1
|
Tu L, Zou Z, Yang Y, Wang S, Xing B, Feng J, Jin Y, Cheng M. Targeted drug delivery systems for atherosclerosis. J Nanobiotechnology 2025; 23:306. [PMID: 40269931 PMCID: PMC12016489 DOI: 10.1186/s12951-025-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Atherosclerosis is a complex cardiovascular disease driven by multiple factors, including aging, inflammation, oxidative stress, and plaque rupture. The progression of this disease is often covert, emphasizing the need for early biomarkers and effective intervention measures. In recent years, advancements in therapeutic strategies have highlighted the potential of targeting specific processes in atherosclerosis, such as plaque localization, macrophage activity, and key enzymes. Based on this, this review discusses the potential role of targeted drugs in the treatment of atherosclerosis. It also focuses on their clinical efficacy in anti-atherosclerosis treatment and their ability to provide more precise therapeutic approaches. The findings underscore that future research can concentrate on exploring newer drug delivery systems and biomarkers to further refine clinical treatment strategies and enhance the long-term dynamic management of atherosclerosis.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Ye Yang
- Wenzhou Yining Geriatric Hospital, Wenzhou, 325041, P.R. China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
- Guangxi University of Chinese Medicine, Nanning, 530200, P.R. China
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| |
Collapse
|
2
|
Zhou B, Gan L, Zhou P, Yang T, Tang F, Jin P, Jin P, Chen J. LINC00426 promotes the progression of atherosclerosis by regulating miR-873-5p/SRRM2 axis. Cytokine 2025; 191:156938. [PMID: 40233646 DOI: 10.1016/j.cyto.2025.156938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Atherosclerosis (AS) is a disease that occurs in the great arteries and is the main cause of cardiovascular disease and death. OBJECTIVE To investigate the clinical significance of LINC00426 in AS and to investigate that LINC00426 regulates PDGF-BB-induced proliferation, migration, invasion and inflammatory response of vascular smooth muscle cells (VSMCs) by modulating miR-873-5p/SRRM2 axis. METHODS The expression of LINC00426 was detected using RT-qPCR. The diagnostic role of LINC00426 in AS was analyzed with ROC curves. CCK-8 assay was used to measure cell proliferation, and transwell assay was used to measure cell migration and invasion ability. The targeted binding relationship between LINC00426 and miR-873-5p, miR-873-5p and SRRM2 was detected using dual-luciferase reporter gene assay. The concentration of proinflammatory factors was detected by using ELISA kit. RESULT The expression of LINC00426 was increased in patients with AS, and LINC00426 had a diagnostic role in AS. In addition, LINC00426 regulated PDGF-BB-induced proliferation, migration, invasion, and inflammation of VSMCs by regulating miR-873-5p/SRRM2 axis. CONCLUSION LINC00426 may function as a biomarker for the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Lu Gan
- Department of Basic Medical Sciences, Bijie Medical College, Bijie 551700, China
| | - Pimo Zhou
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Tai Yang
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Fang Tang
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Peng Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Ping Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Jiulin Chen
- Department of Cardiology, Qian Xi Nan People's Hospital, Xingyi 562400, China.
