1
|
Spagnol G, Trease A, Zheng L, Sobota S, Schmidt M, Cheku S, Sorgen PL. Cx45 regulation by kinases and impact of expression in heart failure. J Mol Cell Cardiol 2025; 203:91-105. [PMID: 40280467 DOI: 10.1016/j.yjmcc.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Phosphorylation plays a crucial role in connexin regulation by modulating gap junction intercellular communication (GJIC), localization, stability, and interactions with signaling proteins. Few kinases are known to phosphorylate Cx45, and their target residues remain unknown. A phosphorylation screen identified several Cx45-targeting kinases activated in heart disease, among which c-Src was found by mass spectroscopy to phosphorylate residues Y324 and Y356. Unlike Cx43, c-Src phosphorylation of Cx45 did not impair GJIC, alter junctional localization, or affect interactions with cytoskeletal proteins β-tubulin, Drebrin, and ZO-1. In LA-25 cells where Cx43 is internalized after temperature sensitive activation of v-Src, expression of Cx45 unexpectedly maintained Cx43 at the plasma membrane. Phospho-specific antibodies helped identify that while Cx43 had a tyrosine phosphorylation pattern favoring turnover, the serine phosphorylation pattern was conducive for GJIC. Furthermore, in a rat model of heart failure, Cx45 was expressed in the ventricle and co-localized with Cx43, leading to altered dye coupling indicative of a shift toward Cx45-like channel permeability. Altogether, our data suggests that in heart failure, c-Src activation on its own would not have an adverse effect on Cx45 function and that aberrant Cx45 expression helps Cx43 transport to and maintain at the intercalated disc. Yet the dominant effect of Cx45 in heteromeric channels could ultimately make Cx45 a key driver of cardiac dysfunction. Finally, the observation that Cx45-mediated coupling remains functional even in the same pathological environment where Cx43-mediated communication is inhibited suggests that kinase regulation of connexins is isoform-specific and not universally predictable.
Collapse
Affiliation(s)
- Gaelle Spagnol
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew Trease
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Li Zheng
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Stephen Sobota
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Marissa Schmidt
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sunayn Cheku
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Qian S, Ugurlu D, Fairweather E, Toso LD, Deng Y, Strocchi M, Cicci L, Jones RE, Zaidi H, Prasad S, Halliday BP, Hammersley D, Liu X, Plank G, Vigmond E, Razavi R, Young A, Lamata P, Bishop M, Niederer S. Developing cardiac digital twin populations powered by machine learning provides electrophysiological insights in conduction and repolarization. NATURE CARDIOVASCULAR RESEARCH 2025; 4:624-636. [PMID: 40379795 PMCID: PMC12084159 DOI: 10.1038/s44161-025-00650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2025] [Indexed: 05/19/2025]
Abstract
Large-cohort imaging and diagnostic studies often assess cardiac function but overlook underlying biological mechanisms. Cardiac digital twins (CDTs) are personalized physics-constrained and physiology-constrained in silico representations, uncovering multi-scale insights tied to these mechanisms. In this study, we constructed 3,461 CDTs from the UK Biobank and another 359 from an ischemic heart disease (IHD) cohort, using cardiac magnetic resonance images and electrocardiograms. We show here that sex-specific differences in QRS duration were fully explained by myocardial anatomy while their myocardial conduction velocity (CV) remains similar across sexes but changes with age and obesity, indicating myocardial tissue remodeling. Longer QTc intervals in obese females were attributed to larger delayed rectifier potassium conductanceG KrKs . These findings were validated in the IHD cohort. Moreover, CV andG KrKs were associated with cardiac function, lifestyle and mental health phenotypes, and CV was also linked with adverse clinical outcomes. Our study demonstrates how CDT development at scale reveals biological insights across populations.
Collapse
Affiliation(s)
- Shuang Qian
- National Heart and Lung Institute, Imperial College London, London, UK.
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - Devran Ugurlu
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Alan Turing Institute, British Library, London, UK
| | - Elliot Fairweather
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Laura Dal Toso
- Institute for Biomedical Engineering, ETH Zurich and University Zurich, Zurich, Switzerland
| | - Yu Deng
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Marina Strocchi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ludovica Cicci
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Richard E Jones
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' National Health Service Foundation Trust, London, UK
- Anglia Ruskin School of Medicine & MTRC, Anglia Ruskin University, Chelmsford, UK
| | - Hassan Zaidi
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Sanjay Prasad
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' National Health Service Foundation Trust, London, UK
| | - Brian P Halliday
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' National Health Service Foundation Trust, London, UK
| | - Daniel Hammersley
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' National Health Service Foundation Trust, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | - Xingchi Liu
- Scientific Computing Department, Science and Technology Facilities Council, Harwell, UK
| | - Gernot Plank
- Gottfried Schatz Research Centre-Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Edward Vigmond
- University of Bordeaux, CNRS, Bordeaux, France
- IHU Liryc, Fondation Bordeaux Université, Talence, France
| | - Reza Razavi
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Alistair Young
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Pablo Lamata
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Martin Bishop
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Steven Niederer
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Alan Turing Institute, British Library, London, UK
| |
Collapse
|
3
|
Li YL, Li Y, Tu H, Evans AJ, Patel TA, Zheng H, Patel KP. Stellate Ganglia: A Key Therapeutic Target for Malignant Ventricular Arrhythmia in Heart Disease. Circ Res 2025; 136:1049-1069. [PMID: 40273204 PMCID: PMC12026290 DOI: 10.1161/circresaha.124.325384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Malignant ventricular arrhythmias (VAs), such as ventricular tachycardia and ventricular fibrillation, are the cause of approximately half a million deaths per year in the United States, which is a common lethal event in heart disease, such as hypertension, catecholaminergic polymorphic ventricular tachycardia, takotsubo cardiomyopathy, long-QT syndrome, and progressing into advanced heart failure. A common characteristic of these heart diseases, and the subsequent development of VAs, is the overactivation of the sympathetic nervous system. Current treatments for VAs in these heart diseases, such as β-adrenergic receptor blockers and cardiac sympathetic ablation, aim at inhibiting cardiac sympathetic overactivation. However, these treatments do not translate into becoming efficacious as long-term suppressors of ventricular tachycardia/ventricular fibrillation events. As a key regulatory component in the heart, cardiac postganglionic sympathetic neurons residing in the stellate ganglia (SGs) release neurotransmitters (such as norepinephrine and NPY [neuropeptide Y]) to perform their regulatory role in dictating cardiac function. Growing evidence from animal experiments and clinical studies has demonstrated that the remodeling of the SG may be intimately involved in malignant arrhythmogenesis. This identifies the SG as a key potential therapeutic target for the treatment of malignant VAs in heart disease. Therefore, this review summarizes the role of SG in ventricular arrhythmogenesis and updates the novel targeting of SG for clinical treatment of VAs in heart disease.
Collapse
Affiliation(s)
- Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrated Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tapan A. Patel
- Department of Cellular and Integrated Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hong Zheng
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Kaushik P. Patel
- Department of Cellular and Integrated Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Vigmond EJ, Massé S, Roney CH, Bayer JD, Nanthakumar K. The Accuracy of Cardiac Surface Conduction Velocity Measurements. JACC Clin Electrophysiol 2025; 11:694-705. [PMID: 39818672 DOI: 10.1016/j.jacep.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Conduction velocity (CV) is a measure of the health of myocardial tissue. It can be measured by taking differences in local activation times from intracardiac electrodes. Several factors introduce error into the measurement, among which ignoring the 3-dimensional aspect is a major detriment. OBJECTIVES The purpose of this study was to determine if, nonetheless, there was a specific region where CV could be accurately measured. METHODS Computer simulations of 3-dimensional ventricles with a realistic His-Purkinje system were performed. Ventricles also included a dense scar or diffuse fibrosis. RESULTS A finer spatial sampling produced better agreement with true CV. Using an error limit of 10 cm/s as a threshold, measurements taken within a region <2 cm from the pacing site proved to be accurate. Error increased abruptly beyond this distance. The Purkinje system and tissue fiber orientation played equally major roles in leading to a surface CV that was not reflective of the CV propagation through the tissue. CONCLUSIONS In general, surface CV correlates poorly with tissue CV. Only surface CV measurements close to the pacing site, taken with an electrode spacing of ≤1 mm, give reasonable estimates.
Collapse
Affiliation(s)
- Edward J Vigmond
- IHU Institut LIRYC, Fondation University Bordeaux, Talence, France; Institute of Mathematics of Bordeaux, UMR 5251, University of Bordeaux, Talence, France.
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Caroline H Roney
- School of Engineering and Materials Science, Queen Mary University London, London, United Kingdom
| | - Jason D Bayer
- IHU Institut LIRYC, Fondation University Bordeaux, Talence, France; Institute of Mathematics of Bordeaux, UMR 5251, University of Bordeaux, Talence, France
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Martinez-Navarro H, Zhou X, Rodriguez B. Mechanisms and Implications of Electrical Heterogeneity in Cardiac Function in Ischemic Heart Disease. Annu Rev Physiol 2025; 87:25-51. [PMID: 39541224 DOI: 10.1146/annurev-physiol-042022-020541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A healthy heart shows intrinsic electrical heterogeneities that play a significant role in cardiac activation and repolarization. However, cardiac diseases may perturb the baseline electrical properties of the healthy cardiac tissue, leading to increased arrhythmic risk and compromised cardiac functions. Moreover, biological variability among patients produces a wide range of clinical symptoms, which complicates the treatment and diagnosis of cardiac diseases. Ischemic heart disease is usually caused by a partial or complete blockage of a coronary artery. The onset of the disease begins with myocardial ischemia, which can develop into myocardial infarction if it persists for an extended period. The progressive regional tissue remodeling leads to increased electrical heterogeneities, with adverse consequences on arrhythmic risk, cardiac mechanics, and mortality. This review aims to summarize the key role of electrical heterogeneities in the heart on cardiac function and diseases. Ischemic heart disease has been chosen as an example to show how adverse electrical remodeling at different stages may lead to variable manifestations in patients. For this, we have reviewed the dynamic electrophysiological and structural remodeling from the onset of acute myocardial ischemia and reperfusion to acute and chronic stages post-myocardial infarction. The arrhythmic mechanisms, patient phenotypes, risk stratification at different stages, and patient management strategies are also discussed. Finally, we provide a brief review on how computational approaches incorporate human electrophysiological heterogeneity to facilitate basic and translational research.
Collapse
Affiliation(s)
- Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| | - Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| |
Collapse
|
6
|
Liu J, Oba Y, Kondo Y, Nakaki R, Yamano S. Lethal Arrhythmogenic Role of Left Ventricular Myocardial Interstitial Fibrosis in Apolipoprotein E/Low-Density Lipoprotein Receptor Double-Knockout Mice with Metabolic Dysfunction-Associated Steatohepatitis. Int J Mol Sci 2024; 26:144. [PMID: 39796002 PMCID: PMC11720108 DOI: 10.3390/ijms26010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The combination of alcohol and a low-carbohydrate, high-protein, high-fat atherogenic diet (AD) increases the risk of lethal arrhythmias in apolipoprotein E/low-density lipoprotein receptor double-knockout (AL) mice with metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates whether left ventricular (LV) myocardial interstitial fibrosis (MIF), formed during the progression of metabolic dysfunction-associated steatohepatitis (MASH), contributes to this increased risk. Male AL mice were fed an AD with or without ethanol for 16 weeks, while age-matched AL and wild-type mice served as controls. Liver and heart tissues were analyzed, and susceptibility to lethal arrhythmias was assessed through histopathology, fluorescence immunohistochemistry, RNA-Seq, RT-PCR, and lethal arrhythmia-evoked test. Ethanol combined with an AD significantly induced LV MIF in MASH-affected AL mice, as shown by increased fibrosis-related gene expression, Sirius-Red staining, and elevated collagen 1a1 and 3a1 mRNA levels, alongside a higher incidence of lethal arrhythmias. Cardiac myofibroblasts exhibited sympathetic activation and produced elevated levels of fibrosis-promoting factors. This study highlights the role of cardiac myofibroblasts in LV MIF, contributing to an increased incidence of lethal arrhythmias in MASH-affected AL mice fed ethanol and AD, even after the alcohol was fully metabolized on the day of consumption.
