357] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.
Collapse
Affiliation(s)
- Golareh Agha
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, NY 10032, USA
| | - Michael M. Mendelson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA; Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Cavin K. Ward-Caviness
- National Health and Environmental Effects Research Laboratory, Environmental Public Health Division, Chapel Hill NC 27514, USA; Institute of Epidemiology II, Helmholtz Institute, Ingolstaedter Landstrasse 1, Neuherberg, Germany 85764
| | - Roby Joehanes
- National Heart, Lung and Blood Institute, Bethesda, MD 20824-0105, USA; Hebrew SeniorLife, Harvard Medical School, Boston, MA 02115, USA
| | - TianXiao Huan
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Rahul Gondalia
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Elias Salfati
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Giovanni Fiorito
- Italian Institute for Genomic Medicine (IIGM/HuGeF) and Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian H. Chen
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21250, USA
| | - Symen Ligthart
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine (IIGM/HuGeF) and Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simone Wahl
- Research Unit Molecualr Epidemiology, Helmholtz Zentrum München, 1 InglastaedterLandstrasse 1 85764, München, Germany
| | - Christian Gieger
- Research Unit Molecualr Epidemiology, Helmholtz Zentrum München, 1 InglastaedterLandstrasse 1 85764, München, Germany
| | - Amy R. Vandiver
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21250, USA
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luke C. Pilling
- Epidemiology and Public Health Group, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry And Histopathology Department, “Civic- M.P. Arezzo2 Hospital, Asp Ragusa, Italy
| | - Yun Li
- Department of Genetics, Department of Biostatistics, Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Guosheng Zhang
- Curriculum in Bioinformatics and Computational Biology, and Department of Genetics, and Department of Statistics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - James D. Stewart
- Carolina Population Center and Department of Epidemiology, University of North Carolina at Chapel Hill, NC 27514, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Michael Multhaup
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kelly Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Philip S. Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Pantel Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joel Hirschhorn
- Department of Medicine, Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA; Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | | | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, MRC–PHE Centre for Environment & Health, School of 346 Public Health, Imperial College London, UK
| | - Joel D. Schwartz
- Department of Epidemiology, and Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA 98195, USA; Kaier Permanente Washington Health Research Institute, Seattle, WA 98195, USA
| | - Andrew P. Feinberg
- Departments of Medicine, Biomedical Engineering and Mental Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University , Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nona Sotoodehnia
- Division of Cardiology, Departments of Medicine and Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98101, USA
| | - Giuseppe Matullo
- Italian Institute for Genomic Medicine (IIGM/HuGeF) and Department of Medical Sciences, University of Turin, Turin, Italy
| | - Annette Peters
- Helmholtz Zentrum München, Institute of Epidemiology, Neuherberg, Germany; German Research Center for Cardiovascular Disease (DzHK e.V. - partner site Munich), Munich, Germany; Ludwig-Maximilians University, Institute for Biometry, Medical Information Science and Epidemiology, Munich, Germany
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine McGovern Medical School, and Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Themistocles L. Assimes
- Department of Medicine (Cardiovascular Medicine), and Department of Health Research & Policy, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, and Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA 01702, USA; Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, NY 10032, USA
| |
Collapse
|
23
|
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disorder in human populations. Nevertheless, there are presently no effective means for its prevention and treatment. It is therefore critical to comprehensively define key mechanisms of the disease. A major focus of cardiovascular research has been characterization of how regulation of gene expression maintains healthy physiologic status of the component tissues of the system and how derangements of gene regulation may become pathological. Recently, substantial evidence has emerged that noncoding RNAs, which are an enormous and versatile class of regulatory elements, such as microRNAs and long noncoding RNAs, have roles in onset and prognosis of CAVD. Authors of the present report have therefore here provided a summary of the current understanding of contributions made by noncoding RNAs major features of CAVD. It is anticipated that this article will serve as a valuable guide to research strategy in this field and may additionally provide both researchers and clinicians with an expanded range of CAVD-associated biomarkers.