| |
Collapse
|
3
|
Li K, Lin S, Zhou P, Guo Y, Lin S, Ji C. The role of exosomal lncRNAs in mediating apoptosis and inflammation in UV-induced skin photoaging. Front Cell Dev Biol 2025; 13:1538197. [PMID: 40297520 PMCID: PMC12034729 DOI: 10.3389/fcell.2025.1538197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
The skin, as the body's largest organ, functions as a vital barrier against environmental insults. Chronic exposure to ultraviolet (UV) radiation significantly contributes to premature aging, or photoaging, which leads to DNA damage and disrupts repair mechanisms. Exosomes, which are small extracellular vesicles, play a key role in cell-to-cell communication and might help mitigate the effects of photoaging by transporting bioactive molecules to skin cells. Long non-coding RNAs (lncRNAs) are increasingly recognized for their regulatory roles in the photoaging process, influencing stress responses and DNA repair; however, their involvement in exosomes in the context of skin aging is not yet well understood. In this study, we developed a photoaging model using SD rats subjected to UVA and UVB irradiation, which led to significant changes in the dermis such as increased dryness, wrinkles, pigmentation, and vascular alterations. Histological evaluations showed uneven thickening of the epidermis, degradation of collagen and elastic fibers, and cellular infiltration. Exosomes isolated from the dermal tissues exposed to UV radiation displayed altered size distributions. Transcriptomic analyses of the UV-treated rats identified 2,332 lncRNAs and 5,906 mRNAs that were differentially expressed, revealing significant involvement in pathways related to oxidative stress, apoptosis, and cellular stress responses. A cis-regulatory analysis identified 1,327 essential interactions between lncRNAs and mRNAs, highlighting their role in controlling inflammation and apoptosis. Importantly, both IL-1B and GADD45B levels were significantly increased in the exosomes and UV-challenged HaCaT cells, indicating their crucial roles in responding to UV-induced stress. This study highlights the significant role of exosomal lncRNAs in managing cellular reactions to UV-induced stress, impacting regulatory pathways associated with apoptosis, inflammation, and oxidative stress. These insights pave the way for the development of lncRNA-focused therapeutic approaches to address UV-induced skin damage.
Collapse
Affiliation(s)
- Kunjie Li
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Songfa Lin
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Pengjun Zhou
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanni Guo
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Ni H, Ge Y, Zhuge Y, Liu X, Chen H, Liu J, Li W, Wang X, Shen G, Wang Q, Zhuang R, Feinberg MW, Wang F. LncRNA MIR181A1HG Deficiency Attenuates Vascular Inflammation and Atherosclerosis. Circ Res 2025; 136:862-883. [PMID: 40047069 PMCID: PMC11985291 DOI: 10.1161/circresaha.124.325196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Endothelial cell (EC) dysfunction and vascular inflammation are critical in the initiation and progression of atherosclerosis. Long noncoding RNAs play a critical role in vascular pathology, but relatively little is known about their involvement in controlling vascular inflammation. MIR181A1HG is a conserved long noncoding RNA located in juxtaposition with miR-181a1 and miR-181b1, both involved in vascular inflammation. The study aims to investigate the role of MIR181A1HG in regulating vascular inflammation. METHODS We examined the expression of MIR181A1HG in both human and mouse atherosclerotic lesions. Loss-of-function and gain-of-function studies, and multiple RNA-protein interaction assays were used to investigate the role and molecular mechanisms of MIR181A1HG in vascular inflammation and atherosclerosis. The atherosclerotic phenotypes of MIR181A1HG-/-ApoE-/- mice were analyzed in combination with single-cell RNA sequencing. The transcriptional regulation of MIR181A1HG was verified through luciferase reporter and chromatin immunoprecipitation assays. RESULTS MIR181A1HG expression was abundant in ECs and significantly increased in both human and mouse atherosclerotic lesions. MIR181A1HG-/-ApoE-/- mice had reduced NLRP (NLR family pyrin domain containing) 3 inflammasome signaling, EC activation, monocyte infiltration, and atherosclerotic lesion formation. Genetic deletion of MIR181A1HG in myeloid sells did not alter the progression of atherosclerosis. Single-cell RNA sequencing analysis revealed that MIR181A1HG deficiency reduced the proportion of immune cells and enriched anti-inflammation pathways in EC clusters in atherosclerotic lesions. In contrast, EC-specific MIR181A1HG overexpression promoted NLRP3 inflammasome signaling, EC activation, and atherosclerotic lesion formation, effects that were reversed by pharmacological inhibition of NLRP3 (MCC950). MIR181A1HG was transcriptionally activated via an NF-κB (nuclear factor kappa B)/p65-dependent pathway. Mechanistically, MIR181A1HG mediated these effects on regulating NLRP3 inflammasome and EC activation in part through decoying Foxp1 (forkhead box transcription factor 1) away from the promoters of target genes, which was independent of the miR-181a1/b1 cluster. Finally, EC-specific Foxp1 silencing reversed the antiatherosclerotic effect mediated by MIR181A1HG-deletion in vivo. CONCLUSIONS These findings identify MIR181A1HG as a central driver of vascular inflammation in atherosclerosis by its ability to decoy Foxp1 away from target gene promoters and activate NLRP3 inflammasome in the vascular endothelium. Our study suggests MIR181A1HG as a future therapeutic target for vascular inflammatory disease states.
