1
|
Kasner SE, Bath PM, Hill MD, Volpi JJ, Giuffre M, Masuoka L, Wambeke D, Madeddu PR. Recombinant Human Tissue Kallikrein-1 for Treating Acute Ischemic Stroke and Preventing Recurrence. Stroke 2025; 56:745-753. [PMID: 39758014 PMCID: PMC11850014 DOI: 10.1161/strokeaha.124.048858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Novel strategies are needed for the treatment of acute ischemic stroke when revascularization therapies are not clinically appropriate or are unsuccessful. rKLK1 (recombinant human tissue kallikrein-1), a bradykinin-producing enzyme, offers a promising potential solution. In animal studies of acute stroke, there is a marked 36-fold increase in bradykinin B2 receptor on brain endothelial cells of the ischemic region. Due to this environment, rKLK1-generated bradykinin will exert a potent local vasodilation and increase brain perfusion via 3 synergistic signaling pathways downstream to the B2 receptor. Because of its preferential effect on ischemic tissue, systemic adverse effects such as hypotension are avoided with proper dosing. In addition, with initial vasodilation through recruitment of preexisting collaterals, rKLK1 promotes long-term benefit of brain perfusion by promoting new collateral formation. With an extended course of therapy for weeks after acute ischemic stroke, these multifaceted effects may also reduce the risk of stroke recurrence. A prior phase II trial demonstrated a favorable impact on clinical outcomes and recurrent strokes, particularly among patients who were not eligible for mechanical thrombectomy. A phase II/III trial has launched in this population, though opportunities for combination revascularization therapies deserve further investigation.
Collapse
Affiliation(s)
- Scott E. Kasner
- University of Pennsylvania School of Medicine, Division of Vascular Neurology, Philadelphia (S.E.K.)
| | - Philip M. Bath
- Stroke Trials Unit, University of Nottingham, United Kingdom (P.M.B.)
| | - Michael D. Hill
- Department of Clinical Neuroscience and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary and Foothills Medical Centre, Alberta, Canada (M.D.H.)
| | - John J. Volpi
- Houston Methodist, Department of Neurology, Houston, TX (J.J.V.)
| | - Michael Giuffre
- Faculty of Medicine, University of Calgary, Alberta, Canada (M.G.)
| | | | | | - Paolo R. Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, United Kingdom (P.R.M.)
| |
Collapse
|
2
|
Guo X, Li Q, Pi S, Xia Y, Mao L. G protein-coupled purinergic P2Y receptor oligomerization: Pharmacological changes and dynamic regulation. Biochem Pharmacol 2021; 192:114689. [PMID: 34274353 DOI: 10.1016/j.bcp.2021.114689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Kuschnerus K, Straessler ET, Müller MF, Lüscher TF, Landmesser U, Kränkel N. Increased Expression of miR-483-3p Impairs the Vascular Response to Injury in Type 2 Diabetes. Diabetes 2019; 68:349-360. [PMID: 30257976 DOI: 10.2337/db18-0084] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022]
Abstract
Aggravated endothelial injury and impaired endothelial repair capacity contribute to the high cardiovascular risk in patients with type 2 diabetes (T2D), but the underlying mechanisms are still incompletely understood. Here we describe the functional role of a mature form of miRNA (miR) 483-3p, which limits endothelial repair capacity in patients with T2D. Expression of human (hsa)-miR-483-3p was higher in endothelial-supportive M2-type macrophages (M2MΦs) and in the aortic wall of patients with T2D than in control subjects without diabetes. Likewise, the murine (mmu)-miR-483* was higher in T2D than in nondiabetic murine carotid samples. Overexpression of miR-483-3p increased endothelial and macrophage apoptosis and impaired reendothelialization in vitro. The inhibition of hsa-miR-483-3p in human T2D M2MΦs transplanted to athymic nude mice (NMRI-Foxn1ν/Foxn1ν ) or systemic inhibition of mmu-miR-483* in B6.BKS(D)-Leprdb /J diabetic mice rescued diabetes-associated impairment of reendothelialization in the murine carotid-injury model. We identified the endothelial transcription factor vascular endothelial zinc finger 1 (VEZF1) as a direct target of miR-483-3p. VEZF1 expression was reduced in aortae of diabetic mice and upregulated in diabetic murine aortae upon systemic inhibition of mmu-483*. The miRNA miR-483-3p is a critical regulator of endothelial integrity in patients with T2D and may represent a therapeutic target to rescue endothelial regeneration after injury in patients with T2D.
