1
|
Lei Y, Wang S, Liu Q, Zeng D, Wang K, Chang C, Zhang B, Zhang L, Shi Z, Meng Y. Construction of AgNPs-loaded oriented hydrogel based on Periostracum Cicadae chitosan by electro-assembly for rapid hemostasis and wound healing. Carbohydr Polym 2025; 358:123500. [PMID: 40383563 DOI: 10.1016/j.carbpol.2025.123500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 05/20/2025]
Abstract
Oriented hydrogels have been recognized for their ability to promote cell proliferation and enhance wound repair. Chitosan, valued for its biocompatibility and biodegradability, is widely used in hydrogel preparation. However, chitosan derived from Periostracum Cicadae ("Chantui") has not been explored for creating antibacterial-oriented hydrogels. In this study, we successfully developed a Periostracum Cicadae chitosan-based oriented hydrogel (O-CH) using an electro-assembly method. The O-CH hydrogel exhibited superior hemostatic performance and mechanical strength, with stress levels 7.6 times higher than those of traditional alkali-neutralized hydrogels. Subsequently, silver nanoparticles (AgNPs) were formed in situ on the O-CH hydrogel without the need for additional reducing agents or stabilizers, yielding O-CH@Ag20, which exhibited excellent biocompatibility and enhanced antibacterial properties. In an S. aureus-infected full-thickness rat skin defect model, O-CH@Ag20 reduced bacterial counts at the wound site by 6-fold compared to the gauze group on day 3 and achieved a 97 % wound healing rate by day 10, versus 75 % in the gauze group. Histological analysis revealed that O-CH@Ag20 regulated angiogenesis, collagen deposition, and fibroblast differentiation into myofibroblasts, thereby accelerating wound contraction during remodeling. This study presents a novel approach to addressing clinical challenges in infected wound healing using Periostracum Cicadae chitosan-based antibacterial hydrogels.
Collapse
Affiliation(s)
- Yujie Lei
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shilei Wang
- Key Laboratory of Chinese Medicine-Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Qian Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Duan Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kexing Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Baohui Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lin Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Zhaohua Shi
- Hubei Shizhen Laboratory, Wuhan, China; Key Laboratory of Chinese Medicine-Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
2
|
Wang YT, Moura AK, Zuo R, Roudbari K, Hu JZ, Khan SA, Wang Z, Shentu Y, Wang M, Li PL, Hao J, Zhang Y, Li X. Cardiovascular dysfunction and altered lysosomal signaling in a murine model of acid sphingomyelinase deficiency. J Mol Med (Berl) 2025; 103:599-617. [PMID: 40232391 DOI: 10.1007/s00109-025-02542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Niemann-Pick Disease (NPD) is a rare autosomal recessive lysosomal storage disorder (LSD) caused by the deficiency of acid sphingomyelinase (ASMD), which is encoded by the Smpd1 gene. ASMD impacts multiple organ systems in the body, including the cardiovascular system. This study is the first to characterize cardiac pathological changes in ASMD mice under baseline conditions, offering novel insights into the cardiac implications of NPD. Using histological analysis, biochemical assays, and echocardiography, we assessed cardiac pathological changes and function in Smpd1-/- mice compared to Smpd1+/+ littermate controls. Immunofluorescence and biochemical assays demonstrated that ASMD induced lysosomal dysfunction, as evidenced by the accumulation of lysosomal-associated membrane proteins, lysosomal protease, and autophagosomes in pericytes and cardiomyocytes. This lysosomal dysfunction was accompanied by pericytes and cardiomyocytes inflammation, characterized by increased expression of caspase1 and inflammatory cytokines, and infiltration of inflammatory cells in the cardiac tissues of Smpd1-/- mice. In addition, histological analysis revealed increased lipid deposition and cardiac steatosis, along with pericyte-to-myofibroblast transition (PMT) and interstitial fibrosis in Smpd1-/- mice. Moreover, echocardiography further demonstrated that Smpd1-/- mice developed coronary microvascular dysfunction (CMD), as evidenced by decreased coronary blood flow velocity and increased coronary arteriolar wall thickness. Additionally, these mice exhibited significant impairments in systolic and diastolic cardiac function, as shown by a reduced ejection fraction and prolonged left ventricular relaxation time constant (Tau value). These findings suggest that ASMD induces profound pathological changes and vascular dysfunction in the myocardium, potentially driven by mechanisms involving lysosomal dysfunction as well as both pericytes and cardiac inflammation. KEY MESSAGES: Lysosomal dysfunction in ASMD leads to impaired autophagic flux in cardiac pericytes ASMD causes cardiac inflammation with leukocyte and M2 macrophage infiltration Lipid buildup in the pericytes, fibroblasts and myocardium lead to cardiac steatosis Enhanced cardiac fibrosis in ASMD links to pericyte-to-myofibroblast transition ASMD results in coronary microvascular and diastolic and systolic cardiac dysfunction.
Collapse
Affiliation(s)
- Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Alexandra K Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Jenny Z Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Saher A Khan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yangping Shentu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mi Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA.
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204 - 5056, USA.
| |
Collapse
|
3
|
Ghazal R, Wang M, Liu D, Tschumperlin DJ, Pereira NL. Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure. Circ Res 2025; 136:773-802. [PMID: 40146800 PMCID: PMC11949229 DOI: 10.1161/circresaha.124.325402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cardiac fibrosis, a hallmark of heart failure and various cardiomyopathies, represents a complex pathological process that has long challenged therapeutic intervention. High-throughput omics technologies have begun revolutionizing our understanding of the molecular mechanisms driving cardiac fibrosis and are providing unprecedented insights into its heterogeneity and progression. This review provides a comprehensive analysis of how techniques-encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics-are providing insight into our understanding of cardiac fibrosis. Genomic studies have identified novel genetic variants and regulatory networks associated with fibrosis susceptibility and progression, and single-cell transcriptomics has unveiled distinct cardiac fibroblast subpopulations with unique molecular signatures. Epigenomic profiling has revealed dynamic chromatin modifications controlling fibroblast activation states, and proteomic analyses have identified novel biomarkers and potential therapeutic targets. Metabolomic studies have uncovered important alterations in cardiac energetics and substrate utilization during fibrotic remodeling. The integration of these multi-omic data sets has led to the identification of previously unrecognized pathogenic mechanisms and potential therapeutic targets, including cell-type-specific interventions and metabolic modulators. We discuss how these advances are driving the development of precision medicine approaches for cardiac fibrosis while highlighting current challenges and future directions in translating multi-omic insights into effective therapeutic strategies. This review provides a systems-level perspective on cardiac fibrosis that may inform the development of more effective, personalized therapeutic approaches for heart failure and related cardiovascular diseases.
