1
|
Guo S, Hudmon A, Sahoo FK, Motes MR, Tsai WC, Chen PS, Rubart M. K + currents in ventricular cardiomyocytes of p.N98S-calmodulin mutant mice. Am J Physiol Heart Circ Physiol 2025; 328:H658-H675. [PMID: 39739562 DOI: 10.1152/ajpheart.00470.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Missense mutations in calmodulin (CaM)-encoding genes are associated with life-threatening ventricular arrhythmia syndromes. Here, we investigated the role of cardiac K+ channel dysregulation in arrhythmogenic long QT syndrome (LQTS) using a knock-in mouse model heterozygous for a recurrent mutation (p.N98S) in the Calm1 gene (Calm1N98S/+). Single-cell patch-clamp technique and whole heart optical voltage mapping were used to assess action potentials and whole cell currents. Ventricular action potential duration (APD) at baseline was similar between genotypes. The β-adrenergic agonist isoproterenol prolonged APD in myocytes and isolated perfused hearts from Calm1N98S/+, but not wild-type (Calm1+/+), mice. Current density-voltage relationships for the small-conductance calcium-activated K+ (SK) current and the inward rectifier K+ current did not significantly differ between Calm1+/+ and Calm1N98S/+ ventricular cardiomyocytes ± isoproterenol. Peak densities of other voltage-gated K+ currents were significantly larger in Calm1N98S/+ versus Calm1+/+ cells at voltages ≥40 mV, both without and with isoproterenol. Isoproterenol reduced outward KATP currents more in Calm1N98S/+ versus Calm1+/+ myocytes. Dialysis of Calm1+/+ cardiomyocytes with exogenous wild-type or N98S-CaM protein (5 µmol/L) via the pipette, respectively, increased and eliminated SK currents. The specific SK channel inhibitor apamin did not significantly alter the APD of Calm1+/+ or Calm1N98S/+ hearts ± isoproterenol. Thus, dysregulation of SK or voltage-gated K+ channels does not contribute to the β-adrenergic-induced LQTS of Calm1N98S/+ mice, possibly because cardiomyocyte content of endogenous N98S-CaM and/or its affinity for CaM-binding domains may be too low to modulate channel properties. The larger KATP current inhibition by isoproterenol may delay Calm1N98S/+ myocyte repolarization at low intracellular [ATP].NEW & NOTEWORTHY Despite in vitro and in silico evidence implicating cardiac K+ channel dysregulation in LQTS associated with missense mutations in genes-encoding calmodulin, their effects on native cardiac K+ currents are unknown. Using a knock-in mouse model harboring the p.N98S mutation in the Calm1 gene, we found no evidence for dysregulation of major cardiac K+ channels. Although these data do not support mechanistic findings from heterologous systems, our finding impacts efforts to improve therapies for calmodulinopathies.
Collapse
Affiliation(s)
- Shuai Guo
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Andy Hudmon
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Firoj K Sahoo
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Madeline R Motes
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Wen-Chin Tsai
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, United States
| | - Michael Rubart
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
Gupta N, Richards EMB, Morris VS, Morris R, Wadmore K, Held M, McCormick L, Prakash O, Dart C, Helassa N. Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca 2+ channel (Ca v1.2) and reduce Ca 2+-dependent inactivation. Acta Physiol (Oxf) 2025; 241:e14276. [PMID: 39825574 PMCID: PMC11742489 DOI: 10.1111/apha.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 11/19/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
AIM Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship. Our study focuses on the L-type calcium channel Cav1.2, a crucial component of the ventricular action potential and excitation-contraction coupling. METHODS We used circular dichroism (CD), 1H-15N HSQC NMR, and trypsin digestion to determine the structural and stability properties of CaM variants. The affinity of CaM for Ca2+ and interaction of Ca2+/CaM with Cav1.2 (IQ and NSCaTE domains) were investigated using intrinsic tyrosine fluorescence and isothermal titration calorimetry (ITC), respectively. The effect of CaM variants of Cav1.2 activity was determined using HEK293-Cav1.2 cells (B'SYS) and whole-cell patch-clamp electrophysiology. RESULTS Using a combination of protein biophysics and structural biology, we show that the disease-associated mutations D131E and Q135P mutations alter apo/CaM structure and stability. In the Ca2+-bound state, D131E and Q135P exhibited reduced Ca2+ binding affinity, significant structural changes, and altered interaction with Cav1.2 domains (increased affinity for Cav1.2-IQ and decreased affinity for Cav1.2-NSCaTE). We show that the mutations dramatically impair Ca2+-dependent inactivation (CDI) of Cav1.2, which would contribute to abnormal Ca2+ influx, leading to disrupted Ca2+ handling, characteristic of cardiac arrhythmia syndromes. CONCLUSIONS These findings provide insights into the molecular mechanisms behind arrhythmia caused by calmodulin mutations, contributing to our understanding of cardiac syndromes at a molecular and cellular level.