Collapse
Affiliation(s)
- Kira Kuschnerus
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Elisabeth T Straessler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Maja F Müller
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
| | - Thomas F Lüscher
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Ulf Landmesser
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Nicolle Kränkel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Castro PR, Barbosa AS, Pereira JM, Ranfley H, Felipetto M, Gonçalves CAX, Paiva IR, Berg BB, Barcelos LS. Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6740408. [PMID: 30406137 PMCID: PMC6199857 DOI: 10.1155/2018/6740408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The microvasculature heterogeneity is a complex subject in vascular biology. The difficulty of building a dynamic and interactive view among the microenvironments, the cellular and molecular heterogeneities, and the basic aspects of the vessel formation processes make the available knowledge largely fragmented. The neovascularisation processes, termed vasculogenesis, angiogenesis, arteriogenesis, and lymphangiogenesis, are important to the formation and proper functioning of organs and tissues both in the embryo and the postnatal period. These processes are intrinsically related to microvascular cells, such as endothelial and mural cells. These cells are able to adjust their activities in response to the metabolic and physiological requirements of the tissues, by displaying a broad plasticity that results in a significant cellular and molecular heterogeneity. In this review, we intend to approach the microvasculature heterogeneity in an integrated view considering the diversity of neovascularisation processes and the cellular and molecular heterogeneity that contribute to microcirculatory homeostasis. For that, we will cover their interactions in the different blood-organ barriers and discuss how they cooperate in an integrated regulatory network that is controlled by specific molecular signatures.
Collapse
Affiliation(s)
- Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Alan Sales Barbosa
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Jousie Michel Pereira
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Hedden Ranfley
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Mariane Felipetto
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Carlos Alberto Xavier Gonçalves
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Isabela Ribeiro Paiva
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Bárbara Betônico Berg
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Luciola Silva Barcelos
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
5
|
Remm F, Kränkel N, Lener D, Drucker DJ, Sopper S, Brenner C. Sitagliptin Accelerates Endothelial Regeneration after Vascular Injury Independent from GLP1 Receptor Signaling. Stem Cells Int 2018; 2018:5284963. [PMID: 29531541 PMCID: PMC5822806 DOI: 10.1155/2018/5284963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/23/2017] [Accepted: 12/02/2017] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION DPP4 inhibitors (gliptins) are commonly used antidiabetic drugs for the treatment of type 2 diabetes. Gliptins also act in a glucose-independent manner and show vasoregenerative effects. We have shown that gliptins can remarkably accelerate vascular healing after vascular injury. However, the underlying mechanisms remain unclear. Here, we examined potential signaling pathways linking gliptins to enhanced endothelial regeneration. METHODS AND RESULTS We used wild-type and GLP1 receptor knockout (Glp1r-/-) mice to investigate the underlying mechanisms of gliptin-induced reendothelialization. The prototype DPP4 inhibitor sitagliptin accelerated endothelial healing in both animal models. Improved endothelial growth was associated with gliptin-mediated progenitor cell recruitment into the diseased vascular wall via the SDF1-CXCR4 axis independent of GLP1R-dependent signaling pathways. Furthermore, SDF1 showed direct proproliferative effects on endothelial cells. Excessive neointimal formation was not observed in gliptin- or placebo-treated Glp1r-/- mice. CONCLUSION We identified the SDF1-CXCR4 axis as a crucial signaling pathway for endothelial regeneration after acute vascular injury. Furthermore, SDF1 can directly increase endothelial cell proliferation. Gliptin-mediated potentiation of endothelial regeneration was preserved in Glp1r-/- animals. Thus, gliptin-mediated endothelial regeneration proceeds through SDF-1/CXCR4 in a GLP1R-independent manner after acute vascular injury.
