1
|
Alvarez JAE, Jafri MS, Ullah A. Using a Failing Human Ventricular Cardiomyocyte Model to Re-Evaluate Ca 2+ Cycling, Voltage Dependence, and Spark Characteristics. Biomolecules 2024; 14:1371. [PMID: 39595549 PMCID: PMC11591732 DOI: 10.3390/biom14111371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Previous studies have observed alterations in excitation-contraction (EC) coupling during end-stage heart failure that include action potential and calcium (Ca2+) transient prolongation and a reduction of the Ca2+ transient amplitude. Underlying these phenomena are the downregulation of potassium (K+) currents, downregulation of the sarcoplasmic reticulum Ca2+ ATPase (SERCA), increase Ca2+ sensitivity of the ryanodine receptor, and the upregulation of the sodium-calcium (Na=-Ca2+) exchanger. However, in human heart failure (HF), debate continues about the relative contributions of the changes in calcium handling vs. the changes in the membrane currents. To understand the consequences of the above changes, they are incorporated into a computational human ventricular myocyte HF model that can explore the contributions of the spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The reduction of transient outward K+ current (Ito) is the main membrane current contributor to the decrease in RyR2 open probability and L-type calcium channel (LCC) density which emphasizes its importance to phase 1 of the action potential (AP) shape and duration (APD). During current-clamp conditions, RyR2 hyperphosphorylation exhibits the least amount of Ca2+ release from the SR into the cytosol and SR Ca2+ fractional release during a dynamic slow-rapid-slow (0.5-2.5-0.5 Hz) pacing, but it displays the most abundant and more lasting Ca2+ sparks two-fold longer than a normal cell. On the other hand, under voltage-clamp conditions, HF by decreased SERCA and upregulated INCX show the least SR Ca2+ uptake and EC coupling gain, as compared to HF by hyperphosphorylated RyR2s. Overall, this study demonstrates that the (a) combined effect of SERCA and NCX, and the (b) RyR2 dysfunction, along with the downregulation of the cardiomyocyte's potassium currents, could substantially contribute to Ca2+ mishandling at the spark level that leads to heart failure.
Collapse
Affiliation(s)
- Jerome Anthony E. Alvarez
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC 20375, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
2
|
Reisqs JB, Qu YS, Boutjdir M. Ion channel trafficking implications in heart failure. Front Cardiovasc Med 2024; 11:1351496. [PMID: 38420267 PMCID: PMC10899472 DOI: 10.3389/fcvm.2024.1351496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Heart failure (HF) is recognized as an epidemic in the contemporary world, impacting around 1%-2% of the adult population and affecting around 6 million Americans. HF remains a major cause of mortality, morbidity, and poor quality of life. Several therapies are used to treat HF and improve the survival of patients; however, despite these substantial improvements in treating HF, the incidence of HF is increasing rapidly, posing a significant burden to human health. The total cost of care for HF is USD 69.8 billion in 2023, warranting a better understanding of the mechanisms involved in HF. Among the most serious manifestations associated with HF is arrhythmia due to the electrophysiological changes within the cardiomyocyte. Among these electrophysiological changes, disruptions in sodium and potassium currents' function and trafficking, as well as calcium handling, all of which impact arrhythmia in HF. The mechanisms responsible for the trafficking, anchoring, organization, and recycling of ion channels at the plasma membrane seem to be significant contributors to ion channels dysfunction in HF. Variants, microtubule alterations, or disturbances of anchoring proteins lead to ion channel trafficking defects and the alteration of the cardiomyocyte's electrophysiology. Understanding the mechanisms of ion channels trafficking could provide new therapeutic approaches for the treatment of HF. This review provides an overview of the recent advances in ion channel trafficking in HF.
Collapse
Affiliation(s)
- Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
| | - Yongxia Sarah Qu
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, New York, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, United States
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Puertas-Umbert L, Alonso J, Hove-Madsen L, Martínez-González J, Rodríguez C. PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets. Int J Mol Sci 2023; 24:17017. [PMID: 38069339 PMCID: PMC10707411 DOI: 10.3390/ijms242317017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Judith Alonso
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Leif Hove-Madsen
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - José Martínez-González
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Cristina Rodríguez
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
4
|
Sleiman Y, Reiken S, Charrabi A, Jaffré F, Sittenfeld LR, Pasquié JL, Colombani S, Lerman BB, Chen S, Marks AR, Cheung JW, Evans T, Lacampagne A, Meli AC. Personalized medicine in the dish to prevent calcium leak associated with short-coupled polymorphic ventricular tachycardia in patient-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:266. [PMID: 37740238 PMCID: PMC10517551 DOI: 10.1186/s13287-023-03502-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Polymorphic ventricular tachycardia (PMVT) is a rare genetic disease associated with structurally normal hearts which in 8% of cases can lead to sudden cardiac death, typically exercise-induced. We previously showed a link between the RyR2-H29D mutation and a clinical phenotype of short-coupled PMVT at rest using patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs). In the present study, we evaluated the effects of clinical and experimental anti-arrhythmic drugs on the intracellular Ca2+ handling, contractile and molecular properties in PMVT hiPSC-CMs in order to model a personalized medicine approach in vitro. METHODS Previously, a blood sample from a patient carrying the RyR2-H29D mutation was collected and reprogrammed into several clones of RyR2-H29D hiPSCs, and in addition we generated an isogenic control by reverting the RyR2-H29D mutation using CRIPSR/Cas9 technology. Here, we tested 4 drugs with anti-arrhythmic properties: propranolol, verapamil, flecainide, and the Rycal S107. We performed fluorescence confocal microscopy, video-image-based analyses and biochemical analyses to investigate the impact of these drugs on the functional and molecular features of the PMVT RyR2-H29D hiPSC-CMs. RESULTS The voltage-dependent Ca2+ channel inhibitor verapamil did not prevent the aberrant release of sarcoplasmic reticulum (SR) Ca2+ in the RyR2-H29D hiPSC-CMs, whereas it was prevented by S107, flecainide or propranolol. Cardiac tissue comprised of RyR2-H29D hiPSC-CMs exhibited aberrant contractile properties that were largely prevented by S107, flecainide and propranolol. These 3 drugs also recovered synchronous contraction in RyR2-H29D cardiac tissue, while verapamil did not. At the biochemical level, S107 was the only drug able to restore calstabin2 binding to RyR2 as observed in the isogenic control. CONCLUSIONS By testing 4 drugs on patient-specific PMVT hiPSC-CMs, we concluded that S107 and flecainide are the most potent molecules in terms of preventing the abnormal SR Ca2+ release and contractile properties in RyR2-H29D hiPSC-CMs, whereas the effect of propranolol is partial, and verapamil appears ineffective. In contrast with the 3 other drugs, S107 was able to prevent a major post-translational modification of RyR2-H29D mutant channels, the loss of calstabin2 binding to RyR2. Using patient-specific hiPSC and CRISPR/Cas9 technologies, we showed that S107 is the most efficient in vitro candidate for treating the short-coupled PMVT at rest.
Collapse
Affiliation(s)
- Yvonne Sleiman
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Azzouz Charrabi
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
| | - Fabrice Jaffré
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Leah R Sittenfeld
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jean-Luc Pasquié
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
- Department of Cardiology, CHRU of Montpellier, Montpellier, France
| | - Sarah Colombani
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
| | - Bruce B Lerman
- Division of Cardiology, Weill Cornell Medical College, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jim W Cheung
- Division of Cardiology, Weill Cornell Medical College, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
| | - Albano C Meli
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France.
- CNRS, INSERM, Montpellier Organoid Platform, Biocampus, University of Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Packer M. The First Dedicated Comprehensive Heart Failure Program in the United States: The Division of Circulatory Physiology at Columbia Presbyterian (1992-2004). J Card Fail 2023; 29:1078-1090. [PMID: 37075940 DOI: 10.1016/j.cardfail.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
The first dedicated multidisciplinary heart failure program in the United States was founded as the Division of Circulatory Physiology at the Columbia University College of Physicians & Surgeons in 1992. The Division was administratively and financially independent of the Division of Cardiology and grew to 24 faculty members at its peak. Its administrative innovations included (1) a comprehensive full-integrated service line, with 2 differentiated clinical teams, one devoted to drug therapy and the other to heart transplantation and ventricular assist devices; (2) a nurse specialist/physician assistant-led clinical service; and (3) a financial structure independent of (and not supported by) other cardiovascular medical or surgical services. The division had 3 overarching missions: (1) to promote a unique career development path for each faculty member to be linked to recognition in a specific area of heart failure expertise; (2) to change the trajectory and enhance the richness of intellectual discourse in the discipline of heart failure, so as to foster an understanding of fundamental mechanisms and to develop new therapeutics; and (3) to provide optimal medical care to patients and to promote the ability of other physicians to provide optimal care. The major research achievements of the division included (1) the development of beta-blockers for heart failure, from initial hemodynamic assessments to proof-of-concept studies to large-scale international trials; (2) the development and definitive assessment of flosequinan, amlodipine, and endothelin antagonists; (3) initial clinical trials and concerns with nesiritide; (4) large-scale trials evaluating dosing of angiotensin converting-enzyme inhibitors and the efficacy and safety of neprilysin inhibition; (5) identification of key mechanisms in heart failure, including neurohormonal activation, microcirculatory endothelial dysfunction, deficiencies in peripheral vasodilator pathways, noncardiac factors in driving dyspnea, and the first identification of subphenotypes of heart failure and a preserved ejection fraction; (6) the development of a volumetric approach to the assessment of myocardial shortening; (7) conceptualization and early studies of cardiac contractility modulation as a treatment for heart failure; (8) novel approaches to the identification of cardiac allograft rejection and new therapeutics to prevent allograft vasculopathy; and (9) demonstration of the effect of left ventricular assist devices to induce reverse remodeling, and the first randomized trial showing a survival benefit with ventricular assist devices. Above all, the division served as an exceptional incubator for a generation of leaders in the field of heart failure.