Collapse
|
24
|
Li S, Peng B, Luo X, Sun H, Peng C. Anacardic acid attenuates pressure-overload cardiac hypertrophy through inhibiting histone acetylases. J Cell Mol Med 2019; 23:2744-2752. [PMID: 30712293 PMCID: PMC6433722 DOI: 10.1111/jcmm.14181] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/27/2023] Open
Abstract
Cardiac hypertrophy has become a major cardiovascular problem wordwide and is considered the early stage of heart failure. Treatment and prevention strategies are needed due to the suboptimal efficacy of current treatment methods. Recently, many studies have demonstrated the important role of histone acetylation in myocardium remodelling along with cardiac hypertrophy. A Chinese herbal extract containing anacardic acid (AA) is known to possess strong histone acetylation inhibitory effects. In previous studies, we demonstrated that AA could reverse alcohol‐induced cardiac hypertrophy in an animal model at the foetal stage. Here, we investigated whether AA could attenuate cardiac hypertrophy through the modulation of histone acetylation and explored its potential mechanisms in the hearts of transverse aortic constriction (TAC) mice. This study showed that AA attenuated hyperacetylation of acetylated lysine 9 on histone H3 (H3K9ac) by inhibiting the expression of p300 and p300/CBP‐associated factor (PCAF) in TAC mice. Moreover, AA normalized the transcriptional activity of the heart nuclear transcription factor MEF2A. The high expression of cardiac hypertrophy‐linked genes (ANP, β‐MHC) was reversed through AA treatment in the hearts of TAC mice. Additionally, we found that AA improved cardiac function and survival rate in TAC mice. The current results further highlight the mechanism by which histone acetylation is controlled by AA treatment, which may help prevent and treat hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, ZunYi, Guizhou, China
| | - Bohui Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, ZunYi, Guizhou, China
| | - Xiaomei Luo
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huichao Sun
- Heart Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, ZunYi, Guizhou, China
| |
Collapse
|
25
|
Avazpour N, Hajjari M, Yazdankhah S, Sahni A, Foroughmand AM. Circulating HOTAIR RNA Is Potentially Up-regulated in Coronary Artery Disease. Genomics Inform 2018; 16:e25. [PMID: 30602086 PMCID: PMC6440654 DOI: 10.5808/gi.2018.16.4.e25] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease (CAD) is one of the leading causes of death and disability all around the world. Recent studies have revealed that aberrantly regulated long non-coding RNA (lncRNA) as one of the main classes of cellular transcript play a key regulatory role in transcriptional and epigenetic pathways. Recent reports have demonstrated circulating long noncoding RNAs in blood can be potential biomarkers for CAD. HOTAIR is one of the most cited lncRNAs with a critical role in initiation and progression of the gene expression regulation. Recent research on the role of the HOTAIR in cardiovascular disease lays the basis for the development of new studies considering this lncRNA as a potential biomarker and therapeutic target in CAD. In this study, we aimed to compare the expression of HOTAIR lncRNA in the blood samples of patients with CAD and control samples. The expression level was examined by semi-quantitative reverse transcriptase polymerase chain reaction technique. Our data show that expression of HOTAIR is up-regulated in blood samples of patients with CAD.
Collapse
Affiliation(s)
- Niloofar Avazpour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mohammadreza Hajjari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Saeed Yazdankhah
- Department of Cardiology, Ahvaz Jundishapur University of Medical Sciences, Imam Khomeini Hospital, Ahvaz 6135783151, Iran
| | - Azita Sahni
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Ali Mohammad Foroughmand
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| |
Collapse
|
26
|
Locatelli P, Giménez CS, Vega MU, Crottogini A, Belaich MN. Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration. Curr Drug Targets 2018; 20:241-254. [DOI: 10.2174/1389450119666180801122551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Adult mammalian cardiomyocytes (CMs) exhibit limited proliferative capacity, as cell cycle
activity leads to an increase in DNA content, but mitosis and cytokinesis are infrequent. This
makes the heart highly inefficient in replacing with neoformed cardiomyocytes lost contractile cells as
occurs in diseases such as myocardial infarction and dilated cardiomyopathy. Regenerative therapies
based on the implant of stem cells of diverse origin do not warrant engraftment and electromechanical
connection of the new cells with the resident ones, a fundamental condition to restore the physiology
of the cardiac syncytium. Consequently, there is a growing interest in identifying factors playing relevant
roles in the regulation of the CM cell cycle to be targeted in order to induce the resident cardiomyocytes
to divide into daughter cells and thus achieve myocardial regeneration with preservation of
physiologic syncytial performance.
Despite the scientific progress achieved over the last decades, many questions remain unanswered, including
how cardiomyocyte proliferation is regulated during heart development in gestation and neonatal
life. This can reveal unknown cell cycle regulation mechanisms and molecules that may be manipulated
to achieve cardiac self-regeneration.
We hereby revise updated data on CM cell cycle regulation, participating molecules and pathways recently
linked with the cell cycle, as well as experimental therapies involving them.
Collapse
Affiliation(s)
- Paola Locatelli
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Carlos Sebastián Giménez
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Martín Uranga Vega
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Alberto Crottogini
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Nacional de Quilmes (UNQ), Roque Saenz Pena 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
27
|
Kontaraki JE, Marketou ME, Kochiadakis GE, Maragkoudakis S, Konstantinou J, Vardas PE, Parthenakis FI. The long non-coding RNAs MHRT
,FENDRR
and CARMEN
, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy. Clin Exp Pharmacol Physiol 2018; 45:1213-1217. [DOI: 10.1111/1440-1681.12997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/23/2018] [Accepted: 06/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joanna E. Kontaraki
- Molecular Cardiology Laboratory; School of Medicine; University of Crete; Heraklion Greece
| | - Maria E. Marketou
- Department of Cardiology; Heraklion University Hospital; Heraklion Greece
| | | | | | - John Konstantinou
- Department of Cardiology; Heraklion University Hospital; Heraklion Greece
| | - Panos E. Vardas
- Department of Cardiology; Heraklion University Hospital; Heraklion Greece
| | | |
Collapse
|
28
|
Holdt LM, Kohlmaier A, Teupser D. Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res 2018; 3:75-98. [PMID: 30159442 PMCID: PMC6096412 DOI: 10.1016/j.ncrna.2018.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
As part of the superfamily of long noncoding RNAs, circular RNAs (circRNAs) are emerging as a new type of regulatory molecules that partake in gene expression control. Here, we review the current knowledge about circRNAs in cardiovascular disease. CircRNAs are not only associated with different types of cardiovascular disease, but they have also been identified as intracellular effector molecules for pathophysiological changes in cardiovascular tissues, and as cardiovascular biomarkers. This evidence is put in the context of the current understanding of general circRNA biogenesis and of known interactions of circRNAs with DNA, RNA, and proteins.