Collapse
Affiliation(s)
- Friederike Remm
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolle Kränkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniela Lener
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Sieghart Sopper
- Department of Internal Medicine V, Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Brenner
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Cardiology, Reha Zentrum Muenster, Münster, Tirol, Austria
| |
Collapse
|
6
|
Endothelial progenitor cells and hypertension: current concepts and future implications. Clin Sci (Lond) 2017; 130:2029-2042. [PMID: 27729472 DOI: 10.1042/cs20160587] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
The discovery of endothelial progenitor cells (EPCs), a group of cells that play important roles in angiogenesis and the maintenance of vascular endothelial integrity, has led to considerable improvements in our understanding of the circulatory system and the regulatory mechanisms of vascular homoeostasis. Despite lingering disputes over where EPCs actually originate and how they facilitate angiogenesis, extensive research in the past decade has brought about significant advancements in this field of research, establishing EPCs as an essential element in the pathogenesis of various diseases. EPC and hypertensive disorders, especially essential hypertension (EH, also known as primary hypertension), represent one of the most appealing branches in this area of research. Chronic hypertension remains a major threat to public health, and the exact pathologic mechanisms of EH have never been fully elucidated. Is there a relationship between EPC and hypertension? If so, what is the nature of such relationship-is it mediated by blood pressure alterations, or other factors that lie in between? How can our current knowledge about EPCs be utilized to advance the prevention and clinical management of hypertension? In this review, we set out to answer these questions by summarizing the current concepts about EPC pathophysiology in the context of hypertension, while attempting to point out directions for future research on this subject.
Collapse
|
7
|
Zanichelli A, Maurer M, Aberer W, Caballero T, Longhurst HJ, Bouillet L, Fabien V, Andresen I. Long-term safety of icatibant treatment of patients with angioedema in real-world clinical practice. Allergy 2017; 72:994-998. [PMID: 27926986 PMCID: PMC5434903 DOI: 10.1111/all.13103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2016] [Indexed: 11/25/2022]
Abstract
The Icatibant Outcome Survey (IOS) is an observational study monitoring safety and effectiveness of icatibant in the real‐world setting. We analyzed safety data from 3025 icatibant‐treated attacks in 557 patients (enrolled between July 2009 and February 2015). Icatibant was generally well tolerated. Excluding off‐label use and pregnancy, 438 patients (78.6%) did not report adverse events (AEs). The remaining 119 (21.4%) patients reported 341 AEs, primarily gastrointestinal disorders (19.6%). Of these, 43 AEs in 17 patients (3.1%) were related to icatibant. Serious AEs (SAEs) occurred infrequently. A total of 143 SAEs occurred in 59 (10.6%) patients; only three events (drug inefficacy, gastritis, and reflux esophagitis) in two patients were considered related to icatibant. Notably, no SAEs related to icatibant occurred in patients with cardiovascular disease, nor in those using icatibant at a frequency above label guidelines. Additionally, no major differences were noted in AEs occurring in on‐label vs off‐label icatibant users.
Collapse
Affiliation(s)
- A. Zanichelli
- Department of Biomedical and Clinical Sciences Luigi Sacco; University of Milan; ASST Fatebenefratelli Sacco; Milan Italy
| | - M. Maurer
- Department of Dermatology and Allergy; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - W. Aberer
- Department of Dermatology and Venerology; Medical University of Graz; Graz Austria
| | - T. Caballero
- Department of Allergy; Hospital La Paz Institute for Health Research (IdiPaz); Biomedical Research Network on Rare Diseases (CIBERER, U754); Madrid Spain
| | | | - L. Bouillet
- National Reference Centre for Angioedema; Internal Medicine Department; Grenoble University Hospital; Grenoble France
| | - V. Fabien
- Shire; Zug Switzerland at time of data analysis; now with Vifor Pharma, Glattbrugg, Switzerland
| | | | | |
Collapse
|
8
|
Derlet A, Rasper T, Roy Choudhury A, Bothur S, Rieger MA, Namgaladze D, Fischer A, Schürmann C, Brandes RP, Tschulena U, Steppan S, Assmus B, Dimmeler S, Zeiher AM, Seeger FH. Metabolism Regulates Cellular Functions of Bone Marrow-Derived Cells used for Cardiac Therapy. Stem Cells 2016; 34:2236-48. [PMID: 27145479 DOI: 10.1002/stem.2394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 02/27/2016] [Accepted: 03/30/2016] [Indexed: 01/07/2023]
Abstract
Administration of bone marrow-derived mononuclear cells (BMC) may increase cardiac function after myocardial ischemia. However, the functional capacity of BMC derived from chronic heart failure (CHF) patients is significantly impaired. As modulation of the energy metabolism allows cells to match the divergent demands of the environment, we examined the regulation of energy metabolism in BMC from patients and healthy controls (HC). The glycolytic capacity of CHF-derived BMC is reduced compared to HC, whereas BMC of metabolically activated bone marrow after acute myocardial infarction reveal increased metabolism. The correlation of metabolic pathways with the functional activity of cells indicates an influence of metabolism on cell function. Reducing glycolysis without profoundly affecting ATP-production reversibly reduces invasion as well as colony forming capacity and abolishes proliferation of CD34(+) CD38(-) lin(-) hematopoietic stem and progenitor cells (HSPC). Ex vivo inhibition of glycolysis further reduced the pro-angiogenic activity of transplanted cells in a hind limb ischemia model in vivo. In contrast, inhibition of respiration, without affecting total ATP production, leads to a compensatory increase in glycolytic capacity correlating with increased colony forming capacity. Isolated CD34(+) , CXCR4(+) , and CD14(+) cells showed higher glycolytic activity compared to their negative counterparts. Metabolic activity was profoundly modulated by the composition of media used to store or culture BMC. This study provides first evidence that metabolic alterations influence the functional activity of human HSPC and BMC independent of ATP production. Changing the balance between respiration and glycolysis might be useful to improve patient-derived cells for clinical cardiac cell therapy. Stem Cells 2016;34:2236-2248.