Collapse
Affiliation(s)
- Rachad Ghazal
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
| | - Min Wang
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | - Duan Liu
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | | | - Naveen L. Pereira
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Wang YT, Moura AK, Zuo R, Roudbari K, Hu JZ, Khan SA, Wang Z, Shentu Y, Wang M, Li PL, Hao J, Zhang Y, Li X. Cardiovascular Dysfunction and Altered Lysosomal Signaling in a Murine Model of Acid Sphingomyelinase Deficiency. RESEARCH SQUARE 2025:rs.3.rs-5154105. [PMID: 40166006 PMCID: PMC11957194 DOI: 10.21203/rs.3.rs-5154105/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Niemann-Pick Disease (NPD) is a rare autosomal recessive lysosomal storage disorder (LSD) caused by the deficiency of acid sphingomyelinase (ASMD), which is encoded by the Smpd1 gene. ASMD impacts multiple organ systems in the body, including the cardiovascular system. This study is the first to characterize cardiac pathological changes in ASMD mice under baseline conditions, offering novel insights into the cardiac implications of NPD. Using histological analysis, biochemical assays, and echocardiography, we assessed cardiac pathological changes and function in Smpd1 -/- mice compared to Smpd1 +/+ littermate controls. Immunofluorescence and biochemical assays demonstrated that ASMD induced lysosomal dysfunction, as evidenced by the accumulation of lysosomal-associated membrane proteins, lysosomal protease, and autophagosomes in pericytes and cardiomyocytes. This lysosomal dysfunction was accompanied by pericytes and cardiomyocytes inflammation, characterized by increased expression of caspase1 and inflammatory cytokines, and infiltration of inflammatory cells in the cardiac tissues of Smpd1 -/- mice. In addition, histological analysis revealed increased lipid deposition and cardiac steatosis, along with pericyte-to-myofibroblast transition (PMT) and interstitial fibrosis in Smpd1 -/- mice. Moreover, echocardiography further demonstrated that Smpd1 -/- mice developed coronary microvascular dysfunction (CMD), as evidenced by decreased coronary blood flow velocity and increased coronary arteriolar wall thickness. Additionally, these mice exhibited significant impairments in systolic and diastolic cardiac function, as shown by a reduced ejection fraction and prolonged left ventricular relaxation time constant (Tau value). These findings suggest that ASMD induces profound pathological changes and vascular dysfunction in the myocardium, potentially driven by mechanisms involving lysosomal dysfunction as well as both pericytes and cardiac inflammation.
Collapse
|
5
|
Abdel-Wahab BA, El-Shoura EAM, Alqahtani SM, Saad HM, Bakir MB, Zaafar D. Cilostazol alleviates imatinib-induced myocardial injury in rats by modulating the TGF-β1/MAPK, SHC/Grb2/SOS signaling pathways and upregulating miRNA-195-5P. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03946-x. [PMID: 40100370 DOI: 10.1007/s00210-025-03946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
Tyrosine kinase inhibitors have revolutionized cancer treatment, yet their association with cardiotoxicity remains a challenge. While the pathophysiological consequences of imatinib therapy involve diverse pathways, our understanding of these mechanisms is limited. Cilostazol, a selective phosphodiesterase 3 inhibitor used in intermittent claudication treatment, is known for its antioxidant and anti-inflammatory effects. In this study, we aimed to counteract the cardiotoxic effects of imatinib by administering cilostazol, concurrently investigating the precise mechanisms underlying imatinib-induced myocardial injury. Twenty-eight male Wistar rats were categorized into four groups: control (2 mL/kg normal saline, orally), cilostazol (10 mg/kg, orally), imatinib (40 mg/kg, intraperitonially), and combination (cilostazol and imatinib). Daily treatments were administered for 28 consecutive days. Imatinib therapy induced oxidative stress, pro-inflammatory responses, and cardiotoxicity biomarkers, alongside dysregulation of various protein and gene expressions. The addition of cilostazol to imatinib mitigated these deleterious effects, notably restoring measured biomarkers close to normal values. Histopathological investigations corroborated the biochemical findings. The co-administration of cilostazol with imatinib effectively protects against imatinib-induced myocardial injury in rats, reducing oxidative stress, apoptotic and inflammatory biomarkers, and modulating protein, gene, and miRNA-195-5p expression levels. While promising for alleviating and protecting against myocardial injury in imatinib-treated patients, these findings necessitate further confirmation through clinical studies.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Saad Misfer Alqahtani
- Department of Pathology, College of Medicine, The University Hospital, Najran University, Najran, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Marwa B Bakir
- Department of Medical Education, Faculty of Medicine, Najran University, P.O. 1988, Najran, Saudi Arabia
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Amancherla K, Taravella Oill AM, Bledsoe X, Williams AL, Chow N, Zhao S, Sheng Q, Bearl DW, Hoffman RD, Menachem JN, Siddiqi HK, Brinkley DM, Mee ED, Hadad N, Agrawal V, Schmeckpepper J, Rali AS, Tsai S, Farber-Eger EH, Wells QS, Freedman JE, Tucker NR, Schlendorf KH, Gamazon ER, Shah RV, Banovich N. Dynamic responses to rejection in the transplanted human heart revealed through spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640852. [PMID: 40093136 PMCID: PMC11908199 DOI: 10.1101/2025.02.28.640852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Allograft rejection following solid-organ transplantation is a major cause of graft dysfunction and mortality. Current approaches to diagnosis rely on histology, which exhibits wide diagnostic variability and lacks access to molecular phenotypes that may stratify therapeutic response. Here, we leverage image-based spatial transcriptomics at sub-cellular resolution in longitudinal human cardiac biopsies to characterize transcriptional heterogeneity in 62 adult and pediatric heart transplant (HT) recipients during and following histologically-diagnosed rejection. Across 28 cell types, we identified significant differences in abundance in CD4 + and CD8 + T cells, fibroblasts, and endothelial cells across different biological classes of rejection (cellular, mixed, antibody-mediated). We observed a broad overlap in cellular transcriptional states across histologic rejection severity and biological class and significant heterogeneity within rejection severity grades that would qualify for immunomodulatory treatment. Individuals who had resolved rejection after therapy had a distinct transcriptomic profile relative to those with persistent rejection, including 216 genes across 6 cell types along pathways of inflammation, IL6-JAK-STAT3 signaling, IFNα/IFNγ response, and TNFα signaling. Spatial transcriptomics also identified genes linked to long-term prognostic outcomes post-HT. These results underscore importance of subtyping immunologic states during rejection to stratify immune-cardiac interactions following HT that are therapeutically relevant to short- and long-term rejection-related outcomes.
