1
|
Zheng T, Sheng J, Wang Z, Wu H, Zhang L, Wang S, Li J, Zhang Y, Lu G, Zhang L. Injured Myocardium-Targeted Theranostic Nanoplatform for Multi-Dimensional Immune-Inflammation Regulation in Acute Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414740. [PMID: 39836506 PMCID: PMC11904987 DOI: 10.1002/advs.202414740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Indexed: 01/23/2025]
Abstract
Pyroptosis is a key mode of programmed cell death during the early stages following acute myocardial infarction (AMI), driving immune-inflammatory responses. Cardiac resident macrophages (CRMs) are the primary mediators of cardiac immunity, and they serve a dual role through their shaping of both myocardial injury and post-AMI myocardial repair. To appropriately regulate AMI-associated inflammation, HM4oRL is herein designed, an innovative bifunctional therapeutic nanoplatform capable of inhibiting cardiomyocyte pyroptosis while reprogramming inflammatory signaling. This HM4oRL platform is composed of a core of 4-Octyl itaconate (4-OI)-loaded liposomes, a middle layer consisting of a metal-polyphenol network (MPN) film, and an optimized outer hybrid immune-cell membrane layer. The unique properties of this hybrid membrane layer facilitated HM4oRL targeting to the injured myocardium during early-stage AMI in mice, whereupon the release of 4-Ol and modified MPN synergistically inhibited cardiomyocyte pyroptosis while suppressing inflammatory monocytes/macrophage responses at the infarcted site. Mechanistically, HM4oRL preserved cardiac metabolic homeostasis through AMPK signaling activation, establishing favorable microenvironmental conditions for the reprogramming of CRM-mediated inflammation. Ultimately, HM4oRL treatment is able to resolve inflammation, enhance neovascularization, and suppress myocardial fibrosis, reducing the infarct size and enhancing post-AMI cardiac repair such that it is an innovative approach to the targeted treatment of AMI.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 East Zhongshan RoadNanjing210002China
| | - Jie Sheng
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 East Zhongshan RoadNanjing210002China
| | - Zhiyue Wang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 East Zhongshan RoadNanjing210002China
| | - Haoguang Wu
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 East Zhongshan RoadNanjing210002China
| | - Linlin Zhang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 East Zhongshan RoadNanjing210002China
| | - Sheng Wang
- Department of Radiology, Nanjing Jinling HospitalNanjing Medical University305 East Zhongshan RoadNanjing210002China
| | - Jianhua Li
- Department of Cardiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 East Zhongshan RoadNanjing210002China
| | - Yunming Zhang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 East Zhongshan RoadNanjing210002China
| | - Guangming Lu
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 East Zhongshan RoadNanjing210002China
| | - Longjiang Zhang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 East Zhongshan RoadNanjing210002China
| |
Collapse
|
2
|
Xiao T, Wei J, Cai D, Wang Y, Cui Z, Chen Q, Gu Q, Zou A, Mao L, Chi B, Ji Y, Wang Q, Sun L. Extracellular vesicle mediated targeting delivery of growth differentiation factor-15 improves myocardial repair by reprogramming macrophages post myocardial injury. Biomed Pharmacother 2024; 172:116224. [PMID: 38308970 DOI: 10.1016/j.biopha.2024.116224] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE Extracellular vesicles (EVs) have garnered considerable attention among researchers as candidates for natural drug delivery systems. This study aimed to investigate whether extracellular vesicle mediated targeting delivery of growth differentiation factor-15 (GDF15) improves myocardial repair by reprogramming macrophages post myocardial injury. METHODS EVs were isolated from macrophages transfected with GDF15 (EXO-GDF15) and control macrophages (EXO-NC). In vitro and vivo experiments, we compared their reprogram ability of macrophages and regeneration activity. Furthermore, proteomic analysis were employed to determine the specific mechanism by which GDF15 repairs the myocardium. RESULTS Compared with EXO-NC, EXO-GDF15 significantly regulated macrophage phenotypic shift, inhibited cardiomyocyte apoptosis, and enhanced endothelial cell angiogenesis. Moreover, EXO-GDF15 also significantly regulated macrophage heterogeneity and inflammatory cytokines, reduced fibrotic area, and enhanced cardiac function in infarcted rats. Proteomic analysis revealed a decrease in fatty acid-binding protein 4 (FABP4) protein expression following treatment with EXO-GDF15. Mechanistically, the reprogramming of macrophages by EXO-GDF15 is accomplished through the activation of Smad2/3 phosphorylation, which subsequently inhibits the production of FABP4. CONCLUSIONS Extracellular vesicle mediated targeting delivery of growth differentiation factor-15 improves myocardial repair by reprogramming macrophages post myocardial injury via down-regulating the expression of FABP4. EXO-GDF15 may serve as a promising approach of immunotherapy.
Collapse
Affiliation(s)
- Tingting Xiao
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Jun Wei
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Dabei Cai
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Yu Wang
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Zhiwei Cui
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qianwen Chen
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Qingqing Gu
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Ailin Zou
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Lipeng Mao
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China; Dalian Medical University, Dalian 116000, Liaoning, China
| | - Boyu Chi
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China; Dalian Medical University, Dalian 116000, Liaoning, China
| | - Yuan Ji
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China.
| | - Qingjie Wang
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China.
| | - Ling Sun
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China; Dalian Medical University, Dalian 116000, Liaoning, China.
| |
Collapse
|
3
|
Martí-Pàmies Í, Thoonen R, Morley M, Graves L, Tamez J, Caplan A, McDaid K, Yao V, Hindle A, Gerszten RE, Laurie A. Farrell, Li L, Tseng YH, Profeta G, Buys ES, Bloch DB, Scherrer-Crosbie M. Brown Adipose Tissue and BMP3b Decrease Injury in Cardiac Ischemia-Reperfusion. Circ Res 2023; 133:353-365. [PMID: 37462036 PMCID: PMC10528340 DOI: 10.1161/circresaha.122.322337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Despite advances in treatment, myocardial infarction (MI) is a leading cause of heart failure and death worldwide, with both ischemia and reperfusion (I/R) causing cardiac injury. A previous study using a mouse model of nonreperfused MI showed activation of brown adipose tissue (BAT). Recent studies showed that molecules secreted by BAT target the heart. We investigated whether BAT attenuates cardiac injury in I/R and sought to identify potential cardioprotective proteins secreted by BAT. METHODS Myocardial I/R surgery with or without BAT transplantation was performed in wild-type (WT) mice and in mice with impaired BAT function (uncoupling protein 1 [Ucp1]-deficient mice). To identify potential cardioprotective factors produced by BAT, RNA-seq (RNA sequencing) was performed in BAT from WT and Ucp1-/- mice. Subsequently, myocardial I/R surgery with or without BAT transplantation was performed in Bmp3b (bone morphogenetic protein 3b)-deficient mice, and WT mice subjected to myocardial I/R were treated using BMP3b. RESULTS Dysfunction of BAT in mice was associated with larger MI size after I/R; conversely, augmenting BAT by transplantation decreased MI size. We identified Bmp3b as a protein secreted by BAT after I/R. Compared with WT mice, Bmp3b-deficient mice developed larger MIs. Increasing functional BAT by transplanting BAT from WT mice to Bmp3b-deficient mice reduced I/R injury whereas transplanting BAT from Bmp3b-deficient mice did not. Treatment of WT mice with BMP3b before reperfusion decreased MI size. The cardioprotective effect of BMP3b was mediated through SMAD1/5/8. In humans, the plasma level of BMP3b increased after MI and was positively correlated with the extent of cardiac injury. CONCLUSIONS The results of this study suggest a cardioprotective role of BAT and BMP3b, a protein secreted by BAT, in a model of I/R injury. Interventions increasing BMP3b levels or targeting Smad 1/5 may represent novel therapeutic approaches to decrease myocardial damage in I/R injury.
Collapse
Affiliation(s)
- Íngrid Martí-Pàmies
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Robrecht Thoonen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Michael Morley
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Graves
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Jesus Tamez
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Alex Caplan
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Kendra McDaid
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Vincent Yao
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Allyson Hindle
- Anesthesia Center for Critical Care Research, Massachusetts General Hospital, Boston, MA, United States
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Laurie A. Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Li Li
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Gerson Profeta
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, United States
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, United States
- The Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, United States
| | - Marielle Scherrer-Crosbie
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Das S, Mondal A, Dey C, Chakraborty S, Bhowmik R, Karmakar S, Sengupta A. ER stress induces upregulation of transcription factor Tbx20 and downstream Bmp2 signaling to promote cardiomyocyte survival. J Biol Chem 2023; 299:103031. [PMID: 36805334 PMCID: PMC10036653 DOI: 10.1016/j.jbc.2023.103031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
In the mammalian heart, fetal cardiomyocytes proliferate prior to birth; however, they exit the cell cycle shortly after birth. Recent studies show that adult cardiomyocytes re-enters the cell cycle postinjury to promote cardiac regeneration. The endoplasmic reticulum (ER) orchestrates the production and assembly of different types of proteins, and a disruption in this machinery leads to the generation of ER stress, which activates the unfolded protein response. There is a very fine balance between ER stress-mediated protective and proapoptotic responses. T-box transcription factor 20 (Tbx20) promotes embryonic and adult cardiomyocyte proliferation postinjury to restore cardiac homeostasis. However, the function and regulatory interactions of Tbx20 in ER stress-induced cardiomyopathy have not yet been reported. We show here that ER stress upregulates Tbx20, which activates downstream bone morphogenetic protein 2 (Bmp2)-pSmad1/5/8 signaling to induce cardiomyocyte proliferation and limit apoptosis. However, augmenting ER stress reverses this protective response. We also show that increased expression of tbx20 during ER stress is mediated by the activating transcription factor 6 arm of the unfolded protein response. Cardiomyocyte-specific loss of Tbx20 results in decreased cardiomyocyte proliferation and increased apoptosis. Administration of recombinant Bmp2 protein during ER stress upregulates Tbx20 leading to augmented proliferation, indicating a feed-forward loop mechanism. In in vivo ER stress, as well as in diabetic cardiomyopathy, the activity of Tbx20 is increased with concomitant increased cardiomyocyte proliferation and decreased apoptosis. These data support a critical role of Tbx20-Bmp2 signaling in promoting cardiomyocyte survival during ER stress-induced cardiomyopathies.
