1
|
Binzenhöfer L, Clauss S, Strauß K, Höpler J, Kraft M, Hoffmann S, Brunner S, Tomsits P, Schüttler D, Massberg S, Kääb S, Lüsebrink E. Lifetime cumulative activity burden is associated with symptomatic heart failure and arrhythmic risk in patients with arrhythmogenic right ventricular cardiomyopathy: a retrospective cohort study. Europace 2024; 26:euae236. [PMID: 39305246 PMCID: PMC11481332 DOI: 10.1093/europace/euae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 10/17/2024] Open
Abstract
AIMS Sports-related physical activity is associated with an increased risk of ventricular dysfunction and arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). However, there are currently no standardized strategies for activity assessment. Thresholds for harmful levels of physical activity suggested by previous studies vary substantially and neither lifetime activity burden nor continuous modelling approaches were considered. METHODS AND RESULTS For this single-centre retrospective study, ARVC patients were interviewed to assess sports-related and non-sports-related physical activity between the age of 10 years and the last follow-up. Activity data were aggregated to the median metabolic equivalent of task-hours (METh) per week for each year. The association between cumulative physical activity burden and clinical study endpoints was investigated using Cox regression models. A total of 124 patients (median age: 39.5 years, 48% male) were included in the analysis, of whom 93 had been diagnosed with definite ARVC. Study participants reported a median overall activity of 202.3 METh/week, with 38.7 METh/week attributed to sports-related activity. In the continuous model, cumulative overall activity burden was associated with the occurrence of symptomatic heart failure [hazard ratio (HR) per 100 METh/week: 1.017, 95% CI (1.003, 1.032), P = 0.015], sustained ventricular tachycardia [HR: 1.021, 95% CI (1.006, 1.037), P = 0.007], and implantable cardioverter defibrillator interventions [HR: 1.017, 95%CI (1.000, 1.034), P = 0.048]. This finding was consistent when considering sports-related activity separately as a predictor variable, whereas the resulting hazard ratios did not show a significant association for non-sports-related physical activity. CONCLUSION This study demonstrates for the first time that cumulative physical activity as a continuous predictor variable is associated with symptomatic heart failure and arrhythmic risk in ARVC patients. Collaborative research is required in larger cohorts to investigate the influence of potential confounders on event occurrence and to develop threshold recommendations for clinical practice.
Collapse
Affiliation(s)
- Leonhard Binzenhöfer
- Department of Medicine I, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Pettenkoferstraße 8a/9, 80336 Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Pettenkoferstraße 8a/9, 80336 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Center of Experimental Medicine, LMU University Hospital, Marchioninistraße 68, 81377 Munich, Germany
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), Feodor-Lynen-Straße 19, 81377 Munich, Germany
| | - Katharina Strauß
- Department of Medicine I, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Julia Höpler
- Department of Statistics, Institute of Medical Information Processing, Biometry and Epidemiology, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Marie Kraft
- Department of Statistics, Institute of Medical Information Processing, Biometry and Epidemiology, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Sabine Hoffmann
- Department of Statistics, Institute of Medical Information Processing, Biometry and Epidemiology, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Stefan Brunner
- Department of Medicine I, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Pettenkoferstraße 8a/9, 80336 Munich, Germany
- Center for Sports Medicine, LMU University Hospital, Ziemssenstrasse 5, 80336 Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Pettenkoferstraße 8a/9, 80336 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Center of Experimental Medicine, LMU University Hospital, Marchioninistraße 68, 81377 Munich, Germany
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Pettenkoferstraße 8a/9, 80336 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Center of Experimental Medicine, LMU University Hospital, Marchioninistraße 68, 81377 Munich, Germany
| | - Steffen Massberg
- Department of Medicine I, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Pettenkoferstraße 8a/9, 80336 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), Feodor-Lynen-Straße 19, 81377 Munich, Germany
| | - Stefan Kääb
- Department of Medicine I, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Pettenkoferstraße 8a/9, 80336 Munich, Germany
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), Feodor-Lynen-Straße 19, 81377 Munich, Germany
| | - Enzo Lüsebrink