Collapse
Affiliation(s)
- Lesca M. Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | | | | |
Collapse
|
29
|
Weirick T, Militello G, Uchida S. Long Non-coding RNAs in Endothelial Biology. Front Physiol 2018; 9:522. [PMID: 29867565 PMCID: PMC5960726 DOI: 10.3389/fphys.2018.00522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
In recent years, the role of RNA has expanded to the extent that protein-coding RNAs are now the minority with a variety of non-coding RNAs (ncRNAs) now comprising the majority of RNAs in higher organisms. A major contributor to this shift in understanding is RNA sequencing (RNA-seq), which allows a largely unconstrained method for monitoring the status of RNA from whole organisms down to a single cell. This observational power presents both challenges and new opportunities, which require specialized bioinformatics tools to extract knowledge from the data and the ability to reuse data for multiple studies. In this review, we summarize the current status of long non-coding RNA (lncRNA) research in endothelial biology. Then, we will cover computational methods for identifying, annotating, and characterizing lncRNAs in the heart, especially endothelial cells.
Collapse
Affiliation(s)
- Tyler Weirick
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States
| | - Giuseppe Militello
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States
| |
Collapse
|
30
|
Micheletti R, Plaisance I, Abraham BJ, Sarre A, Ting CC, Alexanian M, Maric D, Maison D, Nemir M, Young RA, Schroen B, González A, Ounzain S, Pedrazzini T. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 2018. [PMID: 28637928 DOI: 10.1126/scitranslmed.aai9118] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as powerful regulators of cardiac development and disease. However, our understanding of the importance of these molecules in cardiac fibrosis is limited. Using an integrated genomic screen, we identified Wisper (Wisp2 super-enhancer-associated RNA) as a cardiac fibroblast-enriched lncRNA that regulates cardiac fibrosis after injury. Wisper expression was correlated with cardiac fibrosis both in a murine model of myocardial infarction (MI) and in heart tissue from human patients suffering from aortic stenosis. Loss-of-function approaches in vitro using modified antisense oligonucleotides (ASOs) demonstrated that Wisper is a specific regulator of cardiac fibroblast proliferation, migration, and survival. Accordingly, ASO-mediated silencing of Wisper in vivo attenuated MI-induced fibrosis and cardiac dysfunction. Functionally, Wisper regulates cardiac fibroblast gene expression programs critical for cell identity, extracellular matrix deposition, proliferation, and survival. In addition, its association with TIA1-related protein allows it to control the expression of a profibrotic form of lysyl hydroxylase 2, implicated in collagen cross-linking and stabilization of the matrix. Together, our findings identify Wisper as a cardiac fibroblast-enriched super-enhancer-associated lncRNA that represents an attractive therapeutic target to reduce the pathological development of cardiac fibrosis in response to MI and prevent adverse remodeling in the damaged heart.
Collapse
Affiliation(s)
- Rudi Micheletti
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Isabelle Plaisance
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Ching-Chia Ting
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Michael Alexanian
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Daniel Maric
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Damien Maison
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Mohamed Nemir
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Blanche Schroen
- Center for Heart Failure Research, Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Arantxa González
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain.,National Institute of Health Carlos III, Madrid, Spain
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland.
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland.
| |
Collapse
|
31
|
Li H, Chen C, Fan J, Yin Z, Ni L, Cianflone K, Wang Y, Wang DW. Identification of cardiac long non-coding RNA profile in human dilated cardiomyopathy. Cardiovasc Res 2018; 114:747-758. [PMID: 29365080 DOI: 10.1093/cvr/cvy012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 No. Jiefang Avenue, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 No. Jiefang Avenue, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 No. Jiefang Avenue, Wuhan 430030, China
| | - Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 No. Jiefang Avenue, Wuhan 430030, China
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 No. Jiefang Avenue, Wuhan 430030, China
| | - Katherine Cianflone
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Faculté Médecine, Université Laval, Laval, QC G1V 4G5, Canada
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 No. Jiefang Avenue, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 No. Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
32
|
Gong X, Siprashvili Z, Eminaga O, Shen Z, Sato Y, Kume H, Homma Y, Ogawa S, Khavari PA, Pollack JR, Brooks JD. Novel lincRNA SLINKY is a prognostic biomarker in kidney cancer. Oncotarget 2017; 8:18657-18669. [PMID: 28423633 PMCID: PMC5386637 DOI: 10.18632/oncotarget.15703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinomas (ccRCC) show a broad range of clinical behavior, and prognostic biomarkers are needed to stratify patients for appropriate management. We sought to determine whether long intergenic non-coding RNAs (lincRNAs) might predict patient survival. Candidate prognostic lincRNAs were identified by mining The Cancer Genome Atlas (TCGA) transcriptome (RNA-seq) data on 466 ccRCC cases (randomized into discovery and validation sets) annotated for ~21,000 lncRNAs. A previously uncharacterized lincRNA, SLINKY (Survival-predictive LINcRNA in KidneY cancer), was the top-ranked prognostic lincRNA, and validated in an independent University of Tokyo cohort (P=0.004). In multivariable analysis, SLINKY expression predicted overall survival independent of tumor stage and grade [TCGA HR=3.5 (CI, 2.2-5.7), P < 0.001; Tokyo HR=8.4 (CI, 1.8-40.2), P = 0.007], and by decision tree, ROC and decision curve analysis, added independent prognostic value. In ccRCC cell lines, SLINKY knockdown reduced cancer cell proliferation (with cell-cycle G1 arrest) and induced transcriptome changes enriched for cell proliferation and survival processes. Notably, the genes affected by SLINKY knockdown in cell lines were themselves prognostic and correlated with SLINKY expression in the ccRCC patient samples. From a screen for binding partners, we identified direct binding of SLINKY to Heterogeneous Nuclear Ribonucleoprotein K (HNRNPK), whose knockdown recapitulated SLINKY knockdown phenotypes. Thus, SLINKY is a robust prognostic biomarker in ccRCC, where it functions possibly together with HNRNPK in cancer cell proliferation.
