1
|
Nguyen TD, Winek MA, Rao MK, Dhyani SP, Lee MY. Nuclear envelope components in vascular mechanotransduction: emerging roles in vascular health and disease. Nucleus 2025; 16:2453752. [PMID: 39827403 DOI: 10.1080/19491034.2025.2453752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
The vascular network, uniquely sensitive to mechanical changes, translates biophysical forces into biochemical signals for vessel function. This process relies on the cell's architectural integrity, enabling uniform responses to physical stimuli. Recently, the nuclear envelope (NE) has emerged as a key regulator of vascular cell function. Studies implicate nucleoskeletal elements (e.g. nuclear lamina) and the linker of nucleoskeleton and cytoskeleton (LINC) complex in force transmission, emphasizing nucleo-cytoskeletal communication in mechanotransduction. The nuclear pore complex (NPC) and its component proteins (i.e. nucleoporins) also play roles in cardiovascular disease (CVD) progression. We herein summarize evidence on the roles of nuclear lamina proteins, LINC complex members, and nucleoporins in endothelial and vascular cell mechanotransduction. Numerous studies attribute NE components in cytoskeletal-related cellular behaviors to insinuate dysregulation of nucleocytoskeletal feedback and nucleocytoplasmic transport as a mechanism of endothelial and vascular dysfunction, and hence implications for aging and vascular pathophysiology.
Collapse
Affiliation(s)
- Tung D Nguyen
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Michael A Winek
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Mihir K Rao
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Shaiva P Dhyani
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Monica Y Lee
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Joo EY, Park JS, Shin HT, Yoo M, Kim SJ, Lee JE, Choi GS. Mesenchymal Stem Cell Therapy for Hutchinson-Gilford Progeria: Improvements in Arterial Stiffness and Bone Mineral Density in a Single Case. CHILDREN (BASEL, SWITZERLAND) 2025; 12:523. [PMID: 40310235 PMCID: PMC12025413 DOI: 10.3390/children12040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND/OBJECTIVES Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder that cause premature aging due to LMNA mutations and progerin accumulation. Although lonafarnib, an FDA-approved farnesyltransferase inhibitor, offers modest extension of life, the disease remains progressive. As progeria is associated with stem cell depletion and mesenchymal stem cell (MSC) therapy has shown efficacy in treating atherosclerosis, we aimed to evaluate its efficacy and safety in HGPS. METHODS A 7-year-old male with classic HGPS and preexisting severe cerebrovascular disease received four intravenous infusion of bone marrow-derived MSCs (2.5 × 10⁵ cells/kg) over 8 months. Growth, metabolic, cardiovascular, musculoskeletal, auditory, and inflammatory cytokines were monitored throughout the study. Prophylactic enoxaparin was administered to prevent vascular complications. RESULTS MSC therapy was associated with improved lean body mass (11.5%), bone mineral density (L-spine z-score: 0.55 → 2.03), reduced arterial stiffness (9.98% reductionin pulse wave velocity), joint range of motion, dentition, and decreased sICAM-1 levels. However, Cardiovascular deterioration continued, and the patient passed away 10 months after the fourth dose, likely due to progression of the underlying vascular disease. No severe adverse effects were attributed to MSC therapy. CONCLUSIONS MSC therapy may offer short-term benefits in arterial stiffness, bone health and inflammation in HGPS without notable safety concerns. Further studies are warranted to validate these findings, explore earlier intervention, and determine long-term efficacy and optimal dosing strategies.
Collapse
Affiliation(s)
- Eun-Young Joo
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea; (E.-Y.J.); (J.-S.P.)
- Gyeonggi-Incheon Regional Specialized Rare Disease Institute, Inha University Hospital, Incheon 22332, Republic of Korea
- Advanced Regenerative Medicine Clinical Trial Center, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Ji-Sun Park
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea; (E.-Y.J.); (J.-S.P.)
- Gyeonggi-Incheon Regional Specialized Rare Disease Institute, Inha University Hospital, Incheon 22332, Republic of Korea
- Advanced Regenerative Medicine Clinical Trial Center, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Hyun-Tae Shin
- Gyeonggi-Incheon Regional Specialized Rare Disease Institute, Inha University Hospital, Incheon 22332, Republic of Korea
- Advanced Regenerative Medicine Clinical Trial Center, Inha University Hospital, Incheon 22332, Republic of Korea
- Department of Dermatology, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Myungji Yoo
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea; (E.-Y.J.); (J.-S.P.)
- Gyeonggi-Incheon Regional Specialized Rare Disease Institute, Inha University Hospital, Incheon 22332, Republic of Korea
- Advanced Regenerative Medicine Clinical Trial Center, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Su-Jin Kim
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea; (E.-Y.J.); (J.-S.P.)
- Gyeonggi-Incheon Regional Specialized Rare Disease Institute, Inha University Hospital, Incheon 22332, Republic of Korea
- Advanced Regenerative Medicine Clinical Trial Center, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Ji-Eun Lee
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea; (E.-Y.J.); (J.-S.P.)
- Gyeonggi-Incheon Regional Specialized Rare Disease Institute, Inha University Hospital, Incheon 22332, Republic of Korea
- Advanced Regenerative Medicine Clinical Trial Center, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Gwang-Seong Choi
- Gyeonggi-Incheon Regional Specialized Rare Disease Institute, Inha University Hospital, Incheon 22332, Republic of Korea
- Department of Dermatology, Inha University College of Medicine, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Benedicto I, Hamczyk MR, Dorado B, Andrés V. Vascular cell types in progeria: victims or villains? Trends Mol Med 2025:S1471-4914(25)00056-5. [PMID: 40240194 DOI: 10.1016/j.molmed.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare genetic disease caused by progerin, a broadly expressed mutant variant of lamin A protein that accelerates aging and leads to premature death typically in adolescence. Progerin affects many organs and reproduces many characteristics of physiological aging, with the main cause of death in HGPS being atherosclerotic cardiovascular disease (CVD). Due to the rarity of HGPS, advances in understanding the disease and progress toward new therapeutic approaches are crucially dependent on preclinical models. We discuss recent research developments from a variety of HGPS experimental systems, with a special focus on in vivo studies of the role of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) that are key players in atherosclerosis.
Collapse
Affiliation(s)
- Ignacio Benedicto
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Magda R Hamczyk
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Lu J, Rao SR, Knowles H, Zhan H, Gamez B, Platt E, Frost LR, Allen TJ, Marshall G, Huber KV, Bauer LG, Vendrell I, Kessler B, Horne A, Reid IR, Bountra C, Kirkland JL, Khosla S, Hal Ebetino F, Roldan E, Russell RGG, Edwards JR. Bisphosphonates Trigger Anti-Ageing Effects Across Multiple Cell Types and Protect Against Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645228. [PMID: 40196558 PMCID: PMC11974835 DOI: 10.1101/2025.03.25.645228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Bisphosphonates (BPs) have been the major class of medicines used to treat disorders of excessive bone loss for over five decades. Recently it has been recognized that BPs may also have additional significant beneficial extra-skeletal effects. These include a reduction of all-cause mortality and of conditions commonly linked to ageing, such as cancer and cardiovascular disease. Here we show that bisphosphonates co-localize with lysosomal and endosomal organelles in non-skeletal cells and stimulate cell growth at low doses. In vivo spatial transcriptomic analysis revealed differentially expressed senescence markers in multiple organs of aged BP-treated mice, and a shift in cellular composition toward those of young counterparts. Similarly, a 5000-plex plasma proteome analysis from osteopenic patients before and after BP-treatment showed significant alterations in ~400 proteins including GTPase regulators and markers of senescence, autophagy, apoptosis, and inflammatory responses. Furthermore, treatment with BPs protected against the onset of senescence in vitro. Proteome-wide target deconvolution using 2D thermal profiling revealed novel BP-binding targets (PHB2, ASAH1), and combined with RNA- and ATAC-seq of BP-treated cells and patient data, suggests downstream regulation of the MEF2A transcription factor within the heart. Collectively, these results indicate how BPs may beneficially modify the human plasma proteome, and directly impact multiple non-skeletal cell types through previously unidentified proteins, thereby influencing a range of pathways related to senescence and ageing.
Collapse
Affiliation(s)
- Jinsen Lu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Srinivasa Rao Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Helen Knowles
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Haoqun Zhan
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Beatriz Gamez
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | | | | | | - Kilian V.M. Huber
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ludwig G. Bauer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anne Horne
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, NZ
| | - Ian R Reid
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, NZ
| | - Chas Bountra
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - F Hal Ebetino
- BioVinc LLC, Pasadena, CA, US; Chemistry Dept, University of Rochester, Rochester, NY, USA
| | | | - R Graham G Russell
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Mellanby Centre for Bone Research, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield Medical School, Sheffield, UK
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Abutaleb NO, Gao XD, Bedapudi A, Choi L, Shores KL, Kennedy C, Duby JE, Cao K, Liu DR, Truskey GA. Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome. APL Bioeng 2025; 9:016110. [PMID: 40027545 PMCID: PMC11871533 DOI: 10.1063/5.0244026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
The rare, accelerated aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) is commonly caused by a de novo c.1824 C > T point mutation of the LMNA gene that results in the protein progerin. The primary cause of death is a heart attack or stroke arising from atherosclerosis. A characteristic feature of HGPS arteries is loss of smooth muscle cells. An adenine base editor (ABE7.10max) corrected the point mutation and produced significant improvement in HGPS mouse lifespan, vascular smooth muscle cell density, and adventitial fibrosis. To assess whether base editing correction of human HGPS tissue engineered blood vessels (TEBVs) prevents the HGPS vascular phenotype and to identify the minimum fraction of edited smooth muscle cells needed to effect such changes, we transduced HGPS iPSCs with lentivirus containing ABE7.10max. Endothelial cells (viECs) and smooth muscle cells (viSMCs) obtained by differentiation of edited HGPS iPSCs did not express progerin and had double-stranded DNA breaks and reactive oxygen species at the same levels as healthy viSMCs and viECs. Editing HGPSviECs restored a normal response to shear stress. Normal vasodilation and viSMC density were restored in TEBVs made with edited cells. When TEBVs were prepared with at least 50% edited smooth muscle cells, viSMC proliferation and myosin heavy chain levels significantly improved. Sequencing of TEBV cells after perfusion indicated an enrichment of edited cells after 5 weeks of perfusion when they comprised 50% of the initial number of cells in the TEBVs. Thus, base editing correction of a fraction of HGPS vascular cells improves human TEBV phenotype.