Collapse
Affiliation(s)
- Jinyao Liu
- Student Medical Academia Investigation Lab, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yumiko Oba
- Advanced Medical Research Academic-Course, Yamaguchi University School of Medicine, Ube 755-8505, Japan;
| | - Yosuke Kondo
- Rhelixa, Inc., Tokyo 104-0042, Japan; (Y.K.); (R.N.)
| | - Ryo Nakaki
- Rhelixa, Inc., Tokyo 104-0042, Japan; (Y.K.); (R.N.)
| | - Seiko Yamano
- Life Science Division, Yamaguchi University Advanced Technology Institute, Ube 755-8505, Japan;
| |
Collapse
|
7
|
Turner DGP, De Lange WJ, Zhu Y, Coe CL, Simcox J, Ge Y, Kamp TJ, Ralphe JC, Glukhov AV. Neutral sphingomyelinase regulates mechanotransduction in human engineered cardiac tissues and mouse hearts. J Physiol 2024; 602:4387-4407. [PMID: 37889115 PMCID: PMC11052922 DOI: 10.1113/jp284807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in the USA and is known to be exacerbated by elevated mechanical stress from hypertension. Caveolae are plasma membrane structures that buffer mechanical stress but have been found to be reduced in pathological conditions associated with chronically stretched myocardium. To explore the physiological implications of the loss of caveolae, we used human engineered cardiac tissue (ECT) constructs, composed of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hiPSC-derived cardiac fibroblasts, to develop a long-term cyclic stretch protocol that recapitulates the effects of hypertension on caveolae expression, membrane tension, and the β-adrenergic response. Leveraging this new stretch protocol, we identified neutral sphingomyelinases (nSMase) as mechanoregulated mediators of caveolae loss, ceramide production and the blunted β-adrenergic response in this human cardiac model. Specifically, in our ECT model, nSMase inhibition via GW4869 prevented stretch-induced loss of caveolae-like structures, mitigated nSMase-dependent ceramide production, and maintained the ECT contractile kinetic response to isoprenaline. These findings are correlated with a blood lipidomic analysis in middle-aged and older adults, which revealed an increase of the circulating levels of ceramides in adults with hypertension. Furthermore, we found that conduction slowing from increased pressure loading in mouse left ventricle was abolished in the context of nSMase inhibition. Collectively, these findings identify nSMase as a potent drug target for mitigating stretch-induced effects on cardiac function. KEY POINTS: We have developed a new stretch protocol for human engineered cardiac tissue that recapitulates changes in plasma membrane morphology observed in animal models of pressure/volume overload. Stretch of engineered cardiac tissue induces activation of neutral sphingomyelinase (nSMase), generation of ceramide, and disassembly of caveolae. Activation of nSMase blunts cardiac β-adrenergic contractile kinetics and mediates stretch-induced slowing of conduction and upstroke velocity. Circulating ceramides are increased in adults with hypertension, highlighting the clinical relevance of stretch-induced nSMase activity.
Collapse
Affiliation(s)
- Daniel G P Turner
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Willem J De Lange
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Ge
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J Kamp
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - J Carter Ralphe
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Que W, Bian Y, Chen S, Zhao X, Ji Z, Hu P, Han C, Shi L. Efficient electrocardiogram generation based on cardiac electric vector simulation model. Comput Biol Med 2024; 177:108629. [PMID: 38820778 DOI: 10.1016/j.compbiomed.2024.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/27/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
This study introduces a novel Cardiac Electric Vector Simulation Model (CEVSM) to address the computational inefficiencies and low fidelity of traditional electrophysiological models in generating electrocardiograms (ECGs). Our approach leverages CEVSM to efficiently produce reliable ECG samples, facilitating data augmentation essential for the computer-aided diagnosis of myocardial infarction (MI). Significantly, experimental results show that our model dramatically reduces computation time compared to conventional models, with the self-adapting regression transformation matrix method (SRTM) providing clear advantages. SRTM not only achieves high fidelity in ECG simulations but also ensures exceptional consistency with the gold standard method, greatly enhancing MI localization accuracy by data augmentation. These advancements highlight the potential of our model to generate dependable ECG training samples, making it highly suitable for data augmentation and significantly advancing the development and validation of intelligent MI diagnostic systems. Furthermore, this study demonstrates the feasibility of applying life system simulations in the training of medical big models.
Collapse
Affiliation(s)
- Wenge Que
- Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yingnan Bian
- School of Logistics, Henan College of Transportation, Zhengzhou, 450000, China.
| | - Shengjie Chen
- Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Xiliang Zhao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Zehua Ji
- Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Pingge Hu
- Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Chuang Han
- School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450000, China.
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing, 100084, China; Beijing National Research Center for Information Science and Technology, Beijing, 100084, China.
| |
Collapse
|
9
|
Laurita KR, Piktel JS, Irish L, Nassal M, Cheng A, McCauley M, Pawlowski G, Dennis AT, Suen Y, Almahameed S, Ziv O, Gourdie RG, Wilson LD. Spontaneous Repolarization Alternans Causes VT/VF Rearrest That Is Suppressed by Preserving Gap Junctions. JACC Clin Electrophysiol 2024; 10:1271-1286. [PMID: 38752959 PMCID: PMC11525958 DOI: 10.1016/j.jacep.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Ventricular tachycardia (VT)/ventricular fibrillation (VF) rearrest after successful resuscitation is common, and survival is poor. A mechanism of VT/VF, as demonstrated in ex vivo studies, is when repolarization alternans becomes spatially discordant (DIS ALT), which can be enhanced by impaired gap junctions (GJs). However, in vivo spontaneous DIS ALT-induced VT/VF has never been demonstrated, and the effects of GJ on DIS ALT and VT/VF rearrest are unknown. OBJECTIVES This study aimed to determine whether spontaneous VT/VF rearrest induced by DIS ALT occurs in vivo, and if it can be suppressed by preserving Cx43-mediated GJ coupling and/or connectivity. METHODS We used an in vivo porcine model of resuscitation from ischemia-induced cardiac arrest combined with ex vivo optical mapping in porcine left ventricular wedge preparations. RESULTS In vivo, DIS ALT frequently preceded VT/VF and paralleled its incidence at normal (37°C, n = 9) and mild hypothermia (33°C, n = 8) temperatures. Maintaining GJs in vivo with rotigaptide (n = 10) reduced DIS ALT and VT/VF incidence, especially during mild hypothermia, by 90% and 60%, respectively (P < 0.001; P < 0.013). Ex vivo, both rotigaptide (n = 5) and αCT11 (n = 7), a Cx43 mimetic peptide that promotes GJ connectivity, significantly reduced DIS ALT by 60% and 100%, respectively (P < 0.05; P < 0.005), and this reduction was associated with reduced intrinsic heterogeneities of action potential duration rather than changes in conduction velocity restitution. CONCLUSIONS These results provide the strongest in vivo evidence to date suggesting a causal relationship between spontaneous DIS ALT and VT/VF in a clinically realistic scenario. Furthermore, our results suggest that preserving GJs during resuscitation can suppress VT/VF rearrest.
Collapse
Affiliation(s)
- Kenneth R Laurita
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Joseph S Piktel
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA; Department of Emergency Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laken Irish
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michelle Nassal
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Aurelia Cheng
- Department of Emergency Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Matthew McCauley
- Department of Emergency Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gary Pawlowski
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adrienne T Dennis
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yi Suen
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA; Department of Emergency Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Soufian Almahameed
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ohad Ziv
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Tech University, Roanoke, Virginia, USA
| | - Lance D Wilson
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA; Department of Emergency Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Abrasheva VO, Kovalenko SG, Slotvitsky M, Romanova SА, Aitova AA, Frolova S, Tsvelaya V, Syunyaev RA. Human sodium current voltage-dependence at physiological temperature measured by coupling a patch-clamp experiment to a mathematical model. J Physiol 2024; 602:633-661. [PMID: 38345560 DOI: 10.1113/jp285162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Voltage-gated Na+ channels are crucial to action potential propagation in excitable tissues. Because of the high amplitude and rapid activation of the Na+ current, voltage-clamp measurements are very challenging and are usually performed at room temperature. In this study, we measured Na+ current voltage-dependence in stem cell-derived cardiomyocytes at physiological temperature. While the apparent activation and inactivation curves, measured as the dependence of current amplitude on voltage, fall within the range reported in previous studies, we identified a systematic error in our measurements. This error is caused by the deviation of the membrane potential from the command potential of the amplifier. We demonstrate that it is possible to account for this artifact using computer simulation of the patch-clamp experiment. We obtained surprising results through patch-clamp model optimization: a half-activation of -11.5 mV and a half-inactivation of -87 mV. Although the half-activation deviates from previous research, we demonstrate that this estimate reproduces the conduction velocity dependence on extracellular potassium concentration. KEY POINTS: Voltage-gated Na+ currents play a crucial role in excitable tissues including neurons, cardiac and skeletal muscle. Measurement of Na+ current is challenging because of its high amplitude and rapid kinetics, especially at physiological temperature. We have used the patch-clamp technique to measure human Na+ current voltage-dependence in human induced pluripotent stem cell-derived cardiomyocytes. The patch-clamp data were processed by optimization of the model accounting for voltage-clamp experiment artifacts, revealing a large difference between apparent parameters of Na+ current and the results of the optimization. We conclude that actual Na+ current activation is extremely depolarized in comparison to previous studies. The new Na+ current model provides a better understanding of action potential propagation; we demonstrate that it explains propagation in hyperkalaemic conditions.
Collapse
Affiliation(s)
| | - Sandaara G Kovalenko
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Mihail Slotvitsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Serafima А Romanova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - Aleria A Aitova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Sheida Frolova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - Valeria Tsvelaya
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | | |
Collapse
|
11
|
Qian S, Ugurlu D, Fairweather E, Strocchi M, Toso LD, Deng Y, Plank G, Vigmond E, Razavi R, Young A, Lamata P, Bishop M, Niederer S. Developing Cardiac Digital Twins at Scale: Insights from Personalised Myocardial Conduction Velocity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.05.23299435. [PMID: 38106072 PMCID: PMC10723499 DOI: 10.1101/2023.12.05.23299435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Large-cohort studies using cardiovascular imaging and diagnostic datasets have assessed cardiac anatomy, function, and outcomes, but typically do not reveal underlying biological mechanisms. Cardiac digital twins (CDTs) provide personalized physics- and physiology-constrained in-silico representations, enabling inference of multi-scale properties tied to these mechanisms. We constructed 3464 anatomically-accurate CDTs using cardiac magnetic resonance images from UK biobank and personalised their myocardial conduction velocities (CVs) from electrocardiograms (ECG), through an automated framework. We found well-known sex-specific differences in QRS duration were fully explained by myocardial anatomy, as CV remained consistent across sexes. Conversely, significant associations of CV with ageing and increased BMI suggest myocardial tissue remodelling. Novel associations were observed with left ventricular ejection fraction and mental-health phenotypes, through a phenome-wide association study, and CV was also linked with adverse clinical outcomes. Our study highlights the utility of population-based CDTs in assessing intersubject variability and uncovering strong links with mental health.
Collapse
|
12
|
Orgil BO, Purevjav E. Molecular Pathways and Animal Models of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:991-1019. [PMID: 38884766 DOI: 10.1007/978-3-031-44087-8_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiomyopathies are a heterogeneous group of disorders of the heart muscle that ultimately result in congestive heart failure. Rapid progress in genetics, molecular and cellular biology with breakthrough innovative genetic-engineering techniques, such as next-generation sequencing and multiomics platforms, stem cell reprogramming, as well as novel groundbreaking gene-editing systems over the past 25 years has greatly improved the understanding of pathogenic signaling pathways in inherited cardiomyopathies. This chapter will focus on intracellular and intercellular molecular signaling pathways that are activated by a genetic insult in cardiomyocytes to maintain tissue and organ level regulation and resultant cardiac remodeling in certain forms of cardiomyopathies. In addition, animal models of different clinical forms of human cardiomyopathies with their summaries of triggered key molecules and signaling pathways will be described.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
13
|
Iravanian S, Uzelac I, Shah AD, Toye MJ, Lloyd MS, Burke MA, Daneshmand MA, Attia TS, Vega JD, El-Chami MF, Merchant FM, Cherry EM, Bhatia NK, Fenton FH. Complex repolarization dynamics in ex vivo human ventricles are independent of the restitution properties. Europace 2023; 25:euad350. [PMID: 38006390 PMCID: PMC10751849 DOI: 10.1093/europace/euad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
AIMS The mechanisms of transition from regular rhythms to ventricular fibrillation (VF) are poorly understood. The concordant to discordant repolarization alternans pathway is extensively studied; however, despite its theoretical centrality, cannot guide ablation. We hypothesize that complex repolarization dynamics, i.e. oscillations in the repolarization phase of action potentials with periods over two of classic alternans, is a marker of electrically unstable substrate, and ablation of these areas has a stabilizing effect and may reduce the risk of VF. To prove the existence of higher-order periodicities in human hearts. METHODS AND RESULTS We performed optical mapping of explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Signals recorded from the right ventricle endocardial surface were processed to detect global and local repolarization dynamics during rapid pacing. A statistically significant global 1:4 peak was seen in three of six hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of Periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. CONCLUSION We present evidence of complex higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex vivo human hearts. We infer that the oscillation of the calcium cycling machinery is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability and may provide targets for substrate-based ablation of VF.