Collapse
Affiliation(s)
- Huaner Ni
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yulong Ge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoqiang Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hangwei Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Junyi Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Weifeng Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Gu Shen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qiuling Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Rulin Zhuang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
5
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
6
|
Qi D, Wang F, Zhang X, Li B, Zhou W, Sheng S, Zhu R, Cao L, Zhao C, Deng X, Ouyang T, Zheng F. Epigenetic upregulation of CLEC5A contributes to monocyte/macrophage dysfunction in coronary artery disease. Int J Biol Macromol 2025; 308:142471. [PMID: 40147659 DOI: 10.1016/j.ijbiomac.2025.142471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Inflammatory activation and dysfunction of immune cells are essential events in coronary artery disease (CAD) pathogenesis. C-type lectin domain family 5 member A (CLEC5A) has recently been regarded as a potent modulator of inflammation, while its contribution to CAD remains undefined. This study aims to clarify the involvement of CLEC5A in atherosclerosis and explore its epigenetic regulatory mechanisms. Integrated methylome and transcriptome analyses identified CLEC5A as a DNA methylation-driven gene in CAD. Functional studies revealed that DNMT1 overexpression suppresses CLEC5A expression in THP-1 cells, with subsequent identification of the cg06744540 CpG site as the critical regulatory locus. Clinical correlation analyses demonstrated that elevated CLEC5A expression is inversely associated with hypomethylation at cg06744540 in CAD patients. Furthermore, CLEC5A overexpression significantly enhanced monocyte inflammation, migration, and adhesion, promoted macrophage polarization and lipid accumulation, and inhibited apoptosis. Mechanistic investigations revealed that CLEC5A exacerbates inflammation in monocyte/macrophage by activating the NF-κB signaling pathway. Conversely, CLEC5A knockdown resulted in opposite effects. Notably, treatment of cells with folic acid, a methylation-enhancing factor, significantly increased DNMT1 expression and declined CLEC5A expression. Consistently, folic acid reversed high-fat-induced CLEC5A expression and inflammation and suppressed the formation of atherosclerotic plaques in vivo. In conclusion, the epigenetic upregulation of CLEC5A through DNMT1-mediated cg06744540 demethylation contributed to monocyte/macrophage dysfunction, thus accelerating CAD progression.
Collapse
Affiliation(s)
- Daoxi Qi
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Fan Wang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Wenjie Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuyang Sheng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Ruiyang Zhu
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Liang Cao
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Chang Zhao
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Xinyu Deng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Tanglin Ouyang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China.
| |
Collapse
|
7
|
Zhang PJ, Luo C, Chen J, Yang J, Wu Q, Chen L, Wang H, Wu J, Zhang HF. Clinical value and role of long non-coding RNA PSMB8-AS1 in the progress of ischemic stroke in patients with hypertension. Neuroscience 2025; 569:114-122. [PMID: 39894434 DOI: 10.1016/j.neuroscience.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Hypertension is a common risk factors for ischemic stroke (IS), with the widely involvement of long non-coding RNAs (lncRNAs). The expression pattern and clinical significance of lncRNA PSMB8-AS1 was examined in essential hypertension (EH) patients with or without IS, as well as its role and mechanism in IS-induced neuron cell injury. Serum PSMB8-AS1 levels in 260 EH cases without IS and 280 participants with IS were detected via reverse transcription - quantitative polymerase chain reaction (RT-qPCR). The outcome during 12-month follow-up period was recorded. Receiver operating characteristic (ROC) curve and Kaplan - Meier (K-M) plot were drawn to evaluate diagnostic and prognostic values. HT22 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) condition for cell function experiments. The cell viability, apoptosis, and inflammatory response were detected. Elevated expression of PSMB8-AS1 can differentiate IS from EH patients, and was independently related to the poor functional prognosis. Patients with high PSMB8-AS1 expression were likely to relapse during the 12-month follow-up period. In vitro, PSMB8-AS1 knockdown attenuated OGD/R-induced neuron cell apoptosis and inflammatory response, which was returned by microRNA-22-3p downregulation. PI3K-Akt signaling was of significance during the progress based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. PSMB8-AS1 acts as a novel biomarker for the diagnosis of IS in EH patients. Elevated PSMB8-AS1 is associated with worse neurological outcomes and higher recurrence rates of IS patients. LncRNA PSMB8-AS1 knockdown might have a promising role in attenuating OGD/R-induced neuron cell injury, that might be related to miR-22-3p.