Collapse
Affiliation(s)
- Milton Packer
- From the Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, and Imperial College, London, UK.
| |
Collapse
|
6
|
Serum Catestatin Concentrations Are Increased in Patients with Atrial Fibrillation. J Cardiovasc Dev Dis 2023; 10:jcdd10020085. [PMID: 36826581 PMCID: PMC9965955 DOI: 10.3390/jcdd10020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The autonomic nervous system is crucial in initiating and maintaining atrial fibrillation (AF). Catestatin is a multipurpose peptide that regulates cardiovascular systems and reduces harmful, excessive activity of the sympathetic nervous system by blocking the release of catecholamines. We aimed to determine whether serum catestatin concentrations are associated with AF severity, duration indices, and various clinical and laboratory indicators in these individuals to better define the clinical value of catestatin in patients with AF. The present single center study enrolled 73 participants with AF and 72 healthy age-matched controls. Serum catestatin concentrations were markedly higher in AF patients than controls (14.11 (10.21-26.02) ng/mL vs. 10.93 (5.70-20.01) ng/mL, p = 0.013). Furthermore, patients with a more severe form of AF had significantly higher serum catestatin (17.56 (12.80-40.35) vs. 10.98 (8.38-20.91) ng/mL, p = 0.001). Patients with higher CHA2DS2-VASc scores (17.58 (11.89-37.87) vs. 13.02 (8.47-22.75) ng/mL, p = 0.034) and higher NT-proBNP levels (17.58 (IQR 13.91-34.62) vs. 13.23 (IQR 9.04-22.61), p = 0.036) had significantly higher serum catestatin concentrations. Finally, AF duration correlated negatively with serum catestatin levels (r = -0.348, p = 0.003). The results of the present study implicate the promising role of catestatin in the intricate pathophysiology of AF, which should be explored in future research.
Collapse
|
7
|
A Methodological Perspective on the Function and Assessment of Peripheral Chemoreceptors in Heart Failure: A Review of Data from Clinical Trials. Biomolecules 2022; 12:biom12121758. [PMID: 36551186 PMCID: PMC9775522 DOI: 10.3390/biom12121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Augmented peripheral chemoreceptor sensitivity (PChS) is a common feature of many sympathetically mediated diseases, among others, and it is an important mechanism of the pathophysiology of heart failure (HF). It is related not only to the greater severity of symptoms, especially to dyspnea and lower exercise tolerance but also to a greater prevalence of complications and poor prognosis. The causes, mechanisms, and impact of the enhanced activity of peripheral chemoreceptors (PChR) in the HF population are subject to intense research. Several methodologies have been established and utilized to assess the PChR function. Each of them presents certain advantages and limitations. Furthermore, numerous factors could influence and modulate the response from PChR in studied subjects. Nevertheless, even with the impressive number of studies conducted in this field, there are still some gaps in knowledge that require further research. We performed a review of all clinical trials in HF human patients, in which the function of PChR was evaluated. This review provides an extensive synthesis of studies evaluating PChR function in the HF human population, including methods used, factors potentially influencing the results, and predictors of increased PChS.
Collapse
|
8
|
Song XW, Zhao F, Yang J, Yuan QN, Zeng ZY, Shen M, Tang Y, Cao M, Shen YF, Li SH, Yang YJ, Wu H, Zhao XX, Hu ST. Cardiovascular-Specific PSEN1 Deletion Leads to Abnormalities in Calcium homeostasis. Cell Biol Int 2021; 46:475-487. [PMID: 34939719 DOI: 10.1002/cbin.11753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022]
Abstract
Mutations of PSEN1 have been reported in dilated cardiomyopathy pedigrees. Understanding the effects and mechanisms of PSEN1 in cardiomyocytes might have important implications for treatment of heart diseases. Here, we showed that PSEN1 was down-regulated in ischemia-induced failing hearts. Functionally, cardiovascular specific PSEN1 deletion led to spontaneous death of the mice due to cardiomyopathy. At the age of 11 months, the ratio of the heart weight/body weight was slightly lower in the Sm22a-PSEN1-KO mice compared with that of the WT mice. Echocardiography showed that the percentage of ejection fraction and fractional shortening was significantly reduced in the Sm22a-PSEN1-KO group compared with the percent of these measures in the WT group, indicating that PSEN1-KO resulted in heart failure. The abnormally regulated genes resulted from PSEN1-KO were detected to be enriched in muscle development and dilated cardiomyopathy. Among them, several genes encode Ca2+ ion channels, promoting us to investigate the effects of PSEN1 KO on regulation of Ca2+ in isolated adult cardiomyocytes. Consistently, in isolated adult cardiomyocytes, PSEN1-KO increased the concentration of cytosolic Ca2+ and reduced Ca2+ concentration inside the sarcoplasmic reticulum (SR) lumen at the resting stage. Additionally, SR Ca2+ was decreased in the failing hearts of WT mice, but with the lowest levels observed in the failing hearts of PSEN1 knockout mice. These results indicate that the process of Ca2+ release from SR into cytoplasm was affected by PSEN1 KO. Therefore, the abnormalities in Ca2+ homeostasis resulted from downregulation of PSEN1 in failing hearts might contribute to aging-related cardiomyopathy, which might had important implications for the treatment of aging-related heart diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Wei Song
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Feng Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Jing Yang
- Department of Cardiology, Changhai Hospital, Shanghai, China.,Department of Physiology, Ningxia Medical University, Yinchuan, China
| | - Qing-Ning Yuan
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Zhen-Yu Zeng
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ming Shen
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ying Tang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Mi Cao
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Ya-Feng Shen
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Song-Hua Li
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Yong-Ji Yang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Shu-Ting Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Dridi H, Kushnir A, Zalk R, Yuan Q, Melville Z, Marks AR. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Nat Rev Cardiol 2020; 17:732-747. [PMID: 32555383 PMCID: PMC8362847 DOI: 10.1038/s41569-020-0394-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
Ca2+ is a fundamental second messenger in all cell types and is required for numerous essential cellular functions, including cardiac and skeletal muscle contraction. The intracellular concentration of free Ca2+ ([Ca2+]) is regulated primarily by ion channels, pumps (ATPases), exchangers and Ca2+-binding proteins. Defective regulation of [Ca2+] is found in a diverse spectrum of pathological states that affect all the major organs. In the heart, abnormalities in the regulation of cytosolic and mitochondrial [Ca2+] occur in heart failure (HF) and atrial fibrillation (AF), two common forms of heart disease and leading contributors to morbidity and mortality. In this Review, we focus on the mechanisms that regulate ryanodine receptor 2 (RYR2), the major sarcoplasmic reticulum (SR) Ca2+-release channel in the heart, how RYR2 becomes dysfunctional in HF and AF, and its potential as a therapeutic target. Inherited RYR2 mutations and/or stress-induced phosphorylation and oxidation of the protein destabilize the closed state of the channel, resulting in a pathological diastolic Ca2+ leak from the SR that both triggers arrhythmias and impairs contractility. On the basis of our increased understanding of SR Ca2+ leak as a shared Ca2+-dependent pathological mechanism in HF and AF, a new class of drugs developed in our laboratory, known as rycals, which stabilize RYR2 channels and prevent Ca2+ leak from the SR, are undergoing investigation in clinical trials.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alexander Kushnir
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ran Zalk
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
10
|
Multisite phosphorylation of the cardiac ryanodine receptor: a random or coordinated event? Pflugers Arch 2020; 472:1793-1807. [PMID: 33078311 DOI: 10.1007/s00424-020-02473-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Many proteins are phosphorylated at more than one phosphorylation site to achieve precise tuning of protein function and/or integrate a multitude of signals into the activity of one protein. Increasing the number of phosphorylation sites significantly broadens the complexity of molecular mechanisms involved in processing multiple phosphorylation sites by one or more distinct kinases. The cardiac ryanodine receptor (RYR2) is a well-established multiple phospho-target of kinases activated in response to β-adrenergic stimulation because this Ca2+ channel is a critical component of Ca2+ handling machinery which is responsible for β-adrenergic enhancement of cardiac contractility. Our review presents a selective overview of the extensive, often conflicting, literature which focuses on identifying reliable lines of evidence to establish if multiple RYR2 phosphorylation is achieved randomly or in a specific sequence, and whether phosphorylation at individual sites is functionally specific and additive or similar and can therefore be substituted.
Collapse
|
11
|
Njegic A, Wilson C, Cartwright EJ. Targeting Ca 2 + Handling Proteins for the Treatment of Heart Failure and Arrhythmias. Front Physiol 2020; 11:1068. [PMID: 33013458 PMCID: PMC7498719 DOI: 10.3389/fphys.2020.01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Diseases of the heart, such as heart failure and cardiac arrhythmias, are a growing socio-economic burden. Calcium (Ca2+) dysregulation is key hallmark of the failing myocardium and has long been touted as a potential therapeutic target in the treatment of a variety of cardiovascular diseases (CVD). In the heart, Ca2+ is essential for maintaining normal cardiac function through the generation of the cardiac action potential and its involvement in excitation contraction coupling. As such, the proteins which regulate Ca2+ cycling and signaling play a vital role in maintaining Ca2+ homeostasis. Changes to the expression levels and function of Ca2+-channels, pumps and associated intracellular handling proteins contribute to altered Ca2+ homeostasis in CVD. The remodeling of Ca2+-handling proteins therefore results in impaired Ca2+ cycling, Ca2+ leak from the sarcoplasmic reticulum and reduced Ca2+ clearance, all of which contributes to increased intracellular Ca2+. Currently, approved treatments for targeting Ca2+ handling dysfunction in CVD are focused on Ca2+ channel blockers. However, whilst Ca2+ channel blockers have been successful in the treatment of some arrhythmic disorders, they are not universally prescribed to heart failure patients owing to their ability to depress cardiac function. Despite the progress in CVD treatments, there remains a clear need for novel therapeutic approaches which are able to reverse pathophysiology associated with heart failure and arrhythmias. Given that heart failure and cardiac arrhythmias are closely associated with altered Ca2+ homeostasis, this review will address the molecular changes to proteins associated with both Ca2+-handling and -signaling; their potential as novel therapeutic targets will be discussed in the context of pre-clinical and, where available, clinical data.
Collapse
Affiliation(s)
- Alexandra Njegic
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Sobowale CO, Hori Y, Ajijola OA. Neuromodulation Therapy in Heart Failure: Combined Use of Drugs and Devices. J Innov Card Rhythm Manag 2020; 11:4151-4159. [PMID: 32724706 PMCID: PMC7377644 DOI: 10.19102/icrm.2020.110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the fastest-growing cardiovascular disease globally. The autonomic nervous system plays an important role in the regulation and homeostasis of cardiac function but, once there is HF, it takes on a detrimental role in cardiac function that makes it a rational target. In this review, we cover the remodeling of the autonomic nervous system in HF and the latest treatments available targeting it.