Collapse
Affiliation(s)
- Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ella M. B. Richards
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Vanessa S. Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
3
|
Bortolin RH, Nawar F, Park C, Trembley MA, Prondzynski M, Sweat ME, Wang P, Chen J, Lu F, Liou C, Berkson P, Keating EM, Yoshinaga D, Pavlaki N, Samenuk T, Cavazzoni CB, Sage PT, Ma Q, Whitehill RD, Abrams DJ, Carreon CK, Putra J, Alexandrescu S, Guo S, Tsai WC, Rubart M, Kubli D, Mullick AE, Bezzerides VJ, Pu WT. Antisense Oligonucleotide Therapy for Calmodulinopathy. Circulation 2024; 150:1199-1210. [PMID: 39155863 PMCID: PMC11747850 DOI: 10.1161/circulationaha.123.068111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Calmodulinopathies are rare inherited arrhythmia syndromes caused by dominant heterozygous variants in CALM1, CALM2, or CALM3, which each encode the identical CaM (calmodulin) protein. We hypothesized that antisense oligonucleotide (ASO)-mediated depletion of an affected calmodulin gene would ameliorate disease manifestations, whereas the other 2 calmodulin genes would preserve CaM level and function. METHODS We tested this hypothesis using human induced pluripotent stem cell-derived cardiomyocyte and mouse models of CALM1 pathogenic variants. RESULTS Human CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes exhibited prolonged action potentials, modeling congenital long QT syndrome. CALM1 knockout or CALM1-depleting ASOs did not alter CaM protein level and normalized repolarization duration of CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes. Similarly, an ASO targeting murine Calm1 depleted Calm1 transcript without affecting CaM protein level. This ASO alleviated drug-induced bidirectional ventricular tachycardia in Calm1N98S/+ mice without a deleterious effect on cardiac electrical or contractile function. CONCLUSIONS These results provide proof of concept that ASOs targeting individual calmodulin genes are potentially effective and safe therapies for calmodulinopathies.
Collapse
Affiliation(s)
- Raul H. Bortolin
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Farina Nawar
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Chaehyoung Park
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | | | | | - Mason E. Sweat
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Peizhe Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Jiehui Chen
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Fujian Lu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Carter Liou
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Paul Berkson
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Erin M. Keating
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | | | - Nikoleta Pavlaki
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Thomas Samenuk
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Robert D. Whitehill
- Department of Pediatrics, Division of Cardiology, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Dominic J. Abrams
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
- Center for Cardiovascular Genetics, Boston Children’s Hospital & Harvard Medical School, MA
| | - Chrystalle K. Carreon
- Cardiac Registry, Departments of Cardiology, Pathology, and Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
| | - Juan Putra
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuai Guo
- Wells Centre for Pediatric Research, Indiana University School of Medicine, Indianapolis, USA
| | - Wen-Chin Tsai
- Wells Centre for Pediatric Research, Indiana University School of Medicine, Indianapolis, USA
| | - Michael Rubart
- Wells Centre for Pediatric Research, Indiana University School of Medicine, Indianapolis, USA
| | - Dieter Kubli
- Ionis Pharmaceuticals, 2855 Gazelle Court Carlsbad, CA 92010 USA
| | - Adam E. Mullick
- Ionis Pharmaceuticals, 2855 Gazelle Court Carlsbad, CA 92010 USA
| | - Vassilios J. Bezzerides
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
- Center for Cardiovascular Genetics, Boston Children’s Hospital & Harvard Medical School, MA
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
- Center for Cardiovascular Genetics, Boston Children’s Hospital & Harvard Medical School, MA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
4
|