Collapse
Affiliation(s)
- Anja Derlet
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
| | - Tina Rasper
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
| | - Aaheli Roy Choudhury
- LOEWE Center for Cell and Gene Therapy, Internal Medicine III, Goethe University, Hematology/Oncology
| | - Sabrina Bothur
- LOEWE Center for Cell and Gene Therapy, Internal Medicine III, Goethe University, Hematology/Oncology
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy, Internal Medicine III, Goethe University, Hematology/Oncology
| | - Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I/ZAFES, Goethe University
| | - Ariane Fischer
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
| | - Christoph Schürmann
- Faculty of Medicine, Institute for Cardiovascular Physiology, Goethe University
| | - Ralf P Brandes
- Faculty of Medicine, Institute for Cardiovascular Physiology, Goethe University
| | - Ulrich Tschulena
- Department for Biomedical Research and Project Evaluation, Fresenius Medical Care Deutschland GmbH, Goethe University, Bad Homburg, Germany
| | - Sonja Steppan
- Department for Biomedical Research and Project Evaluation, Fresenius Medical Care Deutschland GmbH, Goethe University, Bad Homburg, Germany
| | - Birgit Assmus
- Department of Cardiology, Internal Medicine III, Goethe University, Frankfurt (Main), Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
| | - Andreas M Zeiher
- Department of Cardiology, Internal Medicine III, Goethe University, Frankfurt (Main), Germany
| | - Florian H Seeger
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University.,Department of Cardiology, Internal Medicine III, Goethe University, Frankfurt (Main), Germany
| |
Collapse
|
9
|
Cappellari R, D'Anna M, Avogaro A, Fadini GP. Plerixafor improves the endothelial health balance. The effect of diabetes analysed by polychromatic flow cytometry. Atherosclerosis 2016; 251:373-380. [PMID: 27255499 DOI: 10.1016/j.atherosclerosis.2016.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Diabetes damages the endothelium and reduces the availability of bone marrow (BM)-derived endothelial progenitor cells (EPCs). The mobilization of hematopoietic stem cells (HSCs) and EPCs in response to G-CSF is impaired by diabetes, owing to CXCL12 dysregulation. We have previously shown that the CXCR4/CXCL12 disruptor plerixafor rescues HSC and EPC mobilization in diabetes. We herein explored the effects of plerixafor on HSCs, EPCs, and circulating endothelial cells (CECs) in patients with and without diabetes. METHODS We re-analysed data gathered in the NCT02056210 trial, wherein patients with (n = 10) and without diabetes (n = 10) received plerixafor to test stem/progenitor cell mobilization. We applied a novel and very specific polychromatic flow cytometry (PFC) approach to identify and quantify HSCs, EPCs, and CECs. RESULTS We found that 7-AAD(-)Syto16(+)CD34(+)CD45(dim) HSC levels determined by PFC strongly correlated to the traditional enumeration of CD34(+) cells, whereas 7-AAD(-)Syto16(+)CD34(+)CD45(neg)KDR(+) EPCs were unrelated to the traditional enumeration of CD34(+)KDR(+) cells. Using PFC, we confirmed that plerixafor induces rapid mobilization of HSCs and EPCs in both groups, with a marginally significant defect in patients with diabetes. Plerixafor reduced live (7-AAD(-)) and dead (7-AAD(+)) Syto16(+)CD34(bright)CD45(neg)CD146(+) CECs more in patients without than in those with diabetes. The EPC/CEC ratio, a measure of the vascular health balance, was increased by plerixafor, but less prominently in patients with that in those without diabetes. CONCLUSIONS In addition to rescuing defective mobilization associated with diabetes, plerixafor improves the balance between EPCs and CECs, but the latter effect is blunted in patients with diabetes.
