1
|
Furukawa N, Matsui H, Sunaga H, Nagata K, Hirayama M, Obinata H, Yokoyama T, Ohno K, Kurabayashi M, Koitabashi N. Sacubitril/valsartan improves diastolic left ventricular stiffness with increased titin phosphorylation via cGMP-PKG activation in diabetic mice. Sci Rep 2024; 14:25081. [PMID: 39443532 PMCID: PMC11499646 DOI: 10.1038/s41598-024-75757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Titin, a giant sarcomeric protein, regulates diastolic left ventricular (LV) passive stiffness as a molecular spring and could be a therapeutic target for diastolic dysfunction. Sacubitril/valsartan (Sac/Val), an angiotensin receptor neprilysin inhibitor, has been shown to benefit patients with heart failure with preserved ejection fraction. The effect of Sac/Val is thought to be due to the enhancement of the cGMP/PKG pathway via natriuretic peptide. In this study, the effects of Sac/Val on LV diastolic dysfunction are demonstrated in a mouse diabetic cardiomyopathy model focusing on titin phosphorylation. Sac/Val-treated diabetic mice showed a greater increase in myocardial levels of cGMP-PKG than Val-treated and control mice. Conductance catheter analysis showed a significant reduction in LV stiffness in diabetic mice, but not in non-diabetic mice. Notably, diastolic LV stiffness was significantly reduced in Sac/Val-treated diabetic hearts compared with Val-treated or vehicle-treated diabetic mice. The phosphorylation level of titin (N2B), which determines passive stiffness and modulates active contraction, was higher in Sac/Val-treated hearts compared with Val-treated hearts in diabetic mice. Given that alteration of titin phosphorylation through PKG contributes to myocardial stiffness, the beneficial effects of Sac/Val in heart failure might be partly attributed to the induction of titin phosphorylation.
Collapse
Affiliation(s)
- Nozomi Furukawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma, 371-8511, Japan
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma, 371-8511, Japan
- Center for Liberal Arts and Sciences, Ashikaga University, Ashikaga, Japan
| | - Kohzo Nagata
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Occupational Therapy, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoyuki Yokoyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Kinji Ohno
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
2
|
Nougué H, Picard F, Cohen-Solal A, Logeart D, Launay JM, Vodovar N. Impact of sacubitril/valsartan on cardiac and systemic hypoxia in chronic heart failure. iScience 2024; 27:108520. [PMID: 38161412 PMCID: PMC10755360 DOI: 10.1016/j.isci.2023.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
In heart failure patients with reduced ejection fraction, Sacubitril/valsartan (S/V) increased proBNP T71 glycosylation, which is regulated negatively by hypoxia via miR-30a in vitro. Using a cohort of 73 HFrEF patients who were transitioned from standard HF medication to S/V, we found that the increase in proBNP T71 glycosylation after S/V was associated with a decrease in cardiac hypoxia. We further found that plasma levels of K709-acteylated HIF1α, HIF-regulated and HIF-independent biomarkers also evolved consistently with a decrease in hypoxia. We further confirmed that biomarker changes were related to hypoxia, in a rat model subjected to isobaric hypoxia. We measured them in rats subjected to isobaric hypoxia. Overall, these data strongly suggest that optimally treated HFrEF patients exhibited subclinical hypoxia that is improved by S/V. The data also posit proBNP T71 glycosylation as a biomarker of cardiac hypoxia.