Collapse
Affiliation(s)
- Nadia O. Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | - Akhil Bedapudi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Leandro Choi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Kevin L. Shores
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Crystal Kennedy
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27708, USA
| | | | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
6
|
Monterrubio-Ledezma F, Salcido-Gómez A, Zavaleta-Vásquez T, Navarro-García F, Cisneros B, Massieu L. The anti-senescence effect of D-β-hydroxybutyrate in Hutchinson-Gilford progeria syndrome involves progerin clearance by the activation of the AMPK-mTOR-autophagy pathway. GeroScience 2025:10.1007/s11357-024-01501-9. [PMID: 39821043 DOI: 10.1007/s11357-024-01501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
D-β-hydroxybutyrate, BHB, has been previously proposed as an anti-senescent agent in vitro and in vivo in several tissues including vascular smooth muscle. Moreover, BHB derivatives as ketone esters alleviate heart failure. Here, we provide evidence of the potential therapeutic effect of BHB on Hutchinson-Gilford progeria syndrome (HGPS), a rare condition characterized by premature aging and heart failure, caused by the presence of progerin, the aberrant protein derived from LMNA/C gene c.1824C > T mutation. We have assessed several hallmarks of HGPS-senescent phenotype in vitro, such as progerin levels, nuclear morphometric aberrations, nucleolar expansion, cellular senescent morphology, SA-βGal-positive cells, H3K9me3 heterochromatin, γH2AX foci, Lamin B1, p21Waf1/Cip1 and p16CDKN2A abundance, and autophagy. Strikingly, BHB improved nuclear and nucleolar morphometrics, diminished the senescence-phenotype, and unstuck autophagy in HGPS as observed by an enhanced degradation of the cargo protein receptor SQSTM1/p62, suggesting the stimulation of the autophagic flux. Additionally, we observed a decrease in progerin abundance, the cause of senescence in HGPS. Furthermore, compound C, an inhibitor of AMPK, and SBI-0206965, an inhibitor of ULK1/2 and AMPK, which prevent autophagy activation, reversed BHB-induced progerin decline as well as its anti-senescent effect in an AMPK-mTORC1 dependent manner. Altogether, these results suggest that the anti-senescence effect of BHB involves progerin clearance by autophagy activation supporting the potential of BHB for HGPS therapeutics and further preclinical trials.
Collapse
Affiliation(s)
- Feliciano Monterrubio-Ledezma
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Ashley Salcido-Gómez
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Tania Zavaleta-Vásquez
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Fernando Navarro-García
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Lourdes Massieu
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Krüger P, Hartinger R, Djabali K. Navigating Lipodystrophy: Insights from Laminopathies and Beyond. Int J Mol Sci 2024; 25:8020. [PMID: 39125589 PMCID: PMC11311807 DOI: 10.3390/ijms25158020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Collapse
Affiliation(s)
| | | | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.); (R.H.)
| |
Collapse
|
8
|
Schey GL, Hildebrandt ER, Wang Y, Diwan S, Passetti HA, Potts GW, Sprague-Getsy AM, Leoni ER, Kuebler TS, Sham YY, Hougland JL, Beese LS, Schmidt WK, Distefano MD. Library Screening, In Vivo Confirmation, and Structural and Bioinformatic Analysis of Pentapeptide Sequences as Substrates for Protein Farnesyltransferase. Int J Mol Sci 2024; 25:5324. [PMID: 38791363 PMCID: PMC11121372 DOI: 10.3390/ijms25105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.
Collapse
Affiliation(s)
- Garrett L. Schey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (E.R.L.); (W.K.S.)
| | - You Wang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; (Y.W.); (L.S.B.)
| | - Safwan Diwan
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| | - Holly A. Passetti
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| | - Gavin W. Potts
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| | - Andrea M. Sprague-Getsy
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.M.S.-G.); (J.L.H.)
| | - Ethan R. Leoni
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (E.R.L.); (W.K.S.)
| | - Taylor S. Kuebler
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.K.); (Y.Y.S.)
| | - Yuk Y. Sham
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.K.); (Y.Y.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.M.S.-G.); (J.L.H.)
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Lorena S. Beese
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; (Y.W.); (L.S.B.)
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (E.R.L.); (W.K.S.)
| | - Mark D. Distefano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| |
Collapse
|
9
|
Wang J, Yu Q, Tang X, Gordon LB, Chen J, Jiang B, Huang G, Fu H, Qian J, Liu Z, Mao J. Epidemiological characteristics of patients with Hutchinson-Gilford progeria syndrome and progeroid laminopathies in China. Pediatr Res 2024; 95:1356-1362. [PMID: 38191824 DOI: 10.1038/s41390-023-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) and progeroid laminopathies (PL) are extremely rare genetic diseases with extremely poor prognoses. This study aims to investigate the epidemiological and genotypic characteristics of patients with HGPS/PL in China. METHODS Using a cross-sectional study design, general characteristics and genotypic data of 46 patients with HGPS/PL from 17 provinces in China were analyzed. RESULTS Among the 46 patients with HGPS/PL, 20 patients are HGPS, and the rest are PL; the identified total prevalence of HGPS/PL is 1/23 million. Among 42 patients with gene reports, 3 carried compound heterozygous mutations in the ZMPSTE24 while the other 39 carried LMNA mutations. Among PL, LMNA c.1579 C > T homozygous mutation was the most common. The onset of classic genotype HGPS is skin sclerosis in the first month after birth. The primary clinical manifestations of PL patients include skin abnormalities, growth retardation, and joint stiffness. The median age of onset for PL was 12 (6,12) months. CONCLUSIONS In China, the identified total prevalence of HGPS/PL is 1/23 million. 92.8% of the genetic mutations of HGPS/PL were located in LMNA, and the rest in ZMPSTE24. Most patients of HGPS/PL have skin abnormalities as the earliest manifestation. Compared to PL, the classic genotype HGPS starts earlier. IMPACT STATEMENT Hutchinson-Gilford progeria syndrome (HGPS) and progeroid laminopathies (PL) are extremely rare genetic diseases with extremely poor prognoses. To date, there is a paucity of epidemiological data related to HGPS/PL in China. This study first examined the genotypic, phenotypic, and prevalence characteristics of 40-50% of the cases of HGPS/PL in mainland China through a collaborative international registry effort. In China, the identified total prevalence of HGPS/PL is 1/23 million. 92.8% of the genetic mutations of HGPS/PL are located in LMNA. LMNA c.1579 C > T homozygous mutations are the most common form of gene mutations among the Chinese PL population.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Qinmei Yu
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Xiaoxiao Tang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Leslie B Gordon
- Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
- Progeria Research Foundation, Peabody, MA, USA
| | - Junyi Chen
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Buchun Jiang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Guoping Huang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Jianqin Qian
- Clinical trial institute, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Zhihong Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- National Clinical Research Center of Kidney Diseases, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jianhua Mao
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China.
| |
Collapse
|
10
|
Macías Á, Nevado RM, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Dorado B, Benedicto I, Andrés V. Coronary and carotid artery dysfunction and K V7 overexpression in a mouse model of Hutchinson-Gilford progeria syndrome. GeroScience 2024; 46:867-884. [PMID: 37233881 PMCID: PMC10828489 DOI: 10.1007/s11357-023-00808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing LmnaG609G/G609G mice (G609G), both in resting conditions and after hypoxic stimulus. Wire myography, pharmacological screening, and gene expression studies demonstrated vascular atony and stenosis, as well as other functional alterations in progeroid CorAs and CarAs and aorta. These defects were associated with loss of vascular smooth muscle cells and overexpression of the KV7 family of voltage-dependent potassium channels. Compared with wild-type controls, G609G mice showed reduced median survival upon chronic isoproterenol exposure, a baseline state of chronic cardiac hypoxia characterized by overexpression of hypoxia-inducible factor 1α and 3α genes, and increased cardiac vascularization. Our results shed light on the mechanisms underlying progerin-induced coronary and carotid artery disease and identify KV7 channels as a candidate target for the treatment of HGPS.
Collapse
Affiliation(s)
- Álvaro Macías
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rosa M Nevado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina González-Gómez
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Gonzalo
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jesús Andrés-Manzano
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Dorado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Benedicto
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040, Madrid, Spain
| | - Vicente Andrés
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Arun A, Nath AR, Thankachan B, Unnikrishnan MK. Hutchinson-Gilford progeria syndrome: unraveling the genetic basis, symptoms, and advancements in therapeutic approaches. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241305144. [PMID: 39691184 PMCID: PMC11650505 DOI: 10.1177/26330040241305144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Hutchinson-Gilford Progeria syndrome (HGPS) serves as a prominent model for Progeroid syndromes, a group of rare genetic disorders characterized by accelerated aging. This review explores the genetic basis, clinical presentation, and complications of HGPS. HGPS is caused by mutations in the LMNA gene, resulting in the production of a defective structural protein, prelamin A. This protein contains a "CAAX" motif, where C represents cysteine, and its abnormal processing is central to the disease's pathology. HGPS leads to multiple organ systems being affected, including cardiovascular, skeletal, neurological, and dermatological systems, causing severe disability and increased mortality. Cardiovascular issues are particularly significant in HGPS and are crucial for developing therapeutic strategies. Recent advances in treatment modalities offer promise for managing HGPS. Farnesyltransferase inhibitors and genetic interventions, such as CRISPR-Cas9, have shown potential in mitigating progerin-associated symptoms, with encouraging results observed in preclinical and clinical studies. Additionally, emerging therapies such as rapamycin, sulforaphane, and MG132 hold promise in targeting underlying disease mechanisms. Comprehensive management approaches, including growth hormone therapy, retinoids, and dental care, are emphasized to enhance overall patient well-being. Despite progress, further research is essential to unravel the complex pathophysiology of Progeroid syndromes and develop effective treatments. Continued focus on therapies that address progerin accumulation and its downstream effects is vital for improving patient care and outcomes for individuals affected by HGPS and related disorders. This review highlights ongoing efforts to understand and combat Progeroid syndromes, aiming to alleviate the burdens imposed by these debilitating conditions.