Zhu W, Yuan H, Lv J. Advancements in the diagnosis and management of premature ventricular contractions in pediatric patients. Front Pediatr 2024; 12:1373772. [PMID: 38571703 PMCID: PMC10987820 DOI: 10.3389/fped.2024.1373772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Background Premature ventricular contractions (PVCs) are relatively common arrhythmias in the pediatric population, with implications that range from benign to potentially life-threatening. The management of PVCs in children poses unique challenges, and recent advancements in diagnostic and therapeutic options call for a comprehensive review of current practices. Methods This review synthesizes the latest literature on pediatric PVCs, focusing on publications from the past decade. We evaluate studies addressing the epidemiology, pathophysiology, diagnosis, and treatment of PVCs in children, including pharmacological, non-pharmacological, and invasive strategies. Results The review identifies key advancements in the non-invasive detection of PVCs, the growing understanding of their genetic underpinnings, and the evolving landscape of management options. We discuss the clinical decision-making process, considering the variable significance of PVCs in different pediatric patient subgroups, and highlight the importance of individualized care. Current guidelines and consensus statements are examined, and areas of controversy or limited evidence are identified. Conclusions Our review underscores the need for a nuanced approach to PVCs in children, integrating the latest diagnostic techniques with a tailored therapeutic strategy. We call for further research into long-term outcomes and the development of risk stratification tools to guide treatment. The potential of emerging technologies and the importance of multidisciplinary care are also emphasized to improve prognoses for pediatric patients with PVCs.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Clinical Research Center for Children's Health and Disease Office, Jinan, Shandong, China
| | - Hui Yuan
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Clinical Research Center for Children's Health and Disease Office, Jinan, Shandong, China
| | - Jianli Lv
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Clinical Research Center for Children's Health and Disease Office, Jinan, Shandong, China
| |
Collapse
|
5
|
Stevens TL, Coles S, Sturm AC, Hoover CA, Borzok MA, Mohler PJ, El Refaey M. Molecular Pathways and Animal Models of Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:1057-1090. [PMID: 38884769 DOI: 10.1007/978-3-031-44087-8_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.
Collapse
Affiliation(s)
- Tyler L Stevens
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sara Coles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Amy C Sturm
- Genomic Medicine Institute, 23andMe, Sunnyvale, CA, USA
| | - Catherine A Hoover
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Maegen A Borzok
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mona El Refaey
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
6
|
Wren LM, DeKeyser JM, Barefield DY, Hawkins NA, McNally EM, Kearney JA, Wasserstrom JA, George AL. Sex and Gene Influence Arrhythmia Susceptibility in Murine Models of Calmodulinopathy. Circ Arrhythm Electrophysiol 2023; 16:e010891. [PMID: 37589122 PMCID: PMC10530303 DOI: 10.1161/circep.122.010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/16/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Pathogenic variants in genes encoding CaM (calmodulin) are associated with a life-threatening ventricular arrhythmia syndrome (calmodulinopathy). The in vivo consequences of CaM variants have not been studied extensively and there is incomplete understanding of the genotype-phenotype relationship for recurrent variants. We investigated effects of different factors on calmodulinopathy phenotypes using 2 mouse models with a recurrent pathogenic variant (N98S) in Calm1 or Calm2. METHODS Genetically engineered mice with heterozygous N98S pathogenic variants in Calm1 or Calm2 were generated. Differences between the sexes and affected genes were assessed using multiple physiological assays at the cellular and whole animal levels. Statistical significance among groups was evaluated using 1-way ANOVA or the Kruskal-Wallis test when data were not normally distributed. RESULTS Calm1N98S/+ (Calm1S/+) or Calm2N98S/+ (Calm2S/+) mice exhibited sinus bradycardia and were more susceptible to arrhythmias after exposure to epinephrine and caffeine. Male Calm1S/+ mice had the most severe arrhythmia phenotype with evidence of early embryonic lethality, greater susceptibility for arrhythmic events, frequent premature beats, corrected QT prolongation, and more heart rate variability after epinephrine and caffeine than females with the same genotype. Calm2 S/+ mice exhibited a less severe phenotype, with female Calm2 S/+ mice having the least severe arrhythmia susceptibility. Flecainide was not effective in preventing arrhythmias in heterozygous CaM-N98S mice. Intracellular Ca2+ transients observed in isolated ventricular cardiomyocytes from male heterozygous CaM-N98S mice had lower peak amplitudes and slower sarcoplasmic reticulum Ca2+ release following in vitro exposure to epinephrine and caffeine, which were not observed in cardiomyocytes from heterozygous female CaM-N98S mice. CONCLUSIONS We report heterogeneity in arrhythmia susceptibility and cardiomyocyte Ca2+ dynamics among male and female mice heterozygous for a recurrent pathogenic variant in Calm1 or Calm2, illustrating a complex calmodulinopathy phenotype in vivo. Further investigation of sex and genetic differences may help identify the molecular basis for this heterogeneity.