Collapse
Affiliation(s)
- Christopher O Sobowale
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuichi Hori
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Cardiology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
13
|
Gaburjakova J, Almassy J, Gaburjakova M. Luminal addition of non-permeant Eu 3+ interferes with luminal Ca 2+ regulation of the cardiac ryanodine receptor. Bioelectrochemistry 2020; 132:107449. [PMID: 31918058 DOI: 10.1016/j.bioelechem.2019.107449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Dysregulation of the cardiac ryanodine receptor (RYR2) by luminal Ca2+ has been implicated in a life-threatening, stress-induced arrhythmogenic disease. The mechanism of luminal Ca2+-mediated RYR2 regulation is under debate, and it has been attributed to Ca2+ binding on the cytosolic face (the Ca2+ feedthrough mechanism) and/or the luminal face of the RYR2 channel (the true luminal mechanism). The molecular nature and location of the luminal Ca2+ site is unclear. At the single-channel level, we directly probed the RYR2 luminal face by Eu3+, considering the non-permeant nature of trivalent cations and their high binding affinities for Ca2+ sites. Without affecting essential determinants of the Ca2+ feedthrough mechanism, we found that luminal Eu3+ competitively antagonized the activation effect of luminal Ca2+ on RYR2 responsiveness to cytosolic caffeine, and no appreciable effect was observed for luminal Ba2+ (mimicking the absence of luminal Ca2+). Importantly, luminal Eu3+ caused no changes in RYR2 gating. Our results indicate that two distinct Ca2+ sites (available for luminal Ca2+ even when the channel is closed) are likely involved in the true luminal mechanism. One site facing the lumen regulates channel responsiveness to caffeine, while the other site, presumably positioned in the channel pore, governs the gating behavior.
Collapse
Affiliation(s)
- Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovak Republic.
| | - Janos Almassy
- Department of Physiology, Faculty of Medicine, University of Debrecen, PO Box 400, Debrecen 4002, Hungary.
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovak Republic.
| |
Collapse
|
14
|
Zhao J, Xu T, Zhou Y, Zhou Y, Xia Y, Li D. B-type natriuretic peptide and its role in altering Ca 2+-regulatory proteins in heart failure-mechanistic insights. Heart Fail Rev 2019; 25:861-871. [PMID: 31820203 DOI: 10.1007/s10741-019-09883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heart failure (HF) is a worldwide disease with high levels of morbidity and mortality. The pathogenesis of HF is complicated and involves imbalances in hormone and electrolyte. B-type natriuretic peptide (BNP) has served as a biomarker of HF severity, and in recent years, it has been used to treat the disease, thanks to its cardio-protective effects, such as diuresis, natriuresis, and vasodilatation. In stage C/D HF, symptoms are severe despite elevated BNP. Disturbances in Ca2+ homeostasis are often a dominating feature of the disease, causing Ca2+-regulatory protein dysfunction, including reduced expression and activity of sarcoplasmic reticulum Ca2+-ATPase2a (SERCA2a), impaired ryanodine receptors (RYRs) function, intensive Na+-Ca2+ exchanger (NCX), and downregulation of S100A1. The relationship between natriuretic peptides (NPs) and Ca2+-regulatory proteins has been widely studied and represents important mechanisms in the etiology of HF. In this review, we present evidence that BNP may regulate Ca2+-regulatory proteins, in particular, suppressing SERCA2a and S100A1 expression. However, relationships between BNP and other Ca2+-regulatory proteins remain vague.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yao Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - You Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yong Xia
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Kushnir A, Santulli G, Reiken SR, Coromilas E, Godfrey SJ, Brunjes DL, Colombo PC, Yuzefpolskaya M, Sokol SI, Kitsis RN, Marks AR. Ryanodine Receptor Calcium Leak in Circulating B-Lymphocytes as a Biomarker in Heart Failure. Circulation 2019; 138:1144-1154. [PMID: 29593014 DOI: 10.1161/circulationaha.117.032703] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Advances in congestive heart failure (CHF) management depend on biomarkers for monitoring disease progression and therapeutic response. During systole, intracellular Ca2+ is released from the sarcoplasmic reticulum into the cytoplasm through type-2 ryanodine receptor/Ca2+ release channels. In CHF, chronically elevated circulating catecholamine levels cause pathological remodeling of type-2 ryanodine receptor/Ca2+ release channels resulting in diastolic sarcoplasmic reticulum Ca2+ leak and decreased myocardial contractility. Similarly, skeletal muscle contraction requires sarcoplasmic reticulum Ca2+ release through type-1 ryanodine receptors (RyR1), and chronically elevated catecholamine levels in CHF cause RyR1-mediated sarcoplasmic reticulum Ca2+ leak, contributing to myopathy and weakness. Circulating B-lymphocytes express RyR1 and catecholamine-responsive signaling cascades, making them a potential surrogate for defects in intracellular Ca2+ handling because of leaky RyR channels in CHF. METHODS Whole blood was collected from patients with CHF, CHF following left-ventricular assist device implant, and controls. Blood was also collected from mice with ischemic CHF, ischemic CHF+S107 (a drug that specifically reduces RyR channel Ca2+ leak), and wild-type controls. Channel macromolecular complex was assessed by immunostaining RyR1 immunoprecipitated from lymphocyte-enriched preparations. RyR1 Ca2+ leak was assessed using flow cytometry to measure Ca2+ fluorescence in B-lymphocytes in the absence and presence of RyR1 agonists that empty RyR1 Ca2+ stores within the endoplasmic reticulum. RESULTS Circulating B-lymphocytes from humans and mice with CHF exhibited remodeled RyR1 and decreased endoplasmic reticulum Ca2+ stores, consistent with chronic intracellular Ca2+ leak. This Ca2+ leak correlated with circulating catecholamine levels. The intracellular Ca2+ leak was significantly reduced in mice treated with the Rycal S107. Patients with CHF treated with left-ventricular assist devices exhibited a heterogeneous response. CONCLUSIONS In CHF, B-lymphocytes exhibit remodeled leaky RyR1 channels and decreased endoplasmic reticulum Ca2+ stores consistent with chronic intracellular Ca2+ leak. RyR1-mediated Ca2+ leak in B-lymphocytes assessed using flow cytometry provides a surrogate measure of intracellular Ca2+ handling and systemic sympathetic burden, presenting a novel biomarker for monitoring response to pharmacological and mechanical CHF therapy.
Collapse
Affiliation(s)
- Alexander Kushnir
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York (A.K., G.S., S.R.R., A.R.M.).,Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York (A.K., E.C., S.J.G., D.L.B., P.C.C., M.Y., A.R.M.)
| | - Gaetano Santulli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York (A.K., G.S., S.R.R., A.R.M.)
| | - Steven R Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York (A.K., G.S., S.R.R., A.R.M.)
| | - Ellie Coromilas
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York (A.K., E.C., S.J.G., D.L.B., P.C.C., M.Y., A.R.M.)
| | - Sarah J Godfrey
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York (A.K., E.C., S.J.G., D.L.B., P.C.C., M.Y., A.R.M.)
| | - Danielle L Brunjes
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York (A.K., E.C., S.J.G., D.L.B., P.C.C., M.Y., A.R.M.)
| | - Paolo C Colombo
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York (A.K., E.C., S.J.G., D.L.B., P.C.C., M.Y., A.R.M.)
| | - Melana Yuzefpolskaya
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York (A.K., E.C., S.J.G., D.L.B., P.C.C., M.Y., A.R.M.)
| | - Seth I Sokol
- Department of Medicine, Division of Cardiology, Jacobi Medical Center, Bronx, NY (S.I.S.)
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY (R.N.K.)
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York (A.K., G.S., S.R.R., A.R.M.).,Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York (A.K., E.C., S.J.G., D.L.B., P.C.C., M.Y., A.R.M.)
| |
Collapse
|
16
|
Zhu W, Wang C, Hu J, Wan R, Yu J, Xie J, Ma J, Guo L, Ge J, Qiu Y, Chen L, Liu H, Yan X, Liu X, Ye J, He W, Shen Y, Wang C, Mohler PJ, Hong K. Ankyrin-B Q1283H Variant Linked to Arrhythmias Via Loss of Local Protein Phosphatase 2A Activity Causes Ryanodine Receptor Hyperphosphorylation. Circulation 2018; 138:2682-2697. [PMID: 30571258 PMCID: PMC6276866 DOI: 10.1161/circulationaha.118.034541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human loss-of-function variants of ANK2 (ankyrin-B) are linked to arrhythmias and sudden cardiac death. However, their in vivo effects and specific arrhythmogenic pathways have not been fully elucidated. METHODS We identified new ANK2 variants in 25 unrelated Han Chinese probands with ventricular tachycardia by whole-exome sequencing. The potential pathogenic variants were validated by Sanger sequencing. We performed functional and mechanistic experiments in ankyrin-B knockin (KI) mouse models and in single myocytes isolated from KI hearts. RESULTS We detected a rare, heterozygous ANK2 variant (p.Q1283H) in a proband with recurrent ventricular tachycardia. This variant was localized to the ZU5C region of ANK2, where no variants have been previously reported. KI mice harboring the p.Q1283H variant exhibited an increased predisposition to ventricular arrhythmias after catecholaminergic stress in the absence of cardiac structural abnormalities. Functional studies illustrated an increased frequency of delayed afterdepolarizations and Ca2+ waves and sparks accompanied by decreased sarcoplasmic reticulum Ca2+ content in KI cardiomyocytes on isoproterenol stimulation. The immunoblotting results showed increased levels of phosphorylated ryanodine receptor Ser2814 in the KI hearts, which was further amplified on isoproterenol stimulation. Coimmunoprecipitation experiments demonstrated dissociation of protein phosphatase 2A from ryanodine receptor in the KI hearts, which was accompanied by a decreased binding of ankyrin-B to protein phosphatase 2A regulatory subunit B56α. Finally, the administration of metoprolol or flecainide decreased the incidence of stress-induced ventricular arrhythmias in the KI mice. CONCLUSIONS ANK2 p.Q1283H is a disease-associated variant that confers susceptibility to stress-induced arrhythmias, which may be prevented by the administration of metoprolol or flecainide. This variant is associated with the loss of protein phosphatase 2A activity, increased phosphorylation of ryanodine receptor, exaggerated delayed afterdepolarization-mediated trigger activity, and arrhythmogenesis.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Cen Wang
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jinzhu Hu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jianyong Ma
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Linjuan Guo
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jin Ge
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Yumin Qiu
- Department of General Surgery (Y.Q., L.C.), Second Affiliated Hospital of Nanchang University, China
| | - Leifeng Chen
- Department of General Surgery (Y.Q., L.C.), Second Affiliated Hospital of Nanchang University, China
| | - Hualong Liu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Xia Yan
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Xiuxia Liu
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jin Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui (J.Y., C.W.)