Collapse
Affiliation(s)
- Shreya Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Arunima Mondal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Chandrani Dey
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | | | - Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
5
|
Smad-dependent pathways in the infarcted and failing heart. Curr Opin Pharmacol 2022; 64:102207. [DOI: 10.1016/j.coph.2022.102207] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
|
6
|
Ding P, Chen W, Yan X, Zhang J, Li C, Zhang G, Wang Y, Li Y. BMPER alleviates ischemic brain injury by protecting neurons and inhibiting neuroinflammation via Smad3-Akt-Nrf2 pathway. CNS Neurosci Ther 2021; 28:593-607. [PMID: 34904361 PMCID: PMC8928915 DOI: 10.1111/cns.13782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Bone morphogenetic proteins (BMPs) are a group of proteins related to bone morphogenesis. BMP‐binding endothelial regulator (BMPER), a secreted protein that interacts with BMPs, is known to be involved in ischemic injuries. Here, we explored the effects of BMPER on cerebral ischemia and its mechanism of action. Methods A mouse model of brain ischemia was induced by middle cerebral artery occlusion (MCAO). An in vitro ischemic model was established by subjecting primary cultured neurons to oxygen‐glucose deprivation/reperfusion (OGD/R). Serum levels of BMPs/BMPER were measured in MCAO mice and in patients with acute ischemic stroke (AIS). Brain damages were compared between BMPER‐ and vehicle‐treated mice. Quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence staining were performed to examine neuroinflammation and cell death. BMPER‐related pathways were assessed by Western blotting. Results BMPER level was elevated in MCAO mice and AIS patients. BMPER administration reduced mortality, infarct size, brain edema, and neurological deficit after MCAO. Neuroinflammation and cell death after ischemia were alleviated by BMPER both in vivo and in vitro. BMPER activated the Smad3/Akt/Nrf2 pathway in OGD/R‐challenged neurons. Conclusion BMPER is a neuroprotective hormone that alleviates ischemic brain injury via activating the Smad3/Akt/Nrf2 pathway. These findings may provide potential therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Peng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Anesthesiology, PLA 983 Hospital, Tianjin, China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaodi Yan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jinxiang Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Wang
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Li Q, Xu M, Li Z, Li T, Wang Y, Chen Q, Wang Y, Feng J, Yin X, Lu C. Maslinic Acid Attenuates Ischemia/Reperfusion Injury-Induced Myocardial Inflammation and Apoptosis by Regulating HMGB1-TLR4 Axis. Front Cardiovasc Med 2021; 8:768947. [PMID: 34859077 PMCID: PMC8631436 DOI: 10.3389/fcvm.2021.768947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Aims: The inflammatory response and apoptosis are the major pathological features of myocardial ischemia/reperfusion injury (MI/RI). Maslinic acid (MA), a natural pentacyclic triterpene with various bioactivities, plays critical roles in the multiple cellular biological processes, but its protective effects on the pathophysiological processes of MI/RI have not been extensively investigated. Our study aimed to determine whether MA treatment alleviate ischemia/reperfusion (I/R)-induced myocardial inflammation and apoptosis both in vitro and in vivo, and further reveal the underlying mechanisms. Methods and results: An MI/RI rat model was successfully established by ligating the left anterior descending coronary artery and H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to mimic I/R injury. In addition, prior to H/R stimulation or myocardial I/R operation, the H9c2 cells or rats were treated with varying concentrations of MA or vehicle for 24 h and two consecutive days, respectively. In this study, our results showed that MA could obviously increase the cell viability and decrease the cardiac enzymes release after H/R in vitro. MA could significantly improve the H/R-induced cardiomyocyte injury and I/R-induced myocardial injury in a dose-dependent manner. Moreover, MA suppressed the expression of inflammatory cytokines (tumor necrosis factor alpha [TNF-α, interleukin-1β [IL-1β and interleukin-6 [IL-6]) and the expressions of apoptosis-related proteins (cleaved caspase-3 and Bax) as well as increased the levels of anti-apoptotic protein Bcl-2 expression both in vitro and in vivo. Mechanistically, MA significantly inhibited nuclear translocation of nuclear factor-κB (NF-κB) p65 after H/R via regulating high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4) axis. Conclusion: Taken together, MA treatment may alleviate MI/RI by suppressing both the inflammation and apoptosis in a dose-dependent manner, and the cardioprotective effect of MA may be partly attributable to the inactivation of HMGB1/TLR4/NF-κB pathway, which offers a new therapeutic strategy for MI/RI.
Collapse
Affiliation(s)
- Qi Li
- School of Medicine, Nankai University, Tianjin, China.,Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Mengping Xu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Zhuqing Li
- School of Medicine, Nankai University, Tianjin, China.,Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Tingting Li
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, The First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Yilin Wang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, The First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Qiao Chen
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, The First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Yanxin Wang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, The First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Jiaxin Feng
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, The First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Xuemei Yin
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, The First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Chengzhi Lu
- School of Medicine, Nankai University, Tianjin, China.,Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
8
|
Li HX, Feng J, Liu Q, Ou BQ, Lu SY, Ma Y. PACAP-derived mutant peptide MPAPO protects trigeminal ganglion cell and the retina from hypoxic injury through anti-oxidative stress, anti-apoptosis, and promoting axon regeneration. Biochim Biophys Acta Gen Subj 2021; 1865:130018. [PMID: 34597723 DOI: 10.1016/j.bbagen.2021.130018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to determine whether the MPAPO, derived peptide of pituitary adenylate cyclase-activating polypeptide (PACAP), would protect trigeminal ganglion cells (TGCs) and the mice retinas from a hypoxic insult. The nerve endings of the ophthalmic nerve of the trigeminal nerve are widely distributed in eye tissues. In TGCs after hypoxia exposure, we discovered that reactive oxygen species level, the contents of cytosolic cytochrome c and cleaved-caspase-3 were significantly increased, in the meanwhile, m-Calpain was activated and cytoskeleton proteins (αII-spectrin and Synapsin) were degraded, neurites of TGCs disappeared, but these effects were reversed in TGCs treated with MPAPO. The structure of the mice retinas after hypoxic exposure was disordered. Increased lipid peroxidation (LPO), decreased glutathione (GSH) levels, and decreased superoxide dismutase (SOD) activity, positive cells of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), the disintegration of nerve fibers was examined in the retinas following a hypoxic insult. Disordered retina was attenuated with MPAPO eye drops, as well as hypoxia-induced apoptosis in the developing retina, increase in LPO, and decrease in GSH levels and SOD activity of the retina. Moreover, the disintegrated retinal nerve fibers were reassembled after MPAPO treatment. These results suggest that hypoxia induces oxidative stress, apoptosis, and neurites disruption, while MPAPO is remarkably protective against these adverse effects of hypoxia in TGCs and the developing retinas by specifically activating PAC1 receptor.
Collapse
Affiliation(s)
- Hui-Xian Li
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Jia Feng
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Qian Liu
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Bi-Qian Ou
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Shi-Yin Lu
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Yi Ma
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Yuan J, Wang JM, Li ZW, Zhang CS, Cheng B, Yang SH, Liu BT, Zhu LJ, Cai DJ, Yu SG. Full-length transcriptome analysis reveals the mechanism of acupuncture at PC6 improves cardiac function in myocardial ischemia model. Chin Med 2021; 16:55. [PMID: 34238326 PMCID: PMC8268520 DOI: 10.1186/s13020-021-00465-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022] Open
Abstract
Background The pathological process of myocardial ischemia (MI) is very complicated. Acupuncture at PC6 has been proved to be effective against MI injury, but the mechanism remains unclear. This study investigated the mechanism that underlies the effect of acupuncture on MI through full-length transcriptome. Methods Adult male C57/BL6 mice were randomly divided into control, MI, and PC6 groups. Mice in MI and PC6 group generated MI model by ligating the left anterior descending (LAD) coronary artery. The samples were collected 5 days after acupuncture treatment. Results The results showed that treatment by acupuncture improved cardiac function, decreased myocardial infraction area, and reduced the levels of cTnT and cTnI. Based on full-length transcriptome sequencing, 5083 differential expression genes (DEGs) and 324 DEGs were identified in the MI group and PC6 group, respectively. These genes regulated by acupuncture were mainly enriched in the inflammatory response pathway. Alternative splicing (AS) is a post-transcriptional action that contributes to the diversity of protein. In all samples, 8237 AS events associated with 1994 genes were found. Some differential AS-involved genes were enriched in the pathway related to heart disease. We also identified 602 new genes, 4 of which may the novel targets of acupuncture in MI. Conclusions Our findings suggest that the effect of acupuncture on MI may be based on the multi-level regulation of the transcriptome. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00465-8.
