1
|
Cao L, Chen J, Ni H, Gong X, Zang Z, Chang H. Kumquat Flavonoids Attenuate Atherosclerosis in ApoE -/- Mice by Inhibiting the Activation of NLRP3 Inflammasome through Upregulating MicroRNA-145. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40260463 DOI: 10.1021/acs.jafc.5c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Atherosclerosis (AS) is widely recognized as a consequence of chronic inflammation, with the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome playing a pivotal role in mediating this inflammatory response. Kumquat flavonoids (KFs), the primary active ingredients in kumquat, have demonstrated potential in modulating inflammation and may help prevent AS. Herein, this study aimed to explore the protective effects and underlying mechanisms of KFs on AS using an ApoE-/- mouse model fed a high-fat/cholesterol diet (HFCD) and the mouse aortic vascular smooth muscle cell (MOVAS) inflammation model induced by oxidized low-density lipoprotein (ox-LDL). Our results show that KFs significantly reduced serum lipid levels and suppressed the overproduction of inflammatory cytokines in ApoE-/- mice. Notably, KFs also decreased the area of atherosclerotic lesions and plaque formation in the aorta of ApoE-/- mice. Additionally, in vivo (mouse aortic tissue) and in vitro (MOVAS cells), KFs were found to inhibit the activation of NLRP3 inflammasome and simultaneously upregulate microRNA-145 (miR-145). In conclusion, our findings suggest that KFs exert their inhibitory effects on NLRP3 inflammasome through upregulating miR-145, thereby alleviating the progression of AS.
Collapse
Affiliation(s)
- Linhai Cao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Junli Chen
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| | - Hongxia Ni
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoxiao Gong
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ziyan Zang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Currie G, Kiat H. Beyond the Lumen: Molecular Imaging to Unmask Vulnerable Coronary Plaques. J Cardiovasc Dev Dis 2025; 12:51. [PMID: 39997485 PMCID: PMC11856627 DOI: 10.3390/jcdd12020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Vulnerable coronary atherosclerotic plaque involves a dynamic pathophysiologic process within and surrounding an atheromatous plaque in coronary artery intima. The process drastically increases the risk of plaque rupture and is clinically responsible for most cases of acute coronary syndromes, myocardial infarctions, and sudden cardiac deaths. Early detection of vulnerable plaque is crucial for clinicians to implement appropriate risk-mitigation treatment strategies, offer timely interventions, and prevent potentially life-threatening events. There is an imperative clinical need to develop practical diagnostic pathways that utilize non-invasive means to risk-stratify symptomatic patients. Since the early 1990s, the identification of vulnerable plaque in clinical practice has primarily relied on invasive imaging techniques. In the last two decades, CT coronary angiogram (CTCA) has rapidly evolved into the prevalent non-invasive diagnostic modality for assessing coronary anatomy. There are now validated plaque appearances on CTCA correlating with plaque vulnerability. It is worth noting that in clinical practice, most CTCA reports omit mention of vulnerable plaque details because spatial resolution (0.3-0.5 mm) is often insufficient to reliably detect some crucial features of vulnerable plaques, such as thin fibrous caps. Additionally, accurately identifying vulnerable plaque features requires substantial expertise and time, which many cardiologists or radiologists may lack in routine reporting. Cardiac magnetic resonance imaging (cMRI) is also non-invasive and allows simultaneous anatomic and functional assessment of coronary plaques. Despite several decades of research and development, routine clinical application of cMRI in coronary plaque imaging remains hampered by complex imaging protocols, inconsistent image quality, and cost. Molecular imaging with radiotracers, specifically positron emission tomography (PET) with sodium fluoride (Na18F PET), have demonstrated significant potential as a sensitive and specific imaging procedure for diagnosing vulnerable coronary artery plaque. The study protocol is robust and brief, requiring minimal patient preparation. Compared to CTCA and cMRI, the diagnostic accuracy of this test is less dependent on the experience and expertise of the readers. Furthermore, validated automated quantitative algorithms complement the visual interpretation of the study, enhancing confidence in the diagnosis. This combination of factors makes Na18F PET a promising tool in cardiology for identifying high-risk coronary plaques.
Collapse
Affiliation(s)
- Geoffrey Currie
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Hosen Kiat
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
- College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
3
|
Pang W, Yuan C, Zhong T, Huang X, Pan Y, Qu J, Nie L, Zhou Y, Lai P. Diagnostic and therapeutic optical imaging in cardiovascular diseases. iScience 2024; 27:111216. [PMID: 39569375 PMCID: PMC11576408 DOI: 10.1016/j.isci.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the most prevalent health threats globally. Traditional diagnostic methods for CVDs, including electrocardiography, ultrasound, and cardiac magnetic resonance imaging, have inherent limitations in real-time monitoring and high-resolution visualization of cardiovascular pathophysiology. In recent years, optical imaging technology has gained considerable attention as a non-invasive, high-resolution, real-time monitoring solution in the study and diagnosis of CVD. This review discusses the latest advancements, and applications of optical techniques in cardiac imaging. We compare the advantages of optical imaging over traditional modalities and especially scrutinize techniques such as optical coherence tomography, photoacoustic imaging, and fluorescence imaging. We summarize their investigations in atherosclerosis, myocardial infarction, and heart valve disease, etc. Additionally, we discuss challenges like deep-tissue imaging and high spatiotemporal resolution adjustment, and review existing solutions such as multimodal integration, artificial intelligence, and enhanced optical probes. This article aims to drive further development in optical imaging technologies to provide more precise and efficient tools for early diagnosis, pathological mechanism exploration, and treatment of CVD.
Collapse
Affiliation(s)
- Weiran Pang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tianting Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiazi Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanchang Research Institute, Sun Yat-Sen University, Nanchang 330096, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen 518060, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yingying Zhou
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- The Joint Research Centre for Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
4
|
Gać P, Jakubowska-Martyniuk A, Żórawik A, Hajdusianek W, Żytkowski D, Matys T, Poręba R. Diagnostic Methods of Atherosclerotic Plaque and the Assessment of Its Prognostic Significance-A Narrative Review. J Cardiovasc Dev Dis 2024; 11:343. [PMID: 39590186 PMCID: PMC11594366 DOI: 10.3390/jcdd11110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVD) are a leading cause of death. The most notable cause of CVD is an atherosclerotic plaque. The aim of this review is to provide an overview of different diagnostic methods for atherosclerotic plaque relevant to the assessment of cardiovascular risk. The methods can be divided into invasive and non-invasive. This review focuses on non-invasive with attention paid to ultrasonography, contrast-enhanced ultrasonography, intravascular ultrasonography, and assessment of intima-media complex, coronary computed tomography angiography, and magnetic resonance. In the review, we discuss a number of Artificial Intelligence technologies that support plaque imaging.
Collapse
Affiliation(s)
- Paweł Gać
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
- Centre of Diagnostic Imaging, 4th Military Hospital, Rudolfa Weigla 5, 50-981 Wrocław, Poland
| | - Anna Jakubowska-Martyniuk
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| | - Aleksandra Żórawik
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| | - Wojciech Hajdusianek
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| | - Dawid Żytkowski
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| | - Tomasz Matys
- Department of Angiology and Internal Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Rafał Poręba
- Centre of Diagnostic Imaging, 4th Military Hospital, Rudolfa Weigla 5, 50-981 Wrocław, Poland
| |
Collapse
|
5
|
Fernández-Alvarez V, Linares-Sánchez M, Suárez C, López F, Guntinas-Lichius O, Mäkitie AA, Bradley PJ, Ferlito A. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability. Biomolecules 2023; 13:1236. [PMID: 37627301 PMCID: PMC10452902 DOI: 10.3390/biom13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Carotid artery disease has traditionally been assessed based on the degree of luminal narrowing. However, this approach, which solely relies on carotid stenosis, is currently being questioned with regard to modern risk stratification approaches. Recent guidelines have introduced the concept of the "vulnerable plaque," emphasizing specific features such as thin fibrous caps, large lipid cores, intraplaque hemorrhage, plaque rupture, macrophage infiltration, and neovascularization. In this context, imaging-based biomarkers have emerged as valuable tools for identifying higher-risk patients. Non-invasive imaging modalities and intravascular techniques, including ultrasound, computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy, have played pivotal roles in characterizing and detecting unstable carotid plaques. The aim of this review is to provide an overview of the evolving understanding of carotid artery disease and highlight the significance of imaging techniques in assessing plaque vulnerability and informing clinical decision-making.