Collapse
Affiliation(s)
- Xue Gong
- Department of Urology, School of Medicine, Stanford University, Stanford, California, USA.,Department of Pathology, School of Medicine, Stanford University, Stanford, California, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, School of Medicine, Stanford University, Stanford, California, USA
| | - Okyaz Eminaga
- Department of Urology, School of Medicine, Stanford University, Stanford, California, USA.,Department of Urology, University Hospital Cologne, Cologne, Germany
| | - Zhewei Shen
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, USA
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Paul A Khavari
- Program in Epithelial Biology, School of Medicine, Stanford University, Stanford, California, USA
| | - Jonathan R Pollack
- Department of Pathology, School of Medicine, Stanford University, Stanford, California, USA
| | - James D Brooks
- Department of Urology, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
33
|
Gošev I, Zeljko M, Đurić Ž, Nikolić I, Gošev M, Ivčević S, Bešić D, Legčević Z, Paić F. Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy. Clin Epigenetics 2017; 9:106. [PMID: 29026447 PMCID: PMC5627415 DOI: 10.1186/s13148-017-0406-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Aortic valve stenosis is the most common cardiac valve disease, and with current trends in the population demographics, its prevalence is likely to rise, thus posing a major health and economic burden facing the worldwide societies. Over the past decade, it has become more than clear that our traditional genetic views do not sufficiently explain the well-known link between AS, proatherogenic risk factors, flow-induced mechanical forces, and disease-prone environmental influences. Recent breakthroughs in the field of epigenetics offer us a new perspective on gene regulation, which has broadened our perspective on etiology of aortic stenosis and other aortic valve diseases. Since all known epigenetic marks are potentially reversible this perspective is especially exciting given the potential for development of successful and non-invasive therapeutic intervention and reprogramming of cells at the epigenetic level even in the early stages of disease progression. This review will examine the known relationships between four major epigenetic mechanisms: DNA methylation, posttranslational histone modification, ATP-dependent chromatin remodeling, and non-coding regulatory RNAs, and initiation and progression of AS. Numerous profiling and functional studies indicate that they could contribute to endothelial dysfunctions, disease-prone activation of monocyte-macrophage and circulatory osteoprogenitor cells and activation and osteogenic transdifferentiation of aortic valve interstitial cells, thus leading to valvular inflammation, fibrosis, and calcification, and to pressure overload-induced maladaptive myocardial remodeling and left ventricular hypertrophy. This is especcialy the case for small non-coding microRNAs but was also, although in a smaller scale, convincingly demonstrated for other members of cellular epigenome landscape. Equally important, and clinically most relevant, the reported data indicate that epigenetic marks, particularly certain microRNA signatures, could represent useful non-invasive biomarkers that reflect the disease progression and patients prognosis for recovery after the valve replacement surgery.
Collapse
Affiliation(s)
- Igor Gošev
- Department of Surgery, University of Rochester Medical center, Rochester, NY USA
| | - Martina Zeljko
- Department of Cardiology, Clinical Unit of Internal Medicine, Clinical Hospital Merkur, Zajćeva 19, 10 000 Zagreb, Croatia
| | - Željko Đurić
- Department of Cardiac Surgery, University Hospital Center Zagreb, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Ivana Nikolić
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115 USA
| | - Milorad Gošev
- School of Medicine, University of Josip Juraj Strossmayer, Trg Svetog trojstva 3, 31 000 Osijek, Croatia
| | - Sanja Ivčević
- Department of Physiology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Dino Bešić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Zoran Legčević
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Frane Paić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
34
|
Arnone B, Chen JY, Qin G. Characterization and analysis of long non-coding rna (lncRNA) in In Vitro- and Ex Vivo-derived cardiac progenitor cells. PLoS One 2017. [PMID: 28640894 PMCID: PMC5481004 DOI: 10.1371/journal.pone.0180096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent advancements in cell-based therapies for the treatment of cardiovascular disease (CVD) show continuing promise for the use of transplanted stem and cardiac progenitor cells (CPCs) to promote cardiac restitution. However, a detailed understanding of the molecular mechanisms that control the development of these cells remains incomplete and is critical for optimizing their use in such therapy. Long non-coding (lnc) RNA has recently emerged as a crucial class of regulatory molecules involved in directing a variety of critical biological processes including development, homeostasis and disease. As such, a rising body of evidence suggests that they also play key regulatory roles in CPC development, though many questions remain regarding the expression landscape and specific identity of lncRNA involved in this process. To address this, we performed whole transcriptome sequencing of two murine CPC populations–Nkx2-5 EmGFP reporter-sorted embryonic stem (ES) cell-derived and ex vivo, cardiosphere-derived–in an effort to characterize their lncRNA profiles and potentially identify novel CPC regulators. The resulting sequencing data revealed an enrichment in both CPC populations for a panel of previously-identified lncRNA genes associated with cardiac differentiation. Additionally, a total of 1,678 differentially expressed and as-of-yet unannotated, putative lncRNA genes were found to be enriched for in the two CPC populations relative to undifferentiated ES cells.