Collapse
Affiliation(s)
- Jing Yuan
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jun-Meng Wang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Zhi-Wei Li
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Bin Cheng
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Su-Hao Yang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Bai-Tong Liu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Li-Juan Zhu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ding-Jun Cai
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| | - Shu-Guang Yu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
10
|
Zheng T, Yang J, Zhang J, Yang C, Fan Z, Li Q, Zhai Y, Liu H, Yang J. Downregulated MicroRNA-327 Attenuates Oxidative Stress-Mediated Myocardial Ischemia Reperfusion Injury Through Regulating the FGF10/Akt/Nrf2 Signaling Pathway. Front Pharmacol 2021; 12:669146. [PMID: 34025428 PMCID: PMC8138475 DOI: 10.3389/fphar.2021.669146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Although miR-327 had a protective effect on cardiomyocytes as described previously, the potential mechanism still needs further exploration. The aim of this study was to investigate the role and mechanism of miR-327 on oxidative stress in myocardial ischemia/reperfusion injury (MI/RI) process. Oxidative stress and cardiomyocytes injury were detected in rat model of MI/RI, hypoxia/reoxygenation (H/R), and tert-butyl hydroperoxide (TBHP) model of H9c2 cells. In vitro, downregulation of miR-327 inhibited both H/R- and TBHP-induced oxidative stress, and suppressed apoptosis. Meanwhile, fibroblast growth factor 10(FGF10) was enhanced by miR-327 knocked down, followed by the activation of p-PI3K and p-Akt, and the translocation of Nrf2. However, miR-327 overexpression performed with opposite effects. Consistent with the results in vitro, downregulation of miR-327 attenuated reactive oxygen species (ROS) generation as well as intrinsic apoptosis, and alleviated I/R injury. In conclusion, inhibition of miR-327 improved antioxidative ability and myocardial cell survival via regulating the FGF10/Akt/Nrf2 pathway.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jun Yang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Chaojun Yang
- Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, Yichang, China
| | - Zhixing Fan
- Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, Yichang, China
| | - Qi Li
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jian Yang
- Department of Cardiology, the People’s Hospital of Three Gorges University, Yichang, China
| |
Collapse
|
11
|
Wen J, Wang D, Cheng L, Wu D, Qiu L, Li M, Xie Y, Wu S, Jiang Y, Bai H, Xu B, Lv H. The optimization conditions of establishing an H9c2 cardiomyocyte hypoxia/reoxygenation injury model based on an AnaeroPack System. Cell Biol Int 2021; 45:757-765. [PMID: 33289183 DOI: 10.1002/cbin.11513] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/28/2020] [Indexed: 11/09/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a major cause of cardiomyocyte apoptosis after vascular recanalization, which was mimicked by a hypoxia/reoxygenation (H/R) injury model of cardiomyocytes in vitro. In this study, we explored an optimal H/R duration procedure using the AnaeroPack System. To study the H/R procedure, cardiomyocytes were exposed to the AnaeroPack System with sugar and serum-free medium, followed by reoxygenation under normal conditions. Cell injury was detected through lactate dehydrogenase (LDH) and cardiac troponin (c-Tn) release, morphological changes, cell apoptosis, and expression of apoptosis-related proteins. The results showed that the damage to H9c2 cells increased with prolonged hypoxia time, as demonstrated by increased apoptosis rate, LDH and c-Tn release, HIF-1α expression, as well as decreased expression of Bcl-2. Furthermore, hypoxia for 10 h and reoxygenation for 6 h exhibited the highest apoptosis rate and damage and cytokine release; in addition, cells were deformed, small, and visibly round. After 12 h of hypoxia, the majority of the cells were dead. Taken together, this study showed that subjecting H9c2 cells to the AnaeroPack System for 10 h and reoxygenation for 6 h can achieve a practicable and repeatable H/R injury model.
Collapse
Affiliation(s)
- Jingyi Wen
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Dan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Lichun Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Di Wu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lulu Qiu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Miao Li
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu Xie
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Si Wu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hansheng Bai
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bing Xu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Huiyi Lv
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
12
|
Hanna A, Humeres C, Frangogiannis NG. The role of Smad signaling cascades in cardiac fibrosis. Cell Signal 2020; 77:109826. [PMID: 33160018 DOI: 10.1016/j.cellsig.2020.109826] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022]
Abstract
Most myocardial pathologic conditions are associated with cardiac fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix (ECM) proteins. Although replacement fibrosis plays a reparative role after myocardial infarction, excessive, unrestrained or dysregulated myocardial ECM deposition is associated with ventricular dysfunction, dysrhythmias and adverse prognosis in patients with heart failure. The members of the Transforming Growth Factor (TGF)-β superfamily are critical regulators of cardiac repair, remodeling and fibrosis. TGF-βs are released and activated in injured tissues, bind to their receptors and transduce signals in part through activation of cascades involving a family of intracellular effectors the receptor-activated Smads (R-Smads). This review manuscript summarizes our knowledge on the role of Smad signaling cascades in cardiac fibrosis. Smad3, the best-characterized member of the family plays a critical role in activation of a myofibroblast phenotype, stimulation of ECM synthesis, integrin expression and secretion of proteases and anti-proteases. In vivo, fibroblast Smad3 signaling is critically involved in scar organization and exerts matrix-preserving actions. Although Smad2 also regulates fibroblast function in vitro, its in vivo role in rodent models of cardiac fibrosis seems more limited. Very limited information is available on the potential involvement of the Smad1/5/8 cascade in cardiac fibrosis. Dissection of the cellular actions of Smads in cardiac fibrosis, and identification of patient subsets with overactive or dysregulated myocardial Smad-dependent fibrogenic responses are critical for design of successful therapeutic strategies in patients with fibrosis-associated heart failure.
Collapse
Affiliation(s)
- Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Zhong B, Ma S, Wang DH. Knockout of TRPV1 Exacerbates Ischemia-reperfusion-induced Renal Inflammation and Injury in Obese Mice. In Vivo 2020; 34:2259-2268. [PMID: 32871748 DOI: 10.21873/invivo.12036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIM Transient receptor potential vanilloid type 1 (TRPV1) has anti-inflammatory properties. The present study aimed to investigate the role of TRPV1 in renal inflammatory responses and tissue injury following renal ischemia-reperfusion (I/R) in diet-induced obese mice. MATERIALS AND METHODS TRPV1 knockout and wild type mice were fed a normal or western diet (WD) for 23 weeks and were then subjected to renal I/R injury. RESULTS TRPV1 knockout mice showed enhanced WD-induced renal macrophage infiltration and collagen deposition. Knocking out TRPV1 exacerbated renal I/R-induced increase of malondialdehyde, interleukin-6, monocyte chemoattractant protein-1, and NF-ĸB in obese mice. Similar results were observed in the expression of phosphorylated Smad1 and Smad2/3. Blockade of calcitonin gene-related peptide (CGRP) receptors with CGRP8-37 worsened the I/R-induced renal inflammation and injury. CONCLUSION Our data indicate that preserving TRPV1 expression and function may prevent renal I/R injury in obesity likely through alleviating inflammatory responses.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, U.S.A
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, U.S.A
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, U.S.A. .,Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A.,Cell & Molecular Biology Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
14
|
miR-378a-3p inhibits ischemia/reperfusion-induced apoptosis in H9C2 cardiomyocytes by targeting TRIM55 via the DUSP1-JNK1/2 signaling pathway. Aging (Albany NY) 2020; 12:8939-8952. [PMID: 32463795 PMCID: PMC7288954 DOI: 10.18632/aging.103106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are involved in many pathological and biological processes, such as ischemia/reperfusion (I/R) injury by modulating gene expression. Increasing evidence indicates that miR-378a-3p might provide a potential cardioprotective effect against ischemic heart disease. Cell apoptosis is a crucial mechanism in I/R injury. As such, this study evaluated the protective effects and underlying mechanisms of action of miR-378a-3p on H9C2 cardiomyocyte apoptosis following I/R injury. We found that I/R-induced H9C2 cardiomyocytes exhibited a decrease in miR-378a-3p expression, while treatment with a miR-378a-3p mimic suppressed cell apoptosis, JNK1/2 activation, cleavage of PARP and caspase-3, and Bax/Bcl-2 ratio but increased DUSP1 expression, which subsequently inhibited JNK1/2 phosphorylation. TRIM55 was shown to be a target of miR-378a-3p and its downregulation inhibited the miR-378a-3p inhibitor-induced increase in cell apoptosis and JNK1/2 activation. TRIM55 inhibited DUSP1 protein expression through ubiquitination of DUSP1. Moreover, DUSP1 overexpression inhibited the TRIM55 overexpression-induced increase in cell apoptosis and JNK1/2 activation. The protective effect of miR-378a-3p was subsequently confirmed in a rat myocardial I/R model, as evidenced by a decrease in cardiomyocyte apoptosis of cardiomyocytes, TRIM55 expression, and JNK1/2 activation. Taken together, these results suggest that miR-378a-3p may protect against I/R-induced cardiomyocyte apoptosis via TRIM55/DUSP1/JNK signaling.
Collapse
|
15
|
Li Q, Yang J, Zhang J, Liu XW, Yang CJ, Fan ZX, Wang HB, Yang Y, Zheng T, Yang J. Inhibition of microRNA-327 ameliorates ischemia/reperfusion injury-induced cardiomyocytes apoptosis through targeting apoptosis repressor with caspase recruitment domain. J Cell Physiol 2020; 235:3753-3767. [PMID: 31587299 DOI: 10.1002/jcp.29270] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Abstract
Apoptosis is the major cause of cardiomyocyte death in myocardial ischemia/reperfusion injury (MI/RI). Increasing evidence suggests that microRNAs (miRNAs) can contribute to the regulation of cardiomyocytes apoptosis by posttranscriptional modulation of gene expression networks. However, the effects of miR-327 in regulating MI/RI-induced cardiomyocytes apoptosis have not been extensively investigated. This study was performed to test whether miR-327 participate in cardiomyocytes apoptosis both in vitro and in vivo, and reveal the potential molecular mechanism of miR-327 regulated MI/RI through targeting apoptosis repressor with caspase recruitment domain (ARC). Sprague-Dawley (SD) rats were subjected to MI/RI by left anterior descending coronary artery occlusion for 30 min and reperfusion for 3 hr. H9c2 cells were exposed to hypoxia for 4 hr and reoxygenation for 12 hr to mimic I/R injury. miRNA-327 recombinant adenovirus vectors were transfected into H9c2 cells for 48 hr and rats for 72 hr before H/R and MI/RI treatment, respectively. The apoptosis rate, downstream molecules of apoptotic pathway, and the target reaction between miRNA-327 and ARC were evaluated. Our results showed that miR-327 was upregulated and ARC was downregulated in the myocardial tissues of MI/RI rats and in H9c2 cells with H/R treatment. Inhibition of miR-327 decreased the expression levels of proapoptotic proteins Fas, FasL, caspase-8, Bax, cleaved caspase-9, cleaved caspase-3, and the release of cytochrome-C, as well as increasing the expression levels of antiapoptotic protein Bcl-2 via negative regulation of ARC both in vivo or vitro. In contrast, overexpression miR-327 showed the reverse effect. Moreover, the results of luciferase reporter assay indicated miR-327 targets ARC directly at the posttranscriptional level. Taken together, inhibition of miR-327 could attenuate cardiomyocyte apoptosis and alleviate I/R-induced myocardial injury via targeting ARC, which offers a new therapeutic strategy for MI/RI.