Collapse
Affiliation(s)
- Verónica Fernández-Alvarez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Miriam Linares-Sánchez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Carlos Suárez
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
| | - Fernando López
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
- Department of Otorhinolaryngology, Hospital Universitario Central de Asturias, Instituto Universitario de Oncologia del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain
| | | | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, P.O. Box 263, 00029 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Patrick J. Bradley
- Department of ORLHNS, Queens Medical Centre Campus, Nottingham University Hospitals, Derby Road, Nottingham NG7 2UH, UK;
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
6
|
Rodrigues AC, Silva GS, Monaco CG, Costa RCPL, Piveta RB, Fischer CH, Lira-Filho EB, Morhy SS, Campos Vieira ML. Three-dimensional transesophageal echocardiographic evaluation of aortic plaque after cerebrovascular event. Rev Port Cardiol 2023; 42:149-155. [PMID: 36470575 DOI: 10.1016/j.repc.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION AND OBJECTIVES Transesophageal echocardiography (TEE) is crucial in order to assess aortic anatomy after stroke. Although routinely used to assess cardiovascular anatomy and function, three-dimensional echocardiography (3D TEE) is less used for aortic evaluation. We thus sought to assess prospectively whether additional information on aortic plaque morphology could be obtained with 3D TEE after an ischemic stroke. METHODS Patients within one week of a stroke (confirmed by brain computed tomography/magnetic resonance) underwent TEE and 3D findings were compared with two-dimensional (2D) (aorta plaque number, dimensions, area and the presence of debris and ulcerations). Patients were followed for two years for death or a new stroke. RESULTS We assessed 78 patients, 43 (55%) male, aged 62±14 years old, 92% in sinus rhythm. Aortic atheroma was found mainly in the descending aorta (50%); plaque thickness was similar for 2D TEE (0.29±0.03 cm) and 3D TEE (0.29±0.04 cm), whereas plaque area was slightly increased for 3D measurements (0.24±0.02 cm2 versus 0.37±0.03 cm2 respectively, p<0.05), with a strong correlation found both for aortic plaque thickness (r=0.91) and area (r=0.80) measurements. While aortic debris were equally seen with both techniques, 3D TEE defines the presence of ulcerations (six ulcerations unseen with 2D TEE better, p=0.03). There were 11 events (six deaths and five new strokes) during follow-up, unrelated to plaque characteristics. CONCLUSION To evaluate aortic plaque morphology, 3D TEE is superior to 2D TEE due to improved detection of ulcerated aortic plaque; this might provide additional information in patients after ischemic stroke.
Collapse
Affiliation(s)
- Ana Clara Rodrigues
- Echocardiography Laboratory - MDP - Hospital Israelita Albert Einstein, Sao Paulo, Brazil.
| | | | - Claudia G Monaco
- Echocardiography Laboratory - MDP - Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Rafael Bonafim Piveta
- Echocardiography Laboratory - MDP - Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Edgar B Lira-Filho
- Echocardiography Laboratory - MDP - Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Samira S Morhy
- Echocardiography Laboratory - MDP - Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | |
Collapse
|
7
|
Zhang W, Li M, Wang X, Zhang W, Wang H, Li P, Tang B. Precision Navigation of Venous Thrombosis Guided by Viscosity-Activatable Near-Infrared Fluorescence. Anal Chem 2023; 95:2382-2389. [PMID: 36653196 DOI: 10.1021/acs.analchem.2c04395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thrombus are blood clots formed by abnormal hemostasis in blood vessels and are closely associated with various diseases such as pulmonary embolism, myocardial infarction and stroke. Early diagnosis and treatment of thrombus is the key to reducing the high risk of thrombotic disease. Given that early thrombus is small in early size, free instability, wide regional distribution and fast formation, it is urgent to develop all-inclusive detection methods that combine high signal-to-noise ratio, in situ dynamic and rapid in-depth tissue imaging. Near-infrared (NIR) fluorescence imaging, with its excellent high spatiotemporal resolution and tissue penetration depth, is a powerful technique for direct visualization of thrombotic events in situ. Considering the fibrin highly expressed in the thrombus is a typical thrombotic target. Moreover, the viscosity of the thrombus is markedly higher than its surroundings. Therefore, we developed a fibrin-targeting and viscosity-activating thrombus NIR fluorescent probe (TIR-V) for high-resolution and high-sensitivity in situ lighten-up thrombus. TIR-V has the advantages of good thrombus targeting, significant "off-on" fluorescence specific response to viscosity, bright NIR fluorescence and good biocompatibility. The thrombus is clearly delineated by a high signal-to-noise ratio NIR fluorescence imaging, enabling imaging detection and precise navigation of thrombotic regions. This work demonstrates the potential of TIR-V as a bifunctional probe for definitive diagnostic imaging and direct navigation of thrombotic lesions in clinical applications.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Mengmei Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
8
|
Alqahtani A, Alsubai S, Sha M, Attique Khan M, Alhaisoni M, Rameez Naqvi S. Automated White Blood Cell Disease Recognition Using Lightweight Deep Learning. COMPUTER SYSTEMS SCIENCE AND ENGINEERING 2023; 46:107-123. [DOI: 10.32604/csse.2023.030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 08/25/2024]
|
9
|
Shishikura D, Octavia Y, Hayat U, Thondapu V, Barlis P. Atherogenesis and Inflammation. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
10
|
Ashwathanarayana AG, Singhal M, Satapathy S, Sood A, Mittal BR, Kumar RM, Parmar M, Krishnappa D, Rana N. 18F-NaF PET uptake characteristics of coronary artery culprit lesions in a cohort of patients of acute coronary syndrome with ST-elevation myocardial infarction and chronic stable angina: A hybrid fluoride PET/CTCA study. J Nucl Cardiol 2022; 29:558-568. [PMID: 32720061 DOI: 10.1007/s12350-020-02284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/08/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND 18F-NaF PET/CT identifies high-risk plaques due to active calcification in coronary arteries with potential to characterize plaques in ST-elevation myocardial infarction (MI) and chronic stable angina (CSA) patients. METHODS Twenty-four MI and 17 CSA patients were evaluated with 18F-NaF PET/CTCA for SUVmax and TBR values of culprit and non-culprit plaques in both groups (inter-group and intra-group comparison), and pre- and post-interventional MI plaques sub-analysis. RESULTS Culprit plaques in MI patients had significantly higher SUVmax (1.6; IQR 0.6 vs 1.3; IQR 0.3, P = 0.03) and TBR (1.4; IQR 0.6 vs 1.1; IQR 0.4, P = 0.006) than culprit plaques of CSA. Pre-interventional culprit plaques of MI group (n = 11) revealed higher SUVmax (P = 0.007) and TBR (P = 0.008) values than culprit CSA plaques. Culprit plaques showed significantly higher SUVmax (P = 0.006) and TBR (P = 0.0003) than non-culprit plaques in MI group, but without significant difference between culprit and non-culprit plaques in CSA group. With median TBR cutoff value of 1.4 in MI culprit plaques, 6/7 plaques (85.7%) among the event prone non-culprit lesions had TBR values > 1.4 in CSA group. CONCLUSION The study shows higher SUVmax and TBR values in MI culprit plaques and comparable TBR values for event prone plaques of CSA group in identifying high-risk plaques.
Collapse
Affiliation(s)
- Abhiram G Ashwathanarayana
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manphool Singhal
- Department of Radio-Diagnosis and Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Swayamjeet Satapathy
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rohit Manoj Kumar
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madan Parmar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Darshan Krishnappa
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nivedita Rana
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
Huang X, Mao L, Wang X, Teng Z, Shao M, Gao J, Xia M, Shao Z. Multi-Sequence MRI Registration of Atherosclerotic Carotid Arteries Based on Cross-Scale Siamese Network. Front Cardiovasc Med 2022; 8:785523. [PMID: 35004897 PMCID: PMC8740957 DOI: 10.3389/fcvm.2021.785523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (CVD) is a common disease with high mortality rate, and carotid atherosclerosis (CAS) is one of the leading causes of cardiovascular disease. Multisequence carotid MRI can not only identify carotid atherosclerotic plaque constituents with high sensitivity and specificity, but also obtain different morphological features, which can effectively help doctors improve the accuracy of diagnosis. However, it is difficult to evaluate the accurate evolution of local changes in carotid atherosclerosis in multi-sequence MRI due to the inconsistent parameters of different sequence images and the geometric space mismatch caused by the motion deviation of tissues and organs. To solve these problems, we propose a cross-scale multi-modal image registration method based on the Siamese U-Net. The network uses sub-networks with image inputs of different sizes to extract various features, and a special padding module is designed to make the network available for training on cross-scale features. In addition, to improve the registration performance, a multi-scale loss function under Gaussian smoothing is applied for optimization. For the experiments, we have collected a multi-sequence MRI image dataset from 11 patients with carotid atherosclerosis for a retrospective study. We evaluate our overall architectures by cross-validation on our carotid dataset. The experimental results show that our method can generate precise and reliable results with cross-scale multi-sequence inputs and the registration accuracy can be greatly improved by using the Gaussian smoothing loss function. The DSC of our Siamese structure can reach 84.1% on the carotid data set with cross-size input. With the use of GDSC loss, the average DSC can be improved by 5.23%, while the average distance between fixed landmarks and moving landmarks can be decreased by 6.46%.Our code is made publicly available at: https://github.com/MingHan98/Cross-scale-Siamese-Unet.
Collapse
Affiliation(s)
- Xiaojie Huang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lizhao Mao
- School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoyan Wang
- School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Minghan Shao
- School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jiefei Gao
- School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Ming Xia
- School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhanpeng Shao
- School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
12
|
Zhen X, Qu R, Chen W, Wu W, Jiang X. The development of phosphorescent probes for in vitro and in vivo bioimaging. Biomater Sci 2021; 9:285-300. [PMID: 32756681 DOI: 10.1039/d0bm00819b] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphorescence is a process that slowly releases the photoexcitation energy after the removal of the excitation source. Although transition metal complexes and purely organic room-temperature phosphorescence (RTP) materials show excellent phosphorescence property, their applications in in vitro and in vivo bioimaging are limited due to their poor solubility in water. To overcome this issue, phosphorescent materials are modified with amphiphilic or hydrophilic polymers to endow them with biocompatibility. This review focuses on recent advances in the development of phosphorescent probes for in vitro and in vivo bioimaging. The photophysical mechanism and the design principles of transition metal complexes and purely organic RTP materials for the stabilization of the triplet excited state for enhanced phosphorescence are first discussed. Then, the applications in in vitro and in vivo bioimaging using transition metal complexes including iridium(iii) complexes, platinum(ii) complexes, rhodium(i) complexes, and purely organic RTP materials are summarized. Finally, the current challenges and perspectives for these emerging materials in bioimaging are discussed.