Collapse
Affiliation(s)
- Roberta Cappellari
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35128 Padova, Italy
| | - Marianna D'Anna
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35128 Padova, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35128 Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35128 Padova, Italy.
| |
Collapse
|
10
|
Schiavo AA, Franzin C, Albiero M, Piccoli M, Spiro G, Bertin E, Urbani L, Visentin S, Cosmi E, Fadini GP, De Coppi P, Pozzobon M. Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia. Stem Cell Res Ther 2015; 6:209. [PMID: 26519360 PMCID: PMC4628318 DOI: 10.1186/s13287-015-0204-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/02/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022] Open
Abstract
Introduction Endothelial dysfunction is found in different pathologies such as diabetes and renal and heart diseases, representing one of the major health problems. The reduced vasodilation of impaired endothelium starts a prothrombotic state associated with irregular blood flow. We aimed to explore the potential of amniotic fluid stem (AFS) cells as a source for regenerative medicine in this field; for the first time, we focused on third-trimester amniotic fluid AFS cells and compared them with the already-described AFS cells from the second trimester. Methods Cells from the two trimesters were cultured, selected and expanded in normoxia (20 % oxygen) and hypoxia (5 % oxygen). Cells were analysed to compare markers, proliferation rate and differentiation abilities. Endothelial potential was assessed not only in vitro—Matrigel tube formation assay, acetylated human low-density lipoprotein (AcLDL) uptake—but also in vivo (Matrigel plug with cell injection and two animal models). Specifically, for the latter, we used established protocols to assess the involvement of AFS cells in two different mouse models of endothelial dysfunction: (1) a chronic ischemia model with local injection of cells and (2) an electric carotid damage where cells were systemically injected. Results We isolated and expanded AFS cells from third-trimester amniotic fluid samples by using CD117 as a selection marker. Hypoxia enhanced the proliferation rate, the surface protein pattern was conserved between the trimesters and comparable differentiation was achieved after culture in both normoxia and hypoxia. Notably, the expression of early endothelial transcription factors and AngiomiRs was detected before and after induction. When in vivo, AFS cells from both trimesters expanded in hypoxia were able to rescue the surface blood flow when locally injected in mice after chronic ischemia damage, and importantly AFS cells at term of gestation possessed enhanced ability to fix carotid artery electric damage compared with AFS cells from the second trimester. Conclusions To the best of our knowledge, this is the first research work that fully characterizes AFS cells from the third trimester for regenerative medicine purposes. The results highlight how AFS cells, in particular at term of gestation and cultured in hypoxia, can be considered a promising source of stem cells possessing significant endothelial regenerative potential. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0204-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Alex Schiavo
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy. .,Department of Woman and Children Health, University of Padova, via Giustinani 2, 35100, Padova, Italy.
| | - Chiara Franzin
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Mattia Albiero
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy. .,Medicine Department (DIMED), University of Padova, via Giustiniani 2, 35100, Padova, Italy.
| | - Martina Piccoli
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Giovanna Spiro
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy. .,Medicine Department (DIMED), University of Padova, via Giustiniani 2, 35100, Padova, Italy.
| | - Enrica Bertin
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Luca Urbani
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy. .,Stem Cells and Regenerative Medicine Section, Developmental biology and Cancer Program, Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK.
| | - Silvia Visentin
- Department of Woman and Children Health, University of Padova, via Giustinani 2, 35100, Padova, Italy.
| | - Erich Cosmi
- Department of Woman and Children Health, University of Padova, via Giustinani 2, 35100, Padova, Italy.
| | - Gian Paolo Fadini
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy. .,Medicine Department (DIMED), University of Padova, via Giustiniani 2, 35100, Padova, Italy.