Collapse
Affiliation(s)
- Qi Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Xiao-Wen Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Chao-Jun Yang
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Hui-Bo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Tao Zheng
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
16
|
Hanna A, Frangogiannis NG. The Role of the TGF-β Superfamily in Myocardial Infarction. Front Cardiovasc Med 2019; 6:140. [PMID: 31620450 PMCID: PMC6760019 DOI: 10.3389/fcvm.2019.00140] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
The members of the transforming growth factor β (TGF-β) superfamily are essential regulators of cell differentiation, phenotype and function, and have been implicated in the pathogenesis of many diseases. Myocardial infarction is associated with induction of several members of the superfamily, including TGF-β1, TGF-β2, TGF-β3, bone morphogenetic protein (BMP)-2, BMP-4, BMP-10, growth differentiation factor (GDF)-8, GDF-11 and activin A. This manuscript reviews our current knowledge on the patterns and mechanisms of regulation and activation of TGF-β superfamily members in the infarcted heart, and discusses their cellular actions and downstream signaling mechanisms. In the infarcted heart, TGF-β isoforms modulate cardiomyocyte survival and hypertrophic responses, critically regulate immune cell function, activate fibroblasts, and stimulate a matrix-preserving program. BMP subfamily members have been suggested to exert both pro- and anti-inflammatory actions and may regulate fibrosis. Members of the GDF subfamily may also modulate survival and hypertrophy of cardiomyocytes and regulate inflammation. Important actions of TGF-β superfamily members may be mediated through activation of Smad-dependent or non-Smad pathways. The critical role of TGF-β signaling cascades in cardiac repair, remodeling, fibrosis, and regeneration may suggest attractive therapeutic targets for myocardial infarction patients. However, the pleiotropic, cell-specific, and context-dependent actions of TGF-β superfamily members pose major challenges in therapeutic translation.
Collapse
Affiliation(s)
- Anis Hanna
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
17
|
Yang W, Sun P. Downregulation of microRNA-129-5p increases the risk of intervertebral disc degeneration by promoting the apoptosis of nucleus pulposus cells via targeting BMP2. J Cell Biochem 2019; 120:19684-19690. [PMID: 31436339 DOI: 10.1002/jcb.29274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/18/2019] [Indexed: 11/05/2022]
Abstract
miR-129-5p is implicated in many diseases, such as laryngeal cancer and breast cancer. In this study, we studied the mechanism underlying the role of BMP2 in intervertebral disc degeneration (IDD). We used a luciferase assay system to determine the relationship between BMP2 and miR-129-5 expression. In addition, Western blot and real-time PCR were used to confirm the regulatory relationship between miR-129-5p and its targets, while flow cytometry was used to evaluate the effect of miR-129-5p on the apoptosis of neural progenitor cells (NPCs). BMP2 was confirmed as a direct target of miR-129-5p. Furthermore, the expression of miR-129 was downregulated along with upregulated BMP2 expression in IDD patients. Meanwhile, BMP2 was validated as the target of miR-129-5p in cells transfected with miR-129-5p and BMP2 siRNA. Also, compared with NPCs transfected with blank/scramble controls or miR-129-5p inhibitors, the NPCs treated with miR-129-5p mimics or BMP2 siRNA exhibited evidently elevated viability and inhibited apoptosis. The data demonstrated that miR-129-5p was poorly expressed in IDD patients, and the dysregulation of miR-129-5p might contribute to the development of IDD by targeting BMP2 expression.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ping Sun
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
18
|
Baptista R, Marques C, Catarino S, Enguita FJ, Costa MC, Matafome P, Zuzarte M, Castro G, Reis A, Monteiro P, Pêgo M, Pereira P, Girão H. MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1. Cardiovasc Res 2019; 114:53-64. [PMID: 29016730 DOI: 10.1093/cvr/cvx187] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 09/11/2017] [Indexed: 01/26/2023] Open
Abstract
Aims MicroRNAs (miRNAs) have been implicated in the pathogenesis of pulmonary hypertension (PH), a multifactorial and progressive condition associated with an increased afterload of the right ventricle leading to heart failure and death. The main aim of this study was to correlate the levels of miR-424(322) with the severity and prognosis of PH and with right ventricle hypertrophy progression. Additionally, we intended to evaluate the mechanisms and signalling pathways whereby miR-424(322) secreted by pulmonary arterial endothelial cells (PAECs) impacts cardiomyocytes. Methods and results Using quantitative real-time PCR, we showed that the levels of circulating miR-424(322) are higher in PH patients when compared with healthy subjects. Moreover, we found that miR-424(322) levels correlated with more severe symptoms and haemodynamics. In the subgroup of Eisenmenger syndrome patients, miR-424(322) displayed independent prognostic value. Furthermore, we demonstrated that miR-424(322) targets SMURF1, through which it sustains bone morphogenetic protein receptor 2 signalling. Moreover, we showed that hypoxia induces the secretion of miR-424(322) by PAECs, which after being taken up by cardiomyocytes leads to down-regulation of SMURF1. In the monocrotaline rat model of PH, we found an association between circulating miR-424(322) levels and the stage of right ventricle hypertrophy, as well as an inverse correlation between miR-424(322) and SMURF1 levels in the hypertrophied right ventricle. Conclusions This study shows that miR-424(322) has diagnostic and prognostic value in PH patients, correlating with markers of disease severity. Additionally, miR-424(322) can target proteins with a direct effect on heart function, suggesting that this miRNA can act as a messenger linking pulmonary vascular disease and right ventricle hypertrophy.
Collapse
Affiliation(s)
- Rui Baptista
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Carla Marques
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Steve Catarino
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | - Marina C Costa
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | - Paulo Matafome
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal
| | - Mónica Zuzarte
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Graça Castro
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal
| | - Abílio Reis
- Unidade de Doença Vascular Pulmonar, Departamento de Medicina, Centro Hospitalar do Porto, EPE, 4099-001 Porto, Portugal
| | - Pedro Monteiro
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Mariano Pêgo
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal
| | - Paulo Pereira
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,CEDOC, NOVA Medical School, Nova University of Lisbon, 1169-056 Lisboa, Portugal
| | - Henrique Girão
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
19
|
Wang YL, Zhang G, Wang HJ, Tan YZ, Wang XY. Preinduction with bone morphogenetic protein-2 enhances cardiomyogenic differentiation of c-kit + mesenchymal stem cells and repair of infarcted myocardium. Int J Cardiol 2019; 265:173-180. [PMID: 29885685 DOI: 10.1016/j.ijcard.2018.01.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Preclinical and clinical trails show that c-kit+ cardiac stem cells can differentiate towards cardiovascular cells and improve cardiac function after myocardial infarction (MI). However, survival and differentiation of the engrafted stem cells within ischemic and inflammatory microenvironment are poor. METHODS c-Kit+ cells were isolated from mesenchymal stem cells (MSCs) of rat bone marrow. Reliability of preinduction with bone morphogenetic protein-2 (BMP-2) in promotion of survival and differentiation of c-kit+ MSCs was assessed in vitro and after transplantation. RESULTS c-Kit+ MSCs have a potential to differentiate towards cardiomyocytes. BMP-2 promotes proliferation, migration and paracrine of the cells, and protects the cells to survive in the hypoxic condition. After induction with 10 ng/mL BMP-2 for 24 h, the cells can differentiate into cardiomyocytes at four weeks. The electrophysiological characteristics of the differentiated cells are same as adult ventricular cardiomyocytes. In rat MI models, cardiac function was improved, the size of scar tissue was reduced, and regeneration of the myocardium and microvessels was enhanced significantly at four weeks after transplantation of BMP-2-preinduced cells. The survived cells and cardiomyocytes differentiated from the engrafted cells were increased greatly. CONCLUSION The results suggest that transient treatment with BMP-2 can induce c-kit+ MSCs to differentiate into functional cardiomyocytes. Preinduction with BMP-2 enhances survival and differentiation of the cells. BMP-2-primed cells promote repair of the infarcted myocardium and improvement of cardiac function. Transplantation of BMP-2-preinduced c-kit+ MSCs is a feasible strategy for MI therapy.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Guitao Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China; Department of Anatomy, Histology and Embryology, Capital Medical University, Beijing, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China.