Collapse
Affiliation(s)
- Pin-Jing Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning, China
| | - Chen Luo
- Department of Neurosurgery, The First People's Hospital of Jiashan, 314100 Zhejiang, China
| | - Jinli Chen
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Jing Yang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Quan Wu
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Lilong Chen
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Hui Wang
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Junfeng Wu
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Hai-Feng Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning, China.
| |
Collapse
|
8
|
Duan Y, Zhang S, Xia Y, Li H, Liu D, Du Y. Identification of novel target genes in exaggerated cardiac remodeling following myocardial infarction in diabetes. Front Endocrinol (Lausanne) 2025; 16:1536639. [PMID: 40162308 PMCID: PMC11949792 DOI: 10.3389/fendo.2025.1536639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Diabetes mellitus is a major risk factor for myocardial infarction (MI), yet its molecular mechanisms exacerbating post-MI cardiac remodeling remain unclear. Methods Type 2 diabetes mellitus mouse model was developed through a high-sugar and high-fat diet (HFD), followed by MI surgery. Four weeks post-surgery, cardiac function was evaluated via echocardiography, and cardiac pathology was examined using Masson's trichrome and wheat germ agglutinin staining. High-throughput sequencing identified differentially expressed mRNAs and long non-coding RNAs (LncRNAs) in diabetic mice with MI. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, along with LncRNA-target-gene analysis, were performed. Validation in human samples of diabetic patients with STEMI confirmed the influence of HFD on the expression of specific genes. Results The results demonstrate that diabetes significantly impairs cardiac function, exacerbates cardiac fibrosis and hypertrophy. In addition, our extensive examination of human samples has conclusively demonstrated that diabetes significantly modulates the expression of genes (Rapgef5 and Ing1) within the cardiac tissue of individuals afflicted with STEMI, underscoring the intricate interplay between these conditions. In addition, we have found that Rapgef5 and Ing1 are involved in diabetes-mediated cardiomyocyte apoptosis and proliferation following myocardial infarction. Discussion Diabetes aggravates post-MI remodeling via Rapgef5/Ing1-mediated apoptosis and proliferation, these findings highlight novel therapeutic targets for diabetic cardiovascular complications.
Collapse
MESH Headings
- Animals
- Myocardial Infarction/genetics
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Mice
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Ventricular Remodeling/genetics
- Humans
- Male
- Mice, Inbred C57BL
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- RNA, Long Noncoding/genetics
- Diet, High-Fat/adverse effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Apoptosis/genetics
Collapse
Affiliation(s)
- Yanru Duan
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shihan Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Clinical Discipline of Pediatric Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Yihua Xia
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
9
|
Qiu Y, Xu Q, Xie P, He C, Li Q, Yao X, Mao Y, Wu X, Zhang T. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases. Pharmacol Res 2025; 211:107546. [PMID: 39674563 DOI: 10.1016/j.phrs.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The complex mechanisms underlying the development of cardiovascular diseases remain not fully elucidated. Epigenetics, which modulates gene expression without DNA sequence changes, is shedding light on these mechanisms and their heritable effects. This review focus on epigenetic regulation in cardiovascular aging and diseases, detailing specific epigenetic enzymes such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), which serve as writers or erasers that modify the epigenetic landscape. We also discuss the readers of these modifications, such as the 5-methylcytosine binding domain proteins, and the erasers ten-eleven translocation (TET) proteins. The emerging role of RNA methylation, particularly N6-methyladenosine (m6A), in cardiovascular pathogenesis is also discussed. We summarize potential therapeutic targets, such as key enzymes and their inhibitors, including DNMT inhibitors like 5-azacytidine and decitabine, HDAC inhibitors like belinostat and givinotide, some of which have been approved by the FDA for various malignancies, suggesting their potential in treating cardiovascular diseases. Furthermore, we highlight the role of novel histone modifications and their associated enzymes, which are emerging as potential therapeutic targets in cardiovascular diseases. Thus, by incorporating the recent studies involving patients with cardiovascular aging and diseases, we aim to provide a more detailed and updated review that reflects the advancements in the field of epigenetic modification in cardiovascular diseases.