Collapse
Affiliation(s)
- Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
13
|
Helfer BM, Bulte JW. Cell Surveillance Using Magnetic Resonance Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Surmounting the endothelial barrier for delivery of drugs and imaging tracers. Atherosclerosis 2020; 315:93-101. [DOI: 10.1016/j.atherosclerosis.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022]
|
15
|
Jiao Y, Qin Y, Zhang Z, Zhang H, Liu H, Li C. Early identification of carotid vulnerable plaque in asymptomatic patients. BMC Cardiovasc Disord 2020; 20:429. [PMID: 33003997 PMCID: PMC7528473 DOI: 10.1186/s12872-020-01709-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was to explore the influencing factors of atherosclerotic plaque formation and stability in patients with asymptomatic carotid atherosclerotic plaques, so as to identify the vulnerable plaques at early stage, and then find high-risk group of cardio-cerebrovascular events for early clinical intervention to reduce related mortality and disability. METHODS A total of 302 enrolled patients with asymptomatic carotid atherosclerotic plaques were divided into 3 groups based on the results of carotid artery color Doppler ultrasound: atherosclerotic unstable plaque (UP) group, atherosclerotic stable plaque (SP) group, and control group without plaques. Serum markers were measured by ELISA. χ2 test, t test, Pearson correlation analysis, and Logistic multivariate regression analysis were used in the analysis, and P < 0.05 was considered statistically significant. RESULTS It revealed that high MMP-9, LOX-1and YKL-40 were independent risk factors for unstable plaque formation. The area under the curve (AUC) of serum markers combined with MMP-9, LOX-1 and YKL-40 was 0.850, with sensitivity 87.67%, specificity 81.13%, and diagnostic accuracy 84.92%, which was significantly better than the individual diagnostic efficacy of other three factors. The accuracy rate of Crouse Plaque Score (CPS) in the diagnosis of vulnerable plaques was 61.90%, the 10-year ICVD diagnosis accuracy rate was 56.75%, and the diagnostic accuracy of serum markers was significantly better than CPS and 10-year ICVD. CONCLUSION Noninvasive cervical color Doppler ultrasound combined with serum markers MMP-9, LOX-1 and YKL-40 have significant early recognition effect on asymptomatic carotid vulnerable plaque patients.
Collapse
Affiliation(s)
- Yungen Jiao
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China.
| | - Yahong Qin
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China.,521 Hospital of Norinco Group, 12# Zhangba East Road, Xi'an, 710065, Shaanxi Province, China
| | - Zhengang Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China
| | - Hao Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China
| | - Haiwei Liu
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China
| | - Chen Li
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 45# Taizhou road, Yangzhou, 225000, Jiangsu Province, China
| |
Collapse
|
16
|
Hao Y, Wang X, Zhang F, Wang M, Wang Y, Wang H, Du Y, Wang T, Fu F, Gao Z, Zhang L. Inhibition of notch enhances the anti-atherosclerotic effects of LXR agonists while reducing fatty liver development in ApoE-deficient mice. Toxicol Appl Pharmacol 2020; 406:115211. [PMID: 32853627 DOI: 10.1016/j.taap.2020.115211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/08/2020] [Accepted: 08/21/2020] [Indexed: 01/03/2023]
Abstract
Liver X receptor (LXR) activation can achieve satisfactory anti-atherosclerotic activity, but can also lead to the development of fatty liver and hypertriglyceridemia. In contrast, Notch inhibition can suppress both atherosclerosis and the hepatic accumulation of lipids. In the present study, we sought to assess whether combining LXR ligand agonists (T317) with Notch receptor inhibitors (DAPT) would lead to enhanced anti-atherosclerotic activity while overcoming the adverse events associated with LXR ligand agonist therapy. The impact of the combined T317 + DAPT therapeutic regimen on atherosclerosis, fatty liver development, and hypertriglyceridemia was assessed using ApoE deficient (ApoE-/-) mice. The results of this analysis suggested that DAPT was able to improve the anti-atherosclerotic activity of T317 without reducing the stability of lesion plaques while simultaneously reducing blood lipids in treated ApoE-/- mice. This combination T317 + DAPT treatment was also linked with a significant upregulation of ABCA1 and the stimulation of reverse cholesterol transport (RCT), as well as with decreases in the levels of intercellular cell adhesion molecule-1 (ICAM-1) and p-p65, and with altered M1/M2 macrophage proportions within atherosclerotic plaques. Importantly, DAPT was also able to reduce T317-mediated lipid accumulation within the liver owing to its ability to reduce SREBP-1 expression while simultaneously increasing that of Pi-AMPKα and PPARα. Together, our results suggest that administering Notch receptor inhibitors to ApoE-/- mice may be an effective means of enhancing the anti-atherosclerotic activity of LXR ligand agonists while simultaneously limiting associated fatty liver and hypertriglyceridemia development in these animals.
Collapse
Affiliation(s)
- Yanfei Hao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xinlin Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Fenglan Zhang
- Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Meiling Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yanfang Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Hao Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Tian Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Fenghua Fu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China.
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
17
|
Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. NANOSCALE 2020; 12:8040-8064. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.
Collapse
Affiliation(s)
- Ruirui Qiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Ziegler M, Good E, Engvall J, Warntjes M, de Muinck E, Dyverfeldt P. Towards Automated Quantification of Vessel Wall Composition Using MRI. J Magn Reson Imaging 2020; 52:710-719. [PMID: 32154973 DOI: 10.1002/jmri.27116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND MRI can be used to generate fat fraction (FF) and R2* data, which have been previously shown to characterize the plaque compositional features lipid-rich necrotic core (LRNC) and intraplaque hemorrhage (IPH) in the carotid arteries (CAs). Previously, these data were extracted from CA plaques using time-consuming manual analyses. PURPOSE To design and demonstrate a method for segmenting the CA and extracting data describing the composition of the vessel wall. STUDY TYPE Prospective. SUBJECTS 31 subjects from the Swedish CArdioPulmonary bioImage Study (SCAPIS). FIELD STRENGTH/SEQUENCES T1 -weighted (T1 W) quadruple inversion recovery, contrast-enhanced MR angiography (CE-MRA), and 4-point Dixon data were acquired at 3T. ASSESSMENT The vessel lumen of the CA was automatically segmented using support vector machines (SVM) with CE-MRA data, and the vessel wall region was subsequently delineated. Automatically generated segmentations were quantitatively measured and three observers visually compared the segmentations to manual segmentations performed on T1 w images. Dixon data were used to generate FF and R2* maps. Both manually and automatically generated segmentations of the CA and vessel wall were used to extract compositional data. STATISTICAL TESTS Two-tailed t-tests were used to examine differences between results generated using manual and automated analyses, and among different configurations of the automated method. Interobserver agreement was assessed with Fleiss' kappa. RESULTS Automated segmentation of the CA using SVM had a Dice score of 0.89 ± 0.02 and true-positive ratio 0.93 ± 0.03 when compared against ground truth, and median qualitative score of 4/5 when assessed visually by multiple observers. Vessel wall regions of 0.5 and 1 mm yielded compositional information similar to that gained from manual analyses. Using the 0.5 mm vessel wall region, the mean difference was 0.1 ± 2.5% considering FF and 1.1 ± 5.7[1/s] for R2*. LEVEL OF EVIDENCE 1. TECHNICAL EFFICACY STAGE 1. J. Magn. Reson. Imaging 2020;52:710-719.
Collapse
Affiliation(s)
- Magnus Ziegler
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Elin Good
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology, Linköping University, Linköping, Sweden
| | - Jan Engvall
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Clinical Physiology, Linköping University, Linköping, Sweden
| | - Marcel Warntjes
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Ebo de Muinck
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Noninvasive Imaging Biomarkers of Vulnerable Coronary Plaques – a Clinical Update. JOURNAL OF INTERDISCIPLINARY MEDICINE 2019. [DOI: 10.2478/jim-2019-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Atherosclerosis is a slow, progressive disease, its most common manifestation and most severe consequence being coronary artery disease, one of the main causes of mortality and morbidity worldwide. The vast majority of cardiovascular deaths are caused by complications of atherosclerosis, most often being represented by the rupture of an unstable coronary plaque, regularly triggered by inflammation. A vulnerable plaque is characterized by a large, lipid-rich necrotic core, a thin fibrous cap with macrophage infiltration, and the presence of multiple specific biomarkers such as positive remodeling, irregular calcifications, and low attenuation visible with coronary computed tomography angiography (CCTA). Identifying biomarkers that could predict the risk of plaque rupture with high accuracy would be a significant advance in predicting acute cardiac events in asymptomatic patients, furthermore guiding treatment of patients with this disease. The main indication of noninvasive imaging is to identify patients at risk based on the presence or absence of symptoms that can be related to myocardial ischemia. The diagnostic objective is to confirm or to exclude the presence of coronary plaques. Coronary imaging in asymptomatic individuals is used to estimate the risk of future cardiac events through the identification of non-obstructive high-risk plaques. The possibility to monitor the evolution of vulnerable plaques via noninvasive imaging techniques, prior to the occurrence of an acute clinical event, is the main goal in plaque imaging. This manuscript will be focusing on recent advances of noninvasive imaging of vulnerable coronary plaques.