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China.
| | - Xin-Yan Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Shan Y, Yang F, Tang Z, Bi C, Sun S, Zhang Y, Liu H. Dexmedetomidine Ameliorates the Neurotoxicity of Sevoflurane on the Immature Brain Through the BMP/SMAD Signaling Pathway. Front Neurosci 2018; 12:964. [PMID: 30618586 PMCID: PMC6304752 DOI: 10.3389/fnins.2018.00964] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have demonstrated that general anesthetics might damage the nervous system, thus, the effect of general anesthetics on the developing brain has attracted much attention. Dexmedetomidine (Dex) exhibits a certain neuroprotective effect, but the mechanism is obscure. In our study, pregnant rats on gestational day 20 (G20) were exposed to 3% sevoflurane for 2 h or 4 h, and the neuronal apoptosis in hippocampal CA1 region of the offspring rats was detected by quantification of TUNEL positive cells and cleaved-caspase3 (cl-caspase3). Different doses of Dex were intraperitoneally injected before sevoflurane anesthesia; then, the expression of apoptotic-related proteins including BCL-2, BAX and cl-caspase3 as well as amyloid precursor protein (APP, a marker of axonal injury), p-CRMP-2 and CRMP-2 were measured at postnatal days 0, 1and 3 (P0, P1, and P3, respectively). As an antagonist of the bone morphgenetic proteins (BMP) receptor, DMH1 was co-administered with sevoflurane plus Dex to investigate whether BMP/SMAD is associated with the neuroprotective effects of Dex. The results showed that prenatal sevoflurane anesthesia for 4 h activated apoptosis transiently, as manifested by the caspase3 activity peaked on P1 and disappeared on P3. In addition, the expressions of APP and p-CRMP-2/CRMP-2 in postnatal rat hippocampus were significantly increased, which revealed that prenatal sevoflurane anesthesia caused axonal injury of offspring. The long-term learning and memory ability of offspring rats was also impaired after prenatal sevoflurane anesthesia. These damaging effects of sevoflurane could be mitigated by Dex and DMH1 reversed the neuroprotective effect of Dex. Our results indicated that prenatal exposure to 3% sevoflurane for 4 h increased apoptosis and axonal injury, even caused long-term learning and memory dysfunction in the offspring rats. Dex dose-dependently reduced sevoflurane- anesthesia-induced the neurotoxicity by activating the BMP/SMAD signaling pathway.
Collapse
Affiliation(s)
- Yangyang Shan
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhiyin Tang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Congjie Bi
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shiwei Sun
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yongfang Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Ramachandran R, Saraswathi M. Postconditioning with metformin attenuates apoptotic events in cardiomyoblasts associated with ischemic reperfusion injury. Cardiovasc Ther 2017. [DOI: 10.1111/1755-5922.12279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Rajesh Ramachandran
- Department of Biochemistry; Kerala University; Thiruvananthapuram Kerala India
| | - Mini Saraswathi
- Department of Biochemistry; Kerala University; Thiruvananthapuram Kerala India
| |
Collapse
|
22
|
Gong R, Chen M, Zhang C, Chen M, Li H. A comparison of gene expression profiles in patients with coronary artery disease, type 2 diabetes, and their coexisting conditions. Diagn Pathol 2017; 12:44. [PMID: 28595632 PMCID: PMC5465468 DOI: 10.1186/s13000-017-0630-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
Abstract
Background To support a hypothesis that there is an intrinsic interplay between coronary artery disease (CAD) and type 2 diabetes (T2D), we used RNA-seq to identify unique gene expression signatures of CAD, T2D, and coexisting conditions. Methods After transcriptome sequencing, differential expression analysis was performed between each disordered state and normal control group. By comparing gene expression profiles of CAD, T2D, and coexisting conditions, common and specific patterns of each disordered state were displayed. To verify the specific gene expression patterns of CAD or T2D, the gene expression data of GSE23561 was extracted. Results A strong overlap of 191 genes across CAD, T2D and coexisting conditions, were mainly involved in a viral infectious cycle, anti-apoptosis, endocrine pancreas development, innate immune response, and blood coagulation. In T2D-specific PPI networks involving 64 genes, TCF7L2 (Degree = 169) was identified as a key gene in T2D development, while in CAD-specific PPI networks involving 64 genes, HIF1A (Degree = 124), SMAD1 (Degree = 112) and SKIL (Degree = 94) were identified as key genes in the CAD development. Interestingly, with the provided expression data from GSE23561, the three genes were all up-regulated in CAD, and SMAD1 and SKIL were specifically differentially expressed in CAD, while HIF1A was differentially expressed in both CAD and T2D, but with opposite trends. Conclusions This study provides some evidences in transcript level to uncover the association of T2D, CAD and coexisting conditions, and may provide novel drug targets and biomarkers for these diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13000-017-0630-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Gong
- Department of gerontology, The Third Municipal Hospital of Shijiazhuang City, Shijiazhuang, Hebei province, 050011, China
| | - Menghui Chen
- Department of cardiothoracic surgery, The Third Municipal Hospital of Shijiazhuang City, Shijiazhuang, Hebei province, 050011, China
| | - Cuizhao Zhang
- Medical laboratory technology, The Third Municipal Hospital of Shijiazhuang City, Shijiazhuang, Hebei province, 050011, China
| | - Manli Chen
- Department of gerontology, The Third Municipal Hospital of Shijiazhuang City, Shijiazhuang, Hebei province, 050011, China
| | - Haibin Li
- Department of Cardiology, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei province, 050051, China.
| |
Collapse
|
23
|
Moulton JD. Using Morpholinos to Control Gene Expression. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 68:4.30.1-4.30.29. [PMID: 28252184 PMCID: PMC7162182 DOI: 10.1002/cpnc.21] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules used to block complementary sequences of RNA, preventing processing, read-through, or protein binding at those sites. Morpholinos are typically used to block translation of mRNA and to block splicing of pre-mRNA, though they can block other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA, but must be delivered into the nuclear/cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by any proteins and do not undergo protein-mediated catalysis-nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos. © 2017 by John Wiley & Sons, Inc.
Collapse
|
24
|
Abstract
The adult mammalian heart has negligible regenerative capacity. Following myocardial infarction, sudden necrosis of cardiomyocytes triggers an intense inflammatory reaction that clears the wound from dead cells and matrix debris, while activating a reparative program. A growing body of evidence suggests that members of the transforming growth factor (TGF)-β family critically regulate the inflammatory and reparative response following infarction. Although all three TGF-β isoforms (TGF-β1, -β2 and -β3) are markedly upregulated in the infarcted myocardium, information on isoform-specific actions is limited. Experimental studies have suggested that TGF-β exerts a wide range of actions on cardiomyocytes, fibroblasts, immune cells, and vascular cells. The findings are often conflicting, reflecting the context-dependence of TGF-β-mediated effects; conclusions are often based exclusively on in vitro studies and on associative evidence. TGF-β has been reported to modulate cardiomyocyte survival responses, promote monocyte recruitment, inhibit macrophage pro-inflammatory gene expression, suppress adhesion molecule synthesis by endothelial cells, promote myofibroblast conversion and extracellular matrix synthesis, and mediate both angiogenic and angiostatic effects. This review manuscript discusses our understanding of the cell biological effects of TGF-β in myocardial infarction. We discuss the relative significance of downstream TGF-β-mediated Smad-dependent and -independent pathways, and the risks and challenges of therapeutic TGF-β targeting. Considering the high significance of TGF-β-mediated actions in vivo, study of cell-specific effects and dissection of downstream signaling pathways are needed in order to design safe and effective therapeutic approaches.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
25
|
Duan Y, Zhu W, Liu M, Ashraf M, Xu M. The expression of Smad signaling pathway in myocardium and potential therapeutic effects. Histol Histopathol 2016; 32:651-659. [PMID: 27844469 DOI: 10.14670/hh-11-845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease. The expression of Smad proteins in the ischemic myocardium changes significantly following myocardial infarction, suggesting a close relationship between Smad proteins and heart remodeling. Moreover, it is known that the expression of Smads is regulated by transforming growth factor-β (TGF-β) and bone morphogenetic proteins (BMP). Based on these findings, regulating the expression of Smad proteins by targeting TGF-β and BMP in the ischemic myocardium may be considered to be a possible therapeutic strategy for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Yuping Duan
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Personalized risk assessment of heart failure patients: More perspectives from transforming growth factor super-family members. Clin Chim Acta 2015; 443:94-9. [DOI: 10.1016/j.cca.2014.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 01/08/2023]
|
27
|
Wu X, Sagave J, Rutkovskiy A, Haugen F, Baysa A, Nygård S, Czibik G, Dahl CP, Gullestad L, Vaage J, Valen G. Expression of bone morphogenetic protein 4 and its receptors in the remodeling heart. Life Sci 2014; 97:145-54. [PMID: 24398041 DOI: 10.1016/j.lfs.2013.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/20/2022]
Abstract
AIMS Heart failure is associated with activation of fetal gene programs. Bone morphogenetic proteins (BMPs) regulate embryonic development through interaction with BMP receptors (BMPRs) on the cell surface. We investigated if the expression of BMP4 and its receptors BMPR1a and BMPR2 were activated in post-infarction remodeling and heart failure. MAIN METHODS Left ventricular biopsies were taken from explanted hearts of patients with end-stage heart failure due to dilated cardiomyopathy (CMP; n=15) or ischemic heart disease (CAD; n=9), and compared with homograft control preparations from organ donors deceased due to non-cardiac causes (n=7). Other samples were taken from patients undergoing coronary artery bypass grafting (CABG; n=11). Mice were subjected to induced infarction by permanent coronary artery ligation or sham operation, and hearts were sampled serially thereafter (n=7 at each time point). KEY FINDINGS Human and mouse hearts expressed BMP4 and both receptor subtypes. CABG and CMP patients had increased expression of mRNA encoding for BMP4, but unchanged protein. Mouse hearts had increased BMP4 precursor protein 24h after infarction. BMPR1a protein decreased in CAD patients and initially in postinfarcted mouse hearts, but increased again in the latter after two weeks. Human recombinant BMP4 promoted survival after H2O2 injury in HL-1 cells, and also protected adult mouse cardiomyocytes against hypoxia-reoxygenation injury. SIGNIFICANCE Adult hearts express BMP4, the mRNA increasingly so in patients with coronary artery disease with good cardiac function. BMPRs are downregulated in cardiac remodeling and failure. Recombinant BMP4 has protective effects on cultured cardiomyocytes.