Collapse
Affiliation(s)
- Baron Arnone
- Department of Biomedical Engineering, School of Medicine & School of Engineering, UAB, Birmingham, AL, United States of America
| | - Jake Y. Chen
- Informatics Institute, School of Medicine, UAB, Birmingham, AL, United States of America
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine & School of Engineering, UAB, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
35
|
Touma M, Reemtsen B, Halnon N, Alejos J, Finn JP, Nelson SF, Wang Y. A Path to Implement Precision Child Health Cardiovascular Medicine. Front Cardiovasc Med 2017; 4:36. [PMID: 28620608 PMCID: PMC5451507 DOI: 10.3389/fcvm.2017.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
Congenital heart defects (CHDs) affect approximately 1% of live births and are a major source of childhood morbidity and mortality even in countries with advanced healthcare systems. Along with phenotypic heterogeneity, the underlying etiology of CHDs is multifactorial, involving genetic, epigenetic, and/or environmental contributors. Clear dissection of the underlying mechanism is a powerful step to establish individualized therapies. However, the majority of CHDs are yet to be clearly diagnosed for the underlying genetic and environmental factors, and even less with effective therapies. Although the survival rate for CHDs is steadily improving, there is still a significant unmet need for refining diagnostic precision and establishing targeted therapies to optimize life quality and to minimize future complications. In particular, proper identification of disease associated genetic variants in humans has been challenging, and this greatly impedes our ability to delineate gene–environment interactions that contribute to the pathogenesis of CHDs. Implementing a systematic multileveled approach can establish a continuum from phenotypic characterization in the clinic to molecular dissection using combined next-generation sequencing platforms and validation studies in suitable models at the bench. Key elements necessary to advance the field are: first, proper delineation of the phenotypic spectrum of CHDs; second, defining the molecular genotype/phenotype by combining whole-exome sequencing and transcriptome analysis; third, integration of phenotypic, genotypic, and molecular datasets to identify molecular network contributing to CHDs; fourth, generation of relevant disease models and multileveled experimental investigations. In order to achieve all these goals, access to high-quality biological specimens from well-defined patient cohorts is a crucial step. Therefore, establishing a CHD BioCore is an essential infrastructure and a critical step on the path toward precision child health cardiovascular medicine.
Collapse
Affiliation(s)
- Marlin Touma
- Department of Pediatrics, Children's Discovery and Innovation Institute, University of California at Los Angeles, Los Angeles, CA, United States.,Cardiovascular Research Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - Brian Reemtsen
- Department of Cardiothoracic Surgery, University of California at Los Angeles, Los Angeles, CA, United States
| | - Nancy Halnon
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, United States
| | - Juan Alejos
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, United States
| | - J Paul Finn
- Department of Radiology, Cardiovascular Imaging, University of California at Los Angeles, Los Angeles, CA, United States
| | - Stanley F Nelson
- Department of Human Genetics, University of California at Los Angeles, Los Angeles, CA, United States
| | - Yibin Wang
- Cardiovascular Research Laboratory, University of California at Los Angeles, Los Angeles, CA, United States.,Department of Anesthesiology, Physiology and Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
36
|
New landscape of cardiovascular genetics and genomics. Curr Opin Cardiol 2017; 32:229-231. [DOI: 10.1097/hco.0000000000000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Systematic identification and characterization of cardiac long intergenic noncoding RNAs in zebrafish. Sci Rep 2017; 7:1250. [PMID: 28455512 PMCID: PMC5430783 DOI: 10.1038/s41598-017-00823-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/14/2017] [Indexed: 01/01/2023] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as potential key regulators of heart development and related diseases, but their identities and functions remain elusive. In this study, we sought to identify and characterize the cardiac lincRNA transcriptome in the experimentally accessible zebrafish model by integrating bioinformatics analysis with experimental validation. By conducting genome-wide RNA sequencing profiling of zebrafish embryonic hearts, adult hearts, and adult muscle, we generated a high-confidence set of 813 cardiac lincRNA transcripts, 423 of which are novel. Among these lincRNAs, 564 are expressed in the embryonic heart, and 730 are expressed in the adult heart, including 2 novel lincRNAs, TCONS_00000891 and TCONS_00028686, which exhibit cardiac-enriched expression patterns in adult heart. Using a method similar to a fetal gene program, we identified 51 lincRNAs with differential expression patterns between embryonic and adult hearts, among which TCONS_00009015 responded to doxorubicin-induced cardiac stress. In summary, our genome-wide systematic identification and characterization of cardiac lincRNAs lays the foundation for future studies in this vertebrate model to elucidate crucial roles for cardiac lincRNAs during heart development and cardiac diseases.