Collapse
|
20
|
Kashani H, Wright G, Ursani A, Liu G, Hashemi M, Paul N. Restricting motion effects in CT coronary angiography. Br J Radiol 2019; 92:20190384. [PMID: 31479307 DOI: 10.1259/bjr.20190384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE Evaluation of coronary CT image blur using multi segment reconstruction algorithm. METHODS Cardiac motion was simulated in a Catphan. CT coronary angiography was performed using 320 × 0.5 mm detector array and 275 ms gantry rotation. 1, 2 and 3 segment reconstruction algorithm, three heart rates (60, 80 and 100bpm), two peak displacements (4, 8 mm) and three cardiac phases (55, 35, 75%) were used. Wilcoxon test compared image blur from the different reconstruction algorithms. RESULTS Image blur for 1, 2 and 3 segments in: 60 bpm, 75% R-R interval and 8 mm peak displacement: 0.714, 0.588, 0.571 mm (1.18, 0.6, 0.4 mm displacement) 80 bpm, 35% R-R interval and 8 mm peak displacement: 0.869, 0.606, 0.606 mm (1.57, 0.79,0.52 mm displacement) 100 bpm, 35% R-R interval and 4 mm peak displacement: 0.645, 0.588, 0.571 mm (0.98, 0.49, 0.33 mm displacement). The median image blur overall for 1 and 2 segments was 0.714 mm and 0.588 mm respectively (p < 0.0001). CONCLUSION Two-segment reconstruction significantly reduces image blur. ADVANCES IN KNOWLEDGE Multisegment reconstruction algorithms during CT coronary angiography are a useful method to reduce image blur, improve visualization of the coronary artery wall and help the early detection of the plaque.
Collapse
Affiliation(s)
- Hany Kashani
- Institute of Medical Science, University of Toronto, Toronto, ON
| | - Graham Wright
- Department of Medical biophysics, University of Toronto, Toronto, ON
| | - Ali Ursani
- Department of Medical Imaging, University of Toronto, Toronto, ON
| | - Garry Liu
- Department of Medical biophysics, University of Toronto, Toronto, ON
| | - Masoud Hashemi
- Department of Medical Imaging, University of Toronto, Toronto, ON
| | - Narinder Paul
- Department of Medical Imaging, University of Toronto, Toronto, ON.,Department of Biomedical Engineering, University of Toronto, Toronto, ON.,Department of Medical Imaging, University of Western Ontario, London, ON
| |
Collapse
|
21
|
Coronary Artery Calcium Scoring in 2019: Past, Present, and Future. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Cho MS, Lee K, Choi KJ, Lee JB, Do U, Kim YN, Kim J, Nam GB, Kim YH. Thromboembolic Risk of Imaging-Confirmed Coronary Artery Disease Without Myocardial Infarction in Patients With Nonvalvular Atrial Fibrillation. Am J Cardiol 2019; 123:1287-1292. [PMID: 30709601 DOI: 10.1016/j.amjcard.2019.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
The implication of coronary artery disease (CAD) without the clinical manifestation of myocardial infarction (non-MI-CAD) on thromboembolic events in patients with nonvalvular atrial fibrillation (NVAF) is not well evaluated. We hypothesized that non-MI-CAD would have a similar risk of future thromboembolism as MI-CAD. Clinical data for 17,073 consecutive patients (mean age, 64.3 years; males, 64.9%) diagnosed with NVAF at our center were analyzed. CAD was defined as stenosis of ≥50% stenosis of major coronary arteries identified using coronary artery angiography or coronary computed tomographic angiography. The main outcome of the present study was the rate of thromboembolic events (ischemic stroke and systemic embolism) during the follow-up period (3.1 ± 2.4 years). A total of 1,011 patients (5.9%) were diagnosed with CAD without clinical manifestation of MI (non-MI-CAD) and 708 (4.1%) had a history or diagnosis of MI-CAD. Thromboembolic events occurred in 1,007 patients (5.9%) during follow-up. The groups were at high risk of future thromboembolic events determined using univariate (hazard ratio [HR] 1.55; 95% confidence interval [CI] 1.25 to 1.91; p <0.001 for non-MI-CAD and HR 2.14; 95% CI 1.70 to 2.69; p <0.001 for MI-CAD) and multivariate analysis adjusted for CHA2DS2-VASc score components and relevant variables (HR 1.42; 95% CI 1.15 to 1.77; p = 0.001 for non-MI-CAD and HR 1.62; 95% CI 1.28 to 2.06; p <0.001 for MI-CAD); this trend was consistent in patients who did not receive anticoagulants during follow-up (n = 8,032, 47.0%). In conclusion, non-MI-CAD is an important predictor of thromboembolic events in patients with NVAF.
Collapse
|
23
|
Yang Z, Li F, Yelamanchili D, Zeng Z, Rosales C, Youker KA, Shen H, Ferrari M, Mahmarian J, Pownall HJ, Hamilton DJ, Li Z. Vulnerable Atherosclerotic Plaque Imaging by Small‐Molecule High‐Affinity Positron Emission Tomography Radiopharmaceutical. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhen Yang
- Center for BioenergeticsHouston Methodist Research Institute 6670 Bertner Avenue Houston TX 77030 USA
| | - Feng Li
- Center for BioenergeticsHouston Methodist Research Institute 6670 Bertner Avenue Houston TX 77030 USA
| | - Dedipya Yelamanchili
- Center for BioenergeticsHouston Methodist Research Institute 6670 Bertner Avenue Houston TX 77030 USA
| | - Zihua Zeng
- Department of Pathology & Genomic MedicineHouston Methodist Research Institute
| | - Corina Rosales
- Center for BioenergeticsHouston Methodist Research Institute 6670 Bertner Avenue Houston TX 77030 USA
| | - Keith A. Youker
- Houston Methodist DeBakey Heart & Vascular CenterHouston Methodist Research Institute
| | - Haifa Shen
- Department of NanomedicineHouston Methodist Research Institute
- Department of MedicineWeill Cornell Medical College 1300 York Avenue New York NY 10065 USA
| | - Mauro Ferrari
- Department of NanomedicineHouston Methodist Research Institute
- Department of MedicineWeill Cornell Medical College 1300 York Avenue New York NY 10065 USA
| | - John Mahmarian
- Houston Methodist DeBakey Heart & Vascular CenterHouston Methodist Research Institute
- Department of MedicineWeill Cornell Medical College 1300 York Avenue New York NY 10065 USA
| | - Henry J. Pownall
- Center for BioenergeticsHouston Methodist Research Institute 6670 Bertner Avenue Houston TX 77030 USA
- Department of MedicineWeill Cornell Medical College 1300 York Avenue New York NY 10065 USA
| | - Dale J. Hamilton
- Center for BioenergeticsHouston Methodist Research Institute 6670 Bertner Avenue Houston TX 77030 USA
- Department of MedicineWeill Cornell Medical College 1300 York Avenue New York NY 10065 USA
| | - Zheng Li
- Center for BioenergeticsHouston Methodist Research Institute 6670 Bertner Avenue Houston TX 77030 USA
- Department of RadiologyWeill Cornell Medical College 1300 York Avenue New York NY 10065 USA
| |
Collapse
|
24
|
Kojima K, Kimura S, Hayasaka K, Mizusawa M, Misawa T, Yamakami Y, Sagawa Y, Ohtani H, Hishikari K, Sugiyama T, Hikita H, Takahashi A. Aortic Plaque Distribution, and Association between Aortic Plaque and Atherosclerotic Risk Factors: An Aortic Angioscopy Study. J Atheroscler Thromb 2019; 26:997-1006. [PMID: 30918164 PMCID: PMC6845689 DOI: 10.5551/jat.48181] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Knowledge of subclinical plaque morphology and plaque distribution in the aorta in vivo remains unclear. This study aimed to increase the body of knowledge in this area. Methods: We enrolled 37 consecutive patients with stable angina pectoris patients who underwent non-obstructive angioscopy for both the coronary artery and aorta immediately after percutaneous coronary intervention. We evaluated the presence of aortic plaques and the distribution of plaque instability. Patients were allocated into two groups according to the number of vulnerable plaques in whole aorta (a low [0–11] and high [≥ 12] group). We evaluated the relationships between the two groups in terms of cardiovascular risk factors. Results: Aortic plaques were identified using non-obstructive angioscopy in all patients, and the greatest number of plaques was found at the infrarenal abdominal aorta (IAA) (the aortic arch, the descending thoracic aorta, the suprarenal abdominal aorta, the IAA, and common iliac artery; 65%, 76%, 65%, 95%, and 49%, respectively; p < 0.001). The maximum yellow grade, and the number of intense yellow plaques, ruptured plaques, and thrombi were highest at the IAA (p < 0.001). The prevalence of diabetes mellitus and peripheral arterial disease was higher in the high vulnerable plaque group (83.3% vs. 40.0%, p = 0.010, 50.0% vs. 8.0%, p = 0.005, respectively). Conclusions: Aortic atherosclerosis was the most severe at the IAA, and aortic plaque vulnerability and distribution were associated with the prevalence of diabetes mellitus and peripheral artery disease in patients with stable angina pectoris. Non-obstructive angioscopy may identify patients at high risk of future aortic events.