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui (J.Y., C.W.)
| | - Peter J. Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, College of Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Departments of Physiology and Cell Biology and Internal Medicine, Columbus (P.J.M.)
| | - Kui Hong
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
17
|
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:69-90. [DOI: 10.1016/j.pbiomolbio.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
18
|
Fischer TH, Eiringhaus J, Dybkova N, Saadatmand A, Pabel S, Weber S, Wang Y, Köhn M, Tirilomis T, Ljubojevic S, Renner A, Gummert J, Maier LS, Hasenfuß G, El-Armouche A, Sossalla S. Activation of protein phosphatase 1 by a selective phosphatase disrupting peptide reduces sarcoplasmic reticulum Ca 2+ leak in human heart failure. Eur J Heart Fail 2018; 20:1673-1685. [PMID: 30191648 DOI: 10.1002/ejhf.1297] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Disruption of Ca2+ homeostasis is a key pathomechanism in heart failure. CaMKII-dependent hyperphosphorylation of ryanodine receptors in the sarcoplasmic reticulum (SR) increases the arrhythmogenic SR Ca2+ leak and depletes SR Ca2+ stores. The contribution of conversely acting serine/threonine phosphatases [protein phosphatase 1 (PP1) and 2A (PP2A)] is largely unknown. METHODS AND RESULTS Human myocardium from three groups of patients was investigated: (i) healthy controls (non-failing, NF, n = 8), (ii) compensated hypertrophy (Hy, n = 16), and (iii) end-stage heart failure (HF, n = 52). Expression of PP1 was unchanged in Hy but greater in HF compared to NF while its endogenous inhibitor-1 (I-1) was markedly lower expressed in both compared to NF, suggesting increased total PP1 activity. In contrast, PP2A expression was lower in Hy and HF compared to NF. Ca2+ homeostasis was severely disturbed in HF compared to Hy signified by a higher SR Ca2+ leak, lower systolic Ca2+ transients as well as a decreased SR Ca2+ load. Inhibition of PP1/PP2A by okadaic acid increased SR Ca2+ load and systolic Ca2+ transients but severely aggravated diastolic SR Ca2+ leak and cellular arrhythmias in Hy. Conversely, selective activation of PP1 by a PP1-disrupting peptide (PDP3) in HF potently reduced SR Ca2+ leak as well as cellular arrhythmias and, importantly, did not compromise systolic Ca2+ release and SR Ca2+ load. CONCLUSION This study is the first to functionally investigate the role of PP1/PP2A for Ca2+ homeostasis in diseased human myocardium. Our data indicate that a modulation of phosphatase activity potently impacts Ca2+ cycling properties. An activation of PP1 counteracts increased kinase activity in heart failure and successfully seals the arrhythmogenic SR Ca2+ leak. It may thus represent a promising future antiarrhythmic therapeutic approach.
Collapse
Affiliation(s)
- Thomas H Fischer
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Medizinische Klinik II, Kardiologie, Angiologie, Pneumologie, Klinikum Coburg, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Jörg Eiringhaus
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Nataliya Dybkova
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Alireza Saadatmand
- Abt. Molekulare Kardiologie und Epigenetik, Universitätsklinikum Heidelberg, Germany
| | - Steffen Pabel
- Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany.,Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Silvio Weber
- Institut für Pharmakologie, Technische Universität Dresden, Germany
| | - Yansong Wang
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Faculty of Biology, University of Freiburg, Germany
| | - Theodor Tirilomis
- Klinik für Thorax-, Herz-, Gefäßchirurgie, Georg-August-Universität Göttingen, Germany
| | - Senka Ljubojevic
- Abteilung für Kardiologie, Medizinische Universität Graz, Austria
| | - André Renner
- Abteilung für Herz- und Transplantationschirurgie, Herz- und Diabeteszentrum, Bad Oeynhausen, Germany
| | - Jan Gummert
- Abteilung für Herz- und Transplantationschirurgie, Herz- und Diabeteszentrum, Bad Oeynhausen, Germany
| | - Lars S Maier
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Gerd Hasenfuß
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Ali El-Armouche
- Institut für Pharmakologie, Technische Universität Dresden, Germany
| | - Samuel Sossalla
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany.,Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| |
Collapse
|
19
|
Lu LH, Li C, Wang QY, Zhang Q, Zhang Y, Meng H, Wang Y, Wang W. Cardioprotective effects of Qishen Granule () on sarcoplasmic reticulum Ca 2+ handling in heart failure rats. Chin J Integr Med 2017; 23:510-517. [PMID: 28497395 DOI: 10.1007/s11655-017-2809-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To assess the effects of Qishen Granule (, QSG) on sarcoplasmic reticulum (SR) Ca2+ handling in heart failure (HF) model of rats and to explore the underlying molecular mechanisms. METHODS HF rat models were induced by left anterior descending coronary artery ligation surgery and high-fat diet feeding. Rats were randomly divided into sham (n=10), model (n=10), QSG (n=12, 2.2 g/kg daily) and metoprolol groups (n=12, 10.5 mg/kg daily). The therapeutic effects of QSG were evaluated by echocardiography and blood lipid testing. Intracellular Ca2+ concentration and sarco-endoplasmic reticulum ATPase 2a (SERCA2a) activity were detected by specifific assay kits. Expressions of the critical regulators in SR Ca2+ handling were evaluated by Western blot and real-time quantitative polymerase chain reaction. RESULTS HF model of rats developed ventricular remodeling accompanied with calcium overload and defective Ca2+ release-uptake cycling in cardiomyocytes. Treatment with QSG improved contractive function, attenuated ventricular remodeling and reduced the basal intracellular Ca2+ level. QSG prevented defective Ca2+ leak by attenuating hyperphosphorylation of ryanodine receptor 2, inhibiting expression of protein kinase A and up-regulating transcriptional expression of protein phosphatase 1. QSG also restored Ca2+ uptake by up-regulating expression and activity of SERCA2a and promoting phosphorylation of phospholamban. CONCLUSION QSG restored SR Ca2+ cycling in HF rats and served as an ideal alternative drug for treating HF.
Collapse
Affiliation(s)
- Ling-Hui Lu
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi-Yan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Zhang
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Hui Meng
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Wang
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
20
|
Nakamura T, Fujita T, Kishimura M, Suita K, Hidaka Y, Cai W, Umemura M, Yokoyama U, Uechi M, Ishikawa Y. Vidarabine, an Anti-Herpes Virus Agent, Protects Against the Development of Heart Failure With Relatively Mild Side-Effects on Cardiac Function in a Canine Model of Pacing-Induced Dilated Cardiomyopathy. Circ J 2016; 80:2496-2505. [PMID: 27818454 DOI: 10.1253/circj.cj-16-0736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND In heart failure patients, chronic hyperactivation of sympathetic signaling is known to exacerbate cardiac dysfunction. In this study, the cardioprotective effect of vidarabine, an anti-herpes virus agent, which we identified as a cardiac adenylyl cyclase inhibitor, in dogs with pacing-induced dilated cardiomyopathy (DCM) was evaluated. In addition, the adverse effects of vidarabine on basal cardiac function was compared to those of the β-blocker, carvedilol. METHODS AND RESULTS Vidarabine and carvedilol attenuated the development of pacing-induced systolic dysfunction significantly and with equal effectiveness. Both agents also inhibited the development of cardiac apoptosis and fibrosis and reduced the Na+-Ca2+exchanger-1 protein level in the heart. Importantly, carvedilol significantly enlarged the left ventricle and atrium; vidarabine, in contrast, did not. Vidarabine-treated dogs maintained cardiac response to β-AR stimulation better than carvedilol-treated dogs did. CONCLUSIONS Vidarabine may protect against pacing-induced DCM with less suppression of basal cardiac function than carvedilol in a dog model. (Circ J 2016; 80: 2496-2505).
Collapse
Affiliation(s)
- Takashi Nakamura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Heart failure with reduced ejection fraction (HFrEF) develops when cardiac output falls as a result of cardiac injury. The most well-recognized of the compensatory homeostatic responses to a fall in cardiac output are activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system (RAAS). In the short term, these 'neurohormonal' systems induce a number of changes in the heart, kidneys, and vasculature that are designed to maintain cardiovascular homeostasis. However, with chronic activation, these responses result in haemodynamic stress and exert deleterious effects on the heart and the circulation. Neurohormonal activation is now known to be one of the most important mechanisms underlying the progression of heart failure, and therapeutic antagonism of neurohormonal systems has become the cornerstone of contemporary pharmacotherapy for heart failure. In this Review, we discuss the effects of neurohormonal activation in HFrEF and highlight the mechanisms by which these systems contribute to disease progression.