Collapse
Affiliation(s)
- Shahriar Iravanian
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Ilija Uzelac
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| | - Anand D Shah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Mikael J Toye
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| | - Michael S Lloyd
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Michael A Burke
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Mani A Daneshmand
- Department of Surgery, Division of Cardiovascular Surgery, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Tamer S Attia
- Department of Surgery, Division of Cardiovascular Surgery, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - John David Vega
- Department of Surgery, Division of Cardiovascular Surgery, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Mikhael F El-Chami
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Faisal M Merchant
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Elizabeth M Cherry
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| | - Neal K Bhatia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Flavio H Fenton
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Demirel O, Berezin AE, Mirna M, Boxhammer E, Gharibeh SX, Hoppe UC, Lichtenauer M. Biomarkers of Atrial Fibrillation Recurrence in Patients with Paroxysmal or Persistent Atrial Fibrillation Following External Direct Current Electrical Cardioversion. Biomedicines 2023; 11:1452. [PMID: 37239123 PMCID: PMC10216298 DOI: 10.3390/biomedicines11051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Atrial fibrillation (AF) is associated with atrial remodeling, cardiac dysfunction, and poor clinical outcomes. External direct current electrical cardioversion is a well-developed urgent treatment strategy for patients presenting with recent-onset AF. However, there is a lack of accurate predictive serum biomarkers to identify the risks of AF relapse after electrical cardioversion. We reviewed the currently available data and interpreted the findings of several studies revealing biomarkers for crucial elements in the pathogenesis of AF and affecting cardiac remodeling, fibrosis, inflammation, endothelial dysfunction, oxidative stress, adipose tissue dysfunction, myopathy, and mitochondrial dysfunction. Although there is ample strong evidence that elevated levels of numerous biomarkers (such as natriuretic peptides, C-reactive protein, galectin-3, soluble suppressor tumorigenicity-2, fibroblast growth factor-23, turn-over collagen biomarkers, growth differential factor-15) are associated with AF occurrence, the data obtained in clinical studies seem to be controversial in terms of their predictive ability for post-cardioversion outcomes. Novel circulating biomarkers are needed to elucidate the modality of this approach compared with conventional predictive tools. Conclusions: Biomarker-based strategies for predicting events after AF treatment require extensive investigation in the future, especially in the presence of different gender and variable comorbidity profiles. Perhaps, a multiple biomarker approach exerts more utilization for patients with different forms of AF than single biomarker use.
Collapse
Affiliation(s)
- Ozan Demirel
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| | - Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Sarah X. Gharibeh
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| |
Collapse
|
15
|
Fadle Aziz MR, Wlodarek L, Alibhai F, Wu J, Li S, Sun Y, Santerre JP, Li RK. A Polypyrrole-Polycarbonate Polyurethane Elastomer Alleviates Cardiac Arrhythmias via Improving Bio-Conductivity. Adv Healthc Mater 2023:e2203168. [PMID: 36849128 DOI: 10.1002/adhm.202203168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Indexed: 03/01/2023]
Abstract
Myocardial fibrosis, resulting from myocardial infarction (MI), significantly alters cardiac electrophysiological properties. As fibrotic scar tissue forms, its resistance to incoming action potentials increases, leading to cardiac arrhythmia, and eventually sudden cardiac death or heart failure. Biomaterials are gaining increasing attention as an approach for addressing post-MI arrhythmias. The current study investigates the hypothesis that a bio-conductive epicardial patch can electrically synchronize isolated cardiomyocytes in vitro and rescue arrhythmic hearts in vivo. A new conceived biocompatible, conductive, and elastic polyurethane composite bio-membrane, referred to as polypyrrole-polycarbonate polyurethane (PPy-PCNU), is developed, in which solid-state conductive PPy nanoparticles are distributed throughout an electrospun aliphatic PCNU nanofiber patch in a controlled manner. Compared to PCNU alone, the resulting biocompatible patch demonstrates up to six times less impedance, with no conductivity loss over time, as well as being able to influence cellular alignment. Furthermore, PPy-PCNU promotes synchronous contraction of isolated neonatal rat cardiomyocytes and alleviates atrial fibrillation in rat hearts upon epicardial implantation. Taken together, epicardially-implanted PPy-PCNU could potentially serve as a novel alternative approach for the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Monir Riasad Fadle Aziz
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Faculty of Dentistry, Translational Biology and Engineering Program at the Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Lukasz Wlodarek
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Faisal Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Shuhong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Faculty of Dentistry, Translational Biology and Engineering Program at the Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, M5G 2C4, Canada
| |
Collapse
|
16
|
Altieri DI, Etzion Y, Anderson HD. Cannabinoid receptor agonist attenuates angiotensin II-induced enlargement and mitochondrial dysfunction in rat atrial cardiomyocytes. Front Pharmacol 2023; 14:1142583. [PMID: 37113758 PMCID: PMC10126395 DOI: 10.3389/fphar.2023.1142583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Pathological remodeling of atrial tissue renders the atria more prone to arrhythmia upon arrival of electrical triggers. Activation of the renin-angiotensin system is an important factor that contributes to atrial remodeling, which may result in atrial hypertrophy and prolongation of P-wave duration. In addition, atrial cardiomyocytes are electrically coupled via gap junctions, and electrical remodeling of connexins may result in dysfunction of coordinated wave propagation within the atria. Currently, there is a lack of effective therapeutic strategies that target atrial remodeling. We previously proposed that cannabinoid receptors (CBR) may have cardioprotective qualities. CB13 is a dual cannabinoid receptor agonist that activates AMPK signaling in ventricular cardiomyocytes. We reported that CB13 attenuates tachypacing-induced shortening of atrial refractoriness and inhibition of AMPK signaling in the rat atria. Here, we evaluated the effects of CB13 on neonatal atrial rat cardiomyocytes (NRAM) stimulated by angiotensin II (AngII) in terms of atrial myocyte enlargement and mitochondrial function. CB13 inhibited AngII-induced enhancement of atrial myocyte surface area in an AMPK-dependent manner. CB13 also inhibited mitochondrial membrane potential deterioration in the same context. However, AngII and CB13 did not affect mitochondrial permeability transition pore opening. We further demonstrate that CB13 increased Cx43 compared to AngII-treated neonatal rat atrial myocytes. Overall, our results support the notion that CBR activation promotes atrial AMPK activation, and prevents myocyte enlargement (an indicator that suggests pathological hypertrophy), mitochondrial depolarization and Cx43 destabilization. Therefore, peripheral CBR activation should be further tested as a novel treatment strategy in the context of atrial remodeling.
Collapse
Affiliation(s)
- Danielle I. Altieri
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, Winnipeg, MB, Canada
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hope D. Anderson
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, Winnipeg, MB, Canada
- *Correspondence: Hope D. Anderson,
| |
Collapse
|
17
|
Que W, Han C, Zhao X, Shi L. An ECG generative model of myocardial infarction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107062. [PMID: 35994870 DOI: 10.1016/j.cmpb.2022.107062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Background and Objective Computer-aided diagnosis (CAD) of Myocardial Infarction (MI) using machine learning depends on a large amount of clinical Electrocardiogram (ECG) data. Existing infarct ECG databases face the problem of class imbalance. Data augmentation using generative simulation models is a new approach to effectively address this problem. Methods A multiscale ECG generative model was established for ECG data augmentation. In the cellular layer, an ischemic Action Potential (AP) model was established to generate APs in cardiomyocytes with different transmural regions of infraction or different ischemic durations. In the tissue layer, a probability-driven cellular automata excitation propagation model was established to simulate the propagation speed and direction of excitation. An infarct tissue model and a coronary artery model were established to describe the spatiotemporal diversity of MI. A ventricle model, a human torso model, and a computational model of surface ECG based on field source theory were established in the heart-torso layer. Results The model generated pathological 12-lead ECGs of MI with different topography and different extent. When simulating different ventricular wall infarction, the lesions appear in the same leads as the clinical 12-lead ECG. The ST-segment decreases and the T-wave amplitude decreases, similar to the clinical ECG features when simulating subendocardial ischemia. The average fidelity of the 12-lead ECG the model generated is 95.6%, according to the designed DTW-GRA distance algorithm. Conclusions The generative model considers the electrophysiological properties of the natural heart, the pathology of myocardial infarction, and the diversity of clinical ECGs. The model can provide many reliable samples for machine learning of MI.
Collapse
Affiliation(s)
- Wenge Que
- Department of Automation, Tsinghua University, Beijing 100084, China.
| | - Chuang Han
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Xiliang Zhao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing 100084, China; Beijing National Research Center for Information Science and Technology, Beijing 100084, China.
| |
Collapse
|
18
|
Abstract
The global burden caused by cardiovascular disease is substantial, with heart disease representing the most common cause of death around the world. There remains a need to develop better mechanistic models of cardiac function in order to combat this health concern. Heart rhythm disorders, or arrhythmias, are one particular type of disease which has been amenable to quantitative investigation. Here we review the application of quantitative methodologies to explore dynamical questions pertaining to arrhythmias. We begin by describing single-cell models of cardiac myocytes, from which two and three dimensional models can be constructed. Special focus is placed on results relating to pattern formation across these spatially-distributed systems, especially the formation of spiral waves of activation. Next, we discuss mechanisms which can lead to the initiation of arrhythmias, focusing on the dynamical state of spatially discordant alternans, and outline proposed mechanisms perpetuating arrhythmias such as fibrillation. We then review experimental and clinical results related to the spatio-temporal mapping of heart rhythm disorders. Finally, we describe treatment options for heart rhythm disorders and demonstrate how statistical physics tools can provide insights into the dynamics of heart rhythm disorders.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
19
|
Distress-Mediated Remodeling of Cardiac Connexin-43 in a Novel Cell Model for Arrhythmogenic Heart Diseases. Int J Mol Sci 2022; 23:ijms231710174. [PMID: 36077591 PMCID: PMC9456330 DOI: 10.3390/ijms231710174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gap junctions and their expression pattern are essential to robust function of intercellular communication and electrical propagation in cardiomyocytes. In healthy myocytes, the main cardiac gap junction protein connexin-43 (Cx43) is located at the intercalated disc providing a clear direction of signal spreading across the cardiac tissue. Dislocation of Cx43 to lateral membranes has been detected in numerous cardiac diseases leading to slowed conduction and high propensity for the development of arrhythmias. At the cellular level, arrhythmogenic diseases are associated with elevated levels of oxidative distress and gap junction remodeling affecting especially the amount and sarcolemmal distribution of Cx43 expression. So far, a mechanistic link between sustained oxidative distress and altered Cx43 expression has not yet been identified. Here, we propose a novel cell model based on murine induced-pluripotent stem cell-derived cardiomyocytes to investigate subcellular signaling pathways linking cardiomyocyte distress with gap junction remodeling. We tested the new hypothesis that chronic distress, induced by rapid pacing, leads to increased reactive oxygen species, which promotes expression of a micro-RNA, miR-1, specific for the control of Cx43. Our data demonstrate that Cx43 expression is highly sensitive to oxidative distress, leading to reduced expression. This effect can be efficiently prevented by the glutathione peroxidase mimetic ebselen. Moreover, Cx43 expression is tightly regulated by miR-1, which is activated by tachypacing-induced oxidative distress. In light of the high arrhythmogenic potential of altered Cx43 expression, we propose miR-1 as a novel target for pharmacological interventions to prevent the maladaptive remodeling processes during chronic distress in the heart.