Collapse
Affiliation(s)
| | | | | | | | - Toru Misawa
- Cardiovascular Center, Yokosuka Kyosai Hospital
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yusof NNM, McCann A, Little PJ, Ta HT. Non-invasive imaging techniques for the differentiation of acute and chronic thrombosis. Thromb Res 2019; 177:161-171. [PMID: 30921535 DOI: 10.1016/j.thromres.2019.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Thrombosis is the localized clotting of blood that can occur in both the arterial and venous circulation. It is a key factor in the pathogenesis of acute coronary syndrome, myocardial infarction and stroke and the primary cause of deep vein thrombosis and pulmonary embolism. Rapid and accurate diagnosis of thrombotic episodes is crucial in reducing the morbidity and potential mortality associated with arterial and venous thrombotic disorders by allowing early targeted therapeutic interventions. From a clinical perspective the ability to accurately assess the age and composition of thrombus is highly desirable given that anticoagulation and, in particular, fibrinolytic therapies are more effective in treating acute rather than chronic thrombosis. While there are no imaging tests used in routine clinical practice that can reliably determine the age of thrombus and differentiate between acute and chronic thrombosis there are several emerging non-invasive techniques that can provide an indication of the age of a thrombus depending on its location in the body. Examples of techniques developed for venous thrombosis include Doppler imaging with venous duplex ultrasonography, ultrasound B-mode imaging integrated with IER (intrinsic mode functions-based echogenicity ratio), elastography, scintigraphy imaging with 99mTc-recombinant tissue plasminogen activator (99mTc-rt-PA), and magnetic resonance direct thrombus imaging (MDRTI). Magnetic resonance imaging (MRI) has been used to noninvasively detect and differentiate acute and chronic arterial and venous thrombosis. These methods have limitations that need further investigation to enable cost-effective and clinically relevant treatment practices to be established in the future. This review will discuss the difference between acute and chronic thrombosis and the role of non-invasive imaging techniques in discriminating between the two.
Collapse
Affiliation(s)
- Nur Nazifah Mohd Yusof
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Andrew McCann
- Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Hang T Ta
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Woolloongabba, Queensland 4102, Australia; Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
26
|
Mury P, Mura M, Della-Schiava N, Chanon S, Vieille-Marchiset A, Nicaise V, Chirico EN, Collet-Benzaquen D, Lermusiaux P, Connes P, Millon A, Pialoux V. Association between physical activity and sedentary behaviour on carotid atherosclerotic plaques: an epidemiological and histological study in 90 asymptomatic patients. Br J Sports Med 2019; 54:469-474. [PMID: 30842104 DOI: 10.1136/bjsports-2018-099677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Carotid atherosclerotic plaques are a source of emboli for stroke. 'Unstable' carotid atherosclerotic plaques may have intraplaque haemorrhages, neovessels, prevalent macrophages, excessive calcium deposits, a large lipid core and a thin fibrous cap. Regular physical activity (PA) may lower the risk of plaques becoming unstable. We evaluated the association of both PA and sedentary behaviour (SB) with carotid plaque histopathology. METHODS 90 asymptomatic patients who were undergoing carotid endarterectomy for carotid artery narrowing identified on ultrasound reported their PA and SB by questionnaires. We calculated PA intensity in MET (metabolic equivalent of task)-min/week. For analysis, the population was divided into tertiles according to PA (T1PA: the less PA patients; T2PA: the intermediate PA patients; T3PA: the most physically active patients) (T1PA<T2PA<T3PA) and SB (T1SB: the less sedentary behaviour patients; T2SB: the intermediate sedentary behaviour patients; T3SB: the most sedentary behaviour patients) (T1SB<T2SB<T3SB). PA was categorised as one of four PA intensities (600, 900, 1600 and 3000 MET-min/week). We obtained the carotid artery plaque at surgery and performed histological analysis of intraplaque haemorrhages (present/absent), neovessels, macrophages, lipid core, calcium deposits and the fibrous cap. RESULTS Intraplaque haemorrhage was less frequent in the most physically active tertile (T3PA, 48%) versus T1PA (74%) and in the least sedentary tertile T1SB (50%) versus T3SB (71%). The intraplaque haemorrhage was less frequent in those who exercised more than 900 MET-min/week (59% vs 47% for >900 and <900 MET-min/week, respectively). All the other features that associate with plaque instability (eg, neovessels, macrophages, etc) did not differ by level of PA or SB. CONCLUSION In this cross-sectional study of asymptomatic patients who underwent endarterectomy (i) higher reported PA, (ii) intensity of PA and (iii) lower reported SB were associated with lower prevalence of intraplaque haemorrhage. This could be a mechanism whereby PA protects against cerebrovascular disease (stroke) and death.
Collapse
Affiliation(s)
- Pauline Mury
- Interuniversity Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Mathilde Mura
- Interuniversity Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence GR-Ex, Paris, France
| | | | - Stéphanie Chanon
- CarMeN Laboratory, INSERM U1060, INRA 1397, University Claude Bernard Lyon 1, Pierre Bénite, France
| | | | - Virginie Nicaise
- Laboratory of Vulnerabilities and Innovation in Sport EA7428, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Erica N Chirico
- Department of Biomedical Sciences, CooperMedical School, Rowan University, Camden, NJ, USA
| | | | | | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence GR-Ex, Paris, France.,Institut Universitaire de France, Paris, France
| | - Antoine Millon
- Department ofVascular Surgery, Edouard Herriot Hospital, Lyon, France.,CarMeN Laboratory, INSERM U1060, University Claude Bernard Lyon 1, Bron, France
| | - Vincent Pialoux
- Interuniversity Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence GR-Ex, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
27
|
Non-statin lipid lowering and coronary plaque composition. J Cardiovasc Comput Tomogr 2019; 13:301-302. [PMID: 30803836 DOI: 10.1016/j.jcct.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 11/20/2022]
|
28
|
Dweck MR, Robson PM, Rudd JH, Fayad ZA. Atherosclerotic Plaque Imaging. CARDIOVASCULAR MAGNETIC RESONANCE 2019:335-342.e3. [DOI: 10.1016/b978-0-323-41561-3.00028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Qi H, Sun J, Qiao H, Zhao X, Guo R, Balu N, Yuan C, Chen H. Simultaneous T 1 and T 2 mapping of the carotid plaque (SIMPLE) with T 2 and inversion recovery prepared 3D radial imaging. Magn Reson Med 2018; 80:2598-2608. [PMID: 29802629 DOI: 10.1002/mrm.27361] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE To propose a technique that can produce different T1 and T2 contrasts in a single scan for simultaneous T1 and T2 mapping of the carotid plaque (SIMPLE). METHODS An interleaved 3D golden angle radial trajectory was used in conjunction with T2 preparation with variable duration (TEprep ) and inversion recovery pulses. Sliding window reconstruction was adopted to reconstruct images at different inversion delay time and TEprep for joint T1 and T2 fitting. In the fitting procedure, a rapid B1 correction method was presented. The accuracy of SIMPLE was investigated in phantom experiments. In vivo scans were performed on 5 healthy volunteers with 2 scans each, and on 5 patients with carotid atherosclerosis. RESULTS The phantom T1 and T2 estimations of SIMPLE agreed well with the standard methods with the percentage difference smaller than 7.1%. In vivo T1 and T2 for normal carotid vessel wall were 1213 ± 48.3 ms and 51.1 ± 1.7 ms, with good interscan repeatability. Alternations of T1 and T2 in plaque regions were in agreement with the conventional multicontrast imaging findings. CONCLUSION The proposed SIMPLE allows simultaneous T1 and T2 mapping of the carotid artery in less than 10 minutes, serving as a quantitative tool with good accuracy and reproducibility for plaque characterization.