Collapse
|
38
|
Zhang D, Wu B, Wang P, Wang Y, Lu P, Nechiporuk T, Floss T, Greally JM, Zheng D, Zhou B. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Res 2017; 45:3102-3115. [PMID: 27956497 PMCID: PMC5389556 DOI: 10.1093/nar/gkw1258] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/25/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
The dynamic interaction of DNA methylation and transcription factor binding in regulating spatiotemporal gene expression is essential for embryogenesis, but the underlying mechanisms remain understudied. In this study, using mouse models and integration of in vitro and in vivo genetic and epigenetic analyses, we show that the binding of REST (repressor element 1 (RE1) silencing transcription factor; also known as NRSF) to its cognate RE1 sequences is temporally regulated by non-CpG methylation. This process is dependent on DNA methyltransferase 3B (DNMT3B) and leads to suppression of adult cardiac genes in developing hearts. We demonstrate that DNMT3B preferentially mediates non-CpG methylation of REST-targeted genes in the developing heart. Downregulation of DNMT3B results in decreased non-CpG methylation of RE1 sequences, reduced REST occupancy, and consequently release of the transcription suppression during later cardiac development. Together, these findings reveal a critical gene silencing mechanism in developing mammalian hearts that is regulated by the dynamic interaction of DNMT3B-mediated non-CpG methylation and REST binding.
Collapse
Affiliation(s)
- Donghong Zhang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yidong Wang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pengfei Lu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tamilla Nechiporuk
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas Floss
- German Research Center for Environmental Health, Neuherberg, Germany
| | - John M. Greally
- Departments of Genetics, Medicine (Hematology), and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Chen L, Zhang YH, Lu G, Huang T, Cai YD. Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways. Artif Intell Med 2017; 76:27-36. [PMID: 28363286 DOI: 10.1016/j.artmed.2017.02.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cancer is a disease that involves abnormal cell growth and can invade or metastasize to other tissues. It is known that several factors are related to its initiation, proliferation, and invasiveness. Recently, it has been reported that long non-coding RNAs (lncRNAs) can participate in specific functional pathways and further regulate the biological function of cancer cells. Studies on lncRNAs are therefore helpful for uncovering the underlying mechanisms of cancer biological processes. METHODS We investigated cancer-related lncRNAs using gene ontology (GO) terms and KEGG pathway enrichment scores of neighboring genes that are co-expressed with the lncRNAs by extracting important GO terms and KEGG pathways that can help us identify cancer-related lncRNAs. The enrichment theory of GO terms and KEGG pathways was adopted to encode each lncRNA. Then, feature selection methods were employed to analyze these features and obtain the key GO terms and KEGG pathways. RESULTS The analysis indicated that the extracted GO terms and KEGG pathways are closely related to several cancer associated processes, such as hormone associated pathways, energy associated pathways, and ribosome associated pathways. And they can accurately predict cancer-related lncRNAs. CONCLUSIONS This study provided novel insight of how lncRNAs may affect tumorigenesis and which pathways may play important roles during it. These results could help understanding the biological mechanisms of lncRNAs and treating cancer.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China; College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China.
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
40
|
Devaux Y. Transcriptome of blood cells as a reservoir of cardiovascular biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:209-216. [DOI: 10.1016/j.bbamcr.2016.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 02/07/2023]
|
41
|
Abstract
Vast parts of mammalian genomes encode for transcripts that are not further translated into proteins. The purpose of the majority of such noncoding ribonucleic acids (RNAs) remained paradoxical for a long time. However, a growing body of evidence demonstrates that long noncoding RNAs are dynamically expressed in different cell types, diseases, or developmental stages to execute a wide variety of regulatory roles at virtually every step of gene expression and translation. Indeed, long noncoding RNAs influence gene expression via epigenetic modulations, through regulating alternative splicing, or by acting as molecular sponges. The abundance of long noncoding RNAs in the cardiovascular system indicates that they may be part of a complex regulatory network governing physiology and pathology of the heart. In this review, we discuss the multifaceted functions of long noncoding RNAs and highlight the current literature with an emphasis on cardiac development and disease. Furthermore, as the enormous spectrum of long noncoding RNAs potentially opens up new avenues for diagnosis and prevention of heart failure, we ultimately evaluate the futuristic prospects of long noncoding RNAs as biomarkers, and therapeutic targets for the treatment of cardiovascular disorders, as well.
Collapse
Affiliation(s)
- Christian Bär
- From Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- From Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- From Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
A G-Rich Motif in the lncRNA Braveheart Interacts with a Zinc-Finger Transcription Factor to Specify the Cardiovascular Lineage. Mol Cell 2016; 64:37-50. [PMID: 27618485 DOI: 10.1016/j.molcel.2016.08.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of transcripts that can modulate gene expression; however, their mechanisms of action remain poorly understood. Here, we experimentally determine the secondary structure of Braveheart (Bvht) using chemical probing methods and show that this ∼590 nt transcript has a modular fold. Using CRISPR/Cas9-mediated editing of mouse embryonic stem cells, we find that deletion of 11 nt in a 5' asymmetric G-rich internal loop (AGIL) of Bvht (bvhtdAGIL) dramatically impairs cardiomyocyte differentiation. We demonstrate a specific interaction between AGIL and cellular nucleic acid binding protein (CNBP/ZNF9), a zinc-finger protein known to bind single-stranded G-rich sequences. We further show that CNBP deletion partially rescues the bvhtdAGIL mutant phenotype by restoring differentiation capacity. Together, our work shows that Bvht functions with CNBP through a well-defined RNA motif to regulate cardiovascular lineage commitment, opening the door for exploring broader roles of RNA structure in development and disease.