Collapse
|
20
|
Billur D, Olgar Y, Turan B. Intracellular Redistribution of Left Ventricular Connexin 43 Contributes to the Remodeling of Electrical Properties of the Heart in Insulin-resistant Elderly Rats. J Histochem Cytochem 2022; 70:447-462. [PMID: 35608408 DOI: 10.1369/00221554221101661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The correlation between long-QT and connexin 43 (Cx43) status and localization in elderly rats was determined to demonstrate a correlation between insulin resistance (I-R), ischemia-reperfusion, aging, and heart dysfunction. Male Wistar rats are grouped as 24-month-old rats (Aged-group), those with metabolic syndrome (8 months old; MetS-group), or controls (8 months old; Con-group). Both experimental groups have long-QT and low heart rate. Immunohistochemical imaging and quantification showed marked decreases in Cx43 staining of intercalated disc with less localizations in the Aged-group and MetS-group. The lateralization of Cx43 on longitudinal cell membrane was significantly high in the MetS-group than in the Con-group with no significant change in the Aged-group. Its significant cytoplasmic internalization was higher in the Aged-group than in the MetS-group. There were marked decreases in phospho-Cx43 (pCx43) staining of intercalated disc with less localizations in both groups than in the Con-group. Furthermore, lateralization of pCx43 was significantly low in the Aged-group and MetS-group, whereas there were no significant changes in the cytoplasmic internalization of both groups compared with the Con-group. Furthermore, the ratio of pCx43 to Cx43 was significantly small in both groups. We determined increases in RhoA and endothelin-1 in both groups, further supporting decreases in pCx43. Our data indicate the important role of I-R on long-QT in aging heart through alterations in both Cx43 protein level and localizations, leading to an abnormal spreading of ventricular repolarization in I-R heart.
Collapse
Affiliation(s)
| | | | - Belma Turan
- Department of Biophysics.,Faculty of Medicine, Ankara University, Ankara, Turkey, and Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
21
|
Elliott MK, Costa CM, Whitaker J, Gemmell P, Mehta VS, Sidhu BS, Gould J, Williams SE, O'Neill M, Razavi R, Niederer S, Bishop MJ, Rinaldi CA. Effect of scar and pacing location on repolarization in a porcine myocardial infarction model. Heart Rhythm O2 2022; 3:186-195. [PMID: 35496454 PMCID: PMC9043407 DOI: 10.1016/j.hroo.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background The effect of chronic ischemic scar on repolarization is unclear, with conflicting results from human and animal studies. An improved understanding of electrical remodeling within scar and border zone tissue may enhance substrate-guided ablation techniques for treatment of ventricular tachycardia. Computational modeling studies have suggested increased dispersion of repolarization during epicardial, but not endocardial, left ventricular pacing, in close proximity to scar. However, the effect of endocardial pacing near scar in vivo is unknown. Objective The purpose of this study was to investigate the effect of scar and pacing location on local repolarization in a porcine myocardial infarction model. Methods Six model pigs underwent late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging followed by electroanatomic mapping of the left ventricular endocardium. LGE-CMR images were registered to the anatomic shell and scar defined by LGE. Activation recovery intervals (ARIs), a surrogate for action potential duration, and local ARI gradients were calculated from unipolar electrograms within areas of late gadolinium enhancement (aLGE) and healthy myocardium. Results There was no significant difference between aLGE and healthy myocardium in mean ARI (304.20 ± 19.44 ms vs 300.59 ± 19.22 ms; P = .43), ARI heterogeneity (23.32 ± 11.43 ms vs 24.85 ± 12.99 ms; P = .54), or ARI gradients (6.18 ± 2.09 vs 5.66 ± 2.32 ms/mm; P = .39). Endocardial pacing distance from scar did not affect ARI gradients. Conclusion Our findings suggest that changes in ARI are not an intrinsic property of surviving myocytes within scar, and endocardial pacing close to scar does not affect local repolarization.
Collapse
Affiliation(s)
- Mark K Elliott
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Caroline Mendonca Costa
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Philip Gemmell
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Vishal S Mehta
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Baldeep S Sidhu
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Justin Gould
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Christopher A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
22
|
Lang D, Medvedev RY, Ratajczyk L, Zheng J, Yuan X, Lim E, Han OY, Valdivia HH, Glukhov AV. Region-specific distribution of transversal-axial tubule system organization underlies heterogeneity of calcium dynamics in the right atrium. Am J Physiol Heart Circ Physiol 2022; 322:H269-H284. [PMID: 34951544 PMCID: PMC8782648 DOI: 10.1152/ajpheart.00381.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The atrial myocardium demonstrates the highly heterogeneous organization of the transversal-axial tubule system (TATS), although its anatomical distribution and region-specific impact on Ca2+ dynamics remain unknown. Here, we developed a novel method for high-resolution confocal imaging of TATS in intact live mouse atrial myocardium and applied a custom-developed MATLAB-based computational algorithm for the automated analysis of TATS integrity. We observed a twofold higher (P < 0.01) TATS density in the right atrial appendage (RAA) than in the intercaval regions (ICR, the anatomical region between the superior vena cava and atrioventricular junction and between the crista terminalis and interatrial septum). Whereas RAA predominantly consisted of well-tubulated myocytes, ICR showed partially tubulated/untubulated cells. Similar TATS distribution was also observed in healthy human atrial myocardium sections. In both mouse atrial preparations and isolated mouse atrial myocytes, we observed a strong anatomical correlation between TATS distribution and Ca2+ transient synchronization and rise-up time. This region-specific difference in Ca2+ transient morphology disappeared after formamide-induced detubulation. ICR myocytes showed a prolonged action potential duration at 80% of repolarization as well as a significantly lower expression of RyR2 and Cav1.2 proteins but similar levels of NCX1 and Cav1.3 compared with RAA tissue. Our findings provide a detailed characterization of the region-specific distribution of TATS in mouse and human atrial myocardium, highlighting the structural foundation for anatomical heterogeneity of Ca2+ dynamics and contractility in the atria. These results could indicate different roles of TATS in Ca2+ signaling at distinct anatomical regions of the atria and provide mechanistic insight into pathological atrial remodeling.NEW & NOTEWORTHY Mouse and human atrial myocardium demonstrate high variability in the organization of the transversal-axial tubule system (TATS), with more organized TATS expressed in the right atrial appendage. TATS distribution governs anatomical heterogeneity of Ca2+ dynamics and thus could contribute to integral atrial contractility, mechanics, and arrhythmogenicity.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Lucas Ratajczyk
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jingjing Zheng
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Xiaoyu Yuan
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Evi Lim
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Owen Y Han
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Hector H Valdivia
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
23
|
Verheule S, Schotten U. Electrophysiological Consequences of Cardiac Fibrosis. Cells 2021; 10:cells10113220. [PMID: 34831442 PMCID: PMC8625398 DOI: 10.3390/cells10113220] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
For both the atria and ventricles, fibrosis is generally recognized as one of the key determinants of conduction disturbances. By definition, fibrosis refers to an increased amount of fibrous tissue. However, fibrosis is not a singular entity. Various forms can be distinguished, that differ in distribution: replacement fibrosis, endomysial and perimysial fibrosis, and perivascular, endocardial, and epicardial fibrosis. These different forms typically result from diverging pathophysiological mechanisms and can have different consequences for conduction. The impact of fibrosis on propagation depends on exactly how the patterns of electrical connections between myocytes are altered. We will therefore first consider the normal patterns of electrical connections and their regional diversity as determinants of propagation. Subsequently, we will summarize current knowledge on how different forms of fibrosis lead to a loss of electrical connectivity in order to explain their effects on propagation and mechanisms of arrhythmogenesis, including ectopy, reentry, and alternans. Finally, we will discuss a histological quantification of fibrosis. Because of the different forms of fibrosis and their diverging effects on electrical propagation, the total amount of fibrosis is a poor indicator for the effect on conduction. Ideally, an assessment of cardiac fibrosis should exclude fibrous tissue that does not affect conduction and differentiate between the various types that do; in this article, we highlight practical solutions for histological analysis that meet these requirements.
Collapse
|
24
|
Whitaker J, Neji R, Kim S, Connolly A, Aubriot T, Calvo JJ, Karim R, Roney CH, Murfin B, Richardson C, Morgan S, Ismail TF, Harrison J, de Vos J, Aalders MCG, Williams SE, Mukherjee R, O'Neill L, Chubb H, Tschabrunn C, Anter E, Camporota L, Niederer S, Roujol S, Bishop MJ, Wright M, Silberbauer J, Razavi R, O'Neill M. Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Assessment of Substrate for Ventricular Tachycardia With Hemodynamic Compromise. Front Cardiovasc Med 2021; 8:744779. [PMID: 34765656 PMCID: PMC8576410 DOI: 10.3389/fcvm.2021.744779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The majority of data regarding tissue substrate for post myocardial infarction (MI) VT has been collected during hemodynamically tolerated VT, which may be distinct from the substrate responsible for VT with hemodynamic compromise (VT-HC). This study aimed to characterize tissue at diastolic locations of VT-HC in a porcine model. Methods: Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging was performed in eight pigs with healed antero-septal infarcts. Seven pigs underwent electrophysiology study with venous arterial-extra corporeal membrane oxygenation (VA-ECMO) support. Tissue thickness, scar and heterogeneous tissue (HT) transmurality were calculated at the location of the diastolic electrograms of mapped VT-HC. Results: Diastolic locations had median scar transmurality of 33.1% and a median HT transmurality 7.6%. Diastolic activation was found within areas of non-transmural scar in 80.1% of cases. Tissue activated during the diastolic component of VT circuits was thinner than healthy tissue (median thickness: 5.5 mm vs. 8.2 mm healthy tissue, p < 0.0001) and closer to HT (median distance diastolic tissue: 2.8 mm vs. 11.4 mm healthy tissue, p < 0.0001). Non-scarred regions with diastolic activation were closer to steep gradients in thickness than non-scarred locations with normal EGMs (diastolic locations distance = 1.19 mm vs. 9.67 mm for non-diastolic locations, p < 0.0001). Sites activated late in diastole were closest to steep gradients in tissue thickness. Conclusions: Non-transmural scar, mildly decreased tissue thickness, and steep gradients in tissue thickness represent the structural characteristics of the diastolic component of reentrant circuits in VT-HC in this porcine model and could form the basis for imaging criteria to define ablation targets in future trials.
Collapse
Affiliation(s)
- John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Siemens Healthcare, Frimley, United Kingdom
| | - Steven Kim
- Abbott Medical, St Paul, MN, United States
| | - Adam Connolly
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | | | - Justo Juliá Calvo
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Rashed Karim
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Caroline H Roney
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Brendan Murfin
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Carla Richardson
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Stephen Morgan
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - James Harrison
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maurice C G Aalders
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Rahul Mukherjee
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Louisa O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Henry Chubb
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Cory Tschabrunn
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elad Anter
- Cleveland Clinic, Cleveland, OH, United States
| | - Luigi Camporota
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Matthew Wright
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - John Silberbauer
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| |
Collapse
|
25
|
Sankarankutty AC, Greiner J, Bragard J, Visker JR, Shankar TS, Kyriakopoulos CP, Drakos SG, Sachse FB. Etiology-Specific Remodeling in Ventricular Tissue of Heart Failure Patients and Its Implications for Computational Modeling of Electrical Conduction. Front Physiol 2021; 12:730933. [PMID: 34675817 PMCID: PMC8523803 DOI: 10.3389/fphys.2021.730933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
With an estimated 64.3 million cases worldwide, heart failure (HF) imposes an enormous burden on healthcare systems. Sudden death from arrhythmia is the major cause of mortality in HF patients. Computational modeling of the failing heart provides insights into mechanisms of arrhythmogenesis, risk stratification of patients, and clinical treatment. However, the lack of a clinically informed approach to model cardiac tissues in HF hinders progress in developing patient-specific strategies. Here, we provide a microscopy-based foundation for modeling conduction in HF tissues. We acquired 2D images of left ventricular tissues from HF patients (n = 16) and donors (n = 5). The composition and heterogeneity of fibrosis were quantified at a sub-micrometer resolution over an area of 1 mm2. From the images, we constructed computational bidomain models of tissue electrophysiology. We computed local upstroke velocities of the membrane voltage and anisotropic conduction velocities (CV). The non-myocyte volume fraction was higher in HF than donors (39.68 ± 14.23 vs. 22.09 ± 2.72%, p < 0.01), and higher in ischemic (IC) than nonischemic (NIC) cardiomyopathy (47.2 ± 16.18 vs. 32.16 ± 6.55%, p < 0.05). The heterogeneity of fibrosis within each subject was highest for IC (27.1 ± 6.03%) and lowest for donors (7.47 ± 1.37%) with NIC (15.69 ± 5.76%) in between. K-means clustering of this heterogeneity discriminated IC and NIC with an accuracy of 81.25%. The heterogeneity in CV increased from donor to NIC to IC tissues. CV decreased with increasing fibrosis for longitudinal (R 2 = 0.28, p < 0.05) and transverse conduction (R 2 = 0.46, p < 0.01). The tilt angle of the CV vectors increased 2.1° for longitudinal and 0.91° for transverse conduction per 1% increase in fibrosis. Our study suggests that conduction fundamentally differs in the two etiologies due to the characteristics of fibrosis. Our study highlights the importance of the etiology-specific modeling of HF tissues and integration of medical history into electrophysiology models for personalized risk stratification and treatment planning.