Collapse
Affiliation(s)
- Haikun Qi
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, Washington
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Rui Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, Washington
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,Department of Radiology, University of Washington, Seattle, Washington
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
30
|
Wang X, Li W, Song F, Wang L, Fu Q, Cao S, Gan Y, Zhang W, Yue W, Yan F, Shi W, Wang X, Zhang H, Zhang H, Wang Z, Lu Z. Carotid Atherosclerosis Detected by Ultrasonography: A National Cross-Sectional Study. J Am Heart Assoc 2018; 7:JAHA.118.008701. [PMID: 29622590 PMCID: PMC6015437 DOI: 10.1161/jaha.118.008701] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Carotid atherosclerosis (CA) is a reflector of generalized atherosclerosis that is associated with systemic vascular disease. Data are limited on the epidemiology of carotid lesions in a large, nationally representative population sample. We aimed to evaluate the prevalence of CA detected by carotid ultrasonography and related risk factors based on a national survey in China. Methods and Results A total of 107 095 residents aged ≥40 years from the China National Stroke Prevention Project underwent carotid ultrasound examination. Participants with carotid endarterectomy or carotid stenting and those with stroke or coronary heart disease were excluded. Data from 84 880 participants were included in the analysis. CA was defined as increased intima–media thickness (IMT) ≥1 mm or presence of plaques. Of the 84 880 participants, 46.4% were men, and the mean age was 60.7±10.3 years. The standardized prevalence of CA was 36.2% overall, increased with age, and was higher in men than in women. Prevalence of CA was higher among participants living in rural areas than in urban areas. Approximately 26.5% of participants had increased IMT, and 13.9% presented plaques. There was an age‐related increase in participants with increased IMT, plaque presence, and stenosis. In multiple logistic regression analysis, older age, male sex, residence in rural areas, smoking, alcohol consumption, physical inactivity, obesity, hypertension, diabetes mellitus, and dyslipidemia were associated with CA. Conclusions CA was highly prevalent in a middle‐aged and older Chinese population. This result shows the potential clinical importance of focusing on primary prevention of atherosclerosis progression.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College
| | - Wenzhen Li
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College
| | - Fujian Song
- Norwich Medical School, Faculty of Medicine and Health Science, University of East Anglia, Norwich, United Kingdom
| | - Longde Wang
- The National Health and Family Commission, Beijing, China
| | - Qian Fu
- School of Medicine and Health Management, Tongji Medical College
| | - Shiyi Cao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College
| | - Wei Zhang
- Department of Medical Ultrasound, Tongji Hospital & Medical College
| | - Wei Yue
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Feng Yan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wenhuan Shi
- Department of Science and Education, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Xiaoli Wang
- Department of Neurology, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Hong Zhang
- Department of Science and Education, People's Hospital of Deyang City, Sichuan, China
| | - Hao Zhang
- Department of Neurology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Zhihong Wang
- Department of Neurosurgery, Shenzhen Second People's Hospital Shenzhen University, Shenzhen, Guangdong, China
| | - Zuxun Lu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College
| |
Collapse
|
31
|
Beneit N, Martín-Ventura JL, Rubio-Longás C, Escribano Ó, García-Gómez G, Fernández S, Sesti G, Hribal ML, Egido J, Gómez-Hernández A, Benito M. Potential role of insulin receptor isoforms and IGF receptors in plaque instability of human and experimental atherosclerosis. Cardiovasc Diabetol 2018; 17:31. [PMID: 29463262 PMCID: PMC5819698 DOI: 10.1186/s12933-018-0675-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. We previously demonstrated that overexpression of insulin receptor isoform A (IRA) and insulin-like growth factor-I receptor (IGF-IR) confers a proliferative and migratory advantage to vascular smooth muscle cells (VSMCs) promoting plaque growth in early stages of atherosclerosis. However, the role of insulin receptor (IR) isoforms, IGF-IR or insulin-like growth factor-II receptor (IGF-IIR) in VSMCs apoptosis during advanced atherosclerosis remains unclear. METHODS We evaluated IR isoforms expression in human carotid atherosclerotic plaques by consecutive immunoprecipitations of insulin receptor isoform B (IRB) and IRA. Western blot analysis was performed to measure IGF-IR, IGF-IIR, and α-smooth muscle actin (α-SMA) expression in human plaques. The expression of those proteins, as well as the presence of apoptotic cells, was analyzed by immunohistochemistry in experimental atherosclerosis using BATIRKO; ApoE-/- mice, a model showing more aggravated vascular damage than ApoE-/- mice. Finally, apoptosis of VSMCs bearing IR (IRLoxP+/+ VSMCs), or not (IR-/- VSMCs), expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs), was assessed by Western blot against cleaved caspase 3. RESULTS We observed a significant decrease of IRA/IRB ratio in human complicated plaques as compared to non-complicated regions. Moreover, complicated plaques showed a reduced IGF-IR expression, an increased IGF-IIR expression, and lower levels of α-SMA indicating a loss of VSMCs. In experimental atherosclerosis, we found a significant decrease of IRA with an increased IRB expression in aorta from 24-week-old BATIRKO; ApoE-/- mice. Furthermore, atherosclerotic plaques from BATIRKO; ApoE-/- mice had less VSMCs content and higher number of apoptotic cells. In vitro experiments showed that IGF-IR inhibition by picropodophyllin induced apoptosis in VSMCs. Apoptosis induced by thapsigargin was lower in IR-/- VSMCs expressing higher IGF-IR levels as compared to IRLoxP+/+ VSMCs. Finally, IRB VSMCs are more prone to thapsigargin-induced apoptosis than IRA or IRLoxP+/+ VSMCs. CONCLUSIONS In advanced human atherosclerosis, a reduction of IRA/IRB ratio, decreased IGF-IR expression, or increased IGF-IIR may contribute to VSMCs apoptosis, promoting plaque instability and increasing the risk of plaque rupture and its clinical consequences.
Collapse
Affiliation(s)
- Nuria Beneit
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - José Luis Martín-Ventura
- Vascular Research Lab, IIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain.,CIBER of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Carlota Rubio-Longás
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Gema García-Gómez
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Silvia Fernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Jesús Egido
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Vascular Research Lab, IIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain.,CIBER of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Almudena Gómez-Hernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain. .,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain. .,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
32
|
Campos CM, Garcia-Garcia HM, Iqbal J, Muramatsu T, Nakatani S, Dijkstra J, Onuma Y, Serruys PW. Serial volumetric assessment of coronary fibroatheroma by optical frequency domain imaging: insights from the TROFI trial. Eur Heart J Cardiovasc Imaging 2018; 19:92-100. [PMID: 28200140 DOI: 10.1093/ehjci/jew338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/03/2017] [Indexed: 11/13/2022] Open
Abstract
Aims Coronary lesions precursors of acute events remain elusive, since they undergo continuous changes and their temporal changes are not very well-characterized. In natural history studies, optical frequency domain imaging (OFDI) has been used only to assess fibroatheromas as a 2D structure and sometimes in a single frame fashion. We aim at describing the serial volumetric modifications of the fibrous cap (FC) of the fibroatheromas as determined by OFDI over a 6-month follow-up period. Methods and results In 49 patients, OFDI investigation was performed following treatment of culprit lesion and at 6-month follow-up in patients with ST-segment elevation myocardial infarction (STEMI). A fully automatic volumetric quantification of FC was done in all lipid-containing frames of non-culprit lesions in the infarct related artery. These lesions were matched at baseline and 6-month follow-up. A total of 58 non-culprit lipid rich lesions (34 TCFAs and 24 thick-cap fibroatheroma [ThCFA]) were found in 34 patients at baseline. Overall, there was a FC volume decrease of 1.57 (Inter-quartile Range [IQR] -4.13 to 0.54) mm3 at 6-months. 27% of the lesions changed their phenotype over time (TCFA or ThCFA). TCFAs that became ThCFAs at follow-up had smaller mean and maximal FC as compared with lesions that remained TCFAs (P = 0.01 for both). Conclusions Non-culprit fibroatheromas located in the infarct related artery of patients with STEMI had a volumetric reduction of the FC after 6-month follow-up. Quantitative FC assessment was able to differentiate high-risk lesions that became ThCFAs. There was a considerable change of plaque phenotype (TCFAs or ThCFAs) over time.
Collapse
Affiliation(s)
- Carlos M Campos
- Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil.,Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Hector M Garcia-Garcia
- Division of Interventional Cardiology, MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, Washington, DC, USA
| | - Javaid Iqbal
- Cardiovascular Science, University of Sheffield and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Takashi Muramatsu
- Department of Cardiology, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Shimpei Nakatani
- Erasmus University Medical Centre, Thoraxcenter, Rotterdam, The Netherlands
| | - Jouke Dijkstra
- Leiden University Medical Center, Leiden, The Netherlands
| | - Yoshinobu Onuma
- Erasmus University Medical Centre, Thoraxcenter, Rotterdam, The Netherlands
| | - Patrick W Serruys
- International Centre for Circulatory Health, NHLI, Imperial College London, London, UK
| |
Collapse
|
33
|
Non-invasive characterization of coronary artery atherosclerotic plaque using dual energy CT: Explanation in ex-vivo samples. Phys Med 2017; 45:52-58. [PMID: 29472090 DOI: 10.1016/j.ejmp.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
PURPOSE In this study non-calcified plaque composition is evaluated by Dual Energy CT (DECT). Energy Dispersive X-ray Spectroscopy (EDS) has been used to study the Plaque composition. An attempt has been made to explain the DECT results with EDS analysis. METHODS Thirty-two ex-vivo human cadaver coronary artery samples were scanned by DECT and data was evaluated to calculate their effective atomic number and electron density (Zeff & ρe) by inversion method. Result of DECT was compared with pathology to assess their differentiating capability. The EDS study was used to explain DECT outcome. RESULTS DECT study was able to differentiate vulnerable plaque from stable with 87% accuracy (area under the curve (AUC):0.85 [95% confidence interval {CI}:0.73-0.98}] and Kappa Coefficient (KC):0.75 with respect to pathology. EDS revealed significant compositional difference in vulnerable and stable plaque at p < .05. The weight percentage of higher atomic number elements like F, Na, Mg, S, Si, P, Cl, K and Ca was found to be slightly more in vulnerable plaques as compared to a stable plaque. EDS also revealed a significantly increased weight percentage of nitrogen in stable plaques. CONCLUSIONS The EDS results were able to explain the outcomes of DECT study. This study conclusively explains the physics of DECT as a tool to assess the nature of non-calcified plaques as vulnerable and stable. The method proposed in this study allows for differentiation between vulnerable and stable plaque using DECT.