Collapse
Affiliation(s)
- Lisa M. Wren
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Jean-Marc DeKeyser
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - David Y. Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Nicole A. Hawkins
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Elizabeth M. McNally
- Center for Genetic Medicine, The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Jennifer A. Kearney
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - J. Andrew Wasserstrom
- Department of Medicine, The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Alfred L. George
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| |
Collapse
|
7
|
Moore OM, Ho KS, Copeland JS, Parthasarathy V, Wehrens XHT. Genome Editing and Cardiac Arrhythmias. Cells 2023; 12:1363. [PMID: 37408197 PMCID: PMC10216508 DOI: 10.3390/cells12101363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
This article reviews progress in the field of cardiac genome editing, in particular, its potential utility in treating cardiac arrhythmias. First, we discuss genome editing methods by which DNA can be disrupted, inserted, deleted, or corrected in cardiomyocytes. Second, we provide an overview of in vivo genome editing in preclinical models of heritable and acquired arrhythmias. Third, we discuss recent advancements in cardiac gene transfer, including delivery methods, gene expression optimization, and potential adverse effects associated with therapeutic somatic genome editing. While genome editing for cardiac arrhythmias is still in its infancy, this approach holds great promise, especially for inherited arrhythmia syndromes with a defined genetic defect.
Collapse
Affiliation(s)
- Oliver M. Moore
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin S. Ho
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juwan S. Copeland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vaidya Parthasarathy
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Ju H, Liu T, Yang M, Cheng M, Wu G. Iron and atrial fibrillation: A review. Pacing Clin Electrophysiol 2023; 46:312-318. [PMID: 36799332 DOI: 10.1111/pace.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Atrial fibrillation (AF), one of the most common arrhythmias in clinical practice, is classified into paroxysmal, persistent, and permanent AF according to its duration. The development of AF is associated with increased cardiovascular morbidity and mortality. However, the exact etiology of this disease remains poorly understood. Recent studies found disorders of iron metabolism might be involved in the progression of AF. Abnormal iron metabolism in cardiomyocytes provides arrhythmogenic substrates through a variety of mechanisms, including calcium mishandling, ion channel remodeling, and oxidative stress overaction. Interestingly, in AF patients with iron overload, interventions on iron metabolism, such as iron chelators and ferroptosis inhibitors, has been shown to prevent AF via reducing ferroptosis. Herein, we review the possible mechanisms, consequences, and therapeutic implications of altered atrial iron handling for AF pathophysiology.
Collapse
Affiliation(s)
- Hao Ju
- Department of Cardiology, Remin Hospital of Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Cardiology, Remin Hospital of Wuhan University, Wuhan, China
| | - Manqi Yang
- Department of Cardiology, Remin Hospital of Wuhan University, Wuhan, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Wu
- Department of Cardiology, Remin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
McCoy MD, Ullah A, Lederer WJ, Jafri MS. Understanding Calmodulin Variants Affecting Calcium-Dependent Inactivation of L-Type Calcium Channels through Whole-Cell Simulation of the Cardiac Ventricular Myocyte. Biomolecules 2022; 13:72. [PMID: 36671457 PMCID: PMC9855640 DOI: 10.3390/biom13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mutations in the calcium-sensing protein calmodulin (CaM) have been linked to two cardiac arrhythmia diseases, Long QT Syndrome 14 (LQT14) and Catecholaminergic Polymorphic Ventricular Tachycardia Type 4 (CPVT4), with varying degrees of severity. Functional characterization of the CaM mutants most strongly associated with LQT14 show a clear disruption of the calcium-dependent inactivation (CDI) of the L-Type calcium channel (LCC). CPVT4 mutants on the other hand are associated with changes in their affinity to the ryanodine receptor. In clinical studies, some variants have been associated with both CPVT4 and LQT15. This study uses simulations in a model for excitation-contraction coupling in the rat ventricular myocytes to understand how LQT14 variant might give the functional phenotype similar to CPVT4. Changing the CaM-dependent transition rate by a factor of 0.75 corresponding to the D96V variant and by a factor of 0.90 corresponding to the F142L or N98S variants, in a physiologically based stochastic model of the LCC prolonger, the action potential duration changed by a small amount in a cardiac myocyte but did not disrupt CICR at 1, 2, and 4 Hz. Under beta-adrenergic simulation abnormal excitation-contraction coupling was observed above 2 Hz pacing for the mutant CaM. The same conditions applied under beta-adrenergic stimulation led to the rapid onset of arrhythmia in the mutant CaM simulations. Simulations with the LQT14 mutations under the conditions of rapid pacing with beta-adrenergic stimulation drives the cardiac myocyte toward an arrhythmic state known as Ca2+ overload. These simulations provide a mechanistic link to a disease state for LQT14-associated mutations in CaM to yield a CPVT4 phenotype. The results show that small changes to the CaM-regulated inactivation of LCC promote arrhythmia and underscore the significance of CDI in proper heart function.