Collapse
Affiliation(s)
- Aparna C Sankarankutty
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg⋅Bad Krozingen, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean Bragard
- Department of Physics and Applied Mathematics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Joseph R Visker
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Thirupura S Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Christos P Kyriakopoulos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
26
|
Remodeling of Cardiac Gap Junctional Cell-Cell Coupling. Cells 2021; 10:cells10092422. [PMID: 34572071 PMCID: PMC8465208 DOI: 10.3390/cells10092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
The heart works as a functional syncytium, which is realized via cell-cell coupling maintained by gap junction channels. These channels connect two adjacent cells, so that action potentials can be transferred. Each cell contributes a hexameric hemichannel (=connexon), formed by protein subuntis named connexins. These hemichannels dock to each other and form the gap junction channel. This channel works as a low ohmic resistor also allowing the passage of small molecules up to 1000 Dalton. Connexins are a protein family comprising of 21 isoforms in humans. In the heart, the main isoforms are Cx43 (the 43 kDa connexin; ubiquitous), Cx40 (mostly in atrium and specific conduction system), and Cx45 (in early developmental states, in the conduction system, and between fibroblasts and cardiomyocytes). These gap junction channels are mainly located at the polar region of the cardiomyocytes and thus contribute to the anisotropic pattern of cardiac electrical conductivity. While in the beginning the cell–cell coupling was considered to be static, similar to an anatomically defined structure, we have learned in the past decades that gap junctions are also subject to cardiac remodeling processes in cardiac disease such as atrial fibrillation, myocardial infarction, or cardiomyopathy. The underlying remodeling processes include the modulation of connexin expression by e.g., angiotensin, endothelin, or catecholamines, as well as the modulation of the localization of the gap junctions e.g., by the direction and strength of local mechanical forces. A reduction in connexin expression can result in a reduced conduction velocity. The alteration of gap junction localization has been shown to result in altered pathways of conduction and altered anisotropy. In particular, it can produce or contribute to non-uniformity of anisotropy, and thereby can pre-form an arrhythmogenic substrate. Interestingly, these remodeling processes seem to be susceptible to certain pharmacological treatment.
Collapse
|
27
|
Molecular remodeling of Cx43, but not structural remodeling, promotes arrhythmias in an arrhythmogenic canine model of nonischemic heart failure. J Mol Cell Cardiol 2021; 158:72-81. [PMID: 34048725 DOI: 10.1016/j.yjmcc.2021.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Both gap junctional remodeling and interstitial fibrosis have been linked to impaired electrical conduction velocity (CV) and fatal ventricular arrhythmias in nonischemic heart failure (HF). However, the arrhythmogenic role of the ventricular gap junctional Cx43 in nonischemic HF remains in debate. Here, we assessed this in a newly developed arrhythmogenic canine model of nonischemic HF. METHODS AND RESULTS Nonischemic HF was induced in canines by combined aortic valve insufficiency and aortic constriction. Left ventricular (LV) myocardium from HF dogs showed similar pathological changes to that of humans. HF dogs had reduced LV function, widened QRS complexes, and spontaneous nonsustained ventricular tachycardia. CV was measured in intact LV epicardium with high-density grid mapping. Total (Cx43-T) and nonphosphorylated Cx43 (Cx43-NP) and histological interstitial fibrosis were assessed from these mapped LV tissues. Longitudinal CV, which was slowed in HF (49 ± 1 vs. 65 ± 2 cm/s in Ctl), was positively correlated with reduced total junctional Cx43 and negatively correlated with markedly increased junctional Cx43-NP (2-fold) in HF. Cx43 dephosphorylation in HF was associated with enhanced colocalization of PP2A at the level of Cx43. Unchanged action potential upstroke and transverse CV were associated with unaltered Cx43 lateralization and interstitial fibrosis in the nonischemic HF canine LV. CONCLUSION Our unique arrhythmogenic canine model of HF resembles human nonischemic HF (prior to the end stage). Cx43 remodeling occurs prior to the structural remodeling (with lack of fibrosis) in HF and it is crucial in slowed CV and ventricular arrhythmia development. Our findings suggest that altered Cx43 alone is arrhythmogenic and modulation of Cx43 has the anti-arrhythmic therapeutic potential for HF patients.
Collapse
|
28
|
Early myocardial damage (EMD) and valvular dysfunction after femur fracture in pigs. Sci Rep 2021; 11:8503. [PMID: 33875675 PMCID: PMC8055677 DOI: 10.1038/s41598-021-86151-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Musculoskeletal injuries are the most common reason for surgery in severely injured patients. In addition to direct cardiac damage after physical trauma, there is rising evidence that trauma induces secondary cardiac structural and functional damage. Previous research associates hip fractures with the appearance of coronary heart disease: As 25% of elderly patients developed a major adverse cardiac event after hip fracture. 20 male pigs underwent femur fracture with operative stabilization via nailing (unreamed, reamed, RIA I and a new RIA II; each group n = 5). Blood samples were collected 6 h after trauma and the concentration of troponin I and heart-type fatty acid binding protein (HFABP) as biomarkers for EMD were measured. At baseline and 6 h after trauma, transesophageal ECHO (TOE) was performed; and invasive arterial and left ventricular blood pressure were measured to evaluate the cardiac function after femur fracture. A systemic elevation of troponin I and HFABP indicate an early myocardial damage after femur fracture in pigs. Furthermore, various changes in systolic (ejection fraction and cardiac output) and diastolic (left ventricular end-diastolic pressure, mitral valve deceleration time and E/A ratio) parameters illustrate the functional impairment of the heart. These findings were accompanied by the development of valvular dysfunction (pulmonary and tricuspid valve). To the best of our knowledge, we described for the first time the development of functional impairment of the heart in the context of EMD after long bone fracture in pigs. Next to troponin and HFABP elevation, alterations in the systolic and diastolic function occurred and were accompanied by pulmonary and tricuspid valvular insufficiency. Regarding EMD, none of the fracture stabilization techniques (unreamed nailing, reaming, RIA I and RIA II) was superior.
Collapse
|
29
|
Weber B, Lackner I, Gebhard F, Miclau T, Kalbitz M. Trauma, a Matter of the Heart-Molecular Mechanism of Post-Traumatic Cardiac Dysfunction. Int J Mol Sci 2021; 22:E737. [PMID: 33450984 PMCID: PMC7828409 DOI: 10.3390/ijms22020737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Trauma remains a leading global cause of mortality, particularly in the young population. In the United States, approximately 30,000 patients with blunt cardiac trauma were recorded annually. Cardiac damage is a predictor for poor outcome after multiple trauma, with a poor prognosis and prolonged in-hospitalization. Systemic elevation of cardiac troponins was correlated with survival, injury severity score, and catecholamine consumption of patients after multiple trauma. The clinical features of the so-called "commotio cordis" are dysrhythmias, including ventricular fibrillation and sudden cardiac arrest as well as wall motion disorders. In trauma patients with inappropriate hypotension and inadequate response to fluid resuscitation, cardiac injury should be considered. Therefore, a combination of echocardiography (ECG) measurements, echocardiography, and systemic appearance of cardiomyocyte damage markers such as troponin appears to be an appropriate diagnostic approach to detect cardiac dysfunction after trauma. However, the mechanisms of post-traumatic cardiac dysfunction are still actively being investigated. This review aims to discuss cardiac damage following trauma, focusing on mechanisms of post-traumatic cardiac dysfunction associated with inflammation and complement activation. Herein, a causal relationship of cardiac dysfunction to traumatic brain injury, blunt chest trauma, multiple trauma, burn injury, psychosocial stress, fracture, and hemorrhagic shock are illustrated and therapeutic options are discussed.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, 2550 23rd Street, San Francisco, CA 94110, USA;
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| |
Collapse
|
30
|
Kotadia I, Whitaker J, Roney C, Niederer S, O’Neill M, Bishop M, Wright M. Anisotropic Cardiac Conduction. Arrhythm Electrophysiol Rev 2020; 9:202-210. [PMID: 33437488 PMCID: PMC7788398 DOI: 10.15420/aer.2020.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/09/2020] [Indexed: 01/06/2023] Open
Abstract
Anisotropy is the property of directional dependence. In cardiac tissue, conduction velocity is anisotropic and its orientation is determined by myocyte direction. Cell shape and size, excitability, myocardial fibrosis, gap junction distribution and function are all considered to contribute to anisotropic conduction. In disease states, anisotropic conduction may be enhanced, and is implicated, in the genesis of pathological arrhythmias. The principal mechanism responsible for enhanced anisotropy in disease remains uncertain. Possible contributors include changes in cellular excitability, changes in gap junction distribution or function and cellular uncoupling through interstitial fibrosis. It has recently been demonstrated that myocyte orientation may be identified using diffusion tensor magnetic resonance imaging in explanted hearts, and multisite pacing protocols have been proposed to estimate myocyte orientation and anisotropic conduction in vivo. These tools have the potential to contribute to the understanding of the role of myocyte disarray and anisotropic conduction in arrhythmic states.
Collapse
Affiliation(s)
- Irum Kotadia
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Caroline Roney
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Mark O’Neill
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Martin Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Matthew Wright
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
31
|
Miller JM, Meki MH, Ou Q, George SA, Gams A, Abouleisa RRE, Tang XL, Ahern BM, Giridharan GA, El-Baz A, Hill BG, Satin J, Conklin DJ, Moslehi J, Bolli R, Ribeiro AJS, Efimov IR, Mohamed TMA. Heart slice culture system reliably demonstrates clinical drug-related cardiotoxicity. Toxicol Appl Pharmacol 2020; 406:115213. [PMID: 32877659 PMCID: PMC7554180 DOI: 10.1016/j.taap.2020.115213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 μm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 μM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.
Collapse
Affiliation(s)
- Jessica M Miller
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, USA; Department of Bioengineering, University of Louisville, KY, USA
| | - Moustafa H Meki
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, USA; Department of Bioengineering, University of Louisville, KY, USA
| | - Qinghui Ou
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, USA
| | - Sharon A George
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Anna Gams
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Riham R E Abouleisa
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, USA
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, USA
| | - Brooke M Ahern
- Department of Physiology, University of Kentucky, KY, USA
| | | | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, KY, USA
| | - Bradford G Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, KY, USA
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, KY, USA
| | - Daniel J Conklin
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, KY, USA
| | - Javid Moslehi
- Division of Cardiology, Cardio-Oncology Program, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, USA
| | - Alexandre J S Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD, USA.
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
| | - Tamer M A Mohamed
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, USA; Department of Bioengineering, University of Louisville, KY, USA; Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, KY, USA; Institute of Cardiovascular Sciences, University of Manchester, UK; Faculty of Pharmacy, Zagazig University, Egypt.
| |
Collapse
|
32
|
Balaban G, Costa CM, Porter B, Halliday B, Rinaldi CA, Prasad S, Plank G, Ismail TF, Bishop MJ. 3D Electrophysiological Modeling of Interstitial Fibrosis Networks and Their Role in Ventricular Arrhythmias in Non-Ischemic Cardiomyopathy. IEEE Trans Biomed Eng 2020; 67:3125-3133. [PMID: 32275581 PMCID: PMC7116885 DOI: 10.1109/tbme.2020.2976924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Interstitial fibrosis is a pathological expansion of the heart's inter-cellular collagen matrix. It is a potential complication of nonischemic cardiomyopathy (NICM), a class of diseases involving electrical and or mechanical dysfunction of cardiac tissue not caused by atherosclerosis. Patients with NICM and interstitial fibrosis often suffer from life threatening arrhythmias, which we aim to simulate in this study. METHODS Our methodology builds on an efficient discrete finite element (DFE) method which allows for the representation of fibrosis as infinitesimal splits in a mesh. We update the DFE method with a local connectivity analysis which creates a consistent topology in the fibrosis network. This is particularly important in nonischemic disease due to the potential presence of large and contiguous fibrotic regions and therefore potentially complex fibrosis networks. RESULTS In experiments with an image-based model, we demonstrate that our methodology is able to simulate reentrant electrical events associated with cardiac arrhythmias. These reentries depended crucially upon sufficient fibrosis density, which was marked by conduction slowing at high pacing rates. We also created a 2D test-case which demonstrated that fibrosis topologies can modulate transient conduction block, and thereby reentrant activations. CONCLUSION Ventricular arrhythmias due to interstitial fibrosis in NICM can be efficiently simulated using our methods in medical image based geometries. Furthermore, fibrosis topology modulates transient conduction block, and should be accounted for in electrophysiological simulations with interstitial fibrosis. SIGNIFICANCE Our study provides methodology which has the potential to predict arrhythmias and to optimize treatments non-invasively for nonischemic cardiomyopathies.