Collapse
|
22
|
Jaiswal A, Nguyen VQ, Carry BJ, le Jemtel TH. Pharmacologic and Endovascular Reversal of Left Ventricular Remodeling. J Card Fail 2016; 22:829-39. [DOI: 10.1016/j.cardfail.2016.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 01/14/2023]
|
23
|
Bacchi M, Jullian M, Sirigu S, Fould B, Huet T, Bruyand L, Antoine M, Vuillard L, Ronga L, Chavas LMG, Nosjean O, Ferry G, Puget K, Boutin JA. Total chemical synthesis, refolding, and crystallographic structure of fully active immunophilin calstabin 2 (FKBP12.6). Protein Sci 2016; 25:2225-2242. [PMID: 27670942 DOI: 10.1002/pro.3051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
Abstract
Synthetic biology (or chemical biology) is a growing field to which the chemical synthesis of proteins, particularly enzymes, makes a fundamental contribution. However, the chemical synthesis of catalytically active proteins (enzymes) remains poorly documented because it is difficult to obtain enough material for biochemical experiments. We chose calstabin, a 107-amino-acid proline isomerase, as a model. We synthesized the enzyme using the native chemical ligation approach and obtained several tens of milligrams. The polypeptide was refolded properly, and we characterized its biophysical properties, measured its catalytic activity, and then crystallized it in order to obtain its tridimensional structure after X-ray diffraction. The refolded enzyme was compared to the recombinant, wild-type enzyme. In addition, as a first step of validating the whole process, we incorporated exotic amino acids into the N-terminus. Surprisingly, none of the changes altered the catalytic activities of the corresponding mutants. Using this body of techniques, avenues are now open to further obtain enzymes modified with exotic amino acids in a way that is only barely accessible by molecular biology, obtaining detailed information on the structure-function relationship of enzymes reachable by complete chemical synthesis.
Collapse
Affiliation(s)
- Marine Bacchi
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Magali Jullian
- Genepep, 12 Rue du Fer à Cheval, Saint-Jean-de-Védas, 34430, France
| | - Serena Sirigu
- PROXIMA-1, Division Expériences, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin-BP48, Gif-sur-Yvette CEDEX, 91192, France
| | - Benjamin Fould
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Tiphaine Huet
- PROXIMA-1, Division Expériences, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin-BP48, Gif-sur-Yvette CEDEX, 91192, France
| | - Lisa Bruyand
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Mathias Antoine
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Laurent Vuillard
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Luisa Ronga
- Genepep, 12 Rue du Fer à Cheval, Saint-Jean-de-Védas, 34430, France
| | - Leonard M G Chavas
- PROXIMA-1, Division Expériences, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin-BP48, Gif-sur-Yvette CEDEX, 91192, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Gilles Ferry
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Karine Puget
- Genepep, 12 Rue du Fer à Cheval, Saint-Jean-de-Védas, 34430, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| |
Collapse
|
24
|
Paludan-Müller C, Ahlberg G, Ghouse J, Herfelt C, Svendsen JH, Haunsø S, Kanters JK, Olesen MS. Integration of 60,000 exomes and ACMG guidelines question the role of Catecholaminergic Polymorphic Ventricular Tachycardia-associated variants. Clin Genet 2016; 91:63-72. [PMID: 27538377 DOI: 10.1111/cge.12847] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
Abstract
Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a highly lethal cardiac arrhythmia disease occurring during exercise or psychological stress. CPVT has an estimated prevalence of 1:10,000 and has mainly been associated with variants in calcium-regulating genes. Identification of potential false-positive pathogenic variants was conducted by searching the Exome Aggregation Consortium (ExAC) database (n = 60,706) for variants reported to be associated with CPVT. The pathogenicity of the interrogated variants was assessed using guidelines from the American College of Medical Genetics and Genomics (ACMG) and in silico prediction tools. Of 246 variants 38 (15%) variants previously associated with CPVT were identified in the ExAC database. We predicted the CPVT prevalence to be 1:132. The ACMG standards classified 29% of ExAC variants as pathogenic or likely pathogenic. The in silico predictions showed a reduced probability of disease-causing effect for the variants identified in the exome database (p < 0.001). We have observed a large overrepresentation of previously CPVT-associated variants in a large exome database. Based on the frequency of CPVT in the general population, it is less likely that the previously proposed variants are associated with a highly penetrant monogenic form of the disease.
Collapse
Affiliation(s)
- C Paludan-Müller
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - G Ahlberg
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J Ghouse
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - C Herfelt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J H Svendsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, Copenhagen, Denmark
| | - S Haunsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, Copenhagen, Denmark
| | - J K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedicine, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Herlev and Gentofte University Hospitals, Copenhagen, Denmark
| | - M S Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
25
|
Terentyev D, Hamilton S. Regulation of sarcoplasmic reticulum Ca 2+ release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 2016; 101:156-164. [PMID: 27585747 DOI: 10.1016/j.yjmcc.2016.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/17/2022]
Abstract
The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.
Collapse
Affiliation(s)
- Dmitry Terentyev
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Medicine, Cardiovascular Research Center, United States.
| | - Shanna Hamilton
- Cardiff University, School of Medicine, Wales Heart Research Institute, United Kingdom
| |
Collapse
|
26
|
Schwarz ER, Gupta R, Diep TP, Nowak B, Kostin S, Grohmann B, Uretsky BF, Schaper J. Carvedilol Improves Myocardial Contractility Compared With Metoprolol in Patients With Chronic Hibernating Myocardium After Revascularization. J Cardiovasc Pharmacol Ther 2016; 10:181-90. [PMID: 16211207 DOI: 10.1177/107424840501000306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: We tested the hypothesis of whether carvedilol delays morphologic degeneration and improves functional outcome compared with metoprolol tartrate in patients with hibernating myocardium undergoing surgical revascularization. We have previously shown that patients with chronic hibernating myocardium undergo progressive cellular degeneration and fibrosis. Methods: Twenty patients with multivessel coronary artery disease revascularization and hibernating myocardium as assessed by technetium-99m perfusion scintigraphy and fluorine-18-fluorodeoxyglucose positron emission tomography were randomized to receive either carvedilol or metoprolol tartrate for at least 2 months before surgery, and this was continued for 7 months postoperatively. Left ventricular ejection fraction and regional wall motion abnormalities were assessed by left ventriculography at baseline and 7 months postoperatively. Intraoperative transmural needle biopsy samples were obtained for microscopic analysis. Results: Postoperatively, the ejection fraction increased from 31% ± 5% to 44% ± 4% ( P < .005) in the carvedilol group (n = 10), and from 30% ± 6% to 40% ± 6% in the metoprolol tartrate group ( P < .05 vs preoperatively and vs carvedilol). Wall motion abnormalities in the carvedilol group improved from -2.1 ± 0.4 to -0.6 ± 0.5 ( P < .05) and from -2.3 ± 0.5 to -1.6 ± 0.6 in the metoprolol tartrate group ( P < .05 vs preoperatively and vs carvedilol). Microscopic analysis after 72 ± 18 days of either treatment showed mild cardiomyocyte degeneration and moderate-to-severe fibrosis (28% ± 7%) in the carvedilol group compared with moderate cardiomyocyte degeneration and moderate-to-severe fibrosis (33% ± 6%) in the metoprolol tartrate group. Apoptosis, as assessed by the terminal deoxynucleotidyl transferase nick end labeling method, was observed in only 1 patient in each group. Conclusions: Carvedilol treatment of hibernating myocardium results in improved functional recovery after revascularization compared with metoprolol tartrate, and this might partially be related to reduced cardiomyocyte degeneration.
Collapse
Affiliation(s)
- Ernst R Schwarz
- Division of Cardiology, Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555-0553, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nederend I, Jongbloed MRM, de Geus EJC, Blom NA, Ten Harkel ADJ. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease. J Cardiovasc Dev Dis 2016; 3:jcdd3020016. [PMID: 29367565 PMCID: PMC5715679 DOI: 10.3390/jcdd3020016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/30/2016] [Accepted: 04/09/2016] [Indexed: 12/16/2022] Open
Abstract
Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted.
Collapse
Affiliation(s)
- Ineke Nederend
- Department of Biological Psychology, Faculty of Behavioral and Movement sciences, VU Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
- EMGO+ Institute for Health and Care Research, VU Medical Center Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
- Department of Pediatric Cardiology, LUMC University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Monique R M Jongbloed
- Department of Cardiology and Anatomy & Embryology, LUMC University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Eco J C de Geus
- Department of Biological Psychology, Faculty of Behavioral and Movement sciences, VU Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
- EMGO+ Institute for Health and Care Research, VU Medical Center Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - Nico A Blom
- Department of Pediatric Cardiology, LUMC University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Arend D J Ten Harkel
- Department of Pediatric Cardiology, LUMC University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
28
|
Fu Y, Shaw SA, Naami R, Vuong CL, Basheer WA, Guo X, Hong T. Isoproterenol Promotes Rapid Ryanodine Receptor Movement to Bridging Integrator 1 (BIN1)-Organized Dyads. Circulation 2016; 133:388-97. [PMID: 26733606 DOI: 10.1161/circulationaha.115.018535] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The key pathophysiology of human acquired heart failure is impaired calcium transient, which is initiated at dyads consisting of ryanodine receptors (RyRs) at sarcoplasmic reticulum apposing CaV1.2 channels at t-tubules. Sympathetic tone regulates myocardial calcium transients through β-adrenergic receptor (β-AR)-mediated phosphorylation of dyadic proteins. Phosphorylated RyRs (P-RyR) have increased calcium sensitivity and open probability, amplifying calcium transient at a cost of receptor instability. Given that bridging integrator 1 (BIN1) organizes t-tubule microfolds and facilitates CaV1.2 delivery, we explored whether β-AR-regulated RyRs are also affected by BIN1. METHODS AND RESULTS Isolated adult mouse hearts or cardiomyocytes were perfused for 5 minutes with the β-AR agonist isoproterenol (1 µmol/L) or the blockers CGP+ICI (baseline). Using biochemistry and superresolution fluorescent imaging, we identified that BIN1 clusters P-RyR and CaV1.2. Acute β-AR activation increases coimmunoprecipitation between P-RyR and cardiac spliced BIN1+13+17 (with exons 13 and 17). Isoproterenol redistributes BIN1 to t-tubules, recruiting P-RyRs and improving the calcium transient. In cardiac-specific Bin1 heterozygote mice, isoproterenol fails to concentrate BIN1 to t-tubules, impairing P-RyR recruitment. The resultant accumulation of uncoupled P-RyRs increases the incidence of spontaneous calcium release. In human hearts with end-stage ischemic cardiomyopathy, we find that BIN1 is also 50% reduced, with diminished P-RyR association with BIN1. CONCLUSIONS On β-AR activation, reorganization of BIN1-induced microdomains recruits P-RyR into dyads, increasing the calcium transient while preserving electric stability. When BIN1 is reduced as in human acquired heart failure, acute stress impairs microdomain formation, limiting contractility and promoting arrhythmias.