Collapse
Affiliation(s)
- Matthew D. McCoy
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
10
|
De novo mutations in childhood cases of sudden unexplained death that disrupt intracellular Ca2+ regulation. Proc Natl Acad Sci U S A 2021; 118:2115140118. [PMID: 34930847 PMCID: PMC8719874 DOI: 10.1073/pnas.2115140118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Approximately 400 United States children 1 y of age and older die suddenly from unexplained causes annually. We studied whole-exome sequence data from 124 “trios” (decedent child and living parents) to identify genetic risk factors. Nonsynonymous mutations, mostly de novo (present in child but absent in both biological parents), were highly enriched in genes associated with cardiac and seizure disorders relative to controls, and contributed to 9% of deaths. We found significant overtransmission of loss-of-function or pathogenic missense variants in cardiac and seizure disorder genes. Most pathogenic variants were de novo in origin, highlighting the importance of trio studies. Many of these pathogenic de novo mutations altered a protein network regulating calcium-related excitability at submembrane junctions in cardiomyocytes and neurons. Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 “trios” (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10−4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C. Both RYR2 mutations are pathogenic (P = 1.7 × 10−7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10−7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.
Collapse
|
11
|
Lin DJ, Lee WS, Chien YC, Chen TY, Yang KT. The link between abnormalities of calcium handling proteins and catecholaminergic polymorphic ventricular tachycardia. Tzu Chi Med J 2021; 33:323-331. [PMID: 34760626 PMCID: PMC8532576 DOI: 10.4103/tcmj.tcmj_288_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare autosomal dominant or recessive disease, usually results in syncope or sudden cardiac death. Most CPVT patients do not show abnormal cardiac structure and electrocardiogram features and symptoms, usually onset during adrenergically mediated physiological conditions. CPVT tends to occur at a younger age and is not easy to be diagnosed and managed. The main cause of CPVT is associated with mishandling Ca2+ in cardiomyocytes. Intracellular Ca2+ is strictly controlled by a protein located in the sarcoplasm reticulum (SR), such as ryanodine receptor, histidine-rich Ca2+-binding protein, triadin, and junctin. Mutation in these proteins results in misfolding or malfunction of these proteins, thereby affecting their Ca2+-binding affinity, and subsequently disturbs Ca2+ homeostasis during excitation–contraction coupling (E-C coupling). Furthermore, transient disturbance of Ca2+ homeostasis increases membrane potential and causes Ca2+ store overload-induced Ca2+ release, which in turn leads to delayed after depolarization and arrhythmia. Previous studies have focused on the interaction between ryanodine receptors and protein kinase or phosphatase in the cytosol. However, recent studies showed the regulation signaling for ryanodine receptor not only from the cytosol but also within the SR. The changing of Ca2+ concentration is critical for protein interaction inside the SR which changes protein conformation to regulate the open probability of ryanodine receptors. Thus, it influences the threshold of Ca2+ released from the SR, making it easier to release Ca2+ during E-C coupling. In this review, we briefly discuss how Ca2+ handling protein variations affect the Ca2+ handling in CPVT.