Collapse
|
33
|
Wan Ab Naim WN, Mohamed Mokhtarudin MJ, Chan BT, Lim E, Ahmad Bakir A, Nik Mohamed NA. The study of myocardial ischemia-reperfusion treatment through computational modelling. J Theor Biol 2020; 509:110527. [PMID: 33096094 DOI: 10.1016/j.jtbi.2020.110527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
Reperfusion of the blood flow to ischemic myocardium is the standard treatment for patients suffering myocardial infarction. However, the reperfusion itself can also induce myocardial injury, in which the actual mechanism and its risk factors remain unclear. This work aims to study the mechanism of ischemia-reperfusion treatment using a three-dimensional (3D) oxygen diffusion model. An electrical model is then coupled to an oxygen model to identify the possible region of myocardial damage. Our findings show that the value of oxygen exceeds its optimum (>1.0) at the ischemic area during early reperfusion period. This complication was exacerbated in a longer ischemic period. While a longer reperfusion time causes a continuous excessive oxygen supply to the ischemic area throughout the reperfusion time. This work also suggests the use of less than 0.8 of initial oxygen concentration in the reperfusion treatment to prevent undesired upsurge at the early reperfusion period and further myocardial injury. We also found the region at risk for myocardial injury is confined in the ischemic vicinity revealed by its electrical conductivity impairment. Although there is a risk that reperfusion leads to myocardial injury for excessive oxygen accumulation, the reperfusion treatment is helpful in reducing the infarct size.
Collapse
Affiliation(s)
- Wan Naimah Wan Ab Naim
- Faculty of Mechanical and Automotive Engineering Technology, University Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| | - Mohd Jamil Mohamed Mokhtarudin
- Department of Mechanical Engineering, College of Engineering, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.
| | - Bee Ting Chan
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham, 43500 Selangor, Malaysia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Azam Ahmad Bakir
- University of Southampton Malaysia Campus, No 3, Persiaran Canselor 1, Kota Ilmu Educity, 79200 Iskandar Puteri, Johor, Malaysia
| | - Nik Abdullah Nik Mohamed
- Faculty of Mechanical and Automotive Engineering Technology, University Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| |
Collapse
|
34
|
Napiwocki BN, Lang D, Stempien A, Zhang J, Vaidyanathan R, Makielski JC, Eckhardt LL, Glukhov AV, Kamp TJ, Crone WC. Aligned human cardiac syncytium for in vitro analysis of electrical, structural, and mechanical readouts. Biotechnol Bioeng 2020; 118:442-452. [PMID: 32990953 DOI: 10.1002/bit.27582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/30/2020] [Accepted: 09/11/2020] [Indexed: 11/06/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as an exciting new tool for cardiac research and can serve as a preclinical platform for drug development and disease modeling studies. However, these aspirations are limited by current culture methods in which hPSC-CMs resemble fetal human cardiomyocytes in terms of structure and function. Herein we provide a novel in vitro platform that includes patterned extracellular matrix with physiological substrate stiffness and is amenable to both mechanical and electrical analysis. Micropatterned lanes promote the cellular and myofibril alignment of hPSC-CMs while the addition of micropatterned bridges enable formation of a functional cardiac syncytium that beats synchronously over a large two-dimensional area. We investigated the electrophysiological properties of the patterned cardiac constructs and showed they have anisotropic electrical impulse propagation, as occurs in the native myocardium, with speeds 2x faster in the primary direction of the pattern as compared to the transverse direction. Lastly, we interrogated the mechanical function of the pattern constructs and demonstrated the utility of this platform in recording the strength of cardiomyocyte contractions. This biomimetic platform with electrical and mechanical readout capabilities will enable the study of cardiac disease and the influence of pharmaceuticals and toxins on cardiomyocyte function. The platform also holds potential for high throughput evaluation of drug safety and efficacy, thus furthering our understanding of cardiovascular disease and increasing the translational use of hPSC-CMs.
Collapse
Affiliation(s)
- B N Napiwocki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - D Lang
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - A Stempien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J Zhang
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R Vaidyanathan
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J C Makielski
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - L L Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - A V Glukhov
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - T J Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - W C Crone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Hassan S, Barrett CJ, Crossman DJ. Imaging tools for assessment of myocardial fibrosis in humans: the need for greater detail. Biophys Rev 2020; 12:969-987. [PMID: 32705483 PMCID: PMC7429810 DOI: 10.1007/s12551-020-00738-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Myocardial fibrosis is recognized as a key pathological process in the development of cardiac disease and a target for future therapeutics. Despite this recognition, the assessment of fibrosis is not a part of routine clinical practice. This is primarily due to the difficulties in obtaining an accurate assessment of fibrosis non-invasively. Moreover, there is a clear discrepancy between the understandings of myocardial fibrosis clinically where fibrosis is predominately studied with comparatively low-resolution medical imaging technologies like MRI compared with the basic science laboratories where fibrosis can be visualized invasively with high resolution using molecularly specific fluorescence microscopes at the microscopic and nanoscopic scales. In this article, we will first review current medical imaging technologies for assessing fibrosis including echo and MRI. We will then highlight the need for greater microscopic and nanoscopic analysis of human tissue and how this can be addressed through greater utilization of human tissue available through endomyocardial biopsies and cardiac surgeries. We will then describe the relatively new field of molecular imaging that promises to translate research findings to the clinical practice by non-invasively monitoring the molecular signature of fibrosis in patients.
Collapse
Affiliation(s)
- Summer Hassan
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Carolyn J Barrett
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
36
|
Gemmell PM, Gillette K, Balaban G, Rajani R, Vigmond EJ, Plank G, Bishop MJ. A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischæmic dilated cardiomyopathy. Comput Biol Med 2020; 123:103895. [PMID: 32741753 PMCID: PMC7429989 DOI: 10.1016/j.compbiomed.2020.103895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/12/2020] [Accepted: 06/27/2020] [Indexed: 01/13/2023]
Abstract
Patients with scar-associated fibrotic tissue remodelling are at greater risk of ventricular arrhythmic events, but current methods to detect the presence of such remodelling require invasive procedures. We present here a potential method to detect the presence, location and dimensions of scar using pacing-dependent changes in the vectorcardiogram (VCG). Using a clinically-derived whole-torso computational model, simulations were conducted at both slow and rapid pacing for a variety of scar patterns within the myocardium, with various VCG-derived metrics being calculated, with changes in these metrics being assessed for their ability to discern the presence and size of scar. Our results indicate that differences in the dipole angle at the end of the QRS complex and differences in the QRS area and duration may be used to predict scar properties. Using machine learning techniques, we were also able to predict the location of the scar to high accuracy, using only these VCG-derived rate-dependent changes as input. Such a non-invasive predictive tool for the presence of scar represents a potentially useful clinical tool for identifying patients at arrhythmic risk.
Collapse
Affiliation(s)
- Philip M Gemmell
- King's College London, St. Thomas' Hospital North Wing, London, SE1 7EH, UK.
| | - Karli Gillette
- Medical University of Graz, Division of Biophysics, Neue Stiftingtalstraße 6(MC1.D.)/IV, 8010 Graz, Austria
| | - Gabriel Balaban
- University of Oslo, Research Group for Biomedical Infomatics, Gaustadalléen 23B 0373 Oslo, Norway
| | - Ronak Rajani
- King's College London, St. Thomas' Hospital North Wing, London, SE1 7EH, UK
| | - Edward J Vigmond
- University of Bordeaux, IHU Liryc, Site Hopital Xavier Arnozan, Avenue de Haut-Leveque, 33604 Pessac, France
| | - Gernot Plank
- Medical University of Graz, Division of Biophysics, Neue Stiftingtalstraße 6(MC1.D.)/IV, 8010 Graz, Austria
| | - Martin J Bishop
- King's College London, St. Thomas' Hospital North Wing, London, SE1 7EH, UK
| |
Collapse
|
37
|
Ntalla I, Weng LC, Cartwright JH, Hall AW, Sveinbjornsson G, Tucker NR, Choi SH, Chaffin MD, Roselli C, Barnes MR, Mifsud B, Warren HR, Hayward C, Marten J, Cranley JJ, Concas MP, Gasparini P, Boutin T, Kolcic I, Polasek O, Rudan I, Araujo NM, Lima-Costa MF, Ribeiro ALP, Souza RP, Tarazona-Santos E, Giedraitis V, Ingelsson E, Mahajan A, Morris AP, Del Greco M F, Foco L, Gögele M, Hicks AA, Cook JP, Lind L, Lindgren CM, Sundström J, Nelson CP, Riaz MB, Samani NJ, Sinagra G, Ulivi S, Kähönen M, Mishra PP, Mononen N, Nikus K, Caulfield MJ, Dominiczak A, Padmanabhan S, Montasser ME, O'Connell JR, Ryan K, Shuldiner AR, Aeschbacher S, Conen D, Risch L, Thériault S, Hutri-Kähönen N, Lehtimäki T, Lyytikäinen LP, Raitakari OT, Barnes CLK, Campbell H, Joshi PK, Wilson JF, Isaacs A, Kors JA, van Duijn CM, Huang PL, Gudnason V, Harris TB, Launer LJ, Smith AV, Bottinger EP, Loos RJF, Nadkarni GN, Preuss MH, Correa A, Mei H, Wilson J, Meitinger T, Müller-Nurasyid M, Peters A, Waldenberger M, Mangino M, Spector TD, Rienstra M, van de Vegte YJ, van der Harst P, Verweij N, Kääb S, Schramm K, Sinner MF, Strauch K, Cutler MJ, Fatkin D, London B, Olesen M, Roden DM, et alNtalla I, Weng LC, Cartwright JH, Hall AW, Sveinbjornsson G, Tucker NR, Choi SH, Chaffin MD, Roselli C, Barnes MR, Mifsud B, Warren HR, Hayward C, Marten J, Cranley JJ, Concas MP, Gasparini P, Boutin T, Kolcic I, Polasek O, Rudan I, Araujo NM, Lima-Costa MF, Ribeiro ALP, Souza RP, Tarazona-Santos E, Giedraitis V, Ingelsson E, Mahajan A, Morris AP, Del Greco M F, Foco L, Gögele M, Hicks AA, Cook JP, Lind L, Lindgren CM, Sundström J, Nelson CP, Riaz MB, Samani NJ, Sinagra G, Ulivi S, Kähönen M, Mishra PP, Mononen N, Nikus K, Caulfield MJ, Dominiczak A, Padmanabhan S, Montasser ME, O'Connell JR, Ryan K, Shuldiner AR, Aeschbacher S, Conen D, Risch L, Thériault S, Hutri-Kähönen N, Lehtimäki T, Lyytikäinen LP, Raitakari OT, Barnes CLK, Campbell H, Joshi PK, Wilson JF, Isaacs A, Kors JA, van Duijn CM, Huang PL, Gudnason V, Harris TB, Launer LJ, Smith AV, Bottinger EP, Loos RJF, Nadkarni GN, Preuss MH, Correa A, Mei H, Wilson J, Meitinger T, Müller-Nurasyid M, Peters A, Waldenberger M, Mangino M, Spector TD, Rienstra M, van de Vegte YJ, van der Harst P, Verweij N, Kääb S, Schramm K, Sinner MF, Strauch K, Cutler MJ, Fatkin D, London B, Olesen M, Roden DM, Benjamin Shoemaker M, Gustav Smith J, Biggs ML, Bis JC, Brody JA, Psaty BM, Rice K, Sotoodehnia N, De Grandi A, Fuchsberger C, Pattaro C, Pramstaller PP, Ford I, Wouter Jukema J, Macfarlane PW, Trompet S, Dörr M, Felix SB, Völker U, Weiss S, Havulinna AS, Jula A, Sääksjärvi K, Salomaa V, Guo X, Heckbert SR, Lin HJ, Rotter JI, Taylor KD, Yao J, de Mutsert R, Maan AC, Mook-Kanamori DO, Noordam R, Cucca F, Ding J, Lakatta EG, Qian Y, Tarasov KV, Levy D, Lin H, Newton-Cheh CH, Lunetta KL, Murray AD, Porteous DJ, Smith BH, Stricker BH, Uitterlinden A, van den Berg ME, Haessler J, Jackson RD, Kooperberg C, Peters U, Reiner AP, Whitsel EA, Alonso A, Arking DE, Boerwinkle E, Ehret GB, Soliman EZ, Avery CL, Gogarten SM, Kerr KF, Laurie CC, Seyerle AA, Stilp A, Assa S, Abdullah Said M, Yldau van der Ende M, Lambiase PD, Orini M, Ramirez J, Van Duijvenboden S, Arnar DO, Gudbjartsson DF, Holm H, Sulem P, Thorleifsson G, Thorolfsdottir RB, Thorsteinsdottir U, Benjamin EJ, Tinker A, Stefansson K, Ellinor PT, Jamshidi Y, Lubitz SA, Munroe PB. Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction. Nat Commun 2020; 11:2542. [PMID: 32439900 PMCID: PMC7242331 DOI: 10.1038/s41467-020-15706-x] [Show More Authors] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.