Collapse
|
34
|
Siddique S, Risse J, Canaud G, Zuily S. Vascular Manifestations in Antiphospholipid Syndrome (APS): Is APS a Thrombophilia or a Vasculopathy? Curr Rheumatol Rep 2017; 19:64. [PMID: 28871481 DOI: 10.1007/s11926-017-0687-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Antiphospholipid antibody syndrome (APS) is characterized primarily by thrombosis and pregnancy morbidity. Chronic vascular lesions can also occur. While the underlying mechanisms of these vascular lesions are not entirely known, there have been multiple theories describing the potential process of vasculopathy in APS and the various clinical manifestations associated with it. RECENT FINDINGS Recently, it has been demonstrated that endothelial proliferation in kidneys can be explained by the activation of the mammalian target of rapamycin complex (mTORC) pathway by antiphospholipid antibodies (aPL). These data support the existence of an APS-related vasculopathy in different locations which can explain-in part-the different manifestations of APS. This review focuses on the various manifestations of APS as a result of APS-related vasculopathy, as well as pathophysiology, current screening, and treatment options for clinicians to be aware of.
Collapse
Affiliation(s)
- Salma Siddique
- Division of Rheumatology, Hospital for Special Surgery, Weill Cornell Medical College, 535 East 70th Street, New York, NY, 10021, USA.
| | - Jessie Risse
- CHRU de Nancy, Vascular Medicine Division and Regional Competence Center For Rare Vascular And Systemic Autoimmune Diseases, Inserm U1116 at Lorraine University, Nancy, France
| | - Guillaume Canaud
- Université Paris Descartes, Sorbonne Paris Cité; Inserm U1151, Institut Necker-Enfants Malades; Service de Néphrologie Transplantation Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Stéphane Zuily
- CHRU de Nancy, Vascular Medicine Division and Regional Competence Center For Rare Vascular And Systemic Autoimmune Diseases, Inserm U1116 at Lorraine University, Nancy, France
| |
Collapse
|
35
|
Coolen BF, Calcagno C, van Ooij P, Fayad ZA, Strijkers GJ, Nederveen AJ. Vessel wall characterization using quantitative MRI: what's in a number? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:201-222. [PMID: 28808823 PMCID: PMC5813061 DOI: 10.1007/s10334-017-0644-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022]
Abstract
The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.
Collapse
Affiliation(s)
- Bram F Coolen
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands. .,Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pim van Ooij
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Atukorale PU, Covarrubias G, Bauer L, Karathanasis E. Vascular targeting of nanoparticles for molecular imaging of diseased endothelium. Adv Drug Deliv Rev 2017; 113:141-156. [PMID: 27639317 DOI: 10.1016/j.addr.2016.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023]
Abstract
This review seeks to highlight the enormous potential of targeted nanoparticles for molecular imaging applications. Being the closest point-of-contact, circulating nanoparticles can gain direct access to targetable molecular markers of disease that appear on the endothelium. Further, nanoparticles are ideally suitable to vascular targeting due to geometrically enhanced multivalent attachment on the vascular target. This natural synergy between nanoparticles, vascular targeting and molecular imaging can provide new avenues for diagnosis and prognosis of disease with quantitative precision. In addition to the obvious applications of targeting molecular signatures of vascular diseases (e.g., atherosclerosis), deep-tissue diseases often manifest themselves by continuously altering and remodeling their neighboring blood vessels (e.g., cancer). Thus, the remodeled endothelium provides a wide range of targets for nanoparticles and molecular imaging. To demonstrate the potential of molecular imaging, we present a variety of nanoparticles designed for molecular imaging of cancer or atherosclerosis using different imaging modalities.
Collapse
|
37
|
Huang M, Hippe DS, Huang L, Zhao X, Luo J, Zeng Q, Yuan C. A Noninvasive Sonographic Study of Multisite Atherosclerosis in an Elderly Chinese Population. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:639-647. [PMID: 28150376 DOI: 10.7863/ultra.16.03079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES A sonographic study was conducted to determine the prevalence of atherosclerosis across multiple arterial beds in an elderly Chinese population and to examine relationships between detected atherosclerosis and traditional risk factors. METHODS A total of 197 participants underwent sonography of the abdominal aorta and bilateral carotid, femoral, and lower limb arteries. Images were reviewed to determine the presence or absence of plaques in each artery. Plaque thickness was measured as the indicator of plaque burden. Plaque prevalence was estimated per site and correlated with age, sex, and the Framingham Risk Score (FRS). Plaque frequency and thickness were compared between different arterial beds. RESULTS Of the 197 participants (54% female; age range, 58-86 years), 90% had plaques present in at least 1 artery, and 55% had plaques present in at least 4 arteries. The most common sites for plaques were the carotid arteries (80%), followed by the lower limb arteries (59%), femoral arteries (57%), and abdominal aorta (37%). Plaque prevalence in each arterial bed except the abdominal aorta was significantly associated with male participants (P < .05), increasing age (P < .003) and FRS (P < .04). Male participants were more likely to have carotid (P = .04), femoral (P = .045), and lower limb (P = .006) plaques than female participants, but there was no significant difference in aortic plaque prevalence between male and female participants (P = .9). CONCLUSIONS Plaque prevalence increased significantly in the carotid and peripheral arteries with increasing FRS. These findings should be considered for designing screening programs for stroke and heart attack prevention.
Collapse
Affiliation(s)
- Manwei Huang
- Department of Ultrasound, China Meitan General Hospital, Beijing, China
| | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qingyu Zeng
- Department of Radiology, China Meitan General Hospital, Beijing, China
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
38
|
Sasaki T, Kobayashi K, Kita S, Kojima K, Hirano H, Shen L, Takenaka F, Kumon H, Matsuura E. In vivo distribution of single chain variable fragment (scFv) against atherothrombotic oxidized LDL/β2-glycoprotein I complexes into atherosclerotic plaques of WHHL rabbits: Implication for clinical PET imaging. Autoimmun Rev 2017; 16:159-167. [DOI: 10.1016/j.autrev.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
|
39
|
Djaiani GN. Aortic Arch Atheroma: Stroke Reduction in Cardiac Surgical Patients. Semin Cardiothorac Vasc Anesth 2016; 10:143-57. [PMID: 16959741 DOI: 10.1177/1089253206289006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiac surgery is increasingly performed on elderly patients with extensive coronary artery abnormalities who have impaired left ventricular function, decreased physiologic reserve, and multiple comorbid conditions. Considerable numbers of these patients develop perioperative neurologic complications ranging from subtle cognitive dysfunction to more evident postoperative confusion, delirium, and, less commonly, clinically apparent stroke. Magnetic resonance imaging studies have elucidated that a considerable number of patients have new ischemic brain infarcts, particularly after conventional coronary artery bypass graft surgery. Mechanisms of cerebral injury during and after cardiac surgery are discussed. Intraoperative transesophageal echocardiography and epiaortic scanning for detection of atheromatous disease of the proximal thoracic aorta is paramount in identifying patients at high risk from neurologic injury. It is important to recognize that our efforts to minimize neurologic injury should not be limited to the intraoperative period. Particular efforts should be directed to temperature management, glycemia control, and pharmacologic neuroprotection extending into the postoperative period. Preoperative magnetic resonance angiography may be of value for screening patients with significant atheroma of the proximal thoracic aorta. It is likely that for patients with no significant atheromatous disease, conventional coronary artery revascularization is the most effective long-term strategy, whereas patients with atheromatous thoracic aorta may be better managed with beating heart surgery, hybrid techniques, or medical therapy alone. Patient stratification based on the aortic atheromatic burden should be addressed in future trials designed to tailor treatment strategies to improve long-term outcomes of coronary heart disease and reduce the risks of perioperative neurologic injury.
Collapse
Affiliation(s)
- George N Djaiani
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Liu CH, Boydston-White S, Weisberg A, Wang W, Sordillo LA, Perotte A, Tomaselli VP, Sordillo PP, Pei Z, Shi L, Alfano RR. Vulnerable atherosclerotic plaque detection by resonance Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:127006. [PMID: 27999865 PMCID: PMC5174785 DOI: 10.1117/1.jbo.21.12.127006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/28/2016] [Indexed: 05/09/2023]
Abstract
A clear correlation has been observed between the resonance Raman (RR) spectra of plaques in the aortic tunica intimal wall of a human corpse and three states of plaque evolution: fibrolipid plaques, calcified and ossified plaques, and vulnerable atherosclerotic plaques (VPs). These three states of atherosclerotic plaque lesions demonstrated unique RR molecular fingerprints from key molecules, rendering their spectra unique with respect to one another. The vibrational modes of lipids, cholesterol, carotenoids, tryptophan and heme proteins, the amide I, II, III bands, and methyl/methylene groups from the intrinsic atherosclerotic VPs in tissues were studied. The salient outcome of the investigation was demonstrating the correlation between RR measurements of VPs and the thickness measurements of fibrous caps on VPs using standard histopathology methods, an important metric in evaluating the stability of a VP. The RR results show that VPs undergo a structural change when their caps thin to 66 ?? ? m , very close to the 65 - ? m empirical medical definition of a thin cap fibroatheroma plaque, the most unstable type of VP.