Collapse
Affiliation(s)
- Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsung-Yu Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
12
|
Tsai WC, Chen PS, Rubart M. Calmodulinopathy in inherited arrhythmia syndromes. Tzu Chi Med J 2021; 33:339-344. [PMID: 34760628 PMCID: PMC8532581 DOI: 10.4103/tcmj.tcmj_182_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that controls and regulates key cellular functions. In all vertebrates, three CaM genes located on separate chromosomes encode an identical 149 amino acid protein, implying an extraordinarily high level of evolutionary importance and suggesting that CaM mutations would be possibly fatal. Inherited arrhythmia syndromes comprise a spectrum of primary electrical disorders caused by mutations in genes encoding ion channels or associated proteins leading to various cardiac arrhythmias, unexplained syncope, and sudden cardiac death. CaM mutations have emerged as an independent entity among inherited arrhythmia syndromes, referred to as calmodulinopathies. The most common clinical presentation associated with calmodulinopathy is congenital long QT syndrome, followed by catecholaminergic polymorphic ventricular tachycardia, both of which significantly increase the possibility of repeated syncope, lethal arrhythmic events, and sudden cardiac death, especially in young individuals. Here, we aim to give an overview of biochemical and structural characteristics of CaM and progress toward updating current known CaM mutations and associated clinical phenotypes. We also review the possible mechanisms underlying calmodulinopathy, based on several key in vitro studies. We expect that further experimental studies are needed to explore the complexity of calmodulinopathy.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- Department of Cardiology, Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Peng-Sheng Chen
- Department of Cardiology, Cedar-Sinai Medical Center, Los Angeles, CA, USA
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Rubart
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
13
|
Hu X, Tong H. Dynamic and conventional electrocardiograms for diagnosing arrhythmic coronary atherosclerotic heart disease: a comparative analysis. Am J Transl Res 2021; 13:5697-5701. [PMID: 34150179 PMCID: PMC8205682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE This study aims to compare the clinical effects of dynamic electrocardiograms (ECGs) and conventional ECGs in the diagnosis of arrhythmic coronary atherosclerotic heart disease. METHODS Fifty patients with arrhythmic coronary atherosclerotic heart disease admitted to our hospital from January 2019 to January 2020 were recruited as the study cohort. All the 50 patients were first diagnosed using conventional ECGs, and then they were diagnosed using 24-hour dynamic ECGs. The results of the conventional ECG diagnoses were taken as the control group, and the results of 24-hour dynamic ECG diagnoses were taken as the experimental group. The positive detection rates, the ventricular premature contraction rates, the supraventricular tachycardia rates, the atrioventricular block detection rates, the paired atrial premature beats, and the paired ventricular premature beats were compared between the two groups, and the diagnostic effectiveness of the dynamic electrocardiograms and the conventional electrocardiograms was analyzed. RESULTS The positive detection rate in the experimental group was significantly higher than it was in the control group (P<0.05). The atrioventricular block, paired atrial premature beat, and paired ventricular premature beats rates in the experimental group were found to be significantly higher (P<0.05). There were no significant differences in the atrial fibrillation and premature ventricular beat rates between the two groups (P>0.05). CONCLUSION Dynamic electrocardiograms are better for diagnosing arrhythmic coronary atherosclerotic heart disease than conventional electrocardiograms.
Collapse
Affiliation(s)
- Xiaoxing Hu
- Outpatient Department, Guangdong Armed Police Corps HospitalGuangzhou, China
| | - Huiping Tong
- ECG Room of Functional Branch, No. 215 Hospital of Shaanxi Nuclear IndustryXianyang, China
| |
Collapse
|
14
|
Network Pharmacology-Based Systematic Analysis of Molecular Mechanisms of Dingji Fumai Decoction for Ventricular Arrhythmia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5535480. [PMID: 34046076 PMCID: PMC8128550 DOI: 10.1155/2021/5535480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022]
Abstract
Background Dingji Fumai Decoction (DFD), a traditional herbal mixture, has been widely used to ventricular arrhythmia (VA) in clinical practice in China. However, research on the bioactive components and underlying mechanisms of DFD in VA is still scarce. Methods Components of DFD were collected from TCMSP, ETCM, and literature. The chemical structures of each component were obtained from PubChem. Next, SwissADME and SwissTargetPrediction were applied for compounds screening and targets prediction of DFD; meanwhile, targets of VA were collected from DrugBank and Online Mendelian Inheritance in Man (OMIM). Then, the H-C-T-D network and the protein-protein interaction (PPI) network were constructed based on the data obtained above. CytoNCA was utilized to filter hub genes and VarElect was used to analyze the relationship between genes and diseases. At last, Metascape was employed for systematic analysis on the potential targets of herbals against VA, and AutoDock was applied for molecular docking to verify the results. Results A total of 434 components were collected, 168 of which were qualified, and there were 28 shared targets between DFD and VA. Three function modules of DFD were found from the PPI network. Further systematic analysis of shared genes and function modules explained the potential mechanism of DFD in the treatment of VA; molecular docking has verified the interactions. Conclusions DFD could be employed for VA through mechanisms, including complex interactions between related components and targets, as predicted by network pharmacology and molecular docking. This work confirmed that DFD could apply to the treatment of VA and promoted the explanation of DFD for VA in the molecular mechanisms.
Collapse
|