Collapse
Affiliation(s)
- Xueping Wu
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Julia Sagave
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway; Department of Emergency and Intensive Care at the Institute of Clinical Medicine, Oslo University Hospital, Ullevål, Norway.
| | - Fred Haugen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| | - Anton Baysa
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| | - Ståle Nygård
- Center for Heart Failure Research, University of Oslo, Norway; Bioinformatics Core Facility at the Institute for Medical Informatics, Oslo University Hospital, Ullevål, Norway
| | - Gabor Czibik
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| | - Christen Peder Dahl
- Center for Heart Failure Research, University of Oslo, Norway; Department of Cardiology, Rikshospitalet University Hospital, Oslo, Norway
| | - Lars Gullestad
- Center for Heart Failure Research, University of Oslo, Norway; Department of Cardiology, Rikshospitalet University Hospital, Oslo, Norway
| | - Jarle Vaage
- Department of Emergency and Intensive Care at the Institute of Clinical Medicine, Oslo University Hospital, Ullevål, Norway
| | - Guro Valen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| |
Collapse
|
28
|
Treatment with bone morphogenetic protein 2 limits infarct size after myocardial infarction in mice. Shock 2013; 39:353-60. [PMID: 23376954 DOI: 10.1097/shk.0b013e318289728a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Various strategies have been devised to reduce the clinical consequences of myocardial infarction, including acute medical care, revascularization, stem cell transplantations, and more recently, prevention of cardiomyocyte cell death. Activation of embryonic signaling pathways is a particularly interesting option to complement these strategies and to improve the functional performance and survival rate of cardiomyocytes. Here, we have concentrated on bone morphogenetic protein 2 (BMP-2), which induces ectopic formation of beating cardiomyocytes during development in the mesoderm and protects neonatal cardiomyocytes from ischemia-reperfusion injury. In a mouse model of acute myocardial infarction, an i.v. injection of BMP-2 reduced infarct size in mice when given after left anterior descending artery ligation. Mice treated with BMP-2 are characterized by a reduced rate of apoptotic cardiomyocytes both in the border zone of the infarcts and in the remote myocardium. In vitro, BMP-2 increases the frequency of spontaneously beating neonatal cardiomyocytes and the contractile performance under electrical pacing at 2 Hz, preserves cellular adenosine triphosphate stores, and decreases the rate of apoptosis despite the increased workload. In addition, BMP-2 specifically induced phosphorylation of Smad1/5/8 proteins and protected adult cardiomyocytes from long-lasting hypoxia-induced cellular damage and oxidative stress without activation of the cardiodepressant transforming growth factor-β pathway. Our data suggest that BMP-2 treatment may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by improving the contractility of cardiomyocytes and preventing cardiomyocyte cell death.
Collapse
|
29
|
Chakraborty S, Sengupta A, Yutzey KE. Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. J Mol Cell Cardiol 2013; 62:203-13. [PMID: 23751911 DOI: 10.1016/j.yjmcc.2013.05.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/17/2013] [Accepted: 05/30/2013] [Indexed: 11/25/2022]
Abstract
While differentiated cardiomyocytes proliferate prior to birth, adult cardiomyocytes in mammals exhibit relatively little proliferative activity. The T-box transcription factor Tbx20 is necessary and sufficient to promote prenatal cardiomyocyte proliferation, and Tbx20 also is required for adult cardiac homeostasis. The ability of Tbx20 to promote post-natal and adult cardiomyocyte proliferation was examined in mice with cardiomyocyte-specific Tbx20 gain-of-function beginning in the fetal period. In adult hearts, increased Tbx20 expression promotes cardiomyocyte proliferation and results in increased numbers of small, cycling, mononucleated cardiomyocytes, marked by persistent expression of fetal contractile protein genes. In adult cardiomyocytes in vivo and in neonatal rat cardiomyocytes in culture, Tbx20 promotes the activation of BMP2/pSmad1/5/8 and PI3K/AKT/GSK3β/β-catenin signaling pathways concomitant with increased cell proliferation. Inhibition of PI3K/AKT/GSK3β/β-catenin signaling reduces, but does not eliminate, Tbx20-mediated increases in cell proliferation, providing evidence for parallel regulatory pathways downstream of BMP/Smad1/5/8 signaling in promoting cardiomyocyte proliferation after birth. Thus, Tbx20 overexpression beginning in the fetal period activates multiple cardiac proliferative pathways after birth and maintains adult cardiomyocytes in an immature state in vivo.
Collapse
|
30
|
Cheng Z, DiMichele LA, Hakim ZS, Rojas M, Mack CP, Taylor JM. Targeted focal adhesion kinase activation in cardiomyocytes protects the heart from ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2012; 32:924-33. [PMID: 22383703 DOI: 10.1161/atvbaha.112.245134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We previously reported that cardiac-restricted deletion of focal adhesion kinase (FAK) exacerbated myocyte death following ischemia/reperfusion (I/R). Here, we interrogated whether targeted elevation of myocardial FAK activity could protect the heart from I/R injury. METHODS AND RESULTS Transgenic mice were generated with myocyte-specific expression of a FAK variant (termed SuperFAK) that conferred elevated allosteric activation. FAK activity in unstressed transgenic hearts was modestly elevated, but this had no discernable effect on anabolic heart growth or cardiac function. Importantly, SuperFAK hearts exhibited a dramatic increase in FAK activity and a reduction in myocyte apoptosis and infarct size 24 to 72 hours following I/R. Moreover, serial echocardiography revealed that the transgenic mice were protected from cardiac decompensation for up to 8 weeks following surgery. Mechanistic studies revealed that elevated FAK activity protected cardiomyocytes from I/R-induced apoptosis by enhancing nuclear factor-κB (NF-κB)-dependent survival signaling during the early period of reperfusion (30 and 60 minutes). Moreover, adenoviral-mediated expression of SuperFAK in cultured cardiomyocytes attenuated H(2)O(2) or hypoxia/reoxygenation-induced apoptosis, whereas blockade of the NF-κB pathway using a pharmacological inhibitor or small interfering RNAs completely abolished the beneficial effect of SuperFAK. CONCLUSIONS Enhancing cardiac FAK activity attenuates I/R-induced myocyte apoptosis through activation of the prosurvival NF-κB pathway and may represent a novel therapeutic strategy for ischemic heart diseases.
Collapse
Affiliation(s)
- Zhaokang Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wang L, Liu YT, Hao R, Chen L, Chang Z, Wang HR, Wang ZX, Wu JW. Molecular mechanism of the negative regulation of Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP). J Biol Chem 2011; 286:15883-94. [PMID: 21454478 PMCID: PMC3091198 DOI: 10.1074/jbc.m110.201814] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) superfamily of ligands signals along two intracellular pathways, Smad2/3-mediated TGF-β/activin pathway and Smad1/5/8-mediated bone morphogenetic protein pathway. The C terminus of Hsc70-interacting protein (CHIP) serves as an E3 ubiquitin ligase to mediate the degradation of Smad proteins and many other signaling proteins. However, the molecular mechanism for CHIP-mediated down-regulation of TGF-β signaling remains unclear. Here we show that the extreme C-terminal sequence of Smad1 plays an indispensable role in its direct association with the tetratricopeptide repeat (TPR) domain of CHIP. Interestingly, Smad1 undergoes CHIP-mediated polyubiquitination in the absence of molecular chaperones, and phosphorylation of the C-terminal SXS motif of Smad1 enhances the interaction and ubiquitination. We also found that CHIP preferentially binds to Smad1/5 and specifically disrupts the core signaling complex of Smad1/5 and Smad4. We determined the crystal structures of CHIP-TPR in complex with the phosphorylated/pseudophosphorylated Smad1 peptides and with an Hsp70/Hsc70 C-terminal peptide. Structural analyses and subsequent biochemical studies revealed that the distinct CHIP binding affinities of Smad1/5 or Smad2/3 result from the nonconservative hydrophobic residues at R-Smad C termini. Unexpectedly, the C-terminal peptides from Smad1 and Hsp70/Hsc70 bind in the same groove of CHIP-TPR, and heat shock proteins compete with Smad1/5 for CHIP interaction and concomitantly suppress, rather than facilitate, CHIP-mediated Smad ubiquitination. Thus, we conclude that CHIP inhibits the signaling activities of Smad1/5 by recruiting Smad1/5 from the functional R-/Co-Smad complex and further promoting the ubiquitination/degradation of Smad1/5 in a chaperone-independent manner.
Collapse
Affiliation(s)
- Le Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, and
| | - Yi-Tong Liu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, and
| | - Rui Hao
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, and
| | - Lei Chen
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, and
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China and
| | - Hong-Rui Wang
- MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhi-Xin Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, and
| | - Jia-Wei Wu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, and , To whom correspondence should be addressed. Tel.: 86-10-62789387; Fax: 86-10-62792826; E-mail:
| |
Collapse
|
32
|
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:238-59. [PMID: 20969895 DOI: 10.1016/j.bbamcr.2010.10.010] [Citation(s) in RCA: 452] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.