Collapse
Affiliation(s)
- Hélène Nougué
- Université de Paris and Inserm UMR-S 942, Paris, France
- Department of Anaesthesiology and Intensive Care, Saint Louis – Lariboisière – Fernand Vidal University Hospital, Paris, France
| | - François Picard
- Service d’insuffisance cardiaque, Hôpital Cardiologique du Haut-Lévêque, Pessac, France
| | - Alain Cohen-Solal
- Université de Paris and Inserm UMR-S 942, Paris, France
- Department of Cardiology, Lariboisière Hospital, Paris, France
| | - Damien Logeart
- Université de Paris and Inserm UMR-S 942, Paris, France
- Department of Cardiology, Lariboisière Hospital, Paris, France
| | | | | |
Collapse
|
3
|
Ueda N, Kataoka N, Miyazaki Y, Shimamoto K, Wakamiya A, Nakajima K, Kamakura T, Wada M, Ishibashi K, Yamagata K, Inoue Y, Miyamoto K, Nagase S, Aiba T, Kinugawa K, Minamino N, Kusano K. N-terminal pro atrial natriuretic peptide as a prognostic marker of cardiac resynchronization therapy recipients. IJC HEART & VASCULATURE 2023; 49:101282. [PMID: 37908624 PMCID: PMC10613895 DOI: 10.1016/j.ijcha.2023.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
Background Although the dynamic changes of atrial natriuretic peptide (ANP) expressions in a failing heart are well-documented, the clinical implications of detailed measurements of each ANP molecular form processed from proANP remain unclear. Methods Patients screening was conducted on patients who were eligible for cardiac resynchronization therapy (CRT) between 2014 and 2019 in our institution. Blood samples and echocardiographic parameters were collected on the day before and six months after implantation. Total ANP, proANP, and N-terminal fragment of proANP (NT-proANP) were examined as predictive biomarkers for cardiac death, left ventricular assist device implantation, and heart failure hospitalization following CRT implantation. Results A total of 86 subjects (mean age 70 years, 64 males) who underwent successful CRT implantation were enrolled. Plasma levels of total ANP, proANP, and NT-proANP were not normally distributed [25.8 pM (interquartile range: 11.1-53.1), 2.2 pM (1.0-5.4), and 4.1 nM (2.4-7.1), respectively]. Over a median follow-up of 2.7 years, 31 patients (2 deaths and 29 heart failure hospitalizations) reached the endpoints. Among the different ANP forms, only NT-proANP emerged as an independent predictor of the composite outcome (adjusted odds ratio of 2.542 in those with levels above vs. below the median, 95 % confidence interval 1.151-5.615, p = 0.021). NT-proANP levels were associated with left atrial volume and left diastolic functional parameters and decreased in response to echocardiographic improvements at six months post-implantation (16 ± 44 % decrease in responders vs 18 ± 60 % increase in non-responders, p = 0.005). Conclusion Pre-implantation NT-proANP levels could serve as a predictive factor for clinical outcomes in recipients of CRT.
Collapse
Affiliation(s)
- Nobuhiko Ueda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naoya Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
- Second Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Yuichiro Miyazaki
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Keiko Shimamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akinori Wakamiya
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kenzaburo Nakajima
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tsukasa Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Mitsuru Wada
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kenichiro Yamagata
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuko Inoue
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Koji Miyamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Koichiro Kinugawa
- Second Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Naoto Minamino
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
4
|
Gladysheva IP, Sullivan RD, Reed GL. Falling corin and ANP activity levels accelerate development of heart failure and cardiac fibrosis. Front Cardiovasc Med 2023; 10:1120487. [PMID: 37388639 PMCID: PMC10309071 DOI: 10.3389/fcvm.2023.1120487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/03/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
| | | | - Guy L. Reed
- Correspondence: Inna P. Gladysheva Guy L. Reed
| |
Collapse
|
5
|