Collapse
Affiliation(s)
- Akhil Arun
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara P.O., Kochi, KL 682041, India
| | - Athira Rejith Nath
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| | - Bonny Thankachan
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| | - M. K. Unnikrishnan
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| |
Collapse
|
12
|
Souche C, Fouillet J, Rubira L, Donzé C, Deshayes E, Fersing C. Bisphosphonates as Radiopharmaceuticals: Spotlight on the Development and Clinical Use of DOTAZOL in Diagnostics and Palliative Radionuclide Therapy. Int J Mol Sci 2023; 25:462. [PMID: 38203632 PMCID: PMC10779041 DOI: 10.3390/ijms25010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bisphosphonates are therapeutic agents that have been used for almost five decades in the treatment of various bone diseases, such as osteoporosis, Paget disease and prevention of osseous complications in cancer patients. In nuclear medicine, simple bisphosphonates such as 99mTc-radiolabelled oxidronate and medronate remain first-line bone scintigraphic imaging agents for both oncology and non-oncology indications. In line with the growing interest in theranostic molecules, bifunctional bisphosphonates bearing a chelating moiety capable of complexing a variety of radiometals were designed. Among them, DOTA-conjugated zoledronate (DOTAZOL) emerged as an ideal derivative for both PET imaging (when radiolabeled with 68Ga) and management of bone metastases from various types of cancer (when radiolabeled with 177Lu). In this context, this report provides an overview of the main medicinal chemistry aspects concerning bisphosphonates, discussing their roles in molecular oncology imaging and targeted radionuclide therapy with a particular focus on bifunctional bisphosphonates. Particular attention is also paid to the development of DOTAZOL, with emphasis on the radiochemistry and quality control aspects of its preparation, before outlining the preclinical and clinical data obtained so far with this radiopharmaceutical candidate.
Collapse
Affiliation(s)
- Céleste Souche
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Charlotte Donzé
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
13
|
Worman HJ, Michaelis S. Prelamin A and ZMPSTE24 in premature and physiological aging. Nucleus 2023; 14:2270345. [PMID: 37885131 PMCID: PMC10730219 DOI: 10.1080/19491034.2023.2270345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Park BJ. Progerin, an Aberrant Spliced Form of Lamin A, Is a Potential Therapeutic Target for HGPS. Cells 2023; 12:2299. [PMID: 37759521 PMCID: PMC10527460 DOI: 10.3390/cells12182299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that cellular aging can occur in the short term. Studying progeria could be useful in unraveling the causes of human aging (as well as fatal age-related disorders). Elucidating the clear cause of HGPS or the development of a therapeutic medicine could improve the quality of life and extend the survival of patients. This review aimed to (i) briefly describe how progerin was discovered as the causative agent of HGPS, (ii) elucidate the puzzling observation of the absence of primary neurological disease in HGPS, (iii) present several studies showing the deleterious effects of progerin and the beneficial effects of its inhibition, and (iv) summarize research to develop a therapy for HGPS and introduce clinical trials for its treatment.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| |
Collapse
|
15
|
Koschitzki K, Ivanova I, Berneburg M. [Progeroid syndromes : Aging, skin aging, and mechanisms of progeroid syndromes]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2023; 74:696-706. [PMID: 37650893 PMCID: PMC10480280 DOI: 10.1007/s00105-023-05212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
Progeroid syndromes (PSs) are characterized by the premature onset of age-related pathologies. PSs display a wide range of heterogeneous pathological symptoms that also manifest during natural aging, including vision and hearing loss, atrophy, hair loss, progressive neurodegeneration, and cardiovascular defects. Recent advances in molecular pathology have led to a better understanding of the underlying mechanisms of these diseases. The genetic mutations underlying PSs are functionally linked to genome maintenance and repair, supporting the causative role of DNA damage accumulation in aging. While some of those genes encode proteins with a direct involvement in a DNA repair machinery, such as nucleotide excision repair (NER), others destabilize the genome by compromising the stability of the nuclear envelope, when lamin A is dysfunctional in Hutchinson-Gilford progeria syndrome (HGPS) or regulate the DNA damage response (DDR) such as the ataxia telangiectasia-mutated (ATM) gene. Understanding the molecular pathology of progeroid diseases is crucial in developing potential treatments to manage and prevent the onset of symptoms. This knowledge provides insight into the underlying mechanisms of premature aging and could lead to improved quality of life for individuals affected by progeroid diseases.
Collapse
Affiliation(s)
- Kevin Koschitzki
- Poliklinik und Klinik für Dermatologie, Universitätsklinikum Regensburg, Regensburg, Deutschland.
| | - Irina Ivanova
- Poliklinik und Klinik für Dermatologie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Mark Berneburg
- Poliklinik und Klinik für Dermatologie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| |
Collapse
|
16
|
Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I, Rosas-Vargas H. Hutchinson-Gilford Progeria Syndrome: Cellular Mechanisms and Therapeutic Perspectives. Arch Med Res 2023; 54:102837. [PMID: 37390702 DOI: 10.1016/j.arcmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
In humans, aging is characterized by a gradual decline of physical and psychological functions, with the concomitant onset of chronic-degenerative diseases, which ultimately lead to death. The study of Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder that recapitulates several features of natural aging, has provided important insights into deciphering the aging process. The genetic origin of HGPS is a de novo point mutation in the LMNA gene that drives the synthesis of progerin, mutant version of lamin A. Progerin is aberrantly anchored to the nuclear envelope disrupting a plethora of molecular processes; nonetheless, how progerin exerts a cascade of deleterious alterations at the cellular and systemic levels is not fully understood. Over the past decade, the use of different cellular and animal models for HGPS has allowed the identification of the molecular mechanisms underlying HGPS, paving the way towards the development of therapeutic treatments against the disease. In this review, we present an updated overview of the biology of HGPS, including its clinical features, description of key cellular processes affected by progerin (nuclear morphology and function, nucleolar activity, mitochondrial function, protein nucleocytoplasmic trafficking and telomere homeostasis), as well as discussion of the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico
| | - Ian García-Aguirre
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Bioengineering Department, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Marlon De Ita
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Basic Research Department, Research Direction, National Institute of Geriatrics, Ministry of Health, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
17
|
Chen J, Lian Y, Zhao B, Han J, Li X, Wu J, Hou M, Yue M, Zhang K, Liu G, Tu M, Ruan W, Ji S, An Y. Deciphering the Prognostic and Therapeutic Significance of Cell Cycle Regulator CENPF: A Potential Biomarker of Prognosis and Immune Microenvironment for Patients with Liposarcoma. Int J Mol Sci 2023; 24:ijms24087010. [PMID: 37108172 PMCID: PMC10139200 DOI: 10.3390/ijms24087010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Liposarcoma (LPS) is one of the most common subtypes of sarcoma with a high recurrence rate. CENPF is a regulator of cell cycle, differential expression of which has been shown to be related with various cancers. However, the prognostic value of CENPF in LPS has not been deciphered yet. Using data from TCGA and GEO datasets, the expression difference of CENPF and its effects on the prognosis or immune infiltration of LPS patients were analyzed. As results show, CENPF was significantly upregulated in LPS compared to normal tissues. Survival curves illustrated that high CENPF expression was significantly associated with adverse prognosis. Univariate and multivariate analysis suggested that CENPF expression could be an independent risk factor for LPS. CENPF was closely related to chromosome segregation, microtubule binding and cell cycle. Immune infiltration analysis elucidated a negative correlation between CENPF expression and immune score. In conclusion, CENPF not only could be considered as a potential prognostic biomarker but also a potential malignant indicator of immune infiltration-related survival for LPS. The elevated expression of CENPF reveals an unfavorable prognostic outcome and worse immune score. Thus, therapeutically targeting CENPF combined with immunotherapy might be an attractive strategy for the treatment of LPS.
Collapse
Affiliation(s)
- Jiahao Chen
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Yingying Lian
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Binbin Zhao
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Jiayang Han
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Xinyu Li
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Jialin Wu
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Mengwen Hou
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Man Yue
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Kaifeng Zhang
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Guangchao Liu
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Mengjie Tu
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Weimin Ruan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shaoping Ji
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Yang An
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| |
Collapse
|
18
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Murtada SI, Mikush N, Wang M, Ren P, Kawamura Y, Ramachandra AB, Li DS, Braddock DT, Tellides G, Gordon LB, Humphrey JD. Lonafarnib improves cardiovascular function and survival in a mouse model of Hutchinson-Gilford progeria syndrome. eLife 2023; 12:82728. [PMID: 36930696 PMCID: PMC10023154 DOI: 10.7554/elife.82728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Clinical trials have demonstrated that lonafarnib, a farnesyltransferase inhibitor, extends the lifespan in patients afflicted by Hutchinson-Gilford progeria syndrome, a devastating condition that accelerates many characteristics of aging and results in premature death due to cardiovascular sequelae. The US Food and Drug Administration approved Zokinvy (lonafarnib) in November 2020 for treating these patients, yet a detailed examination of drug-associated effects on cardiovascular structure, properties, and function has remained wanting. In this paper, we report encouraging outcomes of daily post-weaning treatment with lonafarnib on the composition and biomechanical phenotype of elastic and muscular arteries as well as associated cardiac function in a well-accepted mouse model of progeria that exhibits severe perimorbid cardiovascular disease. Lonafarnib resulted in 100% survival of the treated progeria mice to the study end-point (time of 50% survival of untreated mice), with associated improvements in arterial structure and function working together to significantly reduce pulse wave velocity and improve left ventricular diastolic function. By contrast, neither treatment with the mTOR inhibitor rapamycin alone nor dual treatment with lonafarnib plus rapamycin improved outcomes over that achieved with lonafarnib monotherapy.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
| | - Nicole Mikush
- Translational Research Imaging Center, Yale UniversityNew HavenUnited States
| | - Mo Wang
- Department of Surgery, Yale UniversityNew HavenUnited States
| | - Pengwei Ren
- Department of Surgery, Yale UniversityNew HavenUnited States
| | - Yuki Kawamura
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
| | | | - David S Li
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
| | | | - George Tellides
- Department of Surgery, Yale UniversityNew HavenUnited States
- Vascular Biology and Therapeutics Program, Yale UniversityNew HavenUnited States
| | - Leslie B Gordon
- Department of Pediatrics, Hasbro Children's Hospital and Warren Albert Medical School, Brown UniversityProvidenceUnited States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Vascular Biology and Therapeutics Program, Yale UniversityNew HavenUnited States
| |
Collapse
|
20
|
Compound combinations targeting longevity: Challenges and perspectives. Ageing Res Rev 2023; 85:101851. [PMID: 36642188 DOI: 10.1016/j.arr.2023.101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Aging is one of the world's greatest concerns, requiring urgent, effective, large-scale interventions to decrease the number of late-life chronic diseases and improve human healthspan. Anti-aging drug therapy is one of the most promising strategies to combat the effects of aging. However, most geroprotective compounds are known to successfully affect only a few aging-related targets. Given this, there is a great biological rationale for the use of combinations of anti-aging interventions. In this review, we characterize the various types of compound combinations used to modulate lifespan, discuss the existing evidence on their role in life extension, and present some key points about current challenges and future prospects for the development of combination drug anti-aging therapy.