Collapse
Affiliation(s)
- Liam Portt
- Department of Chemistry and Chemical Engineering, Royal Military College, Ontario, Canada
| | | | | | | | | |
Collapse
|
33
|
Yuan SM, Jing H. Cardiac pathologies in relation to Smad-dependent pathways. Interact Cardiovasc Thorac Surg 2010; 11:455-60. [DOI: 10.1510/icvts.2010.234773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Heger J, Schiegnitz E, von Waldthausen D, Anwar MM, Piper HM, Euler G. Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes. J Cell Physiol 2010; 224:120-6. [PMID: 20232299 DOI: 10.1002/jcp.22102] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growth differentiation factor 15 (GDF15) is induced during heart failure development, and may influence different processes in cardiac remodeling. While its anti-apoptotic action under conditions of ischemia-reperfusion have been shown, it remained unclear if this is a broadly protective effect applicable to other apoptotic stimuli. Furthermore, effects on cardiac hypertrophy remained obscure. Therefore, we investigated the effects of GDF15 on induction of hypertrophy and apoptosis in ventricular cardiomyocytes. GDF15 (3 ng/ml) enhanced hypertrophic growth of cardiomyocytes as determined by an increase in cell size by 27 +/- 5% and rate of protein synthesis by 47 +/- 15%. In addition, a time and dose-dependent increase in SMAD-binding affinity was found, as well as enhanced phosphorylation of R-SMAD1. Inhibition of SMADs by transformation of cardiomyocytes with SMAD-decoy oligonucleotides abolished the hypertrophic growth effect. Specific inhibitors of PI3K (10 microM LY290042 or 10 nM wortmannin) or ERK (10 microM PD98059) also blocked GDF15-induced hypertrophy and SMAD activation. Apoptosis induction by three different agents, 100 nM angiotensin II, 1 ng/ml TGFbeta(1), or the NO-donor SNAP (100 microM) was blocked by addition of GDF15 (3 ng/ml). Scavenging of SMADs by transformation of cardiomyocytes with SMAD-decoy oligonucleotides abolished the anti-apoptotic effect of GDF15. In conclusion, GDF15 protects ventricular cardiomyocytes against different apoptotic stimuli and enhances hypertrophic growth. Hypertrophic signaling is thereby mediated via the kinases PI3K and ERK and the transcription factor R-SMAD1. Thus, GDF15 may influence cardiac remodeling via two different mechanisms, apoptosis protection and induction of hypertrophy.
Collapse
Affiliation(s)
- J Heger
- Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Oshima Y, Ouchi N, Shimano M, Pimentel DR, Papanicolaou KN, Panse KD, Tsuchida K, Lara-Pezzi E, Lee SJ, Walsh K. Activin A and follistatin-like 3 determine the susceptibility of heart to ischemic injury. Circulation 2009; 120:1606-15. [PMID: 19805648 DOI: 10.1161/circulationaha.109.872200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Transforming growth factor-beta family cytokines have diverse actions in the maintenance of cardiac homeostasis. Activin A is a member of this family whose regulation and function in heart are not well understood at a molecular level. Follistatin-like 3 (Fstl3) is an extracellular regulator of activin A protein, and its function in the heart is also unknown. METHODS AND RESULTS We analyzed the expression of various transforming growth factor-beta superfamily cytokines and their binding partners in mouse heart. Activin betaA and Fstl3 were upregulated in models of myocardial injury. Overexpression of activin A with an adenoviral vector (Ad-actbetaA) or treatment with recombinant activin A protein protected cultured myocytes from hypoxia/reoxygenation-induced apoptosis. Systemic overexpression of activin A in mice by intravenous injection of Ad-actbetaA protected hearts from ischemia/reperfusion injury. Activin A induced the expression of Bcl-2, and ablation of Bcl-2 by small interfering RNA abrogated its protective action in myocytes. The protective effect of activin A on cultured myocytes was abolished by treatment with Fstl3 or by a pharmacological activin receptor-like kinase inhibitor. Cardiac-specific Fstl3 knockout mice showed significantly smaller infarcts after ischemia/reperfusion injury that was accompanied by reduced apoptosis. CONCLUSIONS Activin A and Fstl3 are induced in heart by myocardial stress. Activin A protects myocytes from death, and this activity is antagonized by Fstl3. Thus, the relative expression levels of these factors after injury is a determinant of cell survival in the heart.
Collapse
Affiliation(s)
- Yuichi Oshima
- Molecular Cardiology Unit, Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Mass 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu Z, Shen J, Pu K, Katus HA, Plöger F, Tiefenbacher CP, Chen X, Braun T. GDF5 and BMP2 inhibit apoptosis via activation of BMPR2 and subsequent stabilization of XIAP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1819-27. [PMID: 19782107 DOI: 10.1016/j.bbamcr.2009.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/02/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
GDF5 and BMP2, members of the TGF-beta superfamily of growth factors, are known to regulate apoptosis in different cell types either positively or negatively. We wanted to investigate the effects of GDF5 and BMP2 on vascular smooth muscle cells and mouse embryonic fibroblasts and disclose the mechanism by which GDF5 and BMP2 might exert anti-apoptotic effects. The effect of GDF5 and BMP2 on proliferation and/or programmed cells death was assessed in isolated human vascular smooth muscle cells and mouse embryonic fibroblasts. We demonstrate that GDF5 and BMP2 prevent apoptosis induced by serum starvation in mouse embryonic fibroblasts but not in smooth muscle cells via the BMP receptor 2 (BMPR2), which is often mutated in hereditary cases of primary pulmonary hypertension. GDF5 and BMP2 stimulate the interaction of BMPR-2 with XIAP thereby reducing the ubiquitination of XIAP, which results in enhanced protein stability. The increased concentration of XIAP counteracts apoptosis by binding and inactivating activated caspases. We conclude that the inhibition of apoptosis in mouse embryonic fibroblasts by BMP2 and GDF5 does not depend on more complex signal transduction pathways such as smad and MAPK signaling but on direct stabilization of XIAP by BMPR2.
Collapse
Affiliation(s)
- Zhipei Liu
- Department of Cardiac Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li WJ, Nie SP, Yan Y, Zhu SB, Xie MY. The protective effect of Ganoderma atrum polysaccharide against anoxia/reoxygenation injury in neonatal rat cardiomyocytes. Life Sci 2009; 85:634-41. [PMID: 19744500 DOI: 10.1016/j.lfs.2009.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/27/2009] [Accepted: 09/01/2009] [Indexed: 11/28/2022]
Abstract
AIMS Oxidative stress has been largely implicated in the pathogenesis of anoxia/reoxygenation injury. Ganoderma atrum polysaccharide (PSG-1), the most abundant component extracted from the fruiting bodies of G. atrum, has been shown to possess potent antioxidant activity. In this study, we investigated whether PSG-1 attenuates oxidative stress induced by anoxia/reoxygenation injury. MAIN METHODS Primary cultures of neonatal rat cardiomyocytes pretreated with PSG-1 were exposed to anoxia/reoxygenation and subsequently monitored for cell viability by the MTT assay. Lactate dehydrogenase (LDH) release, manganese superoxide dismutase (MnSOD), catalase and glutathione peroxidase activities, and malondialdehyde contents were determined by a colorimetric method. The levels of reactive oxygen species (ROS) and apoptosis were determined by flow cytometry. Western blot analysis was used for the determination of MnSOD, catalase and glutathione peroxidase expression. KEY FINDINGS In the present study, PSG-1 protected the cardiomyocytes from anoxia/reoxygenation injury, as evidenced by decreased LDH release and increased cell viability in a dose-dependent manner up to 100microg/ml. This protective effect concomitantly decreased malondialdehyde contents, while significantly increased the activities and protein expressions of MnSOD, catalase and glutathione peroxidase. Furthermore, treatment with PSG-1 decreased ROS production and apoptosis in cardiomyocytes undergoing anoxia/reoxygenation. SIGNIFICANCE The present study first demonstrates that PSG-1 protects cardiomyocytes against oxidative stress induced by anoxia/reoxygenation by attenuating ROS production, apoptosis and increasing activities and protein expressions of endogenous antioxidant enzymes.
Collapse
Affiliation(s)
- Wen-juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | | | | | | | |
Collapse
|
38
|
Short- and Long-Term Cardioprotective Effect of Darbepoetin-α: Role of Bcl-2 Family Proteins. J Cardiovasc Pharmacol 2009; 54:223-31. [DOI: 10.1097/fjc.0b013e3181b04d01] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Daniels A, van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA. Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf) 2009; 195:321-38. [PMID: 19040711 DOI: 10.1111/j.1748-1716.2008.01936.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cardiac fibrosis is a major pathogenic factor in a variety of cardiovascular diseases and refers to an excessive deposition of extracellular matrix components in the heart, which leads to cardiac dysfunction and eventually overt heart failure. Evidence is accumulating for a crucial role of connective tissue growth factor (CTGF) in fibrotic processes in several tissues including the heart. CTGF orchestrates the actions of important local factors evoking cardiac fibrosis. The central role of CTGF as a matricellular protein modulating the fibrotic process in cardiac remodelling makes it a possible biomarker for cardiac fibrosis and a potential candidate for therapeutic intervention to mitigate fibrosis in the heart.
Collapse
Affiliation(s)
- A Daniels
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Sanchez-Bustamante CD, Frey U, Kelm JM, Hierlemann A, Fussenegger M. Modulation of cardiomyocyte electrical properties using regulated bone morphogenetic protein-2 expression. Tissue Eng Part A 2009; 14:1969-88. [PMID: 18673087 DOI: 10.1089/ten.tea.2007.0302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Because cardiomyocytes lose their ability to divide after birth, any subsequent cell loss or dysfunction results in pathologic cardiac rhythm initiation or impulse conduction. Strategies to restore and control the electrophysiological activity of the heart may, therefore, greatly affect the regeneration of cardiac tissue functionality. Using lentivirus-derived particles to regulate the bone morphogenetic protein-2 (BMP-2) gene expression in a pristinamycin- or gaseous acetaldehyde-inducible manner, we demonstrated the adjustment of cardiomyocyte electrophysiological characteristics. Complementary metal oxide semiconductor-based high-density microelectrode arrays (HD-MEAs) were used to monitor the electrophysiological activity of neonatal rat cardiomyocytes (NRCs) cultured as monolayers (NRCml) or as microtissues (NRCmt). NRCmt more closely resembled heart tissue physiology than did NRCml and could be conveniently monitored using HD-MEAs because of their ability to detect low-signal events and to sub-select the region of interest, namely, areas where the microtissues were placed. Cardiomyocyte-forming microtissues, transduced using lentiviral vectors encoding BMP-2, were capable of restoring myocardial microtissue electrical activity. We also engineered NRCmt to functionally couple within a cardiomyocyte monolayer, thus showing pacemaker-like activity upon local regulation of transgenic BMP-2 expression. The controlled expression of therapeutic transgenes represents a crucial advance for clinical interventions and gene-function analysis.