Collapse
Affiliation(s)
- Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lu-Chen Weng
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James H Cartwright
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amelia Weber Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Nathan R Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark D Chaffin
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Roselli
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - James J Cranley
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
- Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | - Thibaud Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ivana Kolcic
- University of Split School of Medicine, Split, Croatia
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
- Clinical Hospital Centre Split, Split, Croatia
- Psychiatric Hospital Sveti Ivan, Zagreb, Croatia
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Nathalia M Araujo
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Antonio Luiz P Ribeiro
- Hospital das Clínicas e Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renan P Souza
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Tarazona-Santos
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Fabiola Del Greco M
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Martin Gögele
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Lars Lind
- Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Cecilia M Lindgren
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, UK
| | - Muhammad B Riaz
- Department of Cardiovascular Sciences, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, UK
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Ospedaliera Universitaria Integrata of Trieste, Trieste, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center, Tampere University, Tampere, Finland
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Anna Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeff R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen Ryan
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - David Conen
- Cardiology Division, University Hospital, Basel, Switzerland
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Lorenz Risch
- Institute of Clinical Chemistry, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, QC, Canada
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Department of Pediatrics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center, Tampere University, Tampere, Finland
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Catriona L K Barnes
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - James F Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht Center for Systems Biology (MaCSBio), Department of Biochemistry, and Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Jan A Kors
- Department of Medical Informatics Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul L Huang
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - James Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Thomas Meitinger
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Müller-Nurasyid
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Annette Peters
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yordi J van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Genomics plc, Oxford, UK
| | - Stefan Kääb
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Katharina Schramm
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Moritz F Sinner
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- Cardiology Department, St. Vincent's Hospital, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Barry London
- Department of Cardiovascular Medicine, University of Iowa, Iowa City, IA, USA
| | - Morten Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Wallenberg Center for Molecular Medicine, Lund University Diabetes Center, Lund University and Skane University Hospital, Lund, Sweden
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiology Division, University of Washington, Seattle, WA, USA
| | - Alessandro De Grandi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Cristian Pattaro
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter W Macfarlane
- Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stella Trompet
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional Genomics; University Medicine and University of Greifswald, Greifswald, Germany
| | - Stefan Weiss
- DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional Genomics; University Medicine and University of Greifswald, Greifswald, Germany
| | - Aki S Havulinna
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antti Jula
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Henry J Lin
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arie C Maan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco Cucca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Jun Ding
- Laboratory of Genetics and Genomics, NIA/NIH, Baltimore, MD, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, NIA/NIH, Baltimore, MD, USA
| | - Yong Qian
- Laboratory of Genetics and Genomics, NIA/NIH, Baltimore, MD, USA
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, NIA/NIH, Baltimore, MD, USA
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Honghuang Lin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Christopher H Newton-Cheh
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Human Genetic Research and Cardiovascular Research Center, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn L Lunetta
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alison D Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Bruno H Stricker
- Department of Epidemiology Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - André Uitterlinden
- Human Genotyping Facility Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marten E van den Berg
- Department of Epidemiology Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeffrey Haessler
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, OH, USA
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Ulrike Peters
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Alexander P Reiner
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Eric A Whitsel
- Departments of Epidemiology and Medicine, Gillings School of Global Public Health and School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georg B Ehret
- Cardiology, Geneva University Hospitals, Geneva, Switzerland
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Amanda A Seyerle
- Division of Pharmaceutical Outcomes and Policy, University of North Carolina, Chapel Hill, NC, USA
| | - Adrienne Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Solmaz Assa
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Yldau van der Ende
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomews Hospital, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Michele Orini
- Barts Heart Centre, St Bartholomews Hospital, London, UK
- Department of Mechanical Engineering, University College London, London, UK
| | - Julia Ramirez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Stefan Van Duijvenboden
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - David O Arnar
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | - Rosa B Thorolfsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Emelia J Benjamin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Section of Cardiovascular Medicine and Section of Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Andrew Tinker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, UK
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA.
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.
| |
Collapse
|
38
|
Toll-Like Receptor-Mediated Cardiac Injury during Experimental Sepsis. Mediators Inflamm 2020; 2020:6051983. [PMID: 32410859 PMCID: PMC7199613 DOI: 10.1155/2020/6051983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Sepsis is associated with global cardiac dysfunction and with high mortality rate. The development of septic cardiomyopathy is due to complex interactions of damage-associated molecular patters, cytokines, and complement activation products. The aim of this study was to define the effects of sepsis on cardiac structure, gap junction, and tight junction (TJ) proteins. Sepsis was induced by cecal ligation and puncture in male C57BL/6 mice. After a period of 24 h, the expression of cardiac structure, gap junction, and TJ proteins was determined. Murine HL-1 cells were stimulated with LPS, and mRNA expression of cardiac structure and gap junction proteins, intracellular reactive oxygen species, and troponin I release was analyzed. Furthermore, pyrogenic receptor subtype 7 (P2X7) expression and troponin I release of human cardiomyocytes (iPS) were determined after LPS exposure. In vivo, protein expression of connexin43 and α-actinin was decreased after the onset of polymicrobial sepsis, whereas in HL-1 cells, mRNA expression of connexin43, α-actinin, and desmin was increased in the presence of LPS. Expression of TJ proteins was not affected in vivo during sepsis. Although the presence of LPS and nigericin resulted in a significant troponin I release from HL-1 cells. Sepsis affected cardiac structure and gap junction proteins in mice, potentially contributing to compromised cardiac function.
Collapse
|
39
|
The Role of Proteostasis in the Regulation of Cardiac Intercellular Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:279-302. [DOI: 10.1007/978-3-030-38266-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Impact of Decreased Transmural Conduction Velocity on the Function of the Human Left Ventricle: A Simulation Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2867865. [PMID: 32337235 PMCID: PMC7160730 DOI: 10.1155/2020/2867865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Abstract
This study investigates the impact of reduced transmural conduction velocity (TCV) on output parameters of the human heart. In a healthy heart, the TCV contributes to synchronization of the onset of contraction in individual layers of the left ventricle (LV). However, it is unclear whether the clinically observed decrease of TCV contributes significantly to a reduction of LV contractility. The applied three-dimensional finite element model of isovolumic contraction of the human LV incorporates transmural gradients in electromechanical delay and myocyte shortening velocity and evaluates the impact of TCV reduction on pressure rise (namely, (dP/dt)max) and on isovolumic contraction duration (IVCD) in a healthy LV. The model outputs are further exploited in the lumped “Windkessel” model of the human cardiovascular system (based on electrohydrodynamic analogy of respective differential equations) to simulate the impact of changes of (dP/dt)max and IVCD on chosen systemic parameters (ejection fraction, LV power, cardiac output, and blood pressure). The simulations have shown that a 50% decrease in TCV prolongs substantially the isovolumic contraction, decelerates slightly the LV pressure rise, increases the LV energy consumption, and reduces the LV power. These negative effects increase progressively with further reduction of TCV. In conclusion, these results suggest that the pumping efficacy of the human LV decreases with lower TCV due to a higher energy consumption and lower LV power. Although the changes induced by the clinically relevant reduction of TCV are not critical for a healthy heart, they may represent an important factor limiting the heart function under disease conditions.
Collapse
|
41
|
Pospisil D, Novotny T, Jarkovsky J, Farkasova B, Kozak M, Krivan L, Vlasinova J, Kala P, Sepsi M. Differences in right-to-left vs left-to-right interventricular conduction times in patients indicated to cardiac resynchronization therapy. PLoS One 2020; 15:e0228731. [PMID: 32074118 PMCID: PMC7029862 DOI: 10.1371/journal.pone.0228731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/21/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Differences in conduction times from right ventricle to left ventricle and from left ventricle to right ventricle respectively were observed during biventricular devices implantation when changing pacing vector direction. In this article the phenomenon of interventricular conduction time differences is described and assessed in relationship to various clinical and electrophysiological parameters. METHODS In 62 consecutive patients (9 females) interventricular conduction times between right and left ventricle in both directions were measured during cardiac resynchronization therapy device implantation procedure. Complex pacing protocol was performed. RESULTS Investigated individuals was divided into 3 subgroups according to type of interventricular conduction pattern and statistically tested with various clinical data. Substantial differences in right-to-left vs left-to-right conduction times (> 5 ms, range 7-72 ms) were observed in 24 (39%) of all patients. They were more common in patients with dilated cardiomyopathy (20 of 38, 53%) compared to 4 (17%) of 24 patients with coronary artery disease (p = 0.011). The phenomenon occurred more often in hypertensive patients (p = 0.012). Other tested factors were nonsignificant. CONCLUSIONS There are almost no data on this topic. The occurrence of conduction difference phenomenon is quite common in dilated cardiomyopathy while it is rare in coronary artery disease. We assume the diffuse nature of the disease and the way of remodeling of myocardium play the main role. Knowledge of this phenomenon could be useful in personalized cardiac resynchronization therapy optimization.
Collapse
Affiliation(s)
- David Pospisil
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Novotny
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Jarkovsky
- Faculty of Medicine, Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Barbora Farkasova
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Kozak
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubomir Krivan
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jitka Vlasinova
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Kala
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Sepsi
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Balaban G, Halliday BP, Bai W, Porter B, Malvuccio C, Lamata P, Rinaldi CA, Plank G, Rueckert D, Prasad SK, Bishop MJ. Scar shape analysis and simulated electrical instabilities in a non-ischemic dilated cardiomyopathy patient cohort. PLoS Comput Biol 2019; 15:e1007421. [PMID: 31658247 PMCID: PMC6837623 DOI: 10.1371/journal.pcbi.1007421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/07/2019] [Accepted: 09/18/2019] [Indexed: 01/13/2023] Open
Abstract
This paper presents a morphological analysis of fibrotic scarring in non-ischemic dilated cardiomyopathy, and its relationship to electrical instabilities which underlie reentrant arrhythmias. Two dimensional electrophysiological simulation models were constructed from a set of 699 late gadolinium enhanced cardiac magnetic resonance images originating from 157 patients. Areas of late gadolinium enhancement (LGE) in each image were assigned one of 10 possible microstructures, which modelled the details of fibrotic scarring an order of magnitude below the MRI scan resolution. A simulated programmed electrical stimulation protocol tested each model for the possibility of generating either a transmural block or a transmural reentry. The outcomes of the simulations were compared against morphological LGE features extracted from the images. Models which blocked or reentered, grouped by microstructure, were significantly different from one another in myocardial-LGE interface length, number of components and entropy, but not in relative area and transmurality. With an unknown microstructure, transmurality alone was the best predictor of block, whereas a combination of interface length, transmurality and number of components was the best predictor of reentry in linear discriminant analysis.