Collapse
Affiliation(s)
- Yurou Qiu
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qing Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Peichen Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chenshuang He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qiuchan Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Yao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Yang Mao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoqian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
10
|
Cao Y, Yang Y, Guo C, Zong J, Li M, Li X, Yu T. Role of RNA-binding Proteins in Regulating Cell Adhesion and Progression of the Atherosclerotic Plaque and Plaque Erosion. Curr Atheroscler Rep 2024; 27:8. [PMID: 39576410 DOI: 10.1007/s11883-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE OF REVIEW RNA-binding proteins (RBPs) have emerged as crucial regulators of post-transcriptional processes, influencing the fate of RNA. This review delves into the biological functions of RBPs and their role in alternative splicing concerning atherosclerosis (AS), highlighting their participation in essential cellular processes. Our goal is to offer new insights for cardiovascular disease research and treatment. RECENT FINDING Dysregulation of RBPs is associated with various human diseases, including autoimmune and neurological disorders. The role of RBPs in the pathogenesis of AS is progressively being elucidated, as they influence plaque formation and disease progression by regulating cell function and gene expression. RBPs play intricate biological roles in regulating pre-mRNA, including editing, splicing, stability and translation. Alternative splicing has been demonstrated to enhance biological complexity and diversity. Our findings indicate that alternative splicing is extensively involved in the pathogenesis of AS. The dysregulated expression of specific RBPs in AS is linked to the production of adhesion molecules and vascular endothelium damage. Further research on RBPs could pave the way for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Ying Cao
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, People's Republic of China
| | - Chuan Guo
- Industrial Synergy Innovation Center, Linyi Vocational University of Science and Technology, Linyi, 276000, People's Republic of China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Min Li
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Tao Yu
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
11
|
Zhao J, Gong F, Yang Q, Yang R, Yan Z, Xi Z, Li K, Lai W, Shi Y, Lin B, Yan J, Liu X. Exercise in ozone-polluted air evokes pathological cardiac hypertrophy via up-regulation of nuclear lncRNA EYA4-au1 and recruiting Med11 to activating EYA4/p27kip1/CK2α/HDAC2 cascade. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117264. [PMID: 39471666 DOI: 10.1016/j.ecoenv.2024.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Engaging in exercise in an ozone (O3)-polluted environment can lead to lung damage, respiratory inflammation, and deterioration in performance, however, the effects on the heart are undefined. Herein, we report that rats performing moderate-intensity exercise under O3-polluted air evoked pathological myocardial hypertrophy (MH). O3 exposure increased serum levels of MH-promoting factors (angiotensin II [AngII], endothelin-1 [ET-1], and cyclophilin A [CyPA]), and decreased expression of MH-inhibiting factors (adiponectin [ADPN], follistatin-like protein 1 [FSTL1], and apelin). O3 exposure also increased the expression levels of cardiac hypertrophy markers (ANP, BNP, and β-MHC) in the heart, elicited myocardial hypertrophy and cardiac inflammation. Mechanistically, we identified lncRNA EYA4-au1 overexpression in the above myocardial tissues with pathological hypertrophy. In an AngII-elicited in vitro model, EYA4-au1 was shown to mediate cardiomyocyte hypertrophy. AngII induces nuclear translocation of SP1, leading to high expression of EYA4-au1; And inhibits the expression of ELAVL1, resulting in nuclear retention of EYA4-au1. Nuclear EYA4-au1 recruits Med11 to EYA4 promoter for transcriptional activation, subsequently unleashing the EYA4/p27kip1/CK2α/HDAC2 cascade that signals cardiomyocyte hypertrophy. In summary, O3 exposure is an important factor in pathological MH, mediated by EYA4-au1 that motivates the MH-driving EYA4 pathway. Our findings define the effects of exercise on the heart in an O3-polluted environment and offer a novel mechanistic route for the onset of MH.