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Developmental biology and Cancer Program, Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK.
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| |
Collapse
|
11
|
Zanichelli A, Wu MA, Andreoli A, Mansi M, Cicardi M. The safety of treatments for angioedema with hereditary C1 inhibitor deficiency. Expert Opin Drug Saf 2015; 14:1725-36. [PMID: 26429506 DOI: 10.1517/14740338.2015.1094053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Angioedema is a localized and self-limiting edema of the subcutaneous and submucosal tissue. Hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) is the best characterized form of hereditary angioedema. In C1-INH-HAE, the reduced plasma levels of C1-INH cause instability of the contact system with release of bradykinin, the key mediator of angioedema. C1-INH-HAE is characterized by recurrent skin swelling, abdominal pain, and potentially life-threatening upper airways obstruction. Knowledge of the molecular mechanisms leading from C1-INH deficiency to angioedema allowed the development of several therapies. AREAS COVERED The aim of this review article is to discuss the safety of currently available treatments of C1-INH-HAE. The authors give an insight on the mechanism of action and safety profile of drugs for treatment of acute attacks and for short- and long-term prophylaxis. Evidence from systematic reviews, clinical trials, retrospective studies, and case reports is summarized in this review. EXPERT OPINION C1-INH-HAE is a disabling, life-threatening condition that lasts life-long. Different therapeutic approaches with different drugs provide significant benefit to patients. Safety profiles of these therapies are critical for optimal therapeutic decision and need to be known by C1-INH-HAE treating physicians for appropriate risk/benefit evaluation.
Collapse
Affiliation(s)
- Andrea Zanichelli
- a University of Milan, Luigi Sacco Hospital, Department of Biomedical and Clinical Sciences "Luigi Sacco" , Milan, Italy +39 02 50 31 98 29 ; +39 02 50 31 98 28 ;
| | - Maddalena Alessandra Wu
- a University of Milan, Luigi Sacco Hospital, Department of Biomedical and Clinical Sciences "Luigi Sacco" , Milan, Italy +39 02 50 31 98 29 ; +39 02 50 31 98 28 ;
| | - Arnaldo Andreoli
- a University of Milan, Luigi Sacco Hospital, Department of Biomedical and Clinical Sciences "Luigi Sacco" , Milan, Italy +39 02 50 31 98 29 ; +39 02 50 31 98 28 ;
| | - Marta Mansi
- a University of Milan, Luigi Sacco Hospital, Department of Biomedical and Clinical Sciences "Luigi Sacco" , Milan, Italy +39 02 50 31 98 29 ; +39 02 50 31 98 28 ;
| | | |
Collapse
|
12
|
Regoli D, Gobeil F. Critical insights into the beneficial and protective actions of the kallikrein-kinin system. Vascul Pharmacol 2015; 64:1-10. [PMID: 25579779 DOI: 10.1016/j.vph.2014.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
Abstract
Hypertension is characterized by an imbalance between the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II AT-1 receptor antagonists (also known as sartans or ARBs) are potent modulators of these systems and are highly effective as first-line treatments for hypertension, diabetic nephropathies, and diseases of the brain and coronary arteries. However, these agents are mechanistically distinct and should not be considered interchangeable. In this mini-review, we provide novel insights into the often neglected roles of the KKS in the beneficial, protective, and reparative actions of ACEIs. Indeed, ACEIs are the only antihypertensive drugs that properly reduce the imbalance between the RAS and the KKS, thereby restoring optimal cardiovascular homeostasis and significantly reducing morbidity and the risk of all-cause mortality among individuals affected by hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Domenico Regoli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Fernand Gobeil
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4.