Collapse
Affiliation(s)
- Gabriel Balaban
- Department of Informatics, University of Oslo, Oslo, Norway
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Brian P. Halliday
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- * E-mail: (BPH); (MJB)
| | - Wenjia Bai
- Department of Computing, Imperial College, London, United Kingdom
| | - Bradley Porter
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Carlotta Malvuccio
- Department of Informatics, King’s College London, London, United Kingdom
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | | | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Daniel Rueckert
- Department of Computing, Imperial College, London, United Kingdom
| | - Sanjay K. Prasad
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- Cardiovascular Research Centre and Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
| | - Martin J. Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- * E-mail: (BPH); (MJB)
| |
Collapse
|
43
|
Aras KK, Faye NR, Cathey B, Efimov IR. Critical Volume of Human Myocardium Necessary to Maintain Ventricular Fibrillation. Circ Arrhythm Electrophysiol 2019; 11:e006692. [PMID: 30376733 DOI: 10.1161/circep.118.006692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Abnormal QT intervals, long QT or short QT, have been epidemiologically linked with sudden cardiac death because of ventricular fibrillation (VF). Consequently, Food and Drug Administration recommends testing all pharmacological agents for QT toxicity as a risk factor for cardiac toxicity. Such tests assess QT/QTc interval, which represents ventricular depolarization and repolarization. However, the current QT toxicity analysis does not account for the well-known anisotropy in cardiac tissue conductivity. Mines demonstrated in 1913 that cardiac wavelength (λ) determines inducibility of reentrant arrhythmia, where both repolarization time or action potential duration and conduction velocity determine λ=action potential duration×conduction velocity. We aimed to determine the role of anisotropic wavelength in inducibility of VF in explanted human left ventricular preparations. We tested the hypothesis that 3-dimensional cardiac wavelength, which takes into account anisotropic cardiac tissue conductivity, can accurately predict VF sustainability. METHODS We conducted panoramic optical mapping of coronary perfused human left ventricular wedge preparations subjected to pharmacologically induced shortening and prolongation of action potential duration, by IK,ATP agonist pinacidil and antagonist glybenclamide, respectively. This measured action potential duration, conduction velocity, and thus determined pacing cycle length-dependent wavelengths in longitudinal (λL), transverse (λTV), and transmural (λTM) directions using S1S1 pacing protocol, from which wavelength volume (Vλ) was determined, as Vλ=λL×λTV×λTM, and compared with tissue volume. We tested a hypothesis that tissue volume/Vλ ratio can predict VF sustainability. RESULTS At baseline, at pacing rate of 240 beats per minute, the wavelengths were λL=9.6±0.6 cm, λTV=4.2±0.3 cm, and λTM=5.8±0.2 cm, respectively (n=7), and thus Vλ=246.4±42.1 cm3. Administration of pinacidil at escalating concentrations progressively decreased Vλ, and VF became sustained, when tissue volume/Vλ was above safety factor κ=4.4±0.6 (n=9) during rapid pacing. Treatment with glybenclamide decreased VT/Vλ below κ at any pacing rate and prevented VF sustainability. CONCLUSIONS Sustained VF was only sustained in ventricular volume exceeding critical Vλ=λL×λTV×λTM.
Collapse
Affiliation(s)
- Kedar K Aras
- Department of Biomedical Engineering, George Washington University, Washington, DC
| | - Ndeye Rokhaya Faye
- Department of Biomedical Engineering, George Washington University, Washington, DC
| | - Brianna Cathey
- Department of Biomedical Engineering, George Washington University, Washington, DC
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC
| |
Collapse
|
44
|
Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z, Sun Z, Talabieke S, Zheng Y, Luo D. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol 2019; 114:40. [DOI: 10.1007/s00395-019-0748-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
|
45
|
Lee AWC, Nguyen UC, Razeghi O, Gould J, Sidhu BS, Sieniewicz B, Behar J, Mafi-Rad M, Plank G, Prinzen FW, Rinaldi CA, Vernooy K, Niederer S. A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data. Med Image Anal 2019; 57:197-213. [PMID: 31326854 PMCID: PMC6746621 DOI: 10.1016/j.media.2019.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Background Cardiac Resynchronization Therapy (CRT) is one of the few effective treatments for heart failure patients with ventricular dyssynchrony. The pacing location of the left ventricle is indicated as a determinant of CRT outcome. Objective Patient specific computational models allow the activation pattern following CRT implant to be predicted and this may be used to optimize CRT lead placement. Methods In this study, the effects of heterogeneous cardiac substrate (scar, fast endocardial conduction, slow septal conduction, functional block) on accurately predicting the electrical activation of the LV epicardium were tested to determine the minimal detail required to create a rule based model of cardiac electrophysiology. Non-invasive clinical data (CT or CMR images and 12 lead ECG) from eighteen patients from two centers were used to investigate the models. Results Validation with invasive electro-anatomical mapping data identified that computer models with fast endocardial conduction were able to predict the electrical activation with a mean distance errors of 9.2 ± 0.5 mm (CMR data) or (CT data) 7.5 ± 0.7 mm. Conclusion This study identified a simple rule-based fast endocardial conduction model, built using non-invasive clinical data that can be used to rapidly and robustly predict the electrical activation of the heart. Pre-procedural prediction of the latest electrically activating region to identify the optimal LV pacing site could potentially be a useful clinical planning tool for CRT procedures.
Collapse
Affiliation(s)
- A W C Lee
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - U C Nguyen
- Department of Physiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Department of Cardiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - O Razeghi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - J Gould
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - B S Sidhu
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - B Sieniewicz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - J Behar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - M Mafi-Rad
- Department of Cardiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - G Plank
- Department of Biophysics, Medical University of Graz, Graz, Austria
| | - F W Prinzen
- Department of Physiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - C A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - K Vernooy
- Department of Cardiology, Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - S Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
46
|
Multiparametric slice culture platform for the investigation of human cardiac tissue physiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:139-150. [DOI: 10.1016/j.pbiomolbio.2018.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/14/2018] [Accepted: 06/03/2018] [Indexed: 12/23/2022]
|
47
|
Mora MT, Gomez JF, Morley G, Ferrero JM, Trenor B. Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts. PLoS One 2019; 14:e0217993. [PMID: 31211790 PMCID: PMC6581251 DOI: 10.1371/journal.pone.0217993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Background Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling disorders. In failing hearts both electrophysiological and structural remodeling, including fibroblast proliferation, contribute to changes in Ca2+ handling which promote the appearance of Ca2+ alternans (Ca-alt). Ca-alt in turn give rise to repolarization alternans, which promote dispersion of repolarization and contribute to reentrant activity. The computational analysis of the incidence of Ca2+ and/or repolarization alternans under HF conditions in the presence of fibroblasts could provide a better understanding of the mechanisms leading to HF arrhythmias and contractile function disorders. Methods and findings The goal of the present study was to investigate in silico the mechanisms leading to the formation of Ca-alt in failing human ventricular myocytes and tissues with disperse fibroblast distributions. The contribution of ionic currents variability to alternans formation at the cellular level was analyzed and the results show that in normal ventricular tissue, altered Ca2+ dynamics lead to Ca-alt, which precede APD alternans and can be aggravated by the presence of fibroblasts. Electrophysiological remodeling of failing tissue alone is sufficient to develop alternans. The incidence of alternans is reduced when fibroblasts are present in failing tissue due to significantly depressed Ca2+ transients. The analysis of the underlying ionic mechanisms suggests that Ca-alt are driven by Ca2+-handling protein and Ca2+ cycling dysfunctions in the junctional sarcoplasmic reticulum and that their contribution to alternans occurrence depends on the cardiac remodeling conditions and on myocyte-fibroblast interactions. Conclusion It can thus be concluded that fibroblasts modulate the formation of Ca-alt in human ventricular tissue subjected to heart failure-related electrophysiological remodeling. Pharmacological therapies should thus consider the extent of both the electrophysiological and structural remodeling present in the failing heart.
Collapse
Affiliation(s)
- Maria T. Mora
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Juan F. Gomez
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Gregory Morley
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, United States of America
| | - Jose M. Ferrero
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
48
|
Belau F, Metzner K, Christ T, Ravens U, Schaefer M, Künzel S, Li W, Wettwer E, Dobrev D, El-Armouche A, Kämmerer S. DPP10 is a new regulator of Nav1.5 channels in human heart. Int J Cardiol 2019; 284:68-73. [DOI: 10.1016/j.ijcard.2018.12.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
|
49
|
Amorós-Figueras G, Jorge E, Raga S, Alonso-Martin C, Rodríguez-Font E, Bazan V, Viñolas X, Cinca J, Guerra JM. Comparison between endocardial and epicardial cardiac resynchronization in an experimental model of non-ischaemic cardiomyopathy. Europace 2019; 20:1209-1216. [PMID: 29016778 DOI: 10.1093/europace/eux212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/31/2017] [Indexed: 12/28/2022] Open
Abstract
Aims Pacing from the left ventricular (LV) endocardium might increase the likelihood of response to cardiac resynchronization therapy. However, experimental and clinical data supporting this assumption are limited and controversial. The aim of this study was to compare the acute response of biventricular pacing from the LV epicardium and endocardium in a swine non-ischaemic cardiomyopathy (NICM) model of dyssynchrony. Methods and results A NICM was induced in six swine by 3 weeks of rapid ventricular pacing. Biventricular stimulation was performed from 16 paired locations in the LV (8 epicardial and 8 endocardial) with two different atrioventricular (80 and 110 ms) intervals and three interventricular (0, +30, -30 ms) delays. The acute response of the aortic blood flow, LV and right ventricular (RV) pressures, LVdP/dtmax and LVdP/dtmin and QRS complex width and QT duration induced by biventricular stimulation were analysed. The haemodynamic and electrical beneficial responses to either LV endocardial or epicardial biventricular pacing were similar (ΔLVdP/dtmax: +7.8 ± 2.2% ENDO vs. +7.3 ± 1.5% EPI, and ΔQRS width: -16.8 ± 1.3% ENDO vs. -17.1 ± 1.9% EPI; P = ns). Pacing from LV basal regions either from the epicardium or endocardium produced better haemodynamic responses as compared with mid or apical LV regions (P < 0.05). The LV regions producing the maximum QRS complex shortening did not correspond to those inducing the best haemodynamic responses (EPI: r2 = 0.013, P = ns; ENDO: r2 = 0.002, P = ns). Conclusion Endocardial LV pacing induced similar haemodynamic changes than pacing from the epicardium. The response to endocardial LV pacing is region dependent as observed in epicardial pacing.
Collapse
Affiliation(s)
- Gerard Amorós-Figueras
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomédica - Sant Pau, Universitat Autónoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Esther Jorge
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomédica - Sant Pau, Universitat Autónoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Silvia Raga
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomédica - Sant Pau, Universitat Autónoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Concepcion Alonso-Martin
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomédica - Sant Pau, Universitat Autónoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Enrique Rodríguez-Font
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomédica - Sant Pau, Universitat Autónoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Victor Bazan
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomédica - Sant Pau, Universitat Autónoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Xavier Viñolas
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomédica - Sant Pau, Universitat Autónoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Juan Cinca
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomédica - Sant Pau, Universitat Autónoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Jose M Guerra
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomédica - Sant Pau, Universitat Autónoma de Barcelona, CIBERCV, Barcelona, Spain
| |
Collapse
|
50
|
Xiao N, Yang BF, Shi JZ, Yu YG, Zhang F, Miao Q, Li DR. Karoshi May Be a Consequence of Overwork-Related Malignant Arrhythmia. Med Sci Monit 2019; 25:357-364. [PMID: 30635549 PMCID: PMC6339454 DOI: 10.12659/msm.911685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Karoshi, which is sudden death associated with overwork, has become a serious problem in China. Many studies have examined the relationship between cardiovascular risks and karoshi, but there is little evidence that explains the exact mechanism by which overwork induces sudden death. In these cases, there are few obvious positive findings from forensic autopsies except for histories of overwork prior to death. Therefore, we assume that abnormalities, such as cardiac arrhythmia, rather than organic changes are the cause of karoshi. Material/Methods In the present study, the forced swim test (FST) was used to establish models of overwork. The myocardial tissues of SD rats taking FST (1 h per day, for 30 consecutive days) were collected. The arrhythmia-related molecule CX43 as well as its upstream regulation molecule Cav-1 and cSrc were tested by Western blot (WB) and immunohistochemistry (IHC). HE staining and Masson‘s staining were performed in the myocardium tissue section. Results We observed downregulation of caveolin-1 (Cav1) followed by cSrc activation, resulting in the decrease of connexin43 (Cx43) levels in overwork models. Myocardial interstitial fibrosis, which is associated with electrophysiological aberrances that result in arrhythmia, was also found in the overwork models. Conclusions These data provide a mechanistic explanation for the speculated link between karoshi and cardiac arrhythmias.
Collapse
Affiliation(s)
- Ning Xiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Orthopedics, Yiling Hospital of Yichang, Yichang, Hubei, China (mainland)
| | - Bo-Fan Yang
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jing-Zhuo Shi
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yan-Geng Yu
- Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, Guangdong, China (mainland)
| | - Fu Zhang
- Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, Guangdong, China (mainland)
| | - Qi Miao
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Dong-Ri Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|