- Department of Medicine I, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Pettenkoferstraße 8a/9, 80336 Munich, Germany
| |
Collapse
|
2
|
Janicek R, Camors EM, Potenza DM, Fernandez-Tenorio M, Zhao Y, Dooge HC, Loaiza R, Alvarado FJ, Egger M, Valdivia HH, Niggli E. Dual ablation of the RyR2-Ser2808 and RyR2-Ser2814 sites increases propensity for pro-arrhythmic spontaneous Ca 2+ releases. J Physiol 2024; 602:5179-5201. [PMID: 39316734 PMCID: PMC11493507 DOI: 10.1113/jp286453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
During exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in phosphorylation of the cardiac ryanodine receptor (RyR2). Three RyR2 phosphorylation sites have taken prominence in excitation-contraction coupling: S2808 and S2030 are described as protein kinase A specific and S2814 as a Ca2+/calmodulin kinase type-2-specific site. To examine the contribution of these phosphosites to Ca2+ signalling, we generated double knock-in (DKI) mice in which Ser2808 and Ser2814 phosphorylation sites have both been replaced by alanine (RyR2-S2808A/S2814A). These mice did not exhibit an overt phenotype. Heart morphology and haemodynamic parameters were not altered. However, they had a higher susceptibility to arrhythmias. We performed confocal Ca2+ imaging and electrophysiology experiments. Isoprenaline was used to stimulate β-ARs. Measurements of Ca2+ waves and latencies in myocytes revealed an increased propensity for spontaneous Ca2+ releases in DKI myocytes, both in control conditions and during β-AR stimulation. In DKI cells, waves were initiated from a lower threshold concentration of Ca2+ inside the sarcoplasmic reticulum, suggesting higher Ca2+ sensitivity of the RyRs. The refractoriness of Ca2+ spark triggering depends on the Ca2+ sensitivity of the RyR2. We found that RyR2-S2808A/S2814A channels were more Ca2+ sensitive in control conditions. Isoprenaline further shortened RyR refractoriness in DKI cardiomyocytes. Together, our results suggest that ablation of both the RyR2-Ser2808 and RyR2-S2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. Given that the DKI cells present a full response to isoprenaline, the data suggest that phosphorylation of Ser2030 might be sufficient for β-AR-mediated sensitization of RyRs. KEY POINTS: Phosphorylation of cardiac sarcoplasmic reticulum Ca2+-release channels (ryanodine receptors, RyRs) is involved in the regulation of cardiac function. Ablation of both the RyR2-Ser2808 and RyR2-Ser2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. The intra-sarcoplasmic reticulum Ca2+ threshold for spontaneous Ca2+ wave generation is lower in RyR2-double-knock-in cells. The RyR2 from double-knock-in cells exhibits increased Ca2+ sensitivity. Phosphorylation of Ser2808 and Ser2814 might be important for basal activity of the channel. Phosphorylation of Ser2030 might be sufficient for a β-adrenergic response.
Collapse
Affiliation(s)
| | - Emmanuel M Camors
- Department of Pediatrics, Division of Cardiology, University of Tennessee Health Science Center, Le Bonheur Children’s Hospital Research Center, Memphis, Tennessee 38103, USA
| | | | | | - Yanting Zhao
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Holly C. Dooge
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Randall Loaiza
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Francisco J Alvarado
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Marcel Egger
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Hector H. Valdivia
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
4
|
Risato G, Brañas Casas R, Cason M, Bueno Marinas M, Pinci S, De Gaspari M, Visentin S, Rizzo S, Thiene G, Basso C, Pilichou K, Tiso N, Celeghin R. In Vivo Approaches to Understand Arrhythmogenic Cardiomyopathy: Perspectives on Animal Models. Cells 2024; 13:1264. [PMID: 39120296 PMCID: PMC11311808 DOI: 10.3390/cells13151264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac disorder characterized by the gradual replacement of cardiomyocytes with fibrous and adipose tissue, leading to ventricular wall thinning, chamber dilation, arrhythmias, and sudden cardiac death. Despite advances in treatment, disease management remains challenging. Animal models, particularly mice and zebrafish, have become invaluable tools for understanding AC's pathophysiology and testing potential therapies. Mice models, although useful for scientific research, cannot fully replicate the complexity of the human AC. However, they have provided valuable insights into gene involvement, signalling pathways, and disease progression. Zebrafish offer a promising alternative to mammalian models, despite the phylogenetic distance, due to their economic and genetic advantages. By combining animal models with in vitro studies, researchers can comprehensively understand AC, paving the way for more effective treatments and interventions for patients and improving their quality of life and prognosis.