Collapse
|
21
|
Asymmetric Synthesis of US-FDA Approved Drugs over Five Years (2016–2020): A Recapitulation of Chirality. Pharmaceuticals (Basel) 2023; 16:ph16030339. [PMID: 36986439 PMCID: PMC10052577 DOI: 10.3390/ph16030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Chirality is a major theme in the design, discovery, and development of new drugs. Historically, pharmaceuticals have been synthesized as racemic mixtures. However, the enantiomeric forms of drug molecules have distinct biological properties. One enantiomer may be responsible for the desired therapeutic effect (eutomer), whereas the other may be inactive, interfere with the therapeutic form, or exhibit toxicity (distomer). Classical chemical synthesis usually leads to a racemic mixture unless stereospecific synthesis is employed. To meet the requirements of single-enantiomeric drugs, asymmetric synthesis has evolved at the forefront of drug discovery. Asymmetric synthesis involves the conversion of an achiral starting material into a chiral product. This review emphasizes the methods used for synthesizing FDA-approved chiral drugs during 2016–2020, with a special focus on asymmetric synthesis by means of chiral induction, resolution, or chiral pool.
Collapse
|
22
|
Malloy J, Berry E, Correia A, Fragala-Pinkham M, Coucci S, Riley S, Spratt J, Knight Pfaffinger J, Massaro J, Ehrbar R, D'Agostino R, Gurary EB, Gordon LB, Kleinman ME. Baseline Range of Motion, Strength, Motor Function, and Participation in Youth with Hutchinson-Gilford Progeria Syndrome. Phys Occup Ther Pediatr 2023; 43:482-501. [PMID: 36628480 PMCID: PMC10496152 DOI: 10.1080/01942638.2022.2158054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023]
Abstract
AIMS Limited information is available on impairments, activity limitations and participation restrictions in youth with Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic premature aging disease. The purposes were to: (1) describe range of motion (ROM), grip, pinch and quadriceps strength, functional balance, walking endurance, and gross motor limitations and participation restrictions; (2) evaluate the association between ROM impairments and age; and (3) evaluate the association between the Gross Motor Function Measure-88 (GMFM) scores and lower extremity (LE) ROM, quadriceps strength, and age. METHODS Upper and LE ROM, grip, pinch and quadriceps strength, Timed Up and Go (TUG), Six Minute Walk Test, GMFM-88, and Canadian Occupational Performance Measure data were recorded for 38 participants with HGPS. RESULTS All youth exhibited ROM impairments and most displayed decreased grip and pinch strength, walking endurance, and gross motor skills when compared to same-aged peers. However, the majority had good functional balance with TUG scores in the normal range. Participation restrictions included difficulty keeping up with peers when walking and difficulty completing activities of daily living. Some ROM measurements were negatively associated with age indicating that older participants had more extensive ROM limitation than younger participants. CONCLUSIONS Physical and occupational therapists can use this information when evaluating youth with HGPS, designing a plan of care, and providing treatment interventions.
Collapse
Affiliation(s)
- Julie Malloy
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Emily Berry
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Annette Correia
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Maria Fragala-Pinkham
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Sarah Coucci
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Susan Riley
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Spratt
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Knight Pfaffinger
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Joe Massaro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Rachel Ehrbar
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ralph D'Agostino
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Ellen B Gurary
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Leslie B Gordon
- Department of Anesthesiology, Preoperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Monica E Kleinman
- Department of Anesthesiology, Preoperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
23
|
LeClair J, Massaro J, Sverdlov O, Gordon L, Tripodis Y. Sample size determination for the association between longitudinal and time-to-event outcomes using the joint modeling time-dependent slopes parameterization. Stat Med 2022; 41:5810-5829. [PMID: 36305571 PMCID: PMC9771931 DOI: 10.1002/sim.9595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022]
Abstract
Given their improvements in bias reduction and efficiency, joint models (JMs) for longitudinal and time-to-event data offer great potential to clinical trials. However, for JM to become more widely used, there is a need for additional development of design considerations. To this end, Chen et al previously developed two closed-form sample size formulas in the JM setting. In this current work, we expand upon this framework by utilizing the time-dependent slopes parameterization, where the change in the longitudinal outcome influences the hazard, in addition to the current value of the longitudinal process. Our extended formula for the required number of events can be used when testing significance of the association between the longitudinal and time-to-event outcomes. We find that if the data indeed are generated such that not only the current value, but also the slope of the longitudinal outcome influence the hazard of the time-to-event process, it is advisable to use the current formula developed utilizing the time-dependent slopes parameterization. In this setting, our proposed formula will provide a more accurate estimate of power compared to the method by Chen et al. To illustrate our proposed method, we present power calculations of a biomarker qualification study for Hutchinson-Gilford progeria syndrome, an ultra-rare premature aging disease.
Collapse
Affiliation(s)
- Jessica LeClair
- Department of Biostatistics, Boston University School of Public Health, MA, USA
| | - Joseph Massaro
- Department of Biostatistics, Boston University School of Public Health, MA, USA
| | - Oleksandr Sverdlov
- Early Development Analytics, Novartis Pharmaceuticals Corporation, NJ, USA
| | - Leslie Gordon
- Division of Genetics, Department of Pediatrics, Hasbro Children’s Hospital and Warren Alpert Medical School of Brown University, RI, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, MA, USA
| |
Collapse
|
24
|
Ma N, Liang Y, Yue L, Liu P, Xu Y, Zhu C. The identities of insulin signaling pathway are affected by overexpression of Tau and its phosphorylation form. Front Aging Neurosci 2022; 14:1057281. [PMID: 36589543 PMCID: PMC9800792 DOI: 10.3389/fnagi.2022.1057281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Hyperphosphorylated Tau formed neurofibrillary tangles was one of the major neuropathological hallmarks of Alzheimer's disease (AD). Dysfunctional insulin signaling in brain is involved in AD. However, the effect of Tau pathology on brain insulin resistance remains unclear. This study explored the effects of overexpressing wild-type Tau (WTau) or Tau with pseudo-phosphorylation at AT8 residues (PTau) on the insulin signaling pathway (ISP). Methods 293T cells or SY5Y cells overexpressing WTau or PTau were treated with or without insulin. The elements in ISP or the regulators of IPS were analyzed by immunoblotting, immunofluorescent staining and co-immunoprecipitation. Akt inhibitor MK2206 was used for evaluating the insulin signaling to downstream of mTOR in Tau overexpressing cells. The effects of anti-aging drug lonafarnib on ISP in WTau or PTau cells were also analyzed with immunoblotting. Considering lonafarnib is an inhibitor of FTase, the states of Rhes, one of FTase substrate in WTau or PTau cells were analyzed by drug affinity responsive target stability (DARTS) assay and the cellular thermal shift assay (CETSA). Results WTau or PTau overexpression in cells upregulated basal activity of elements in ISP in general. However, overexpression of WTau or PTau suppressed the ISP signaling transmission responses induced by insulin simulation, appearing relative higher response of IRS-1 phosphorylation at tyrosine 612 (IRS-1 p612) in upstream IPS, but a lower phosphorylation response of downstream IPS including mTOR, and its targets 4EPB1 and S6. This dysregulation of insulin evoked signaling transmission was more obvious in PTau cells. Suppressing Akt with MK2206 could compromise the levels of p-S6 and p-mTOR in WTau or PTau cells. Moreover, the changes of phosphatases detected in WTau and PTau cells may be related to ISP dysfunction. In addition, the effects of lonafarnib on the ISP in SY5Y cells with WTau and PTau overexpression were tested, which showed that lonafarnib treatment resulted in reducing the active levels of ISP elements in PTau cells but not in WTau cells. The differential effects are probably due to Tau phosphorylation modulating lonafarnib-induced alterations in Rhes, as revealed by DARTS assay. Conclusion and discussion Overexpression of Tau or Tau with pseudo-phosphorylation at AT8 residues could cause an upregulation of the basal/tonic ISP, but a suppression of insulin induced the phasic activation of ISP. This dysfunction of ISP was more obvious in cells overexpressing pseudo-phosphorylated Tau. These results implied that the dysfunction of ISP caused by Tau overexpression might impair the physiological fluctuation of neuronal functions in AD. The different effects of lonafarnib on ISP between WTau and PTau cells, indicating that Tau phosphorylation mediates an additional effect on ISP. This study provided a potential linkage of abnormal expression and phosphorylation of Tau to the ISP dysfunction in AD.