| |
Collapse
|
13
|
Suchkova IO, Pavlinova LI, Larionova EE, Alenina NV, Solovyov KV, Baranova TV, Belotserkovskaya EV, Sasina LK, Bader M, Denisenko AD, Mustafina OE, Khusnutdinova EK, Patkin EL. Length polymorphism of the B2-VNTR minisatellite repeat of the bradykinin B2 receptor gene in healthy Russians and patients with coronary heart disease. Mol Biol 2014. [DOI: 10.1134/s0026893314050136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Chao J, Bledsoe G, Chao L. Kallikrein-kinin in stem cell therapy. World J Stem Cells 2014; 6:448-457. [PMID: 25258666 PMCID: PMC4172673 DOI: 10.4252/wjsc.v6.i4.448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
The tissue kallikrein-kinin system exerts a wide spectrum of biological activities in the cardiovascular, renal and central nervous systems. Tissue kallikrein-kinin modulates the proliferation, viability, mobility and functional activity of certain stem cell populations, namely mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), mononuclear cell subsets and neural stem cells. Stimulation of these stem cells by tissue kallikrein-kinin may lead to protection against renal, cardiovascular and neural damage by inhibiting apoptosis, inflammation, fibrosis and oxidative stress and promoting neovascularization. Moreover, MSCs and EPCs genetically modified with tissue kallikrein are resistant to hypoxia- and oxidative stress-induced apoptosis, and offer enhanced protective actions in animal models of heart and kidney injury and hindlimb ischemia. In addition, activation of the plasma kallikrein-kinin system promotes EPC recruitment to the inflamed synovium of arthritic rats. Conversely, cleaved high molecular weight kininogen, a product of plasma kallikrein, reduces the viability and vasculogenic activity of EPCs. Therefore, kallikrein-kinin provides a new approach in enhancing the efficacy of stem cell therapy for human diseases.
Collapse
|
15
|
Brenner C, Kränkel N, Kühlenthal S, Israel L, Remm F, Fischer C, Herbach N, Speer T, Grabmaier U, Laskowski A, Gross L, Theiss H, Wanke R, Landmesser U, Franz WM. Short-term inhibition of DPP-4 enhances endothelial regeneration after acute arterial injury via enhanced recruitment of circulating progenitor cells. Int J Cardiol 2014; 177:266-75. [PMID: 25499391 DOI: 10.1016/j.ijcard.2014.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Endothelial injuries regularly occur in atherosclerosis and during interventional therapies of the arterial occlusive disease. Disturbances in the endothelial integrity can lead to insufficient blood supply and bear the risk of thrombus formation and acute vascular occlusion. At present, effective therapeutics to restore endothelial integrity are barely available. We analyzed the effect of pharmacological DPP-4-inhibition by Sitagliptin on endogenous progenitor cell-based endothelial regeneration via the SDF-1α/CXCR4-axis after acute endothelial damage in a mouse model of carotid injury. METHODS AND RESULTS Induction of a defined endothelial injury was performed in the carotid artery of C57Bl/6 mice which led to a local upregulation of SDF-1α expression. Animals were treated with placebo, Sitagliptin or Sitagliptin+AMD3100. Using mass spectrometry we could prove that Sitagliptin prevented cleavage of the chemokine SDF-1α. Accordingly, increased SDF-1α concentrations enhanced recruitment of systemically applied and endogenous circulating CXCR4+ progenitor cells to the site of vascular injury followed by a significantly accelerated reendothelialization as compared to placebo-treated animals. Improved endothelial recovery, as well as recruitment of circulating CXCR4+ progenitor cells (CD133+, Flk1+), was reversed by CXCR4-antagonization through AMD3100. In addition, short-term Sitagliptin treatment did not significantly promote neointimal or medial hyperplasia. CONCLUSION Sitagliptin can accelerate endothelial regeneration after acute endothelial injury. DPP-4 inhibitors prevent degradation of the chemokine SDF-1α and thus improve the recruitment of regenerative circulating CXCR4+ progenitor cells which mediate local endothelial cell proliferation without adversely affecting vessel wall architecture.
Collapse
Affiliation(s)
- Christoph Brenner
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany; Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland; Department of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria.