Collapse
|
7
|
Kumari K, Verma K, Sahu M, Dwivedi J, Paliwal S, Sharma S. Emerging role of mesenchymal cells in cardiac and cerebrovascular diseases: Physiology, pathology, and therapeutic implications. Vascul Pharmacol 2025:107473. [PMID: 39993517 DOI: 10.1016/j.vph.2025.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/11/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
In recent years, the therapeutic utility of mesenchymal stem cells (MSCs) has received substantial attention from investigators, owing to their pleiotropic properties. The emerging insights from the developments in tissue engineering provide perspectives for the repair of damaged tissue and the replacement of failing organs. Perivascular cells including MSC-like pericytes, vascular smooth muscles, and other cells located around blood vessels, have been acknowledged to contribute to in situ angiogenesis and repair process. MSCs offer a wide array of therapeutic applications in different pathological states. However, in the current article, we have highlighted the recent updates on MSCs and their key applications in cardiac and cerebrovascular diseases, evident in different preclinical and clinical studies. We believe the present article would assist the investigators in understanding the recent advances of MSCs and exploring their therapeutic potential in varied ailments, especially cardiac and cerebrovascular diseases.
Collapse
Affiliation(s)
- Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center - Shreveport, LA, USA
| | - Meenal Sahu
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India.
| |
Collapse
|
8
|
Grootaert MOJ, Pasut A, Raman J, Simmonds SJ, Callewaert B, Col Ü, Dewerchin M, Carmeliet P, Heymans S, Jones EAV. Mural cell dysfunction contributes to diastolic heart failure by promoting endothelial dysfunction and vessel remodelling. Cardiovasc Diabetol 2025; 24:62. [PMID: 39920783 PMCID: PMC11806843 DOI: 10.1186/s12933-025-02623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a complex cardiovascular disease associated with metabolic comorbidities. Microvascular dysfunction has been proposed to drive HFpEF, likely via endothelial cell (EC) dysfunction, yet the role of the mural cells herein has never been explored. METHODS We used the diabetic db/db mouse given 1% salt as a new model of HFpEF and crossed then with PDGFRβtg/tg-CreERT2-EYFPtg/tg mice to label the mural cells. We combined single-cell RNA sequencing, NichetNet analysis and histology to determine the role of mural cell dysfunction in HFpEF. RESULTS Db/db mice given 1% salt for 8 weeks developed diastolic dysfunction preceded by capillary density loss, pericyte loss and vessel regression. At 4 weeks of salt, hearts of db/db mice already showed EC dysfunction associated with an anti-angiogenic signature, and an increase in pericyte-EC intracellular space. Db/db + salt hearts were further characterised by increased ACTA2 expression, arteriole wall thickening and vessel enlargement. NicheNet analysis on the single cell transcriptomic data revealed little signalling from the ECs to the mural cells; instead, mural cells signalled strongly to ECs. Mechanistically, pericyte dysfunction induces an EC growth arrest via TNFα-dependent paracrine signalling and downstream signalling through STAT1. CONCLUSION Mural cell dysfunction contributes to HFpEF by inducing coronary vessel remodelling, at least in part by reducing EC proliferation and inducing EC inflammation through TNFα-dependent paracrine signalling.
Collapse
MESH Headings
- Animals
- Pericytes/metabolism
- Pericytes/pathology
- Disease Models, Animal
- Vascular Remodeling
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Heart Failure, Diastolic/physiopathology
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/pathology
- Heart Failure, Diastolic/genetics
- Heart Failure, Diastolic/etiology
- Coronary Vessels/metabolism
- Coronary Vessels/physiopathology
- Coronary Vessels/pathology
- Signal Transduction
- Ventricular Function, Left
- Male
- Mice, Transgenic
- Mice, Inbred C57BL
- Stroke Volume
- Mice
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Paracrine Communication
- Actins
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, box 911, Leuven, 3000, Belgium.
- Endocrinology, Diabetes and Nutrition, UCLouvain, Avenue Hippocrate, box 55, Brussels, 1200, Belgium.
| | - Alessandra Pasut
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology (CCB), KU Leuven, Leuven, Belgium
| | - Jana Raman
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, box 911, Leuven, 3000, Belgium
| | - Steven J Simmonds
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, box 911, Leuven, 3000, Belgium
| | - Bram Callewaert
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, box 911, Leuven, 3000, Belgium
| | - Ümare Col
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, box 911, Leuven, 3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology (CCB), KU Leuven, Leuven, Belgium
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology (CCB), KU Leuven, Leuven, Belgium
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Stephane Heymans
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, box 911, Leuven, 3000, Belgium
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, box 911, Leuven, 3000, Belgium.