Collapse
Affiliation(s)
- Giovanni Risato
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
- Department of Biology, University of Padua, I-35131 Padua, Italy;
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | | | - Marco Cason
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Maria Bueno Marinas
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Serena Pinci
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Monica De Gaspari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Silvia Visentin
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | - Stefania Rizzo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Natascia Tiso
- Department of Biology, University of Padua, I-35131 Padua, Italy;
| | - Rudy Celeghin
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| |
Collapse
|
5
|
Vencato S, Romanato C, Rampazzo A, Calore M. Animal Models and Molecular Pathogenesis of Arrhythmogenic Cardiomyopathy Associated with Pathogenic Variants in Intercalated Disc Genes. Int J Mol Sci 2024; 25:6208. [PMID: 38892395 PMCID: PMC11172742 DOI: 10.3390/ijms25116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare genetic cardiac disease characterized by the progressive substitution of myocardium with fibro-fatty tissue. Clinically, ACM shows wide variability among patients; symptoms can include syncope and ventricular tachycardia but also sudden death, with the latter often being its sole manifestation. Approximately half of ACM patients have been found with variations in one or more genes encoding cardiac intercalated discs proteins; the most involved genes are plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmoplakin (DSP). Cardiac intercalated discs provide mechanical and electro-metabolic coupling among cardiomyocytes. Mechanical communication is guaranteed by the interaction of proteins of desmosomes and adheren junctions in the so-called area composita, whereas electro-metabolic coupling between adjacent cardiac cells depends on gap junctions. Although ACM has been first described almost thirty years ago, the pathogenic mechanism(s) leading to its development are still only partially known. Several studies with different animal models point to the involvement of the Wnt/β-catenin signaling in combination with the Hippo pathway. Here, we present an overview about the existing murine models of ACM harboring variants in intercalated disc components with a particular focus on the underlying pathogenic mechanisms. Prospectively, mechanistic insights into the disease pathogenesis will lead to the development of effective targeted therapies for ACM.
Collapse
Affiliation(s)
- Sara Vencato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Chiara Romanato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Alessandra Rampazzo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Martina Calore
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
6
|
van Opbergen CJ, Narayanan B, Sacramento CB, Stiles KM, Mishra V, Frenk E, Ricks D, Chen G, Zhang M, Yarabe P, Schwartz J, Delmar M, Herzog CD, Cerrone M. AAV-Mediated Delivery of Plakophilin-2a Arrests Progression of Arrhythmogenic Right Ventricular Cardiomyopathy in Murine Hearts: Preclinical Evidence Supporting Gene Therapy in Humans. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004305. [PMID: 38288614 PMCID: PMC10923105 DOI: 10.1161/circgen.123.004305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/30/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Pathogenic variants in PKP2 (plakophilin-2) cause arrhythmogenic right ventricular cardiomyopathy, a disease characterized by life-threatening arrhythmias and progressive cardiomyopathy leading to heart failure. No effective medical therapy is available to prevent or arrest the disease. We tested the hypothesis that adeno-associated virus vector-mediated delivery of the human PKP2 gene to an adult mammalian heart deficient in PKP2 can arrest disease progression and significantly prolong survival. METHODS Experiments were performed using a PKP2-cKO (cardiac-specific, tamoxifen-activated PKP2 knockout murine model). The potential therapeutic, adeno-associated virus vector of serotype rh.74 (AAVrh.74)-PKP2a (PKP2 variant A; RP-A601) is a recombinant AAVrh.74 gene therapy viral vector encoding the human PKP2 variant A. AAVrh.74-PKP2a was delivered to