Collapse
Affiliation(s)
- Ying Fu
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Seiji A Shaw
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Robert Naami
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Caresse L Vuong
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Wassim A Basheer
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Xiuqing Guo
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - TingTing Hong
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.).
| |
Collapse
|
29
|
Yang D, Wang T, Ni Y, Song B, Ning F, Hu P, Luo L, Wang Y, Ma A. Apamin-Sensitive K+ Current Upregulation in Volume-Overload Heart Failure is Associated with the Decreased Interaction of CK2 with SK2. J Membr Biol 2015; 248:1181-9. [PMID: 26362340 DOI: 10.1007/s00232-015-9839-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022]
Abstract
Recent studies have shown that the sensitivity of apamin-sensitive K(+) current (I KAS, mediated by apamin-sensitive small conductance calcium-activated potassium channels subunits) to intracellular Ca(2+) is increased in heart failure (HF), leading to I KAS upregulation, action potential duration shortening, early after depolarization, and recurrent spontaneous ventricular fibrillation. We hypothesized that casein kinase 2 (CK2) interacted with small conductance calcium-activated potassium channels (SK) is decreased in HF, and protein phosphatase 2A (PP2A) is increased on the opposite, upregulating the sensitivity of I KAS to intracellular Ca(2+) in HF. Rat model of volume-overload HF was established by an abdominal arteriovenous fistula procedure. The expression of SK channels, PP2A and CK2 was detected by Western blot analysis. Interaction and colocalization of CK2 with SK channel were detected by co-immunoprecipitation analysis and double immunofluorescence staining. In HF rat left ventricle, SK3 was increased by 100 % (P < 0.05), and SK2 was not significantly changed. PP2A protein was increased by 94.7 % in HF rats (P < 0.05), whereas the level of CK2 was almost unchanged. We found that CK2 colocalized with SK2 and SK3 in rat left ventricle. With anti-CK2α antibody, SK2 and SK3 were immunoprecipitated, the level of precipitated SK2 decreased by half, whereas precipitated SK3 was almost unchanged. In conclusion, the increased expression of total PP2A and decreased interaction of CK2 with SK2 may underlie enhanced sensitivity of I KAS to intracellular Ca(2+) in volume-overload HF rat.
Collapse
Affiliation(s)
- Dandan Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.,Shaanxi Key Laboratory of Molecular Cardiology (Xi'an Jiaotong University), Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yajuan Ni
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bingxue Song
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Feifei Ning
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Peijing Hu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Ling Luo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China. .,Shaanxi Key Laboratory of Molecular Cardiology (Xi'an Jiaotong University), Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
30
|
Little SC, Curran J, Makara MA, Kline CF, Ho HT, Xu Z, Wu X, Polina I, Musa H, Meadows AM, Carnes CA, Biesiadecki BJ, Davis JP, Weisleder N, Györke S, Wehrens XH, Hund TJ, Mohler PJ. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart. Sci Signal 2015. [PMID: 26198358 DOI: 10.1126/scisignal.aaa5876] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart.
Collapse
Affiliation(s)
- Sean C Little
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jerry Curran
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Makara
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Crystal F Kline
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Hsiang-Ting Ho
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobin Xu
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xiangqiong Wu
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Iuliia Polina
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Hassan Musa
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Allison M Meadows
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Cynthia A Carnes
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Brandon J Biesiadecki
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Davis
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Noah Weisleder
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sandor Györke
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xander H Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, and Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Lei M, Wang X, Ke Y, Solaro RJ. Regulation of Ca(2+) transient by PP2A in normal and failing heart. Front Physiol 2015; 6:13. [PMID: 25688213 PMCID: PMC4310266 DOI: 10.3389/fphys.2015.00013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/09/2015] [Indexed: 11/13/2022] Open
Abstract
Calcium transient in cardiomyocytes is regulated by multiple protein kinases and phosphatases. PP2A is a major protein phosphatase in the heart modulating Ca2+ handling through an array of ion channels, antiporters and pumps, etc. The assembly, localization/translocation, and substrate specificity of PP2A are controlled by different post-translational mechanisms, which in turn are linked to the activities of upstream signaling molecules. Abnormal PP2A expression and activities are associated with defective response to β-adrenergic stimulation and are indication and causal factors in arrhythmia and heart failure.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Xin Wang
- Faculty of Life Science, University of Manchester Manchester, UK
| | - Yunbo Ke
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago Chicago, IL, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
32
|
Dobrev D, Wehrens XHT. Role of RyR2 phosphorylation in heart failure and arrhythmias: Controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res 2014; 114:1311-9; discussion 1319. [PMID: 24723656 DOI: 10.1161/circresaha.114.300568] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac ryanodine receptor type 2 plays a key role in excitation-contraction coupling. The ryanodine receptor type 2 channel protein is modulated by various post-translational modifications, including phosphorylation by protein kinase A and Ca(2+)/calmodulin protein kinase II. Despite extensive research in this area, the functional effects of ryanodine receptor type 2 phosphorylation remain disputed. In particular, the potential involvement of increased ryanodine receptor type 2 phosphorylation in the pathogenesis of heart failure and arrhythmias remains a controversial area, which is discussed in this review article.
Collapse
Affiliation(s)
- Dobromir Dobrev
- From the Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany (D.D.); and Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, and Medicine-Cardiology, Baylor College of Medicine, Houston, TX (X.H.T.W.)
| | | |
Collapse
|
33
|
Houser SR. Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias. Circ Res 2014; 114:1320-7; discussion 1327. [PMID: 24723657 DOI: 10.1161/circresaha.114.300569] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This Controversies in Research article discusses the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the Ryanodine Receptor (RyR) at a single serine (RyRS2808) is essential for normal sympathetic regulation of cardiac myocyte contractility and is responsible for the disturbed Ca(2+) regulation that underlies depressed contractility in heart failure. Studies supporting this hypothesis have associated hyperphosphorylation of RyRS2808 and heart failure progression in animals and humans and have shown that a phosphorylation defective RyR mutant mouse (RyRS2808A) does not respond normally to sympathetic agonists and does not exhibit heart failure symptoms after myocardial infarction. Studies to confirm and extend these ideas have failed to support the original data. Experiments from many different laboratories have convincingly shown that PKA-mediated RyRS2808 phosphorylation does not play any significant role in the normal sympathetic regulation of sarcoplasmic reticulum Ca2+ release or cardiac contractility. Hearts and myocytes from RyRS2808A mice have been shown to respond normally to sympathetic agonists, and to increase Ca(2+) influx, Ca(2+) transients, and Ca(2+) efflux. Although the RyR is involved in heart failure-related Ca(2+) disturbances, this results from Ca(2+)-calmodulin kinase II and reactive oxygen species-mediated regulation rather than by RyR2808 phosphorylation. Also, a new study has shown that RyRS2808A mice are not protected from myocardial infarction. Collectively, there is now a clear consensus in the published literature showing that dysregulated RyRs contribute to the altered Ca(2+) regulatory phenotype of the failing heart, but PKA-mediated phosphorylation of RyRS2808 has little or no role in these alterations.
Collapse
Affiliation(s)
- Steven R Houser
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
34
|
Yan L, Vatner SF, Vatner DE. Disruption of type 5 adenylyl cyclase prevents β-adrenergic receptor cardiomyopathy: a novel approach to β-adrenergic receptor blockade. Am J Physiol Heart Circ Physiol 2014; 307:H1521-8. [PMID: 25193472 DOI: 10.1152/ajpheart.00491.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
β-Adrenergic receptor (β-AR) blockade is widely used to treat heart failure, since the adverse effects of chronic β-AR stimulation are central to the pathogenesis of this disease state. Transgenic (Tg) mice, where β-AR signaling is chronically enhanced by overexpression of cardiac β₂-ARs, is a surrogate for this mechanism, since these mice develop cardiomyopathy as reflected by reduced left ventricular (LV) function, increased fibrosis, apoptosis, and myocyte hypertrophy. We hypothesized that disruption of type 5 adenylyl cyclase (AC5), which is in the β-AR signaling pathway in the heart, but exerts only a minor β-AR blocking effect, could prevent the cardiomyopathy in β₂-AR Tg mice without the negative effects of full β-AR blockade. Accordingly, we mated β₂-AR Tg mice with AC5 knockout (KO) mice. The β₂-AR Tg × AC5 KO bigenic mice prevented the cardiomyopathy as reflected by improved LV ejection fraction, reduced apoptosis, fibrosis, and myocyte size and preserved exercise capacity. The rescue was not simply due to a β-blocking effect of AC5 KO, since neither baseline LV function nor the response to isoproterenol was diminished substantially compared with the negative inotropic effects of β-blockade. However, AC5 disruption in β₂-AR Tg activates the antioxidant, manganese superoxide dismutase, an important mechanism protecting the heart from cardiomyopathy. These results indicate that disruption of AC5 prevents the cardiomyopathy induced by chronically enhanced β-AR signaling in mice with overexpressed β₂-AR, potentially by enhancing resistance to oxidative stress and apoptosis, suggesting a novel, alternative approach to β-AR blockade.
Collapse
Affiliation(s)
- Lin Yan
- Departments of Cell Biology and Molecular Medicine and Medicine and the Cardiovascular Research Institute, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Stephen F Vatner
- Departments of Cell Biology and Molecular Medicine and Medicine and the Cardiovascular Research Institute, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Dorothy E Vatner
- Departments of Cell Biology and Molecular Medicine and Medicine and the Cardiovascular Research Institute, Rutgers University-New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
35
|
Tsuji Y, Ishikawa T, Makita N. Molecular mechanisms of heart failure progression associated with implantable cardioverter-defibrillator shocks for ventricular tachyarrhythmias. J Arrhythm 2014. [DOI: 10.1016/j.joa.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
36
|
Lehmann LH, Worst BC, Stanmore DA, Backs J. Histone deacetylase signaling in cardioprotection. Cell Mol Life Sci 2013; 71:1673-90. [PMID: 24310814 PMCID: PMC3983897 DOI: 10.1007/s00018-013-1516-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/23/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease (CVD) represents a major challenge for health care systems, both in terms of the high mortality associated with it and the huge economic burden of its treatment. Although CVD represents a diverse range of disorders, they share common compensatory changes in the heart at the structural, cellular, and molecular level that, in the long term, can become maladaptive and lead to heart failure. Treatment of adverse cardiac remodeling is therefore an important step in preventing this fatal progression. Although previous efforts have been primarily focused on inhibition of deleterious signaling cascades, the stimulation of endogenous cardioprotective mechanisms offers a potent therapeutic tool. In this review, we discuss class I and class II histone deacetylases, a subset of chromatin-modifying enzymes known to have critical roles in the regulation of cardiac remodeling. In particular, we discuss their molecular modes of action and go on to consider how their inhibition or the stimulation of their intrinsic cardioprotective properties may provide a potential therapeutic route for the clinical treatment of CVD.