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands.
| |
Collapse
|
9
|
Kreutz L, Gaab A, Dona M, Pinto AR, Tallquist MD, Groneberg D, Friebe A. Analysis of cellular NO-GC expression in the murine heart and lineage determination in angiotensin II-induced fibrosis. iScience 2025; 28:111615. [PMID: 39829679 PMCID: PMC11742323 DOI: 10.1016/j.isci.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data. In healthy myocardium, NO-GC is strongly expressed in pericytes and smooth muscle cells but not in endothelial cells or cardiomyocytes. Angiotensin II induced cardiac hypertrophy and fibrosis; fibrotic lesions contained cells positive for NO-GC identified as activated fibroblasts. Lineage tracing indicates that NO-GC-expressing activated fibroblasts originate from PDGFRβ- and Tcf21-positive fibroblast precursors. Our data indicate NO-GC expression in cardiac pericytes and SMC in naive myocardium and in activated fibroblast in fibrotic heart tissue. NO-mediated signaling may modulate fibrotic responses underlying the action of NO-GC stimulators used in the therapy of heart failure.
Collapse
Affiliation(s)
- Lennart Kreutz
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Annika Gaab
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Malathi Dona
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Michelle D. Tallquist
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dieter Groneberg
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Lian J, Lin H, Zhong Z, Song Y, Shao X, Zhou J, Xu L, Sun Z, Yang Y, Chi J, Wang P, Meng L. Indole-3-Lactic Acid Inhibits Doxorubicin-Induced Ferroptosis Through Activating Aryl Hydrocarbon Receptor/Nrf2 Signalling Pathway. J Cell Mol Med 2025; 29:e70358. [PMID: 39854052 PMCID: PMC11756996 DOI: 10.1111/jcmm.70358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo. The cardioprotective effects and mechanisms of ILA were explored using multi-omics approaches, including single-nucleus RNA sequencing (snRNA-seq) and bulk RNA-seq, and were further validated in Nrf2 knockout mice. The findings revealed that DOX treatment disrupted gut microbiota, significantly reducing the levels of the tryptophan metabolite ILA. In DIC models, ILA supplementation markedly improved cardiac function, reduced collagen deposition, and mitigated cardiac atrophy. The bulk and snRNA-seq analyses indicated that myocardial ferroptosis played a crucial role in the cardioprotective effects of ILA. Experimental data demonstrated that ILA decreased DOX-induced ferroptosis in both DIC mice and DOX-treated H9C2 cells, evidenced by restoration of GPX4 and SLC7A11 levels and reduction of ACSL4. Mechanistically, ILA functions as a ligand for the aryl hydrocarbon receptor (AhR), leading to the upregulation of Nrf2 expression. The protective effects of ILA against ferroptosis were abolished by silencing AhR. Moreover, the beneficial effects of ILA on DIC were eliminated in Nrf2-deficient mice. In conclusion, ILA exerts therapeutic effects against DIC by inhibiting ferroptosis through activation of the AhR/Nrf2 signalling pathway. Identifying the cardioprotective role of the microbial metabolite ILA could offer viable therapeutic strategies for DIC.
Collapse
Affiliation(s)
- Jiangfang Lian
- Department of CardiologyThe Affiliated Lihuili Hospital of Ningbo UniversityZhejiangChina
| | - Hui Lin
- Department of CardiologyThe Affiliated Lihuili Hospital of Ningbo UniversityZhejiangChina
| | - Zuoquan Zhong
- Central Laboratory of MedicineShaoxing People's HospitalShaoxingChina
| | - Yongfei Song
- Department of CardiologyThe Affiliated Lihuili Hospital of Ningbo UniversityZhejiangChina
| | - Xian Shao
- Central Laboratory of MedicineShaoxing People's HospitalShaoxingChina
| | - Jiedong Zhou
- College of MedicineShaoxing UniversityShaoxingChina
| | - Lili Xu
- Central Laboratory of MedicineShaoxing People's HospitalShaoxingChina
| | - Zhenzhu Sun
- Department of Cardiology, Enze Medical Research CenterTaizhou Hospital Affiliated to Wenzhou Medical UniversityLinhaiChina
| | - Yongyi Yang
- Department of Gynaecology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Jufang Chi
- Department of Cardiology, Zhuji People's Hospital of Zhejiang ProvinceZhuji Affiliated Hospital of Wenzhou Medical UniversityZhujiChina
| | - Ping Wang
- Department of CardiologyShaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of MedicineShaoxingChina
| | - Liping Meng
- Department of CardiologyShaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of MedicineShaoxingChina
| |
Collapse
|
11
|
Kitada K. Hypertension research 2024 update and perspectives: basic research. Hypertens Res 2024; 47:3304-3309. [PMID: 39251854 DOI: 10.1038/s41440-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
This review article introduces some basic studies that were recently published in this journal, as a part of Hypertension Research 2024 Update and Perspectives. Including recent basic research trends in other scientific journals, we would like to summarize basic research on keywords such as hypertension and its associated organ damage, new treatments, and others. It is expected that the accumulation of basic studies will lead to breakthroughs in hypertension treatment in the future and lead to the definitive treatment of hypertension beyond blood pressure control with anti-hypertensive drugs.