Collapse
Affiliation(s)
- Jiao Zhao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Fuxu Gong
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Qingcheng Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Renxin Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Zhangong Yan
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Zhuge Xi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Jun Yan
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Xiaohua Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| |
Collapse
|
12
|
Pai VJ, Lau CJ, Garcia-Ruiz A, Donaldson C, Vaughan JM, Miller B, De Souza EV, Pinto AM, Diedrich J, Gavva NR, Yu S, DeBoever C, Horman SR, Saghatelian A. Microprotein-encoding RNA regulation in cells treated with pro-inflammatory and pro-fibrotic stimuli. BMC Genomics 2024; 25:1034. [PMID: 39497054 PMCID: PMC11536906 DOI: 10.1186/s12864-024-10948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Recent analysis of the human proteome via proteogenomics and ribosome profiling of the transcriptome revealed the existence of thousands of previously unannotated microprotein-coding small open reading frames (smORFs). Most functional microproteins were chosen for characterization because of their evolutionary conservation. However, one example of a non-conserved immunomodulatory microprotein in mice suggests that strict sequence conservation misses some intriguing microproteins. RESULTS We examine the ability of gene regulation to identify human microproteins with potential roles in inflammation or fibrosis of the intestine. To do this, we collected ribosome profiling data of intestinal cell lines and peripheral blood mononuclear cells and used gene expression of microprotein-encoding transcripts to identify strongly regulated microproteins, including several examples of microproteins that are only conserved with primates. CONCLUSION This approach reveals a number of new microproteins worthy of additional functional characterization and provides a dataset that can be queried in different ways to find additional gut microproteins of interest.
Collapse
Affiliation(s)
- Victor J Pai
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Calvin J Lau
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Almudena Garcia-Ruiz
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Cynthia Donaldson
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Brendan Miller
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eduardo V De Souza
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Antonio M Pinto
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jolene Diedrich
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Narender R Gavva
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | - Shan Yu
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | | | - Shane R Horman
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA.
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Salim Abed H, Oghenemaro EF, Kubaev A, Jeddoa ZMA, S R, Sharma S, Vashishth R, Jabir MS, Jawad SF, Zwamel AH. Non-coding RNAs as a Critical Player in the Regulation of Inflammasome in Inflammatory Bowel Diseases; Emphasize on lncRNAs. Cell Biochem Biophys 2024:10.1007/s12013-024-01585-2. [PMID: 39424765 DOI: 10.1007/s12013-024-01585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. A hyperactive inflammatory and immunological response in the gut has been shown to be one of the disease's long-term causes despite the complexity of the clinical pathology of IBD. The innate immune system activator known as human gut inflammasome is thought to be a significant underlying cause of pathology and is closely linked to the development of IBD. It is essential to comprehend the function of inflammasome activation in IBD to treat it effectively. Systemic inflammasome regulation may be a proper therapeutic and clinical strategy to manage IBD symptoms since inflammasomes may have a significant function in IBD. Non-coding RNAs (ncRNAs) are a type of RNA transcript that is incapable of encoding proteins or peptides. In IBD, inflammation develops and worsens as a result of its imbalance. Culminating evidence has been shown that ncRNAs, and particularly long non-coding RNAs (lncRNAs), may play a role in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in IBD. The relationship between IBD and the gut inflammasome, as well as current developments in IBD research and treatment approaches, have been the main topics of this review. We have covered inflammasomes and their constituents, results from in vivo research, inflammasome inhibitors, and advancements in inflammasome-targeted therapeutics for IBD.