Collapse
Affiliation(s)
- Lorenz H. Lehmann
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Barbara C. Worst
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - David A. Stanmore
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Fauconnier J, Roberge S, Saint N, Lacampagne A. Type 2 ryanodine receptor: A novel therapeutic target in myocardial ischemia/reperfusion. Pharmacol Ther 2013; 138:323-32. [DOI: 10.1016/j.pharmthera.2013.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
38
|
Marx SO, Marks AR. Dysfunctional ryanodine receptors in the heart: new insights into complex cardiovascular diseases. J Mol Cell Cardiol 2013; 58:225-31. [PMID: 23507255 DOI: 10.1016/j.yjmcc.2013.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/26/2013] [Accepted: 03/02/2013] [Indexed: 01/07/2023]
Abstract
Calcium dependent signaling is highly regulated in cardiomyocytes and determines the force of cardiac muscle contraction. The cardiac ryanodine receptors (RyR2) play important roles in health and disease. Modulation of RyR2 by phosphorylation is required for sympathetic regulation of cardiac function. Abnormal regulation of RyR2 contributes to heart failure, and atrial and ventricular arrhythmias. RyR2 channels are oxidized, nitrosylated, and hyperphosphorylated by protein kinase A (PKA) in heart failure, resulting in "leaky" channels. These leaky RyR2 channels contribute to depletion of calcium from the sarcoplasmic reticulum, resulting in defective cardiac excitation-contraction coupling. In this review, we discuss both the importance of PKA and calcium/calmodulin-dependent kinase II (CaMKII) regulation of RyR2 in health, and how altered phosphorylation, nitrosylation and oxidation of RyR2 channels lead to cardiac disease. Correcting these defects using either genetic manipulation (knock-in) in mice, or specific and novel small molecules ameliorates the RyR2 dysfunction, reducing the progression to heart failure and the incidence of arrhythmias.
Collapse
Affiliation(s)
- Steven O Marx
- Division of Cardiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
39
|
Electrical storm: recent pathophysiological insights and therapeutic consequences. Basic Res Cardiol 2013; 108:336. [DOI: 10.1007/s00395-013-0336-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 01/01/2023]
|
40
|
DeGrande ST, Little SC, Nixon DJ, Wright P, Snyder J, Dun W, Murphy N, Kilic A, Higgins R, Binkley PF, Boyden PA, Carnes CA, Anderson ME, Hund TJ, Mohler PJ. Molecular mechanisms underlying cardiac protein phosphatase 2A regulation in heart. J Biol Chem 2013; 288:1032-46. [PMID: 23204520 PMCID: PMC3542989 DOI: 10.1074/jbc.m112.426957] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Indexed: 11/06/2022] Open
Abstract
Kinase/phosphatase balance governs cardiac excitability in health and disease. Although detailed mechanisms for cardiac kinase regulation are established, far less is known regarding cardiac protein phosphatase 2A (PP2A) regulation. This is largely due to the complexity of the PP2A holoenzyme structure (combinatorial assembly of three subunit enzyme from >17 subunit genes) and the inability to segregate "global" PP2A function from the activities of multiple "local" holoenzyme populations. Here we report that PP2A catalytic, regulatory, and scaffolding subunits are tightly regulated at transcriptional, translational, and post-translational levels to tune myocyte function at base line and in disease. We show that past global read-outs of cellular PP2A activity more appropriately represent the collective activity of numerous individual PP2A holoenzymes, each displaying a specific subcellular localization (dictated by select PP2A regulatory subunits) as well as local specific post-translational catalytic subunit methylation and phosphorylation events that regulate local and rapid holoenzyme assembly/disassembly (via leucine carboxymethyltransferase 1/phosphatase methylesterase 1 (LCMT-1/PME-1). We report that PP2A subunits are selectively regulated between human and animal models, across cardiac chambers, and even within specific cardiac cell types. Moreover, this regulation can be rapidly tuned in response to cellular activation. Finally, we report that global PP2A is altered in human and experimental models of heart disease, yet each pathology displays its own distinct molecular signature though specific PP2A subunit modulatory events. These new data provide an initial view into the signaling pathways that govern PP2A function in heart but also establish the first step in defining specific PP2A regulatory targets in health and disease.
Collapse
Affiliation(s)
- Sean T. DeGrande
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
- the Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Sean C. Little
- From The Dorothy M. Davis Heart and Lung Research Institute
| | - Derek J. Nixon
- From The Dorothy M. Davis Heart and Lung Research Institute
| | - Patrick Wright
- From The Dorothy M. Davis Heart and Lung Research Institute
| | - Jedidiah Snyder
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
- College of Engineering, Department of Biomedical Engineering, and
| | - Wen Dun
- the Department of Pharmacology, Columbia University, New York, New York 10032
| | | | - Ahmet Kilic
- From The Dorothy M. Davis Heart and Lung Research Institute
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center
| | - Robert Higgins
- From The Dorothy M. Davis Heart and Lung Research Institute
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center
| | - Philip F. Binkley
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
| | - Penelope A. Boyden
- the Department of Pharmacology, Columbia University, New York, New York 10032
| | - Cynthia A. Carnes
- From The Dorothy M. Davis Heart and Lung Research Institute
- The College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Mark E. Anderson
- the Department of Internal Medicine, Division of Cardiovascular Medicine and
- the Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Thomas J. Hund
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
- College of Engineering, Department of Biomedical Engineering, and
| | - Peter J. Mohler
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
- Department of Physiology and Cell Biology
| |
Collapse
|
41
|
Marks AR. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest 2013; 123:46-52. [PMID: 23281409 DOI: 10.1172/jci62834] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ca2+-dependent signaling is highly regulated in cardiomyocytes and determines the force of cardiac muscle contraction. Ca2+ cycling refers to the release and reuptake of intracellular Ca2+ that drives muscle contraction and relaxation. In failing hearts, Ca2+ cycling is profoundly altered, resulting in impaired contractility and fatal cardiac arrhythmias. The key defects in Ca2+ cycling occur at the level of the sarcoplasmic reticulum (SR), a Ca2+ storage organelle in muscle. Defects in the regulation of Ca2+ cycling proteins including the ryanodine receptor 2, cardiac (RyR2)/Ca2+ release channel macromolecular complexes and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a)/phospholamban complex contribute to heart failure. RyR2s are oxidized, nitrosylated, and PKA hyperphosphorylated, resulting in "leaky" channels in failing hearts. These leaky RyR2s contribute to depletion of Ca2+ from the SR, and the leaking Ca2+ depolarizes cardiomyocytes and triggers fatal arrhythmias. SERCA2a is downregulated and phospholamban is hypophosphorylated in failing hearts, resulting in impaired SR Ca2+ reuptake that conspires with leaky RyR2 to deplete SR Ca2+. Two new therapeutic strategies for heart failure (HF) are now being tested in clinical trials: (a) fixing the leak in RyR2 channels with a novel class of Ca2+-release channel stabilizers called Rycals and (b) increasing expression of SERCA2a to improve SR Ca2+ reuptake with viral-mediated gene therapy. There are many potential opportunities for additional mechanism-based therapeutics involving the machinery that regulates Ca2+ cycling in the heart.
Collapse
Affiliation(s)
- Andrew R Marks
- Department of Physiology and Cellular Biophysics and The Clyde and Helen Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| |
Collapse
|
42
|
Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1145-74. [PMID: 22453987 PMCID: PMC3740791 DOI: 10.1007/978-94-007-2888-2_52] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure (HF) is an increasing public health problem accelerated by a rapidly aging global population. Despite considerable progress in managing the disease, the development of new therapies for effective treatment of HF remains a challenge. To identify targets for early diagnosis and therapeutic intervention, it is essential to understand the molecular and cellular basis of calcium handling and the signaling pathways governing the functional remodeling associated with HF in humans. Calcium (Ca(2+)) cycling is an essential mediator of cardiac contractile function, and remodeling of calcium handling is thought to be one of the major factors contributing to the mechanical and electrical dysfunction observed in HF. Active research in this field aims to bridge the gap between basic research and effective clinical treatments of HF. This chapter reviews the most relevant studies of calcium remodeling in failing human hearts and discusses their connections to current and emerging clinical therapies for HF patients.
Collapse
Affiliation(s)
- Qing Lou
- Department of Biomedical Engineering, Washington University in St. Louis, 390E Whitaker Hall, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
43
|
Ho D, Yan L, Iwatsubo K, Vatner DE, Vatner SF. Modulation of beta-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5. Heart Fail Rev 2011; 15:495-512. [PMID: 20658186 DOI: 10.1007/s10741-010-9183-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite remarkable advances in therapy, heart failure remains a leading cause of morbidity and mortality. Although enhanced beta-adrenergic receptor stimulation is part of normal physiologic adaptation to either the increase in physiologic demand or decrease in cardiac function, chronic beta-adrenergic stimulation has been associated with increased mortality and morbidity in both animal models and humans. For example, overexpression of cardiac Gsalpha or beta-adrenergic receptors in transgenic mice results in enhanced cardiac function in young animals, but with prolonged overstimulation of this pathway, cardiomyopathy develops in these mice as they age. Similarly, chronic sympathomimetic amine therapy increases morbidity and mortality in patients with heart failure. Conversely, the use of beta-blockade has proven to be of benefit and is currently part of the standard of care for heart failure. It is conceivable that interrupting distal mechanisms in the beta-adrenergic receptor-G protein-adenylyl cyclase pathway may also provide targets for future therapeutic modalities for heart failure. Interestingly, there are two major isoforms of adenylyl cyclase (AC) in the heart (type 5 and type 6), which may exert opposite effects on the heart, i.e., cardiac overexpression of AC6 appears to be protective, whereas disruption of type 5 AC prolongs longevity and protects against cardiac stress. The goal of this review is to summarize the paradigm shift in the treatment of heart failure over the past 50 years from administering sympathomimetic amine agonists to administering beta-adrenergic receptor antagonists, and to explore the basis for a novel therapy of inhibiting type 5 AC.