Collapse
Affiliation(s)
- Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, 7610793, Japan.
| |
Collapse
|
12
|
Zhang J, Wang S, Sun Q, Zhang J, Shi X, Yao M, Chen J, Huang Q, Zhang G, Huang Q, Ai K, Bai Y. Peroxynitrite-Free Nitric Oxide-Embedded Nanoparticles Maintain Nitric Oxide Homeostasis for Effective Revascularization of Myocardial Infarcts. ACS NANO 2024; 18:32650-32671. [PMID: 39545833 DOI: 10.1021/acsnano.4c10118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Revascularization is crucial for treating myocardial infarction (MI). Nitric oxide (NO), at an appropriate concentration, is recognized as an ideal and potent pro-angiogenic factor. However, the application of NO in the treatment of MI is limited. Improper NO supplementation is harmful to revascularization because NO is converted into harmful peroxynitrite (ONOO-) in MI tissues with high reactive oxygen species (ROS) levels. We overcome these obstacles by embedding biliverdin and NO into Prussian blue (PB) nanolattices to obtain an ONOO--free NO-embedded nanomedicine (OFEN). Unlike previous NO donors, OFEN provides NO stably and spontaneously for a longer time (>7 days), which makes it possible to maintain a stable concentration of NO, suitable for angiogenesis, through dose optimization. More importantly, based on the synergy between PB and biliverdin, OFEN converts ROS into beneficial O2 and inhibits the production of ONOO- from the source. OFEN specifically targets MI tissues and achieves sustained and stable NO delivery at the MI site. OFEN effectively promotes revascularization in the MI tissue, significantly reduces myocardial death and fibrosis, and ultimately promotes the complete recovery of cardiac function. Our strategy provides a promising approach for the treatment of myocardial and other ischemic diseases.
Collapse
Affiliation(s)
- Jiaxiong Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Quan Sun
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jian Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xiaojing Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Meilian Yao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jing Chen
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Guogang Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, PR China
| | - Qun Huang
- Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, PR China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Yongping Bai
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
13
|
Chen X, Zhong X, Huang GN. Heart regeneration from the whole-organism perspective to single-cell resolution. NPJ Regen Med 2024; 9:34. [PMID: 39548113 PMCID: PMC11568173 DOI: 10.1038/s41536-024-00378-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cardiac regenerative potential in the animal kingdom displays striking divergence across ontogeny and phylogeny. Here we discuss several fundamental questions in heart regeneration and provide both a holistic view of heart regeneration in the organism as a whole, as well as a single-cell perspective on intercellular communication among diverse cardiac cell populations. We hope to provide valuable insights that advance our understanding of organ regeneration and future therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaochen Zhong
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Beltrame F, Nascimento-Carlos B, da Silva JS, Maia RC, Montagnoli TL, Barreiro EJ, Zapata-Sudo G. Novel Agonists of Adenosine Receptors in Animal Model of Acute Myocardial Infarction. Drug Des Devel Ther 2024; 18:5211-5223. [PMID: 39568783 PMCID: PMC11577433 DOI: 10.2147/dddt.s464712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/06/2024] [Indexed: 11/22/2024] Open
Abstract
Background and Purpose Current treatments for acute myocardial infarction (AMI) include pain relief and attempts to improve survival. This study investigated the effects of two new ligands of the adenosine receptor, LASSBio-1027 and LASSBio-1860, on cardiac function in an experimental model of AMI. Methods AMI was induced in Wistar rats by ligating the anterior descending coronary arteries. Infarcted animals were treated orally with vehicle (DMSO), LASSBio-1027 (30 and 70 μmol/kg), or LASSBio-1860 (70 μmol/kg) for seven days. Hemodynamic parameters were observed using echocardiography, whereas inflammation and fibrosis were detected using histological analysis. Results MI increased the filling pressure from 23.0 ± 1.6 and 14.0 ± 2.0 to 37.0 ± 3.7 and 33.2 ± 8.0, respectively indicating diastolic dysfunction. However, treatment with LASSBio-1027 (70 μmol/kg) and LASSBio-1860 (70 μmol/kg) reduced this parameter to 23.9 ± 5.4 and 17.1 ± 6.7. An impairment in ejection fraction from 57.1 ± 3.2 to 36.6 ± 2.0% was observed after MI, partially recovered to 47.0 ± 7.4% by LASSBio-1027 and fully restored to 61.8 ± 4.3% after 7 days of treatment with LASSBio-1860. After MI, collagen deposition in LV free wall was increased to 31.4 ± 11.0% and treatment with LASSBio-1027 reduced to 23.4 ± 6.0 and 19.7 ± 8.0% at 30 and 70 μmol/kg, respectively. Similarly, LASSBio-1860 reduced collagen levels to 63.1 ± 2.0%. Conclusion Fibrosis and inflammatory components of MI reduced following treatment with agonist of adenosine receptor subtype A2A. Cardiac remodeling induced by LASSBio-1027 and LASSBio-1860 may be responsible for the improvement in cardiac function in AMI through the activation of A2A adenosine receptors.
Collapse
Affiliation(s)
- Fabricio Beltrame
- Programa de Pós-Graduação em Medicina (Cardiologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Nascimento-Carlos
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline S da Silva
- Programa de Pós-Graduação em Medicina (Cardiologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodolfo Couto Maia
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Lima Montagnoli
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J Barreiro
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Medicina (Cardiologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Zhang T, Yang S, Ge Y, Yin L, Pu Y, Gu Z, Chen Z, Liang G. Unveiling the Heart's Hidden Enemy: Dynamic Insights into Polystyrene Nanoplastic-Induced Cardiotoxicity Based on Cardiac Organoid-on-a-Chip. ACS NANO 2024; 18:31569-31585. [PMID: 39482939 DOI: 10.1021/acsnano.4c13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Exposure to micro- and nanoplastics (MNPs) has been implicated in potential cardiotoxicity. However, in vitro models based on cardiomyocyte cell lines lack crucial cardiac characteristics, while interspecies differences in animal models compromise the reliability of the conclusions. In addition, current research has predominantly focused on single-time point exposures to MNPs, neglecting comparative analyses of cardiac injury across early and late stages. Moreover, there remains a large gap in understanding the susceptibility to MNPs under pathological conditions. To address these limitations, this study integrated cardiac organoids (COs) and organ-on-a-chip (OoC) technology to develop the cardiac organoid-on-a-chip (COoC), which was validated for cardiotoxicity evaluation through multiple dimensions. Based on COoC, we conducted a dynamic observation of the cardiac damage caused by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Oxidative stress, inflammation, disruption of calcium ion homeostasis, and mitochondrial dysfunction were confirmed as the potential mechanisms of PS-NP-induced cardiotoxicity and the crucial events in the early stages, while cardiac fibrosis emerged as a prominent feature in late stages. Notably, low-dose exposure exacerbated myocardial infarction symptoms under pathological states, despite no significant cardiotoxicity shown in healthy models. In conclusion, these findings further deepened our understanding of PS-NP-induced cardiotoxic effects and introduced a promising in vitro platform for assessing cardiotoxicity.