Collapse
|
43
|
Tang H, Gao C. Comment on The Look AHEAD Research Group. Prospective Association of GLUL rs10911021 With Cardiovascular Morbidity and Mortality Among Individuals With Type 2 Diabetes: The Look AHEAD Study. Diabetes 2016;65:297-302. Diabetes 2016; 65:e29. [PMID: 27555578 DOI: 10.2337/db16-0410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Haiyu Tang
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
44
|
Dechamethakun S, Muramatsu M. Long noncoding RNA variations in cardiometabolic diseases. J Hum Genet 2016; 62:97-104. [PMID: 27305986 DOI: 10.1038/jhg.2016.70] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
Cardiometabolic diseases are characterized as a combination of multiple risk factors for cardiovascular disease (CVD) and metabolic diseases including diabetes mellitus, dyslipidemia, hypertension and abdominal obesity. This cluster of abnormalities individually and interdependently leads to atherosclerosis and CVD morbidity and mortality. In the past decade, genome-wide association studies (GWASs) have identified a series of cardiometabolic disease-associated variants that can collectively explain a small proportion of the variability. Intriguingly, the susceptibility variants imputed from GWASs usually do not reside in the coding regions, suggesting a crucial role of the noncoding elements of the genome. In recent years, emerging evidence suggests that noncoding RNA (ncRNA) is functional for physiology and pathophysiology of human diseases. These include microRNAs and long noncoding RNAs (lncRNAs) that are now implicated in human diseases. The ncRNAs can interact with each other and with proteins, to interfere gene expressions, leading to the development of many human disorders. Although evidence suggests the functional role of lncRNAs in cardiometabolic traits, the molecular mechanisms of gene regulation underlying cardiometabolic diseases remain to be better defined. Here, we summarize the recent discoveries of lncRNA variations in the context of cardiometabolic diseases.
Collapse
Affiliation(s)
- Sariya Dechamethakun
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
45
|
Long noncoding RNA uc.338 promotes cell proliferation through association with BMI1 in hepatocellular carcinoma. Hum Cell 2016; 29:141-7. [DOI: 10.1007/s13577-016-0140-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/26/2016] [Indexed: 12/15/2022]
|
46
|
Zhang Y, Ren J. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management. Pharmacol Ther 2016; 161:52-66. [PMID: 27013344 DOI: 10.1016/j.pharmthera.2016.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
47
|
Rogers JM. Search for the missing lncs: gene regulatory networks in neural crest development and long non-coding RNA biomarkers of Hirschsprung's disease. Neurogastroenterol Motil 2016; 28:161-6. [PMID: 26806097 DOI: 10.1111/nmo.12776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Hirschsprung's disease (HSCR), a birth defect characterized by variable aganglionosis of the gut, affects about 1 in 5000 births and is a consequence of abnormal development of neural crest cells, from which enteric ganglia derive. In the companion article in this issue (Shen et al., Neurogasterenterol Motil 28: 266-73), the authors search for long non-coding RNAs (lncRNAs) differentially expressed in bowel tissues of infants with HSCR. Microarray analysis of over 37 000 lncRNAs and 34 000 mRNAs was done. The key result was identification of a set of 5 lncRNAs that is a potential diagnostic biomarker of HSCR. In this minireview, I provide an overview of neural crest development and the gene regulatory networks involved in specification, epithelial-mesenchymal transition, and migration of neural crest cells. Genes involved in later development, proliferation, and differentiation of neural crest cells as they migrate into the gut are also reviewed. Many of these genes are associated with HSCR, including RET, GDNF, GFRα, EDN3, and EDNRB. LncRNAs and their roles in development and disease and their use as biomarkers are discussed. The authors of the companion article previously used a multipronged approach to elucidate the etiology of HSCR by examining the effects of specific miRNAs or lncRNAs and target genes on cell migration, proliferation, cell cycle, and apoptosis in vitro. These studies are discussed in terms of their elegance and limitations. The companion article identifies many new lncRNAs that, in addition to providing potential biomarkers of HSCR, may be a treasure trove for future investigations.
Collapse
Affiliation(s)
- J M Rogers
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
48
|
Marian AJ. Clinical applications of molecular genetic discoveries. Transl Res 2016; 168:6-14. [PMID: 26548329 PMCID: PMC4718781 DOI: 10.1016/j.trsl.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/13/2015] [Accepted: 10/17/2015] [Indexed: 01/08/2023]
Abstract
Genome-wide association studies of complex traits have mapped >15,000 common single nucleotide variants (SNVs). Likewise, applications of massively parallel nucleic acid sequencing technologies often referred to as next-generation sequencing to molecular genetic studies of complex traits have catalogued a large number of rare variants (population frequency of <0.01) in cases with complex traits. Moreover, high-throughput nucleic acid sequencing, variant burden analysis, and linkage studies are illuminating the presence of large number of SNVs in cases and families with single-gene disorders. The plethora of the genetic variants has exposed the formidable challenge of identifying the causal and pathogenic variants from the enormous number of innocuous common and rare variants that exist in the population and in an individual genome. The arduous task of identifying the causal and pathogenic variants is further compounded by the pleiotropic effects of the variants, complexity of cis and trans interactions in the genome, variability in phenotypic expression of the disease, as well as phenotypic plasticity, and the multifarious determinants of the phenotype. Population genetic studies offer the initial roadmaps and have the potential to elucidate novel pathways involved in the pathogenesis of the disease. However, the genome of an individual is unique, rendering unambiguous identification of the causal or pathogenic variant in a single individual exceedingly challenging. Yet, the focus of the practice of medicine is on the individual, as Sir William Osler elegantly expressed in his insightful quotation: "The good physician treats the disease; the great physician treats the patient who has the disease." The daunting task facing physicians, patients, and researchers alike is to apply the modern genetic discoveries to care of the individual with or at risk of the disease.