adult mice by a single tail vein injection either before or after tamoxifen-activated PKP2-cKO. PKP2 expression was confirmed by molecular and histopathologic analyses. Cardiac function and disease progression were monitored by survival analyses, echocardiography, and electrocardiography. RESULTS Consistent with prior findings, loss of PKP2 expression caused 100% mortality within 50 days after tamoxifen injection. In contrast, AAVrh.74-PKP2a-mediated PKP2a expression resulted in 100% survival for >5 months (at study termination). Echocardiographic analysis revealed that AAVrh.74-PKP2a prevented right ventricle dilation, arrested left ventricle functional decline, and mitigated arrhythmia burden. Molecular and histological analyses showed AAVrh.74-PKP2a-mediated transgene mRNA and protein expression and appropriate PKP2 localization at the cardiomyocyte intercalated disc. Importantly, the therapeutic benefit was shown in mice receiving AAVrh.74-PKP2a after disease onset. CONCLUSIONS These preclinical data demonstrate the potential for AAVrh.74-PKP2a (RP-A601) as a therapeutic for PKP2-related arrhythmogenic right ventricular cardiomyopathy in both early and more advanced stages of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Grace Chen
- The Leon Charney Division of Cardiology, New York Univ Grossmann School of Medicine, New York, NY
| | - Mingliang Zhang
- The Leon Charney Division of Cardiology, New York Univ Grossmann School of Medicine, New York, NY
| | | | | | - Mario Delmar
- The Leon Charney Division of Cardiology, New York Univ Grossmann School of Medicine, New York, NY
| | | | - Marina Cerrone
- The Leon Charney Division of Cardiology, New York Univ Grossmann School of Medicine, New York, NY
| |
Collapse
|
7
|
Paz-Cruz E, Ruiz-Pozo VA, Cadena-Ullauri S, Guevara-Ramirez P, Tamayo-Trujillo R, Ibarra-Castillo R, Laso-Bayas JL, Onofre-Ruiz P, Domenech N, Ibarra-Rodriguez AA, Zambrano AK. Associations of MYPN, TTN, SCN5A, MYO6 and ELN Mutations With Arrhythmias and Subsequent Sudden Cardiac Death: A Case Report of an Ecuadorian Individual. Cardiol Res 2023; 14:409-415. [PMID: 37936622 PMCID: PMC10627373 DOI: 10.14740/cr1552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 11/09/2023] Open
Abstract
Cardiac pathologies are among the most frequent causes of death worldwide. Regarding cardiovascular deaths, it is estimated that 5 million cases are caused by sudden cardiac death (SCD) annually. The primary cause of SCD is ventricular arrhythmias. Genomic studies have provided pathogenic, likely pathogenic, and variants of uncertain significance that may predispose individuals to cardiac causes of sudden death. In this study, we describe the case of a 43-year-old individual who experienced an episode of aborted SCD. An implantable cardioverter defibrillator was placed to prevent further SCD episodes. The diagnosis was ventricular fibrillation. Genomic analysis revealed some variants in the MYPN (pathogenic), GCKR (likely pathogenic), TTN (variant of uncertain significance), SCN5A (variant of uncertain significance), MYO6 (variant of uncertain significance), and ELN (variant of uncertain significance) genes, which could be associated with SCD episodes. In addition, a protein-protein interaction network was obtained, with proteins related to ventricular arrhythmia and the biological processes involved. Therefore, this study identified genetic variants that may be associated with and trigger SCD in the individual. Moreover, genetic variants of uncertain significance, which have not been reported, could contribute to the genetic basis of the disease.
Collapse
Affiliation(s)
- Elius Paz-Cruz
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| | - Viviana A Ruiz-Pozo
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| | - Santiago Cadena-Ullauri
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramirez
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | - Paul Onofre-Ruiz
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Nieves Domenech
- Instituto de Investigacion Biomedica de A Coruna (INIBIC) - CIBERCV, Complexo Hospitalario Universitario de A Coruna (CHUAC), Sergas, Universidad da Coruna (UDC), Spain
| | | | - Ana Karina Zambrano
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| |
Collapse
|
8
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|