Collapse
Affiliation(s)
- Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
16
|
Miyoshi Y, Lucena-Cacace A, Tian Y, Matsumura Y, Tani K, Nishikawa M, Narita M, Kimura T, Ono K, Yoshida Y. SMAD3 mediates the specification of human induced pluripotent stem cell-derived epicardium into progenitors for the cardiac pericyte lineage. Stem Cell Reports 2024; 19:1399-1416. [PMID: 39332407 PMCID: PMC11561457 DOI: 10.1016/j.stemcr.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Understanding the molecular mechanisms of epicardial epithelial-to-mesenchymal transition (EMT), particularly in directing cell fate toward epicardial derivatives, is crucial for regenerative medicine using human induced pluripotent stem cell (iPSC)-derived epicardium. Although transforming growth factor β (TGF-β) plays a pivotal role in epicardial biology, orchestrating EMT during embryonic development via downstream signaling through SMAD proteins, the function of SMAD proteins in the epicardium in maintaining vascular homeostasis or mediating the differentiation of various epicardial-derived cells (EPDCs) is not yet well understood. Our study reveals that TGF-β-independent SMAD3 expression autonomously predicts epicardial cell specification and lineage maintenance, acting as a key mediator in promoting the angiogenic-oriented specification of the epicardium into cardiac pericyte progenitors. This finding uncovers a novel role for SMAD3 in the human epicardium, particularly in generating cardiac pericyte progenitors that enhance cardiac microvasculature angiogenesis. This insight opens new avenues for leveraging epicardial biology in developing more effective cardiac regeneration strategies.
Collapse
Affiliation(s)
- Yutaro Miyoshi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Antonio Lucena-Cacace
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| | - Yu Tian
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuko Matsumura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Kanae Tani
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Misato Nishikawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Narita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
17
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
18
|
Liu B, Zeng H, Su H, Williams QA, Besanson J, Chen Y, Chen J. Endothelial Cell-Specific Prolyl Hydroxylase-2 Deficiency Augments Angiotensin II-Induced Arterial Stiffness and Cardiac Pericyte Recruitment in Mice. J Am Heart Assoc 2024; 13:e035769. [PMID: 39056332 PMCID: PMC11963933 DOI: 10.1161/jaha.124.035769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Endothelial prolyl hydroxylase-2 (PHD2) is essential for pulmonary remodeling and hypertension. In the present study, we investigated the role of endothelial PHD2 in angiotensin II-mediated arterial stiffness, pericyte recruitment, and cardiac fibrosis. METHODS AND RESULTS Chondroitin sulfate proteoglycan 4 tracing reporter chondroitin sulfate proteoglycan 4- red fluorescent protein (DsRed) transgenic mice were crossed with PHD2flox/flox (PHD2f/f) mice and endothelial-specific knockout of PHD2 (PHD2ECKO) mice. Transgenic PHD2f/f (TgPHD2f/f) mice and TgPHD2ECKO mice were infused with angiotensin II for 4 weeks. Arterial thickness, stiffness, and histological and immunofluorescence of pericytes and fibrosis were measured. Infusion of TgPHD2f/f mice with angiotensin II resulted in a time-dependent increase in pulse-wave velocity. Angiotensin II-induced pulse-wave velocity was further elevated in the TgPHD2ECKO mice. TgPHD2ECKO also reduced coronary flow reserve compared with TgPHD2f/f mice infused with angiotensin II. Mechanistically, knockout of endothelial PHD2 promoted aortic arginase activity and angiotensin II-induced aortic thickness together with increased transforming growth factor-β1 and ICAM-1/VCAM-1 expression in coronary arteries. TgPHD2f/f mice infused with angiotensin II for 4 weeks exhibited a significant increase in cardiac fibrosis and hypertrophy, which was further developed in the TgPHD2ECKO mice. Chondroitin sulfate proteoglycan 4 pericyte was traced by DsRed+ staining and angiotensin II infusion displayed a significant increase of DsRed+ pericytes in the heart, as well as a deficiency of endothelial PHD2, which further promoted angiotensin II-induced pericyte increase. DsRed+ pericytes were costained with fibroblast-specific protein 1 and α-smooth muscle actin for measuring pericyte-myofibroblast cell transition. The knockout of endothelial PHD2 increased the amount of DsRed+/fibroblast-specific protein 1+ and DsRed+/α-smooth muscle actin+ cells induced by angiotensin II infusion. CONCLUSIONS Knockout of endothelial PHD2 enhanced angiotensin II-induced cardiac fibrosis by mechanisms involving increasing arterial stiffness and pericyte-myofibroblast cell transitions.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical Center, School of MedicineJacksonMS
| | - Heng Zeng
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical Center, School of MedicineJacksonMS
| | - Han Su
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical Center, School of MedicineJacksonMS
| | - Quinesha A. Williams
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical Center, School of MedicineJacksonMS
| | - Jessie Besanson
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical Center, School of MedicineJacksonMS
| | - Yingjie Chen
- Department of Physiology and BiophysicsUniversity of Mississippi Medical Center, School of MedicineJacksonMS
| | - Jian‐Xiong Chen
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical Center, School of MedicineJacksonMS
| |
Collapse
|
19
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Frangogiannis NG. The fate and role of the pericytes in myocardial diseases. Eur J Clin Invest 2024; 54:e14204. [PMID: 38586936 DOI: 10.1111/eci.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The adult mammalian heart contains a large population of pericytes that play important roles in homeostasis and disease. In the normal heart, pericytes regulate microvascular permeability and flow. Myocardial diseases are associated with marked alterations in pericyte phenotype and function. This review manuscript discusses the role of pericytes in cardiac homeostasis and disease. Following myocardial infarction (MI), cardiac pericytes participate in all phases of cardiac repair. During the inflammatory phase, pericytes may secrete cytokines and chemokines and may regulate leukocyte trafficking, through formation of intercellular gaps that serve as exit points for inflammatory cells. Moreover, pericyte contraction induces microvascular constriction, contributing to the pathogenesis of 'no-reflow' in ischemia and reperfusion. During the proliferative phase, pericytes are activated by growth factors, such as transforming growth factor (TGF)-β and contribute to fibrosis, predominantly through secretion of fibrogenic mediators. A fraction of pericytes acquires fibroblast identity but contributes only to a small percentage of infarct fibroblasts and myofibroblasts. As the scar matures, pericytes form a coat around infarct neovessels, promoting stabilization of the vasculature. Pericytes may also be involved in the pathogenesis of chronic heart failure, by regulating inflammation, fibrosis, angiogenesis and myocardial perfusion. Pericytes are also important targets of viral infections (such as SARS-CoV2) and may be implicated in the pathogenesis of cardiac complications of COVID19. Considering their role in myocardial inflammation, fibrosis and angiogenesis, pericytes may be promising therapeutic targets in myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