Collapse
Affiliation(s)
- David Ho
- Department of Cell Biology and Molecular Medicine and The Cardiovascular Research Institute, University of Medicine & Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G609, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
44
|
Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 2011; 3:a004317. [PMID: 21441595 PMCID: PMC3098671 DOI: 10.1101/cshperspect.a004317] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) as an intracellular Ca(2+) store not only sets up cytosolic Ca(2+) signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca(2+) depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca(2+) may no longer sustain essential cell functions. On the other hand, loss of luminal Ca(2+) causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca(2+) depletion.
Collapse
Affiliation(s)
- Djalila Mekahli
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, KU Leuven Campus Gasthuisberg O&N I, Belgium
| | | | | | | | | |
Collapse
|
45
|
George I, Sabbah HN, Xu K, Wang N, Wang J. β-Adrenergic receptor blockade reduces endoplasmic reticulum stress and normalizes calcium handling in a coronary embolization model of heart failure in canines. Cardiovasc Res 2011; 91:447-55. [DOI: 10.1093/cvr/cvr106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Thireau J, Pasquié JL, Martel E, Le Guennec JY, Richard S. New drugs vs. old concepts: a fresh look at antiarrhythmics. Pharmacol Ther 2011; 132:125-45. [PMID: 21420430 DOI: 10.1016/j.pharmthera.2011.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/01/2011] [Indexed: 01/10/2023]
Abstract
Common arrhythmias, particularly atrial fibrillation (AF) and ventricular tachycardia/fibrillation (VT/VF) are a major public health concern. Classic antiarrhythmic (AA) drugs for AF are of limited effectiveness, and pose the risk of life-threatening VT/VF. For VT/VF, implantable cardiac defibrillators appear to be the unique, yet unsatisfactory, solution. Very few AA drugs have been successful in the last few decades, due to safety concerns or limited benefits in comparison to existing therapy. The Vaughan-Williams classification (one drug for one molecular target) appears too restrictive in light of current knowledge of molecular and cellular mechanisms. New AA drugs such as atrial-specific and/or multichannel blockers, upstream therapy and anti-remodeling drugs, are emerging. We focus on the cellular mechanisms related to abnormal Na⁺ and Ca²⁺ handling in AF, heart failure, and inherited arrhythmias, and on novel strategies aimed at normalizing ionic homeostasis. Drugs that prevent excessive Na⁺ entry (ranolazine) and aberrant diastolic Ca²⁺ release via the ryanodine receptor RyR2 (rycals, dantrolene, and flecainide) exhibit very interesting antiarrhythmic properties. These drugs act by normalizing, rather than blocking, channel activity. Ranolazine preferentially blocks abnormal persistent (vs. normal peak) Na⁺ currents, with minimal effects on normal channel function (cell excitability, and conduction). A similar "normalization" concept also applies to RyR2 stabilizers, which only prevent aberrant opening and diastolic Ca²⁺ leakage in diseased tissues, with no effect on normal function during systole. The different mechanisms of action of AA drugs may increase the therapeutic options available for the safe treatment of arrhythmias in a wide variety of pathophysiological situations.
Collapse
Affiliation(s)
- Jérôme Thireau
- Inserm U1046 Physiologie & Médecine Expérimentale du Cœur et des Muscles, Université Montpellier-1, Université Montpellier-2, 34295 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
47
|
Shan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, Wronska A, Dura M, Chen BX, Marks AR. Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice. J Clin Invest 2010; 120:4375-87. [PMID: 21099115 DOI: 10.1172/jci37649] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/04/2010] [Indexed: 11/17/2022] Open
Abstract
Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor/calcium release channel (RyR2) is thought to play a role in heart failure (HF) progression. Inhibition of this leak is an emerging therapeutic strategy. To explore the role of chronic PKA phosphorylation of RyR2 in HF pathogenesis and treatment, we generated a knockin mouse with aspartic acid replacing serine 2808 (mice are referred to herein as RyR2-S2808D+/+ mice). This mutation mimics constitutive PKA hyperphosphorylation of RyR2, which causes depletion of the stabilizing subunit FKBP12.6 (also known as calstabin2), resulting in leaky RyR2. RyR2-S2808D+/+ mice developed age-dependent cardiomyopathy, elevated RyR2 oxidation and nitrosylation, reduced SR Ca2+ store content, and increased diastolic SR Ca2+ leak. After myocardial infarction, RyR2-S2808D+/+ mice exhibited increased mortality compared with WT littermates. Treatment with S107, a 1,4-benzothiazepine derivative that stabilizes RyR2-calstabin2 interactions, inhibited the RyR2-mediated diastolic SR Ca2+ leak and reduced HF progression in WT and RyR2-S2808D+/+ mice. In contrast, β-adrenergic receptor blockers improved cardiac function in WT but not in RyR2-S2808D+/+ mice.Thus, chronic PKA hyperphosphorylation of RyR2 results in a diastolic leak that causes cardiac dysfunction. Reversing PKA hyperphosphorylation of RyR2 is an important mechanism underlying the therapeutic action of β-blocker therapy in HF.
Collapse
Affiliation(s)
- Jian Shan
- Clyde and Helen Wu Center for Molecular Cardiology, Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kushnir A, Marks AR. The ryanodine receptor in cardiac physiology and disease. ADVANCES IN PHARMACOLOGY 2010; 59:1-30. [PMID: 20933197 DOI: 10.1016/s1054-3589(10)59001-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
According to the American Heart Association it is estimated that the United States will spend close to $39 billion in 2010 to treat over five million Americans suffering from heart failure. Patients with heart failure suffer from dyspnea and decreased exercised tolerance and are at increased risk for fatal ventricular arrhythmias. Food and Drug Administration -approved pharmacologic therapies for heart failure include diuretics, inhibitors of the renin-angiotensin system, and β-adrenergic receptor antagonists. Over the past 20 years advances in the field of ryanodine receptor (RyR2)/calcium release channel research have greatly advanced our understanding of cardiac physiology and the pathogenesis of heart failure and arrhythmias. Here we review the key observations, controversies, and discoveries that have led to the development of novel compounds targeting the RyR2/calcium release channel for treating heart failure and for preventing lethal arrhythmias.
Collapse
Affiliation(s)
- Alexander Kushnir
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | | |
Collapse
|
49
|
Seidler T, Teucher N, Hellenkamp K, Unsöld B, Grebe C, Kramps P, Schotola H, Wagner S, Schöndube FA, Hasenfuss G, Maier LS. Limitations of FKBP12.6-directed treatment strategies for maladaptive cardiac remodeling and heart failure. J Mol Cell Cardiol 2010; 50:33-42. [PMID: 20797399 DOI: 10.1016/j.yjmcc.2010.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/29/2022]
Abstract
Sarcoplasmic reticulum (SR) calcium (Ca) leak can be reduced by enhancing FKBP12.6 binding to SR Ca release channels (RyR2) and expression of a "sticky" FKBP12.6(D37S) mutant may correct reduced binding stoichiometry in RyR2 from failing hearts. Both calcium/calmodulin-dependent protein kinase IIδc (CaMKIIδc) and protein kinase A (PKA) are activated in heart failure and promote SR Ca leak at RyR2. It is possible that FKBP12.6 dissociation from RyR2 may promote remodeling and that interventions to reassociate FKBP12.6 with RyR2 reflect a future therapeutic strategy. We created transgenic (TG) mice expressing FKBP12.6(D37S) and tested their capacity to improve intracellular Ca handling and pathological remodeling in vivo. FKBP12.6(D37S) TG mice were cross-bred with CaMKIIδc TG mice, which are known to exhibit pronounced RyR2 dysfunction and heart failure. We observed a significant improvement of post-rest Ca transients and a higher SR Ca content in FKBP12.6(D37S) TG mice. In double-TG mice, a marked reduction of SR Ca spark frequency indicated reduced SR Ca leak but neither SR Ca transient amplitude, SR Ca content nor morphological or functional parameters improved in vivo. Likewise, FKBP12.6(D37S) TG mice subjected to increased afterload after aortic banding exhibited higher SR Ca load but did not exhibit any improvement in hypertrophic growth or functional decline. Enhancement of FKBP12.6-RyR2 binding markedly reduced RyR2 Ca leak in CaMKIIδc-induced heart failure and in pressure overload. Our data suggest that activation of CaMKIIδc and pressure overload confer significant resistance towards approaches aiming at FKBP12.6-RyR2 reconstitution in heart failure and maladaptive remodeling, although RyR2 Ca leak can be reduced.
Collapse
Affiliation(s)
- Tim Seidler
- Department of Cardiology and Pneumology, Heart Center, University of Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Role of CaMKIIdelta phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure. Proc Natl Acad Sci U S A 2010; 107:10274-9. [PMID: 20479242 DOI: 10.1073/pnas.1005843107] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The force frequency relationship (FFR), first described by Bowditch 139 years ago as the observation that myocardial contractility increases proportionally with increasing heart rate, is an important mediator of enhanced cardiac output during exercise. Individuals with heart failure have defective positive FFR that impairs their cardiac function in response to stress, and the degree of positive FFR deficiency correlates with heart failure progression. We have identified a mechanism for FFR involving heart rate dependent phosphorylation of the major cardiac sarcoplasmic reticulum calcium release channel/ryanodine receptor (RyR2), at Ser2814, by calcium/calmodulin-dependent serine/threonine kinase-delta (CaMKIIdelta). Mice engineered with an RyR2-S2814A mutation have RyR2 channels that cannot be phosphorylated by CaMKIIdelta, and exhibit a blunted positive FFR. Ex vivo hearts from RyR2-S2814A mice also have blunted positive FFR, and cardiomyocytes isolated from the RyR2-S2814A mice exhibit impaired rate-dependent enhancement of cytosolic calcium levels and fractional shortening. The cardiac RyR2 macromolecular complexes isolated from murine and human failing hearts have reduced CaMKIIdelta levels. These data indicate that CaMKIIdelta phosphorylation of RyR2 plays an important role in mediating positive FFR in the heart, and that defective regulation of RyR2 by CaMKIIdelta-mediated phosphorylation is associated with the loss of positive FFR in failing hearts.
Collapse
|