Collapse
Affiliation(s)
- Ali J Marian
- Center for Cardiovascular Genetics, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Tex; Center for Cardiovascular Genetics, Texas Heart Institute, Houston, Tex.
| |
Collapse
|
49
|
Piccoli MT, Bär C, Thum T. Non-coding RNAs as modulators of the cardiac fibroblast phenotype. J Mol Cell Cardiol 2016; 92:75-81. [PMID: 26764220 DOI: 10.1016/j.yjmcc.2015.12.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 01/21/2023]
Abstract
Cardiac fibroblasts represent one of the most frequent cell type in the heart of rodents and humans and alterations of their phenotype have a great impact on cardiac function. Due to aging, ischemic injuries, valvular dysfunctions, hypertension and aortic stenosis, multiple signals trigger the accumulation of extracellular matrix in the cardiac interstitium and perivascular space, leading to structural and functional detrimental changes in the heart. Cardiac fibroblasts are the principal orchestrators of matrix formation and degradation and indirectly regulate cardiac hypertrophy and inflammation. Understanding the molecular bases of their action could provide tools for the treatment of cardiac remodeling. This review summarizes recent evidences on non-coding RNAs, including microRNAs and long non-coding RNAs that modulate the phenotype of cardiac fibroblasts and may serve in the future as targets for novel therapeutic strategies against cardiac fibrosis.
Collapse
Affiliation(s)
- Maria-Teresa Piccoli
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
50
|
Yi Q, Cao Y, Liu OS, Lu YQ, Wang JS, Wang SL, Yao R, Fan ZP. Spatial and temporal expression of histone demethylase, Kdm2a, during murine molar development. Biotech Histochem 2015; 91:137-44. [PMID: 26720400 DOI: 10.3109/10520295.2015.1106586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The histone demethylase, lysine (K)-specific demethylase 2A (Kdm2a), is highly conserved and expressed ubiquitously. Kdm2a can regulate cell proliferation and osteo/dentinogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs) derived from dental tissue. We used quantitative real-time RT-PCR analysis and immunohistochemistry to detect Kdm2a expression during development of the murine molar at embryonic days E12, E14, E16 and E17 and postnatal days P3 and P14. Immunohistochemistry results showed no positive staining of Kdm2a at E12. At E14, Kdm2a was expressed weakly in the inner enamel epithelium, stellate reticulum cells and dental sac. At E16, Kdm2a was expressed mainly in the inner and outer enamel epithelium, stratum intermedium and dental sac, but weaker staining was found in cervical loop and dental papilla cells adjacent to the basement membrane. At E17, the strongest Kdm2a staining was detected in the ameloblasts and stronger Kdm2a staining also was detected in the stratum intermedium, outer enamel epithelium and dental papilla cells compared to the expression at E16. Postnatally, we found that Kdm2a was localized in secretory and mature ameloblasts and odontoblasts, and dentin was unstained. Real-time RT-PCR showed that Kdm2a mRNA levels in murine germ cells increased from E12 to E14 and from E14 to E16; no significant change occurred at E16, E17 or P3, then the levels decreased at P14 compared to P3. Kdm2a expression may be closely related to cell proliferation, to ameloblast and odontoblast differentiation and to the secretion of extracellular enamel and dentin during murine tooth development.
Collapse
Affiliation(s)
- Q Yi
- a Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing , China.,d Xiangya Stomatology Hospital, Central South University , Changsha, Hunan , China.,e School of Stomatology, Central South University , Changsha, Hunan , China
| | - Y Cao
- a Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing , China.,f Department of General Dentistry , Capital Medical University School of Stomatology , Beijing , China
| | - O S Liu
- d Xiangya Stomatology Hospital, Central South University , Changsha, Hunan , China.,e School of Stomatology, Central South University , Changsha, Hunan , China
| | - Y Q Lu
- d Xiangya Stomatology Hospital, Central South University , Changsha, Hunan , China.,e School of Stomatology, Central South University , Changsha, Hunan , China
| | - J S Wang
- b Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing , China.,c Department of Biochemistry and Molecular Biology , Capital Medical University School of Basic Medical Sciences , Beijing , China
| | - S L Wang
- b Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing , China.,c Department of Biochemistry and Molecular Biology , Capital Medical University School of Basic Medical Sciences , Beijing , China
| | - R Yao
- g Department of Pediatrics , Stomatological Hospital of Nankai University , Tianjin , China
| | - Z P Fan
- a Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing , China
| |
Collapse
|