Collapse
Affiliation(s)
- Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - RenukaJyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Karbala, Iraq
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001, Babil, Iraq
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
14
|
Gan T, Liu W, Wang Y, Huang D, Hu J, Wang Y, Xiong J, Wang X, Xu Q, Xiong N, Lu S, Wang Z. LncRNA MAAMT facilitates macrophage recruitment and proinflammatory activation and exacerbates autoimmune myocarditis through the SRSF1/NF-κB axis. Int J Biol Macromol 2024; 278:134193. [PMID: 39069042 DOI: 10.1016/j.ijbiomac.2024.134193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in dilated cardiomyopathy (DCM). However, the biological functions and regulatory mechanisms of lncRNAs in DCM remain elusive. Using a mouse model of experimental autoimmune myocarditis (EAM) to mimic DCM, we successfully constructed a dynamic lncRNA expression library for EAM by lncRNA microarray and found that the expression of a macrophage-enriched lncRNA, MAAMT, was significantly increased in the myocardial tissue of mice at the acute stage of EAM. Functionally, MAAMT knockdown alleviated the recruitment and proinflammatory activation of macrophages in the heart, spleen, and peripheral blood of mice at the acute stage of EAM, reduced myocardial inflammation and injury, and eventually reversed ventricular remodelling and improved cardiac function in mice at the chronic stage of EAM. Mechanistically, we identified serine/arginine-rich splicing factor 1 (SRSF1) as an MAAMT-interacting protein in macrophages using RNA pull-down assays coupled with mass spectrometry. MAAMT knockdown attenuated the ubiquitination-mediated degradation of SRSF1, increased the protein expression of SRSF1, and restrained the activation of the NF-κB pathway in macrophages, thereby inhibiting the proinflammatory activation of macrophages. Collectively, our results demonstrate that MAAMT is a key proinflammatory regulator of myocarditis that promotes macrophage activation through the SRSF1-NF-κB axis, providing a new insight into early effective treatment strategies for DCM.
Collapse
Affiliation(s)
- Ting Gan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenhu Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Hu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingjie Xiong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuehua Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ni Xiong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Lu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
15
|
Yi Q, Zhu G, Ouyang X, Zhu W, Zhong K, Chen Z, Zhong J. LINC01089 in cancer: multifunctional roles and therapeutic implications. J Transl Med 2024; 22:858. [PMID: 39334363 PMCID: PMC11429488 DOI: 10.1186/s12967-024-05693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
LINC01089 is a prime example of a long non-coding RNA that plays a pivotal role in the progression of human cancers. The gene encoding this lncRNA is located on 12q24.31. LINC01089 has been demonstrated to exert tumor-suppressive effects in various cancers, including colorectal cancer, gastric cancer, lung cancer, ovarian cancer, cervical cancer, papillary thyroid carcinoma, breast cancer, and osteosarcoma. However, its role in hepatocellular carcinoma shows significant discrepancies across different studies. In this review, we systematically explore the functions of LINC01089 in human cancers through bioinformatics analysis, clinical studies, animal models, and fundamental experimental research. Furthermore, we delve into the biological mechanisms and functions of LINC01089, and discuss its potential as a future biomarker and therapeutic target in detail.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Kui Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Zheng Chen
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
16
|
Zheng XL. Emerging Paradigms in Atherosclerosis: The Impact of LncRNA PSMB8-AS1 on Vascular Inflammation and Plaque Formation. J Cardiovasc Transl Res 2024; 17:779-781. [PMID: 38240920 DOI: 10.1007/s12265-024-10481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, GAA12-HRIC 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
17
|
Liu X, Delgado E. A novel role of PSMB9 in endothelial cells and atherosclerosis: beyond its canonical function in immunoproteasome. Acta Pharmacol Sin 2024; 45:1530-1532. [PMID: 38570600 PMCID: PMC11192834 DOI: 10.1038/s41401-024-01267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| | - Esteban Delgado
- Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|