Collapse
|
25
|
Quantification of Farnesylated Progerin in Hutchinson-Gilford Progeria Patient Cells by Mass Spectrometry. Int J Mol Sci 2022; 23:ijms231911733. [PMID: 36233036 PMCID: PMC9569443 DOI: 10.3390/ijms231911733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal disorder characterized by premature aging and death at a median age of 14.5 years. The most common cause of HGPS (affecting circa 90% of patients) is a de novo heterozygous synonymous single-base substitution (c.1824C>T; p.G608G) in the LMNA gene that results in the accumulation of progerin, an aberrant form of lamin A that, unlike mature lamin A, remains permanently farnesylated. The ratio of progerin to mature lamin A correlates with disease severity in HGPS patients, and can be used to assess the effectiveness of therapies aimed at lessening aberrant splicing or progerin farnesylation. We recently showed that the endogenous content of lamin A and progerin can be measured by mass spectrometry (MS), providing an alternative to immunological methods, which lack the necessary specificity and quantitative accuracy. Here, we present the first non-immunological method that reliably quantifies the levels of wild-type lamin A and farnesylated progerin in cells from HGPS patients. This method, which is based on a targeted MS approach and the use of isotope-labeled internal standards, could be applied in ongoing clinical trials evaluating the efficacy of drugs that inhibit progerin farnesylation.
Collapse
|
26
|
Chen X, Yao H, Andrés V, Bergo MO, Kashif M. Status of treatment strategies for Hutchinson-Gilford progeria syndrome with a focus on prelamin: A posttranslational modification. Basic Clin Pharmacol Toxicol 2022; 131:217-223. [PMID: 35790078 PMCID: PMC9795874 DOI: 10.1111/bcpt.13770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by premature ageing and early death at a mean age of 14.7 years. At the molecular level, HGPS is caused by a de novo heterozygous mutation in LMNA, the gene encoding A-type lamins (mainly lamin A and C) and nuclear proteins, which have important cellular functions related to structure of the nuclear envelope. The LMNA mutation leads to the synthesis of a truncated prelamin A protein (called progerin), which cannot undergo normal processing to mature lamin A. In normal cells, prelamin A processing involves four posttranslational processing steps catalysed by four different enzymes. In HGPS cells, progerin accumulates as a farnesylated and methylated intermediate in the nuclear envelope where it is toxic and causes nuclear shape abnormalities and senescence. Numerous efforts have been made to target and reduce the toxicity of progerin, eliminate its synthesis and enhance its degradation, but as of today, only the use of farnesyltransferase inhibitors is approved for clinical use in HGPS patients. Here, we review the main current strategies that are being evaluated for treating HGPS, and we focus on efforts to target the posttranslational processing of progerin.
Collapse
Affiliation(s)
- Xue Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Haidong Yao
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain,CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Martin O. Bergo
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Muhammad Kashif
- Center for Hematology and Regenerative Medicine, Department of Medicine, HuddingeKarolinska InstitutetHuddingeSweden
| |
Collapse
|
27
|
Caliskan A, Crouch SAW, Giddins S, Dandekar T, Dangwal S. Progeria and Aging-Omics Based Comparative Analysis. Biomedicines 2022; 10:2440. [PMID: 36289702 PMCID: PMC9599154 DOI: 10.3390/biomedicines10102440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 10/21/2023] Open
Abstract
Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.
Collapse
Affiliation(s)
- Aylin Caliskan
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Samantha A. W. Crouch
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sara Giddins
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Seema Dangwal
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Lamis A, Siddiqui SW, Ashok T, Patni N, Fatima M, Aneef AN. Hutchinson-Gilford Progeria Syndrome: A Literature Review. Cureus 2022; 14:e28629. [PMID: 36196312 PMCID: PMC9524302 DOI: 10.7759/cureus.28629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging condition that involves genetic mutations, resulting in debilitating phenotypic features. The present state of knowledge on the molecular pathways that contribute to the pathophysiology of HGPS and the techniques being tested in vitro and in vivo to combat progerin toxicity have been discussed here. Nuclear morphological abnormalities, dysregulated gene expression, DNA repair deficiencies, telomere shortening, and genomic instability are all caused by progerin accumulation, all of which impair cellular proliferative capability. In addition, HGPS cells and preclinical animal models have revealed new information about the disease's molecular and cellular pathways and putative mechanisms involved in normal aging. This article has discussed the understanding of the molecular pathways by which progerin expression leads to HGPS and how the advanced therapy options for HGPS patients can help us understand and treat the condition.
Collapse
|
29
|
Buchinskaya NV, Akhenbekova AZ, Bugybay AA, Kostik MM. Progeria (Hutchinson-Gilford Syndrome): Literature Review and Clinical Case. CURRENT PEDIATRICS 2022; 21:253-264. [DOI: 10.15690/vsp.v21i3.2431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Progeria, or Hutchinson-Gilford Syndrome is a rare disease from the group of laminopathies characterized by premature aging with skin, bones and cardiovascular system lesions. Pathogenesis is based on pathogenic variants in the LMNA gene leading to anomalies in the nuclear membrane morphology, gene expression disruption, chromatin structure changes, mitochondrial dysfunction, DNA repair and alternative splicing defects, and telomere shortening acceleration. Major manifestations of the disease are: skin lesions (scleroderma-like syndrome and pigmented lesions), lipodystrophy, late teeth eruption, teeth crowding, alopecia, nail dystrophy, osteolysis of distal phalanges, hip joints valgus deformation, joints contractures, atherosclerosis, hearing loss, early heart attacks and strokes. Scleroderma-like skin changes, osteoporosis, flexion contractures of hands’ interphalangeal joints, and hip joints osteoarthritis require differential diagnosis with rheumatic diseases. The basic strategy in management of patients with progeria is the prevention and treatment of its cardiovascular manifestations (early strokes and heart attacks, arterial hypertension, and atherosclerosis), as well as the increase of patients’ quality of life and daily activity. The efficacy of therapy in patients with progeria via the use of farnesyltransferase inhibitors (monotherapy; combination with bisphosphonates or statins), retinoids, and 1,25(OH)2 — vitamin D3 is studied. This literature review is updated with clinical case description of a girl with progeria. The diagnosis was confirmed by sequencing of the LMNA gene (Sanger), and previously described pathogenic variant in exon 11 (c.1824C>T, rs58596362) in the heterozygous state (p.Gly608Gly, NM_170707.3) was revealed.
Collapse
Affiliation(s)
| | | | | | - Mikhail M. Kostik
- Saint-Petersburg State Pediatric Medical University; Almazov National Medical Research Centre
| |
Collapse
|
30
|
Transient expression of an adenine base editor corrects the Hutchinson-Gilford progeria syndrome mutation and improves the skin phenotype in mice. Nat Commun 2022; 13:3068. [PMID: 35654881 PMCID: PMC9163128 DOI: 10.1038/s41467-022-30800-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature ageing disorder caused by a point mutation in the LMNA gene (LMNA c.1824 C > T), resulting in the production of a detrimental protein called progerin. Adenine base editors recently emerged with a promising potential for HGPS gene therapy. However adeno-associated viral vector systems currently used in gene editing raise concerns, and the long-term effects of heterogeneous mutation correction in highly proliferative tissues like the skin are unknown. Here we use a non-integrative transient lentiviral vector system, expressing an adenine base editor to correct the HGPS mutation in the skin of HGPS mice. Transient adenine base editor expression corrected the mutation in 20.8-24.1% of the skin cells. Four weeks post delivery, the HGPS skin phenotype was improved and clusters of progerin-negative keratinocytes were detected, indicating that the mutation was corrected in both progenitor and differentiated skin cells. These results demonstrate that transient non-integrative viral vector mediated adenine base editor expression is a plausible approach for future gene-editing therapies.
Collapse
|
31
|
Benedicto I, Chen X, Bergo MO, Andrés V. Progeria: a perspective on potential drug targets and treatment strategies. Expert Opin Ther Targets 2022; 26:393-399. [DOI: 10.1080/14728222.2022.2078699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ignacio Benedicto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Xue Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | - Martin O. Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
32
|
Ralph D, van de Wetering K, Uitto J, Li Q. Inorganic Pyrophosphate Deficiency Syndromes and Potential Treatments for Pathologic Tissue Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:762-770. [PMID: 35182493 PMCID: PMC9088198 DOI: 10.1016/j.ajpath.2022.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Pathologic soft tissue calcification can occur in both genetic and acquired clinical conditions, causing significant morbidity and mortality. Although the pathomechanisms of pathologic calcification are poorly understood, major progress has been made in recent years in defining the underlying genetic defects in Mendelian disorders of ectopic calcification. This review presents an overview of the pathophysiology of five monogenic disorders of pathologic calcification: pseudoxanthoma elasticum, generalized arterial calcification of infancy, arterial calcification due to deficiency of CD73, ankylosis, and progeria. These hereditary disorders, caused by mutations in genes encoding ATP binding cassette subfamily C member 6, ectonucleotide pyrophosphatase/phosphodiesterase 1, CD73, progressive ankylosis protein, and lamin A/C proteins, respectively, are inorganic pyrophosphate (PPi) deficiency syndromes with reduced circulating levels of PPi, the principal physiologic inhibitor of calcium hydroxyapatite deposition in soft connective tissues. In addition to genetic diseases, PPi deficiency has been encountered in acquired clinical conditions accompanied by pathologic calcification. Because specific and effective treatments are lacking for pathologic calcification, the unifying finding of PPi deficiency suggests that PPi-targeted therapies may be beneficial to counteract pathologic soft tissue calcification in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Douglas Ralph
- Genetics, Genomics, and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
Sánchez-López A, Espinós-Estévez C, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Fanjul V, Riquelme-Borja R, Hamczyk MR, Macías Á, Del Campo L, Camafeita E, Vázquez J, Barkaway A, Rolas L, Nourshargh S, Dorado B, Benedicto I, Andrés V. Cardiovascular Progerin Suppression and Lamin A Restoration Rescue Hutchinson-Gilford Progeria Syndrome. Circulation 2021; 144:1777-1794. [PMID: 34694158 PMCID: PMC8614561 DOI: 10.1161/circulationaha.121.055313] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder characterized by premature aging and death mainly because of myocardial infarction, stroke, or heart failure. The disease is provoked by progerin, a variant of lamin A expressed in most differentiated cells. Patients look healthy at birth, and symptoms typically emerge in the first or second year of life. Assessing the reversibility of progerin-induced damage and the relative contribution of specific cell types is critical to determining the potential benefits of late treatment and to developing new therapies. METHODS We used CRISPR-Cas9 technology to generate LmnaHGPSrev/HGPSrev (HGPSrev) mice engineered to ubiquitously express progerin while lacking lamin A and allowing progerin suppression and lamin A restoration in a time- and cell type-specific manner on Cre recombinase activation. We characterized the phenotype of HGPSrev mice and crossed them with Cre transgenic lines to assess the effects of suppressing progerin and restoring lamin A ubiquitously at different disease stages as well as specifically in vascular smooth muscle cells and cardiomyocytes. RESULTS Like patients with HGPS, HGPSrev mice appear healthy at birth and progressively develop HGPS symptoms, including failure to thrive, lipodystrophy, vascular smooth muscle cell loss, vascular fibrosis, electrocardiographic anomalies, and precocious death (median lifespan of 15 months versus 26 months in wild-type controls, P<0.0001). Ubiquitous progerin suppression and lamin A restoration significantly extended lifespan when induced in 6-month-old mildly symptomatic mice and even in severely ill animals aged 13 months, although the benefit was much more pronounced on early intervention (84.5% lifespan extension in mildly symptomatic mice, P<0.0001, and 6.7% in severely ill mice, P<0.01). It is remarkable that major vascular alterations were prevented and lifespan normalized in HGPSrev mice when progerin suppression and lamin A restoration were restricted to vascular smooth muscle cells and cardiomyocytes. CONCLUSIONS HGPSrev mice constitute a new experimental model for advancing knowledge of HGPS. Our findings suggest that it is never too late to treat HGPS, although benefit is much more pronounced when progerin is targeted in mice with mild symptoms. Despite the broad expression pattern of progerin and its deleterious effects in many organs, restricting its suppression to vascular smooth muscle cells and cardiomyocytes is sufficient to prevent vascular disease and normalize lifespan.