| | - Nicolle Kränkel
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland
| | - Sarah Kühlenthal
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Lars Israel
- Institute of Molecular Biology, Adolf-Butenandt-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Friederike Remm
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Cornelia Fischer
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Nadja Herbach
- Institute of Veterinary Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Timo Speer
- Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland; Department of Internal Medicine IV, Saarland University Hospital, Homburg/Saar, Germany
| | - Ulrich Grabmaier
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Alexandra Laskowski
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Lisa Gross
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Hans Theiss
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Ulf Landmesser
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland
| | - Wolfgang-Michael Franz
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany; Department of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Gao L, Li P, Zhang J, Hagiwara M, Shen B, Bledsoe G, Chang E, Chao L, Chao J. Novel role of kallistatin in vascular repair by promoting mobility, viability, and function of endothelial progenitor cells. J Am Heart Assoc 2014; 3:e001194. [PMID: 25237049 PMCID: PMC4323828 DOI: 10.1161/jaha.114.001194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Kallistatin exerts pleiotropic activities in inhibiting inflammation, apoptosis, and oxidative stress in endothelial cells. Because endothelial progenitor cells (EPCs) play a significant role in vascular repair, we investigated whether kallistatin contributes to vascular regeneration by enhancing EPC migration and function. Methods and Results We examined the effect of endogenous kallistatin on circulating EPCs in a rat model of vascular injury and the mechanisms of kallistatin on EPC mobility and function in vitro. In deoxycorticosterone acetate–salt hypertensive rats, we found that kallistatin depletion augmented glomerular endothelial cell loss and diminished circulating EPC number, whereas kallistatin gene delivery increased EPC levels. In cultured EPCs, kallistatin significantly reduced tumor necrosis factor‐α–induced apoptosis and caspase‐3 activity, but kallistatin's effects were blocked by phosphoinositide 3‐kinase inhibitor (LY294002) and nitric oxide (NO) synthase inhibitor (l‐NAME). Kallistatin stimulated the proliferation, migration, adhesion and tube formation of EPCs; however, kallistatin's actions were abolished by LY294002, l‐NAME, endothelial NO synthase–small interfering RNA, constitutively active glycogen synthase kinase‐3β, or vascular endothelial growth factor antibody. Kallistatin also increased Akt, glycogen synthase kinase‐3β, and endothelial NO synthase phosphorylation; endothelial NO synthase, vascular endothelial growth factor, and matrix metalloproteinase‐2 synthesis and activity; and NO and vascular endothelial growth factor levels. Kallistatin's actions on phosphoinositide 3‐kinase–Akt signaling were blocked by LY294002, l‐NAME, and anti–vascular endothelial growth factor antibody. Conclusions Endogenous kallistatin plays a novel role in protection against vascular injury in hypertensive rats by promoting the mobility, viability, and vasculogenic capacity of EPCs via enhancing NO and vascular endothelial growth factor levels through activation of phosphoinositide 3‐kinase–Akt signaling. Kallistatin therapy may be a promising approach in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Lin Gao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Jingmei Zhang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Makoto Hagiwara
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Bo Shen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Grant Bledsoe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Eugene Chang
- Department of Obstetrics and Gynecology, College of Medicine, Medical University of South Carolina, Charleston, SC (E.C.)
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (L.G., P.L., J.Z., M.H., B.S., G.B., L.C., J.C.)
| |
Collapse
|
17
|
Silvestre JS, Smadja DM, Lévy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93:1743-802. [PMID: 24137021 DOI: 10.1152/physrev.00006.2013] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.
Collapse
|
18
|
Blaes N, Girolami JP. Targeting the 'Janus face' of the B2-bradykinin receptor. Expert Opin Ther Targets 2013; 17:1145-66. [PMID: 23957374 DOI: 10.1517/14728222.2013.827664] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Kinins are main active mediators of the kallikrein-kinin system (KKS) via bradykinin type 1 inducible (B1R) and type 2 constitutive (B2R) receptors. B2R mediates most physiological bradykinin (BK) responses, including vasodilation, natriuresis, NO, prostaglandins release. AREAS COVERED The article summarizes knowledge on kinins, B2R signaling and biological functions; highlights crosstalks between B2R and renin-angiotensin system (RAS). The double role (Janus face) in physiopathology, namely the beneficial protection of the endothelium, which forms the basis for the therapeutical utilization of B2 receptor agonists, on the one side, and the involvement of B2R in inflammation or infection diseases and in pain mechanisms, which justifies the use of B2R antagonists, on the other side, is extensively analyzed. EXPERT OPINION For decades, the B2R has been unconsciously activated during angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) treatments. Whether direct B2R targeting with stable agonists could bring additional therapeutic benefit to RAS inhibition should be investigated. Efficacy, established in experimental models, should be confirmed by translational studies in cardiovascular pathologies, glaucoma, Duchenne cardiopathy and during brain cancer therapy. The other face of B2R is targeted by antagonists already approved to treat hereditary angioedema. The use of antagonists could be extended to other angioedema and efficacy tested against acute pain and inflammatory diseases.
Collapse
Affiliation(s)
- Nelly Blaes
- INSERM, U1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Université Paul Sabatier , F-31432, Toulouse , France
| | | |
Collapse
|