Collapse
|
41
|
Hakim ZS, DiMichele LA, Rojas M, Meredith D, Mack CP, Taylor JM. FAK regulates cardiomyocyte survival following ischemia/reperfusion. J Mol Cell Cardiol 2008; 46:241-8. [PMID: 19028502 DOI: 10.1016/j.yjmcc.2008.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 10/10/2008] [Accepted: 10/11/2008] [Indexed: 10/21/2022]
Abstract
Myocyte apoptosis is central to myocardial dysfunction following ischemia/reperfusion (I/R) and during the transition from hypertrophy to heart failure. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase regulates adhesion-dependent survival signals and unopposed FAK activation has been linked to tumor development. We previously showed that conditional myocyte-specific deletion of FAK (MFKO) in the adult heart did not affect basal cardiomyocyte survival or cardiac function but led to dilated cardiomyopathy and heart failure following pressure overload. In the present study, we sought to determine if FAK functions to limit stress-induced cardiomyocyte apoptosis. We reasoned that (I/R), which stimulates robust apoptotic cell death, might uncover an important cardioprotective function for FAK. We found that depletion of FAK markedly exacerbates hypoxia/re-oxygenation-induced cardiomyocyte cell death in vitro. Moreover, deletion of FAK in the adult myocardium resulted in significant increases in I/R-induced infarct size and cardiomyocyte apoptosis with a concomitant reduction in left ventricular function. Finally, our results suggest that NF-kappaB signaling may play a key role in modulating FAK-dependent cardioprotection, since FAK inactivation blunted activation of the NF-kappaB survival signaling pathway and reduced levels of the NF-kappaB target genes, Bcl2 and Bcl-xl. Since the toggling between pro-survival and pro-apoptotic signals remains central to preventing irreversible damage to the heart, we conclude that targeted FAK activation may be beneficial for protecting stress-dependent cardiac remodeling.
Collapse
Affiliation(s)
- Zeenat S Hakim
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
42
|
Korf-Klingebiel M, Kempf T, Sauer T, Brinkmann E, Fischer P, Meyer GP, Ganser A, Drexler H, Wollert KC. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 2008; 29:2851-8. [PMID: 18953051 DOI: 10.1093/eurheartj/ehn456] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS Results from clinical trials suggest that cardiac function after acute myocardial infarction (AMI) can be enhanced by an intracoronary infusion of autologous unselected nucleated bone marrow cells (BMCs). Release of paracrine factors has been proposed as a mechanism for these therapeutic effects; however, this hypothesis has not been tested in humans. METHODS AND RESULTS BMCs and peripheral blood leucocytes (PBLs) were obtained from 15 patients with AMI and cultured in serum-free medium to obtain conditioned supernatants (SN). BMC-SN stimulated human coronary artery endothelial cell proliferation, migration, and tube formation, and induced cell sprouting in a mouse aortic ring assay. Moreover, BMC-SN protected rat cardiomyocytes from cell death induced by simulated ischaemia or ischaemia followed by reperfusion. While PBL-SN promoted similar effects on endothelial cells and cardiomyocytes, BMC-SN and PBL-SN in combination promoted synergistic effects. As shown by ProteinChip and GeneChip array analyses (each performed in triplicate), BMCs and PBLs expressed distinct patterns of pro-angiogenic and cytoprotective secreted factors. CONCLUSION Our data support the paracrine hypothesis and suggest that characterization of the BMC secretome may lead to an identification of factors with therapeutic potential after AMI.
Collapse
Affiliation(s)
- Mortimer Korf-Klingebiel
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules used to block complementary sequences of RNA, preventing processing, read-through, or protein binding at those sites. Morpholinos are typically used to block translation of mRNA and to block splicing of pre-mRNA, though they can block other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA, but must be delivered into the nuclear/cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by any proteins and do not undergo protein-mediated catalysis; nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos.
Collapse
|
44
|
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules that bind to complementary sequences of RNA, thereby inhibiting mRNA processing, read-through, and protein binding at those sites. Morpholinos are typically used to inhibit translation of mRNA, splicing of pre-mRNA, and maturation of miRNA, although they can also inhibit other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA. However, unmodified Morpholinos do not pass well through plasma membranes and must therefore be delivered into the nuclear or cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by proteins and do not undergo protein-mediated catalysis; nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos.
Collapse
|
45
|
Moulton HM, Moulton JD. Antisense Morpholino Oligomers and Their Peptide Conjugates. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hong M. Moulton
- AVI BioPharma Inc. 4575 SW Research Way Corvallis OR 97333 USA
| | | |
Collapse
|
46
|
Xiao H, Zhang YY. UNDERSTANDING THE ROLE OF TRANSFORMING GROWTH FACTOR-β SIGNALLING IN THE HEART: OVERVIEW OF STUDIES USING GENETIC MOUSE MODELS. Clin Exp Pharmacol Physiol 2008; 35:335-41. [DOI: 10.1111/j.1440-1681.2007.04876.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Moore XL, Tan SL, Lo CY, Fang L, Su YD, Gao XM, Woodcock EA, Summers RJ, Tregear GW, Bathgate RAD, Du XJ. Relaxin antagonizes hypertrophy and apoptosis in neonatal rat cardiomyocytes. Endocrinology 2007; 148:1582-9. [PMID: 17204550 DOI: 10.1210/en.2006-1324] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pregnancy hormone relaxin has recently been shown to be cardio-protective. Despite its well-established antifibrotic actions in the heart, the effects of relaxin on cardiomyocytes (CM) remain to be determined. We investigated effects of isoform 2 of the human relaxin (H2-relaxin) on CM hypertrophy and apoptosis. In cultured neonatal rat CM, phenylephrine (50 microM) and cardiac fibroblast-conditioned medium were used respectively to induce CM hypertrophy. The degree of hypertrophy was indicated by increased cell size, protein synthesis and gene expression of atrial natriuretic peptide. Although H2-relaxin (16.7 nM) alone failed to suppress hypertrophy induced by phenylephrine, it repressed the cardiac fibroblast-conditioned medium-induced increase in protein synthesis by 24% (P<0.05) and reversed the increase in cell size (P<0.001) and atrial natriuretic peptide expression (P<0.01). We further studied the effect of H2-relaxin on CM apoptosis induced by H2O2 (200 microM). Studies of DNA laddering and nuclear staining demonstrated that H2-relaxin treatment reduced H2O2-induced DNA fragmentation. Real-time PCR and Western blot analysis revealed a significant increase in the Bcl2/Bax ratio in H2-relaxin-treated CM. Further analysis showed that activation of Akt (1.8-fold, P<0.001) and ERK (2.0-fold, P<0.01) were involved in the antiapoptotic action of H2-relaxin in CM, and that Gi/o coupling of relaxin receptors was associated with the H2-relaxin-induced Akt activation in CM. In conclusion, these results extend our current knowledge of the cardiac actions of relaxin by demonstrating that H2-relaxin indirectly inhibits CM hypertrophy and directly protects CM from apoptosis.
Collapse
Affiliation(s)
- Xiao-lei Moore
- Baker Heart Research Institute, P.O. Box 6492, St. Kilda Road Central, Melbourne, Victoria 8008, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Current World Literature. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000218938.96009.b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
|
50
|
Izumi M, Masaki M, Hiramoto Y, Sugiyama S, Kuroda T, Terai K, Hori M, Kawase I, Hirota H. Cross-talk between bone morphogenetic protein 2 and leukemia inhibitory factor through ERK 1/2 and Smad1 in protection against doxorubicin-induced injury of cardiomyocytes. J Mol Cell Cardiol 2006; 40:224-33. [PMID: 16427075 DOI: 10.1016/j.yjmcc.2005.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/28/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
The survival of cardiomyocytes is regulated by growth factors and cytokines such as bone morphogenetic protein (BMP) 2 and leukemia inhibitory factor (LIF). BMP2 and LIF induce distinct signal transduction pathways that each activate a different transcription factor [Smad1 and signal transducing activating transcriptional factor (Stat) 3, respectively] and common signal pathway [mitogen-activated protein kinase (MAPK)]. We previously demonstrated that BMP2 and LIF protect cardiomyocytes via Smad1 and STAT3 signaling pathways, respectively. On the other hand, these signals are known to act in synergy via synergistic integration of signaling pathways. Here, we examined interaction between BMP2 and LIF in primary cultured neonatal rat cardiomyocytes. LIF sustained phosphorylation/activation of Smad1 by BMP2. The role of extracellular signal-regulated kinase (ERK) 1/2 cascade activated by LIF was highlighted by the use of a MAPK/ERK kinase (MEK) 1/2 inhibitor, U0126, or overexpression of dominant-negative form of MEK1 that abolished sustained phosphorylation of Smad1 and cell survival effect induced by co-stimulation of LIF with BMP2, while BMP2 alone did not activate ERK1/2. Conversely, overexpression of the constitutive-active form of MEK1 increased BMP2-induced phosphoration of Smad1 without additional LIF. Moreover, BMP2 and LIF synergistically induced bcl-xL mRNA in doxorubicin (DOX)-injured cardiomyocytes. These findings suggest that the ERK1/2 pathway downstream of LIF is involved in sustained phosphorylation/activation of Smad1 by BMP2 and provide a possible mechanism for cooperation between intracellular signals activated by LIF and BMP2 in protection against DOX-induced injury of cardiomyocytes.
Collapse
Affiliation(s)
- Masahiro Izumi
- Department of Cardiology, Osaka Medical Center for Cancer and Cardiovascular Disease, 1-3-3, Nakamichi, Higashinari-ku, Osaka, Osaka 537-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|