Collapse
Affiliation(s)
- Amanda Sánchez-López
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Carla Espinós-Estévez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.)
| | - Cristina González-Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - María J Andrés-Manzano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Víctor Fanjul
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Raquel Riquelme-Borja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.)
| | - Magda R Hamczyk
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.).,Now with Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H.)
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Lara Del Campo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.).,Now with Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.d.C.)
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.B., L.R., S.N.)
| | - Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.B., L.R., S.N.)
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.B., L.R., S.N.)
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Ignacio Benedicto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.)
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| |
Collapse
|
34
|
Keith KA, Reed LK, Nguyen A, Qaiser R. Neurovascular Syndromes. Neurosurg Clin N Am 2021; 33:135-148. [PMID: 34801137 DOI: 10.1016/j.nec.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Patients with cerebrovascular syndromes are at risk for additional concerns associated with their syndrome. A wide variety of syndromes are associated with cerebrovascular diseases. Multidisciplinary care is helpful to ensure comprehensive evaluation and management. Precise diagnosis and appreciation for the underlying syndrome is critical for effective cerebrovascular and broader care. This text focuses on these conditions with a focus on underlying pathophysiology and associated genetics, presentation, diagnosis, and management of each disease.
Collapse
Affiliation(s)
- Kristin A Keith
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Laura K Reed
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Anthony Nguyen
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Rabia Qaiser
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA.
| |
Collapse
|
35
|
Efficacy of Cord Blood Cell Therapy for Hutchinson-Gilford Progeria Syndrome-A Case Report. Int J Mol Sci 2021; 22:ijms222212316. [PMID: 34830197 PMCID: PMC8619635 DOI: 10.3390/ijms222212316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is an extremely rare premature aging disorder characterized by short stature and atherosclerosis-induced death within teenage years. A 13-year-old male diagnosed with HGPS was administered three intravenous infusions of allogeneic cord blood (CB) cells from unrelated donors at four-month intervals to evaluate the safety and its therapeutic efficacy. Adverse events were monitored in addition to height, weight, laboratory blood tests, joint range of motion (ROM), and carotid Doppler. Cytokine and receptor assays were also performed. The patient exhibited an increase in growth rate for both height and weight. One year after therapy initiation, evident amelioration in pulse wave velocity, bilateral maximal intima-media thickness, and dyslipidemic status were observed, which were in abrupt aggravation prior to treatment. Further, an increase in flexibility occurred in some joints of the upper extremities. No serious adverse events were observed throughout the study period and one year beyond. A molecular assay revealed downregulation of proinflammatory and atherosclerosis, representing cytokine expressions following the administration of CB cells. This is the first reported case of an allogeneic CB trial in a patient with HGPS showing therapeutic effects of CB with improvements in anthropometric measures, joint ROM with amelioration of atherosclerosis, and dyslipidemia induced by anti-inflammatory and anti-atherosclerotic responses.
Collapse
|
36
|
Schey GL, Buttery PH, Hildebrandt ER, Novak SX, Schmidt WK, Hougland JL, Distefano MD. MALDI-MS Analysis of Peptide Libraries Expands the Scope of Substrates for Farnesyltransferase. Int J Mol Sci 2021; 22:ijms222112042. [PMID: 34769472 PMCID: PMC8584866 DOI: 10.3390/ijms222112042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This modification typically causes proteins to associate with the membrane and allows them to participate in signaling pathways. In the canonical understanding of FTase, the isoprenoids are attached to the cysteine residue of a four-amino-acid CaaX box sequence. However, recent work has shown that five-amino-acid sequences can be recognized, including the pentapeptide CMIIM. This paper describes a new systematic approach to discover novel peptide substrates for FTase by combining the combinatorial power of solid-phase peptide synthesis (SPPS) with the ease of matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). The workflow consists of synthesizing focused libraries containing 10-20 sequences obtained by randomizing a synthetic peptide at a single position. Incubation of the library with FTase and farnesyl pyrophosphate (FPP) followed by mass spectrometric analysis allows the enzymatic products to be clearly resolved from starting peptides due to the increase in mass that occurs upon farnesylation. Using this method, 30 hits were obtained from a series of libraries containing a total of 80 members. Eight of the above peptides were selected for further evaluation, reflecting a mixture that represented a sampling of diverse substrate space. Six of these sequences were found to be bona fide substrates for FTase, with several meeting or surpassing the in vitro efficiency of the benchmark sequence CMIIM. Experiments in yeast demonstrated that proteins bearing these sequences can be efficiently farnesylated within live cells. Additionally, a bioinformatics search showed that a variety of pentapeptide CaaaX sequences can be found in the mammalian genome, and several of these sequences display excellent farnesylation in vitro and in yeast cells, suggesting that the number of farnesylated proteins within mammalian cells may be larger than previously thought.
Collapse
Affiliation(s)
- Garrett L. Schey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Peter H. Buttery
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (W.K.S.)
| | - Sadie X. Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (S.X.N.); (J.L.H.)
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (W.K.S.)
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (S.X.N.); (J.L.H.)
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Mark D. Distefano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
37
|
Mojiri A, Walther BK, Jiang C, Matrone G, Holgate R, Xu Q, Morales E, Wang G, Gu J, Wang R, Cooke JP. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. Eur Heart J 2021; 42:4352-4369. [PMID: 34389865 PMCID: PMC8603239 DOI: 10.1093/eurheartj/ehab547] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/29/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated ageing syndrome associated with premature vascular disease and death due to heart attack and stroke. In HGPS a mutation in lamin A (progerin) alters nuclear morphology and gene expression. Current therapy increases the lifespan of these children only modestly. Thus, greater understanding of the underlying mechanisms of HGPS is required to improve therapy. Endothelial cells (ECs) differentiated from induced pluripotent stem cells (iPSCs) derived from these patients exhibit hallmarks of senescence including replication arrest, increased expression of inflammatory markers, DNA damage, and telomere erosion. We hypothesized that correction of shortened telomeres may reverse these measures of vascular ageing. METHODS AND RESULTS We generated ECs from iPSCs belonging to children with HGPS and their unaffected parents. Telomerase mRNA (hTERT) was used to treat HGPS ECs. Endothelial morphology and functions were assessed, as well as proteomic and transcriptional profiles with attention to inflammatory markers, DNA damage, and EC identity genes. In a mouse model of HGPS, we assessed the effects of lentiviral transfection of mTERT on measures of senescence, focusing on the EC phenotype in various organs. hTERT treatment of human HGPS ECs improved replicative capacity; restored endothelial functions such as nitric oxide generation, acetylated low-density lipoprotein uptake and angiogenesis; and reduced the elaboration of inflammatory cytokines. In addition, hTERT treatment improved cellular and nuclear morphology, in association with a normalization of the transcriptional profile, effects that may be mediated in part by a reduction in progerin expression and an increase in sirtuin 1 (SIRT1). Progeria mice treated with mTERT lentivirus manifested similar improvements, with a reduction in inflammatory and DNA damage markers and increased SIRT1 in their vasculature and other organs. Furthermore, mTERT therapy increased the lifespan of HGPS mice. CONCLUSION Vascular rejuvenation using telomerase mRNA is a promising approach for progeria and other age-related diseases.
Collapse
Affiliation(s)
- Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Brandon K Walther
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX 77840, USA
| | - Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gianfranco Matrone
- British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rhonda Holgate
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Qiu Xu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Elisa Morales
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jianhua Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Rongfu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| |
Collapse
|
38
|
Preclinical Advances of Therapies for Laminopathies. J Clin Med 2021; 10:jcm10214834. [PMID: 34768351 PMCID: PMC8584472 DOI: 10.3390/jcm10214834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Laminopathies are a group of rare disorders due to mutation in LMNA gene. Depending on the mutation, they may affect striated muscles, adipose tissues, nerves or are multisystemic with various accelerated ageing syndromes. Although the diverse pathomechanisms responsible for laminopathies are not fully understood, several therapeutic approaches have been evaluated in patient cells or animal models, ranging from gene therapies to cell and drug therapies. This review is focused on these therapies with a strong focus on striated muscle laminopathies and premature ageing syndromes.