Nougué H, Michel T, Picard F, Lassus J, Sadoune M, Laribi S, Cohen-Solal A, Logeart D, Launay JM, Vodovar N. Deconvolution of BNP and NT-proBNP Immunoreactivities by Mass Spectrometry in Heart Failure and Sacubitril/Valsartan Treatment. Clin Chem 2023; 69:350-362. [PMID: 36762414 DOI: 10.1093/clinchem/hvac225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/13/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Elevated BNP and the N-terminal fragment of the proBNP (NT-proBNP) are hallmarks of heart failure (HF). Generally, both biomarkers parallel each other. In patients receiving sacubitril/valsartan, BNP remained stable while NT-proBNP decreased. As BNP and NT-proBNP assays have limited specificity due to cross-reactivity, we quantified by mass spectrometry (MS) the contributing molecular species. METHODS We included 356 healthy volunteers, 100 patients with acute dyspnoea (49 acute decompensated HF; 51 dyspnoea of non-cardiac origin), and 73 patients with chronic HF and reduced ejection fraction treated with sacubitril/valsartan. BNP and NT-proBNP immunoreactivities (BNPir and NT-proBNPir) were measured by immunoassays (Abbott ARCHITECT and Roche Diagnostics proBNPII) and proBNP-derived peptides and glycosylation at serine 44 by MS on plasma samples. RESULTS BNPir corresponded to the sum of proBNP1-108, BNP1-32, BNP3-32, and BNP5-32 (R2 = 0.9995), while NT-proBNPir corresponded to proBNP1-108 and NT-proBNP1-76 not glycosylated at serine 44 (R2 = 0.992). NT-proBNPir was better correlated (R2 = 0.9597) than BNPir (R2 = 0.7643) with proBNP signal peptide (a surrogate of proBNP production). In patients receiving sacubitril/valsartan, non-glycosylated NT-proBNP1-76 remained constant (P = 0.84) despite an increase in NT-proBNP1-76 and its glycosylation (P < 0.0001). ProBNP1-108 remained constant (P = 0.12) while its glycosylation increased (P < 0.0001), resulting in a decrease in non-glycosylated proBNP1-108 (P < 0.0001), and in NT-proBNPir. CONCLUSIONS Glycosylation interfered with NT-proBNPir measurement, explaining the discrepant evolution of these 2 biomarkers in patients receiving sacubitril/valsartan. Both BNPir and NT-proBNPir are surrogates of proBNP1-108 production, NT-proBNPir being more robust in the clinical contexts studied.
Collapse
Affiliation(s)
- Hélène Nougué
- Université Paris Cité and Inserm UMR-S 942, Paris, France.,Department of Anesthesiology and Intensive Care, Saint-Louis and Lariboisière Hospital, Paris, France
| | | | | | - Johan Lassus
- Heart and Lung Center, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Malha Sadoune
- Université Paris Cité and Inserm UMR-S 942, Paris, France
| | - Said Laribi
- Emergency Medicine Department, Tours University Hospital, Tours, France
| | - Alain Cohen-Solal
- Université Paris Cité and Inserm UMR-S 942, Paris, France.,Department of Cardiology, Lariboisière Hospital, Paris, France
| | - Damien Logeart
- Université Paris Cité and Inserm UMR-S 942, Paris, France.,Department of Cardiology, Lariboisière Hospital, Paris, France
| | | | | |
Collapse
|
6
|
Khan MS, Shahid I, Greene SJ, Mentz RJ, DeVore AD, Butler J. Mechanisms of current therapeutic strategies for heart failure: more questions than answers? Cardiovasc Res 2023; 118:3467-3481. [PMID: 36536991 DOI: 10.1093/cvr/cvac187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a complex, multifactorial and heterogeneous syndrome with substantial mortality and morbidity. Over the last few decades, numerous attempts have been made to develop targeted therapies that may attenuate the known pathophysiological pathways responsible for causing the progression of HF. However, therapies developed with this objective have sometimes failed to show benefit. The pathophysiological construct of HF with numerous aetiologies suggests that interventions with broad mechanisms of action which simultaneously target more than one pathway maybe more effective in improving the outcomes of patients with HF. Indeed, current therapeutics with clinical benefits in HF have targeted a wider range of intermediate phenotypes. Despite extensive scientific breakthroughs in HF research recently, questions persist regarding the ideal therapeutic targets which may help achieve maximum benefit. In this review, we evaluate the mechanism of action of current therapeutic strategies, the pathophysiological pathways they target and highlight remaining knowledge gaps regarding the mode of action of these interventions.
Collapse
Affiliation(s)
- Muhammad Shahzeb Khan
- From the Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Izza Shahid
- Division of Cardiovascular Prevention, Houston Methodist Academic Institute, Houston, TX, USA
| | - Stephen J Greene
- From the Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Robert J Mentz
- From the Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Adam D DeVore
- From the Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Baylor University Medical Center, 3434 Live Oak St Ste 501, Dallas 75204, TX, USA
| |
Collapse
|