21
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
22
|
Kuhn M. Keeps Cardiac Pericytes in Good Shape: Regulator of G-Protein Signaling-5. Circ Res 2024; 134:1256-1258. [PMID: 38723034 DOI: 10.1161/circresaha.124.324476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
23
|
Torimoto K, Elliott K, Nakayama Y, Yanagisawa H, Eguchi S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with other cardiovascular diseases. Cardiovasc Res 2024; 120:567-580. [PMID: 38395029 PMCID: PMC11485269 DOI: 10.1093/cvr/cvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Elliott
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
25
|
Teng Z, Ma Y, Ma X. Letter by Teng et al Regarding Article, "Cardiac Pericytes Acquire a Fibrogenic Phenotype and Contribute to Vascular Maturation After Myocardial Infarction". Circulation 2024; 149:e960-e961. [PMID: 38498610 DOI: 10.1161/circulationaha.123.066563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Zhenqing Teng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China. The State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, People's Republic of China
| | - Yitong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China. The State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, People's Republic of China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China. The State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, People's Republic of China
| |
Collapse
|
26
|
Frangogiannis NG. Response by Frangogiannis to Letter Regarding Article, "Cardiac Pericytes Acquire a Fibrogenic Phenotype and Contribute to Vascular Maturation After Myocardial Infarction". Circulation 2024; 149:e962-e963. [PMID: 38498609 PMCID: PMC11207202 DOI: 10.1161/circulationaha.123.068236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
27
|
Heusch G. Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. MED 2024; 5:10-31. [PMID: 38218174 DOI: 10.1016/j.medj.2023.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Ischemic heart disease is the greatest health burden and most frequent cause of death worldwide. Myocardial ischemia/reperfusion is the pathophysiological substrate of ischemic heart disease. Improvements in prevention and treatment of ischemic heart disease have reduced mortality in developed countries over the last decades, but further progress is now stagnant, and morbidity and mortality from ischemic heart disease in developing countries are increasing. Significant problems remain to be resolved and require a better pathophysiological understanding. The present review attempts to briefly summarize the state of the art in myocardial ischemia/reperfusion research, with a view on both its coronary vascular and myocardial aspects, and to define the cutting edges where further mechanistic knowledge is needed to facilitate translation to clinical practice.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
28
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
29
|
Frangogiannis NG. TGF-β as a therapeutic target in the infarcted and failing heart: cellular mechanisms, challenges, and opportunities. Expert Opin Ther Targets 2024; 28:45-56. [PMID: 38329809 DOI: 10.1080/14728222.2024.2316735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Myocardial fibrosis accompanies most cardiac conditions and can be reparative or maladaptive. Transforming Growth Factor (TGF)-β is a potent fibrogenic mediator, involved in repair, remodeling, and fibrosis of the injured heart. AREAS COVERED This review manuscript discusses the role of TGF-β in heart failure focusing on cellular mechanisms and therapeutic implications. TGF-β is activated in infarcted, remodeling and failing hearts. In addition to its fibrogenic actions, TGF-β has a broad range of effects on cardiomyocytes, immune, and vascular cells that may have both protective and detrimental consequences. TGF-β-mediated effects on macrophages promote anti-inflammatory transition, whereas actions on fibroblasts mediate reparative scar formation and effects on pericytes are involved in maturation of infarct neovessels. On the other hand, TGF-β actions on cardiomyocytes promote adverse remodeling, and prolonged activation of TGF-β signaling in fibroblasts stimulates progression of fibrosis and heart failure. EXPERT OPINION Understanding of the cell-specific actions of TGF-β is necessary to design therapeutic strategies in patients with myocardial disease. Moreover, to implement therapeutic interventions in the heterogeneous population of heart failure patients, mechanism-driven classification of both HFrEF and HFpEF patients is needed. Heart failure patients with prolonged or overactive fibrogenic TGF-β responses may benefit from cautious TGF-β inhibition.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
30
|
Tung LW, Groppa E, Soliman H, Lin B, Chang C, Cheung CW, Ritso M, Guo D, Rempel L, Sinha S, Eisner C, Brassard J, McNagny K, Biernaskie J, Rossi F. Spatiotemporal signaling underlies progressive vascular rarefaction in myocardial infarction. Nat Commun 2023; 14:8498. [PMID: 38129410 PMCID: PMC10739910 DOI: 10.1038/s41467-023-44227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Therapeutic angiogenesis represents a promising avenue to revascularize the ischemic heart. Its limited success is partly due to our poor understanding of the cardiac stroma, specifically mural cells, and their response to ischemic injury. Here, we combine single-cell and positional transcriptomics to assess the behavior of mural cells within the healing heart. In response to myocardial infarction, mural cells adopt an altered state closely associated with the infarct and retain a distinct lineage from fibroblasts. This response is concurrent with vascular rarefaction and reduced vascular coverage by mural cells. Positional transcriptomics reveals that the infarcted heart is governed by regional-dependent and temporally regulated programs. While the remote zone acts as an important source of pro-angiogenic signals, the infarct zone is accentuated by chronic activation of anti-angiogenic, pro-fibrotic, and inflammatory cues. Together, our work unveils the spatiotemporal programs underlying cardiac repair and establishes an association between vascular deterioration and mural cell dysfunction.