Collapse
|
39
|
Kato H, Maezawa Y. Atherosclerosis and Cardiovascular Diseases in Progeroid Syndromes. J Atheroscler Thromb 2021; 29:439-447. [PMID: 34511576 PMCID: PMC9100459 DOI: 10.5551/jat.rv17061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the representative genetic progeroid syndromes and have been widely studied in the field of aging research. HGPS is a pediatric disease in which premature aging symptoms appear in early childhood, and death occurs at an average age of 14.5 years, mainly due to cardiovascular disease (CVD). Conversely, WS patients exhibit accelerated aging phenotypes after puberty and die in their 50s due to CVD and malignant tumors. Both diseases are models of human aging, leading to a better understanding of the aging-associated development of CVD. In this review, we discuss the pathogenesis and treatment of atherosclerotic diseases presented by both progeroid syndromes with the latest findings.
Collapse
Affiliation(s)
- Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital
| |
Collapse
|
40
|
Cabral WA, Tavarez UL, Beeram I, Yeritsyan D, Boku YD, Eckhaus MA, Nazarian A, Erdos MR, Collins FS. Genetic reduction of mTOR extends lifespan in a mouse model of Hutchinson-Gilford Progeria syndrome. Aging Cell 2021; 20:e13457. [PMID: 34453483 PMCID: PMC8441492 DOI: 10.1111/acel.13457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare accelerated aging disorder most notably characterized by cardiovascular disease and premature death from myocardial infarction or stroke. The majority of cases are caused by a de novo single nucleotide mutation in the LMNA gene that activates a cryptic splice donor site, resulting in production of a toxic form of lamin A with a 50 amino acid internal deletion, termed progerin. We previously reported the generation of a transgenic murine model of progeria carrying a human BAC harboring the common mutation, G608G, which in the single-copy state develops features of HGPS that are limited to the vascular system. Here, we report the phenotype of mice bred to carry two copies of the BAC, which more completely recapitulate the phenotypic features of HGPS in skin, adipose, skeletal, and vascular tissues. We further show that genetic reduction of the mechanistic target of rapamycin (mTOR) significantly extends lifespan in these mice, providing a rationale for pharmacologic inhibition of the mTOR pathway in the treatment of HGPS.
Collapse
Affiliation(s)
- Wayne A. Cabral
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| | - Urraca L. Tavarez
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| | - Indeevar Beeram
- Translational Musculoskeletal Innovation Initiative Carl J. Shapiro Department of Orthopedic Surgery Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA
| | - Diana Yeritsyan
- Translational Musculoskeletal Innovation Initiative Carl J. Shapiro Department of Orthopedic Surgery Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA
| | - Yoseph D. Boku
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| | - Michael A. Eckhaus
- Diagnostic and Research Services Branch Division of Veterinary Resources Office of the Director National Institutes of Health Bethesda MD USA
| | - Ara Nazarian
- Translational Musculoskeletal Innovation Initiative Carl J. Shapiro Department of Orthopedic Surgery Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA
| | - Michael R. Erdos
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| | - Francis S. Collins
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| |
Collapse
|
41
|
Marcos-Ramiro B, Gil-Ordóñez A, Marín-Ramos NI, Ortega-Nogales FJ, Balabasquer M, Gonzalo P, Khiar-Fernández N, Rolas L, Barkaway A, Nourshargh S, Andrés V, Martín-Fontecha M, López-Rodríguez ML, Ortega-Gutiérrez S. Isoprenylcysteine Carboxylmethyltransferase-Based Therapy for Hutchinson-Gilford Progeria Syndrome. ACS CENTRAL SCIENCE 2021; 7:1300-1310. [PMID: 34471675 PMCID: PMC8393201 DOI: 10.1021/acscentsci.0c01698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 05/13/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, progeria) is a rare genetic disease characterized by premature aging and death in childhood for which there were no approved drugs for its treatment until last November, when lonafarnib obtained long-sought FDA approval. However, the benefits of lonafarnib in patients are limited, highlighting the need for new therapeutic strategies. Here, we validate the enzyme isoprenylcysteine carboxylmethyltransferase (ICMT) as a new therapeutic target for progeria with the development of a new series of potent inhibitors of this enzyme that exhibit an excellent antiprogeroid profile. Among them, compound UCM-13207 significantly improved the main hallmarks of progeria. Specifically, treatment of fibroblasts from progeroid mice with UCM-13207 delocalized progerin from the nuclear membrane, diminished its total protein levels, resulting in decreased DNA damage, and increased cellular viability. Importantly, these effects were also observed in patient-derived cells. Using the Lmna G609G/G609G progeroid mouse model, UCM-13207 showed an excellent in vivo efficacy by increasing body weight, enhancing grip strength, extending lifespan by 20%, and decreasing tissue senescence in multiple organs. Furthermore, UCM-13207 treatment led to an improvement of key cardiovascular hallmarks such as reduced progerin levels in aortic and endocardial tissue and increased number of vascular smooth muscle cells (VSMCs). The beneficial effects go well beyond the effects induced by other therapeutic strategies previously reported in the field, thus supporting the use of UCM-13207 as a new treatment for progeria.
Collapse
Affiliation(s)
- Beatriz Marcos-Ramiro
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Ana Gil-Ordóñez
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Nagore I. Marín-Ramos
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- CEI
Campus Moncloa, UCM-UPM and CSIC, E-28040 Madrid, Spain
| | - Francisco J. Ortega-Nogales
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Moisés Balabasquer
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Pilar Gonzalo
- Vascular
Pathophysiology Area, Centro Nacional de
Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Cardiovasculares
(CIBERCV), 28029 Madrid, Spain
| | - Nora Khiar-Fernández
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Loïc Rolas
- Centre
for Microvascular Research, William Harvey
Research Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Anna Barkaway
- Centre
for Microvascular Research, William Harvey
Research Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sussan Nourshargh
- Centre
for Microvascular Research, William Harvey
Research Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vicente Andrés
- Vascular
Pathophysiology Area, Centro Nacional de
Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Cardiovasculares
(CIBERCV), 28029 Madrid, Spain
| | - Mar Martín-Fontecha
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María L. López-Rodríguez
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
42
|
Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-Molecule Therapeutic Perspectives for the Treatment of Progeria. Int J Mol Sci 2021; 22:7190. [PMID: 34281245 PMCID: PMC8267806 DOI: 10.3390/ijms22137190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), or progeria, is an extremely rare disorder that belongs to the class of laminopathies, diseases characterized by alterations in the genes that encode for the lamin proteins or for their associated interacting proteins. In particular, progeria is caused by a point mutation in the gene that codifies for the lamin A gene. This mutation ultimately leads to the biosynthesis of a mutated version of lamin A called progerin, which accumulates abnormally in the nuclear lamina. This accumulation elicits several alterations at the nuclear, cellular, and tissue levels that are phenotypically reflected in a systemic disorder with important alterations, mainly in the cardiovascular system, bones, skin, and overall growth, which results in premature death at an average age of 14.5 years. In 2020, lonafarnib became the first (and only) FDA approved drug for treating progeria. In this context, the present review focuses on the different therapeutic strategies currently under development, with special attention to the new small molecules described in recent years, which may represent the upcoming first-in-class drugs with new mechanisms of action endowed with effectiveness not only to treat but also to cure progeria.
Collapse
Affiliation(s)
| | | | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.M.); (B.M.-R.)
| |
Collapse
|
43
|
Coppedè F. Mutations Involved in Premature-Ageing Syndromes. APPLICATION OF CLINICAL GENETICS 2021; 14:279-295. [PMID: 34103969 PMCID: PMC8180271 DOI: 10.2147/tacg.s273525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Premature-ageing syndromes are a heterogeneous group of rare genetic disorders resembling features of accelerated ageing and resulting from mutations in genes coding for proteins required for nuclear lamina architecture, DNA repair and maintenance of genome stability, mitochondrial function and other cellular processes. Hutchinson–Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the best-characterized progeroid syndromes referred to as childhood- and adulthood-progeria, respectively. This article provides an updated overview of the mutations leading to HGPS, WS, and to the spectrum of premature-ageing laminopathies ranging in severity from congenital restrictive dermopathy (RD) to adult-onset atypical WS, including RD-like laminopathies, typical and atypical HGPS, more and less severe forms of mandibuloacral dysplasia (MAD), Néstor-Guillermo progeria syndrome (NGPS), atypical WS, and atypical progeroid syndromes resembling features of HGPS and/or MAD but resulting from impaired DNA repair or mitochondrial functions, including mandibular hypoplasia, deafness, progeroid features, and lipodystrophy (MDPL) syndrome and mandibuloacral dysplasia associated to MTX2 (MADaM). The overlapping signs and symptoms among different premature-ageing syndromes, resulting from both a large genetic heterogeneity and shared pathological pathways underlying these conditions, require an expert clinical evaluation in specialized centers paralleled by next-generation sequencing of panels of genes involved in these disorders in order to establish as early as possible an accurate clinical and molecular diagnosis for a proper patient management.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells 2021; 10:cells10051157. [PMID: 34064612 PMCID: PMC8151355 DOI: 10.3390/cells10051157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that recapitulates many symptoms of physiological aging and precipitates death. Patients develop severe vascular alterations, mainly massive vascular smooth muscle cell loss, vessel stiffening, calcification, fibrosis, and generalized atherosclerosis, as well as electrical, structural, and functional anomalies in the heart. As a result, most HGPS patients die of myocardial infarction, heart failure, or stroke typically during the first or second decade of life. No cure exists for HGPS, and therefore it is of the utmost importance to define the mechanisms that control disease progression in order to develop new treatments to improve the life quality of patients and extend their lifespan. Since the discovery of the HGPS-causing mutation, several animal models have been generated to study multiple aspects of the syndrome and to analyze the contribution of different cell types to the acquisition of the HGPS-associated cardiovascular phenotype. This review discusses current knowledge about cardiovascular features in HGPS patients and animal models and the molecular and cellular mechanisms through which progerin causes cardiovascular disease.
Collapse
|
45
|
Kayki-Mutlu G, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2020. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:839-852. [PMID: 33864098 PMCID: PMC8051285 DOI: 10.1007/s00210-021-02085-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 01/03/2023]
Abstract
While the COVID-19 pandemic also affected the work of regulatory authorities, the US Food and Drug Administration approved a total of 53 new drugs in 2020, one of the highest numbers in the past decades. Most newly approved drugs related to oncology (34%) and neurology (15%). We discuss these new drugs by level of innovation they provide, i.e., first to treat a condition, first using a novel mechanisms of action, and "others." Six drugs were first in indication, 15 first using a novel mechanism of action, and 32 other. This includes many drugs for the treatment of orphan indications and some for the treatment of tropical diseases previously neglected for commercial reasons. Small molecules continue to dominate new drug approvals, followed by antibodies. Of note, newly approved drugs also included small-interfering RNAs and antisense oligonucleotides. These data show that the trend for declines in drug discovery and development has clearly been broken.
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Langenbeckstr. 1, 55118, Mainz, Germany.
| |
Collapse
|
46
|
Gordon LB, Tuminelli K, Andrés V, Campisi J, Kieran MW, Doucette L, Gordon AS. The progeria research foundation 10 th international scientific workshop; researching possibilities, ExTENding lives - webinar version scientific summary. Aging (Albany NY) 2021; 13:9143-9151. [PMID: 33735109 PMCID: PMC8034973 DOI: 10.18632/aging.202835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Progeria is an ultra-rare (prevalence 1 in 20 million), fatal, pediatric autosomal dominant premature aging disease caused by a mutation in the LMNA gene. This mutation results in accumulation of a high level of an aberrant form of the nuclear membrane protein, Lamin A. This aberrant protein, termed progerin, accumulates in many tissues and is responsible for the diverse array of disease phenotypes. Children die predominantly from premature atherosclerotic cardiovascular disease. The Progeria Research Foundation’s 10th International Scientific Workshop took place via webinar on November 2 and 3, 2020. Participants from 30 countries joined in this new, virtual meeting format. Patient family presentations led the program, followed by updates on Progeria’s first-ever application for FDA drug approval as well as initial results from the only current Progeria clinical trial. This was followed by presentations of unpublished preclinical data on drugs in development targeting the disease-causing DNA mutation, the aberrant mRNA, progerin protein, and its downstream effector proteins. Tying bench to bedside, clinicians presented new discoveries on the natural history of disease to inform future clinical trial development and new Progeria aortic valve replacement procedures. The program engaged the Progeria research community as a single unit with a common goal – to treat and cure children with Progeria worldwide.
Collapse
Affiliation(s)
- Leslie B Gordon
- Department of Pediatrics, Division of Genetics, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Progeria Research Foundation, Peabody, MA 01961, USA
| | | | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Lynn Doucette
- The Progeria Research Foundation, Peabody, MA 01961, USA
| | | |
Collapse
|
47
|
New drug approvals for 2020: Synthesis and clinical applications. Eur J Med Chem 2021; 215:113284. [PMID: 33611190 DOI: 10.1016/j.ejmech.2021.113284] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
53 New drugs including 38 chemical entities and 15 biologics were approved by the U.S. Food and Drug Administration during 2020. Among the marketed drugs, 34 new small molecule drugs and 4 new diagnostic agents with privileged structures and novel clinical applications represent as promising leads for the development of new drugs with the similar indications and improved therapeutic efficacy. This review is mainly focused on the clinical applications and synthetic methods of 34 small-molecule drugs newly approved by the FDA in 2020.
Collapse
|
48
|
Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome. Commun Biol 2021; 4:5. [PMID: 33398110 PMCID: PMC7782499 DOI: 10.1038/s42003-020-01540-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Previous work has revealed that progerin-lamin A binding inhibitor (JH4) can ameliorate pathological features of Hutchinson-Gilford progeria syndrome (HGPS) such as nuclear deformation, growth suppression in patient’s cells, and very short life span in an in vivo mouse model. Despite its favorable effects, JH4 is rapidly eliminated in in vivo pharmacokinetic (PK) analysis. Thus, we improved its property through chemical modification and obtained an optimized drug candidate, Progerinin (SLC-D011). This chemical can extend the life span of LmnaG609G/G609G mouse for about 10 weeks and increase its body weight. Progerinin can also extend the life span of LmnaG609G/+ mouse for about 14 weeks via oral administration, whereas treatment with lonafarnib (farnesyl-transferase inhibitor) can only extend the life span of LmnaG609G/+ mouse for about two weeks. In addition, progerinin can induce histological and physiological improvement in LmnaG609G/+ mouse. These results indicate that progerinin is a strong drug candidate for HGPS. Kang, Park and colleagues develop and demonstrate the effects of a new drug candidate for treatment of Hutchinson-Gilford progeria syndrome pathologies. Progerinin extends the life span of mice used to model this disease and induces histological and physiological improvements.
Collapse
|
49
|
Atalaia A, Ben Yaou R, Wahbi K, De Sandre-Giovannoli A, Vigouroux C, Bonne G. Laminopathies' Treatments Systematic Review: A Contribution Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:419-439. [PMID: 33682723 PMCID: PMC8203247 DOI: 10.3233/jnd-200596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Variants in the LMNA gene, encoding lamins A/C, are responsible for a growing number of diseases, all of which complying with the definition of rare diseases. LMNA-related disorders have a varied phenotypic expression with more than 15 syndromes described, belonging to five phenotypic groups: Muscular Dystrophies, Neuropathies, Cardiomyopathies, Lipodystrophies and Progeroid Syndromes. Overlapping phenotypes are also reported. Linking gene and variants with phenotypic expression, disease mechanisms, and corresponding treatments is particularly challenging in laminopathies. Treatment recommendations are limited, and very few are variant-based. OBJECTIVE The Treatabolome initiative aims to provide a shareable dataset of existing variant-specific treatment for rare diseases within the Solve-RD EU project. As part of this project, we gathered evidence of specific treatments for laminopathies via a systematic literature review adopting the FAIR (Findable, Accessible, Interoperable, and Reusable) guidelines for scientific data production. METHODS Treatments for LMNA-related conditions were systematically collected from MEDLINE and Embase bibliographic databases and clinical trial registries (Cochrane Central Registry of Controlled Trials, clinicaltrial.gov and EudraCT). Two investigators extracted and analyzed the literature data independently. The included papers were assessed using the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. RESULTS From the 4783 selected articles by a systematic approach, we identified 78 papers for our final analysis that corresponded to the profile of data defined in the inclusion and exclusion criteria. These papers include 2 guidelines/consensus papers, 4 meta-analyses, 14 single-arm trials, 15 case series, 13 cohort studies, 21 case reports, 8 expert reviews and 1 expert opinion. The treatments were summarized electronically according to significant phenome-genome associations. The specificity of treatments according to the different laminopathic phenotypical presentations is variable. CONCLUSIONS We have extracted Treatabolome-worthy treatment recommendations for patients with different forms of laminopathies based on significant phenome-genome parings. This dataset will be available on the Treatabolome website and, through interoperability, on genetic diagnosis and treatment support tools like the RD-Connect's Genome Phenome Analysis Platform.
Collapse
Affiliation(s)
- Antonio Atalaia
- Sorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
| | - Rabah Ben Yaou
- Sorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
- AP-HP Sorbonne Université, Neuromyology Department, Centre de référence maladies neuromusculaires Nord/Est/Ile-de-France (FILNEMUS network), Institut de Myologie, G.H. Pitié-Salpêtrière, Paris, France
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile de France, Université de Paris, Paris, France
| | - Annachiara De Sandre-Giovannoli
- AP-HM, Department of Medical Genetics, and CRB-TAC (CRB AP-HM), Children’s Hospital La Timone, Marseille, France
- Aix Marseille University, Inserm, Marseille Medical Genetics Marseille, France
| | - Corinne Vigouroux
- AP-HP Saint-Antoine Hospital, Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Departments of Molecular Biology and Genetics and of Endocrinology, 75012 Paris, France
- Sorbonne Université, Inserm, Saint-Antoine Research Center, Paris, France
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
| |
Collapse
|
50
|
Zammouri J, Vatier C, Capel E, Auclair M, Storey-London C, Bismuth E, Mosbah H, Donadille B, Janmaat S, Fève B, Jéru I, Vigouroux C. Molecular and Cellular Bases of Lipodystrophy Syndromes. Front Endocrinol (Lausanne) 2021; 12:803189. [PMID: 35046902 PMCID: PMC8763341 DOI: 10.3389/fendo.2021.803189] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Lipodystrophy syndromes are rare diseases originating from a generalized or partial loss of adipose tissue. Adipose tissue dysfunction results from heterogeneous genetic or acquired causes, but leads to similar metabolic complications with insulin resistance, diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, dysfunctions of the gonadotropic axis and endocrine defects of adipose tissue with leptin and adiponectin deficiency. Diagnosis, based on clinical and metabolic investigations, and on genetic analyses, is of major importance to adapt medical care and genetic counseling. Molecular and cellular bases of these syndromes involve, among others, altered adipocyte differentiation, structure and/or regulation of the adipocyte lipid droplet, and/or premature cellular senescence. Lipodystrophy syndromes frequently present as systemic diseases with multi-tissue involvement. After an update on the main molecular bases and clinical forms of lipodystrophy, we will focus on topics that have recently emerged in the field. We will discuss the links between lipodystrophy and premature ageing and/or immuno-inflammatory aggressions of adipose tissue, as well as the relationships between lipomatosis and lipodystrophy. Finally, the indications of substitutive therapy with metreleptin, an analog of leptin, which is approved in Europe and USA, will be discussed.
Collapse
Affiliation(s)
- Jamila Zammouri
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Camille Vatier
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Emilie Capel
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Martine Auclair
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Caroline Storey-London
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Pediatric Endocrinology Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Elise Bismuth
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Pediatric Endocrinology Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Héléna Mosbah
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Bruno Donadille
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Sonja Janmaat
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Bruno Fève
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Isabelle Jéru
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Genetics Department, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Paris, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Genetics Department, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|