Collapse
Affiliation(s)
- Lin Wei Tung
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Elena Groppa
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Borea Therapeutics, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea, 265, 34136, Trieste, Italy
| | - Hesham Soliman
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Aspect Biosystems, 1781 W 75th Ave, Vancouver, BC, V6P 6P2, Canada
- Faculty of Pharmaceutical Sciences, Minia University, Minia, Egypt
| | - Bruce Lin
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Chihkai Chang
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Chun Wai Cheung
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Morten Ritso
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - David Guo
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lucas Rempel
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Sarthak Sinha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christine Eisner
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Julyanne Brassard
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kelly McNagny
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fabio Rossi
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
31
|
Zhang L, Li Y, Yang W, Lin L, Li J, Liu D, Li C, Wu J, Li Y. Protocatechuic aldehyde increases pericyte coverage and mitigates pericyte damage to enhance the atherosclerotic plaque stability. Biomed Pharmacother 2023; 168:115742. [PMID: 37871558 DOI: 10.1016/j.biopha.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Pericyte dysfunction and loss contribute substantially to the destabilization and rupture of atherosclerotic plaques. Protocatechuic aldehyde (PCAD), a natural polyphenol, exerts anti-atherosclerotic effects. However, the effects and mechanisms of this polyphenol on pericyte recruitment, coverage, and pericyte function remain unknown. We here treated apolipoprotein E-deficient mice having high-fat diet-induced atherosclerosis with PCAD. PCAD achieved therapeutic effects similar to rosuvastatin in lowering lipid levels and thus preventing atherosclerosis progression. With PCAD administration, plaque phenotype exhibited higher stability with markedly reduced lesion vulnerability, which is characterized by reduced lipid content and macrophage accumulation, and a consequent increase in collagen deposition. PCAD therapy increased pericyte coverage in the plaques, reduced VEGF-A production, and inhibited intraplaque neovascularization. PCAD promoted pericyte proliferation, adhesion, and migration to mitigate ox-LDL-induced pericyte dysfunction, which thus maintained the capillary network structure and stability. Furthermore, TGFBR1 silencing partially reversed the protective effect exerted by PCAD on human microvascular pericytes. PCAD increased pericyte coverage and impeded ox-LDL-induced damages through TGF-β1/TGFBR1/Smad2/3 signaling. All these novel findings indicated that PCAD increases pericyte coverage and alleviates pericyte damage to improve the stability of atherosclerotic plaques, which is accomplished by regulating TGF-β1/TGFBR1/Smad2/3 signaling in pericytes.
Collapse
Affiliation(s)
- Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dekun Liu
- Shool of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Shandong Provincial Engineering Laboratory of Traditional Chinese Medicine Precision Therapy for Cardiovascular Diseases, Jinan 250355, China.
| |
Collapse
|
32
|
Lu Y, Huo H, Liang F, Xue J, Fang L, Miao Y, Shen L, He B. Role of Pericytes in Cardiomyopathy-Associated Myocardial Infarction Revealed by Multiple Single-Cell Sequencing Analysis. Biomedicines 2023; 11:2896. [PMID: 38001896 PMCID: PMC10668982 DOI: 10.3390/biomedicines11112896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of cardiovascular death worldwide. AMI with cardiomyopathy is accompanied by a poor long-term prognosis. However, limited studies have focused on the mechanism of cardiomyopathy associated with AMI. Pericytes are important to the microvascular function in the heart, yet little attention has been paid to their function in myocardial infarction until now. In this study, we integrated single-cell data from individuals with cardiomyopathy and myocardial infarction (MI) GWAS data to reveal the potential function of pericytes in cardiomyopathy-associated MI. We found that pericytes were concentrated in the left atrium and left ventricle tissues. DLC1/GUCY1A2/EGFLAM were the top three uniquely expressed genes in pericytes (p < 0.05). The marker genes of pericytes were enriched in renin secretion, vascular smooth muscle contraction, gap junction, purine metabolism, and diabetic cardiomyopathy pathways (p < 0.05). Among these pathways, the renin secretion and purine metabolism pathways were also found in the process of MI. In cardiomyopathy patients, the biosynthesis of collagen, modulating enzymes, and collagen formation were uniquely negatively regulated in pericytes compared to other cell types (p < 0.05). COL4A2/COL4A1/SMAD3 were the hub genes in pericyte function involved in cardiomyopathy and AMI. In conclusion, this study provides new evidence about the importance of pericytes in the pathogenesis of cardiomyopathy-associated MI. DLC1/GUCY1A2/EGFLAM were highly expressed in pericytes. The hub genes COL4A2/COL4A1/SMAD3 may be potential research targets for cardiomyopathy-associated MI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Shen
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (H.H.); (F.L.); (J.X.); (L.F.); (Y.M.)
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (H.H.); (F.L.); (J.X.); (L.F.); (Y.M.)
| |
Collapse
|
33
|
Moore-Morris T, Evans SM. Cardiac Pericyte Diversity in Infarct Remodeling: Not Just Vascular Support Cells? Circulation 2023; 148:899-902. [PMID: 37695834 DOI: 10.1161/circulationaha.123.065676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Affiliation(s)
- Thomas Moore-Morris
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France (T.M.-M.)
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Pharmacology and Medicine, University of California at San Diego, La Jolla (S.M.E.)
| |
Collapse
|