Collapse
Affiliation(s)
- Cheng-hui Liu
- The City College of the City University of New York, Institute of Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, 160 Convent Avenue, Room MR 201, New York, New York 10031-9101, United States
| | - Susie Boydston-White
- The City University of New York, Borough of Manhattan Community College, 199 Chambers Street, N682, New York, New York 10007-1097, United States
| | - Arel Weisberg
- Energy Research Company, 1250 South Avenue, Plainfield, New Jersey 07062, United States
| | - Wubao Wang
- The City College of the City University of New York, Institute of Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, 160 Convent Avenue, Room MR 201, New York, New York 10031-9101, United States
| | - Laura A. Sordillo
- The City College of the City University of New York, Institute of Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, 160 Convent Avenue, Room MR 201, New York, New York 10031-9101, United States
| | - Adler Perotte
- Columbia University Medical Center, Department of Biomedical Informatics, 622 West 168th Street, PH20, New York, New York 10032, United States
| | - Vincent P. Tomaselli
- Columbia University Medical Center, Department of Biomedical Informatics, 622 West 168th Street, PH20, New York, New York 10032, United States
| | - Peter P. Sordillo
- The City College of the City University of New York, Institute of Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, 160 Convent Avenue, Room MR 201, New York, New York 10031-9101, United States
| | - Zhe Pei
- The City College of the City University of New York, Institute of Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, 160 Convent Avenue, Room MR 201, New York, New York 10031-9101, United States
| | - Lingyan Shi
- The City College of the City University of New York, Institute of Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, 160 Convent Avenue, Room MR 201, New York, New York 10031-9101, United States
- Columbia University, Department of Chemistry, 3000 Broadway MC 3139, New York, New York 10027, United States
| | - Robert R. Alfano
- The City College of the City University of New York, Institute of Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, 160 Convent Avenue, Room MR 201, New York, New York 10031-9101, United States
- Address all correspondence to: Robert R. Alfano, E-mail:
| |
Collapse
|
41
|
Hayat U, Thondapu V, Tsay T, Barlis P. Atherogenesis and Inflammation. Interv Cardiol 2016. [DOI: 10.1002/9781118983652.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Umair Hayat
- Melbourne Medical School; The University of Melbourne; Australia
| | - Vikas Thondapu
- Melbourne Medical School; The University of Melbourne; Australia
| | - Tim Tsay
- Melbourne Medical School; The University of Melbourne; Australia
| | | |
Collapse
|
42
|
Ma J, Luo Y, Sevag Packard RR, Ma T, Ding Y, Abiri P, Tai YC, Zhou Q, Shung KK, Li R, Hsiai T. Ultrasonic Transducer-Guided Electrochemical Impedance Spectroscopy to Assess Lipid-Laden Plaques. SENSORS AND ACTUATORS. B, CHEMICAL 2016; 235:154-161. [PMID: 27773967 PMCID: PMC5068578 DOI: 10.1016/j.snb.2016.04.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plaque rupture causes acute coronary syndromes and stroke. Intraplaque oxidized low density lipoprotein (oxLDL) is metabolically unstable and prone to induce rupture. We designed an intravascular ultrasound (IVUS)-guided electrochemical impedance spectroscopy (EIS) sensor to enhance the detection reproducibility of oxLDL-laden plaques. The flexible 2-point micro-electrode array for EIS was affixed to an inflatable balloon anchored onto a co-axial double layer catheter (outer diameter = 2 mm). The mechanically scanning-driven IVUS transducer (45 MHz) was deployed through the inner catheter (diameter = 1.3 mm) to the acoustic impedance matched-imaging window. Water filled the inner catheter to match acoustic impedance and air was pumped between the inner and outer catheters to inflate the balloon. The integrated EIS and IVUS sensor was deployed into the ex vivo aortas dissected from the fat-fed New Zealand White (NZW) rabbits (n=3 for fat-fed, n= 5 normal diet). IVUS imaging was able to guide the 2-point electrode to align with the plaque for EIS measurement upon balloon inflation. IVUS-guided EIS signal demonstrated reduced variability and increased reproducibility (p < 0.0001 for magnitude, p < 0.05 for phase at < 15 kHz) as compared to EIS sensor alone (p < 0.07 for impedance, p < 0.4 for phase at < 15 kHz). Thus, we enhanced topographic and EIS detection of oxLDL-laden plaques via a catheter-based integrated sensor design to enhance clinical assessment for unstable plaque.
Collapse
Affiliation(s)
- Jianguo Ma
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yuan Luo
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - René R. Sevag Packard
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Teng Ma
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yichen Ding
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Parinaz Abiri
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yu-Chong Tai
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kirk K. Shung
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rongsong Li
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tzung Hsiai
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
43
|
Determination of the Input Function at the Entry of the Tissue of Interest and Its Impact on PET Kinetic Modeling Parameters. Mol Imaging Biol 2016; 17:748-56. [PMID: 26395903 DOI: 10.1007/s11307-015-0895-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quantitative positron emission tomography (PET) imaging is employed with several measurement protocols all relying on the a priori determination of the input function (IF). The standard technique to determine IF is by blood sampling. However, a unique IF determined in a subject for a given PET study, either defined by sampling or in the images, and commonly utilized for all analyzed tissues in that study equally at rest and during interventions, is expected to provoke biases in the rate constants and in tissue blood volume. The determination of a specific IF at the site of the tissue to be analyzed enhances PET accuracy and renders PET imaging less invasive.
Collapse
|
44
|
Pissuwan D, Hattori Y. Detection of Adhesion Molecules on Inflamed Macrophages at Early-Stage Using SERS Probe Gold Nanorods. NANO-MICRO LETTERS 2016; 9:8. [PMID: 30460305 PMCID: PMC6223776 DOI: 10.1007/s40820-016-0111-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/08/2016] [Indexed: 06/09/2023]
Abstract
In recent years, it has been shown that inflammatory biomarkers can be used as an effective signal for disease diagnoses. The early detection of these signals provides useful information that could prevent the occurrence of severe diseases. Here, we employed surface-enhanced Raman scattering (SERS) probe gold nanorods (GNRs) as a tool for the early detection of inflammatory molecules in inflamed cells. A murine macrophage cell line (Raw264.7) stimulated with lipopolysaccharide (LPS) was used as a model in this study. The prepared SERS probe GNRs containing 4-mercaptobenzoic acid as a Raman reporter to generate SERS signals were used for detection of intracellular adhesion molecule-1 (ICAM-1) in macrophages after treatment with LPS for varying lengths of time. Our results show that SERS probe GNRs could detect significant differences in the expression of ICAM-1 molecules in LPS-treated macrophages compared to those in untreated macrophages after only 1 h of LPS treatment. In contrast, when using fluorescent labeling or enzyme-linked immunosorbent assays (ELISA) to detect ICAM-1, significant differences between inflamed and un-inflamed macrophages were not seen until the cells had been treated with LPS for 5 h. These results indicate that our SERS probe GNRs provide a higher sensitivity for detecting biomarker molecules in inflamed macrophages than the conventional fluorescence and ELISA techniques, and could therefore be useful as a potential diagnostic tool for managing disease risk.
Collapse
Affiliation(s)
- Dakrong Pissuwan
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka, 5650871 Japan
- Materials Science and Engineering Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Yusuke Hattori
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 2028585 Japan
| |
Collapse
|
45
|
Abstract
Peripheral arterial occlusive disease (PAOD) is common in older age. PAOD is associated with an increased risk of vascular events (eg, myocardial infarction or stroke). Therefore, the prevention and treatment of PAOD is important, especially at a time when the elderly population is increasing. There is an association between lipid abnormalities and the risk of developing PAOD. However, it is not yet definitively established that early intervention with lipid-lowering drugs prevents the development of PAOD. There is evidence that vascular events in patients with PAOD can be significantly reduced by statins and that the symptoms associated with PAOD are improved by this treatment. There is an urgent need for appropriately designed lipid-lowering trials in patients with PAOD.
Collapse
Affiliation(s)
- Knut Kröger
- Department of Angiology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
46
|
Gitsioudis G, Chatzizisis YS, Wolf P, Missiou A, Antoniadis AP, Mitsouras D, Bartling S, Arica Z, Stuber M, Rybicki FJ, Nunninger M, Erbel C, Libby P, Giannoglou GD, Katus HA, Korosoglou G. Combined non-invasive assessment of endothelial shear stress and molecular imaging of inflammation for the prediction of inflamed plaque in hyperlipidaemic rabbit aortas. Eur Heart J Cardiovasc Imaging 2016; 18:19-30. [PMID: 27013245 DOI: 10.1093/ehjci/jew048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
AIMS To evaluate the incremental value of low endothelial shear stress (ESS) combined with high-resolution magnetic resonance imaging (MRI)- and computed tomography angiography (CTA)-based imaging for the prediction of inflamed plaque. METHODS AND RESULTS Twelve hereditary hyperlipidaemic rabbits underwent quantitative analysis of plaque in the thoracic aorta with 256-slice CTA and USPIO-enhanced (ultra-small superparamagnetic nanoparticles, P904) 1.5-T MRI at baseline and at 6-month follow-up. Computational fluid dynamics using CTA-based 3D reconstruction of thoracic aortas identified the ESS patterns in the convex and concave curvature subsegments of interest. Subsegments with low baseline ESS exhibited significant increase in wall thickness and plaque inflammation by MRI, in non-calcified plaque burden by CTA, and developed increased plaque size, lipid and inflammatory cell accumulation (high-risk plaque features) at follow-up by histopathology. Multiple regression analysis identified baseline ESS and inflammation by MRI to be independent predictors of plaque progression, while receiver operating curve analysis revealed baseline ESS alone or in combination with inflammation by MRI as the strongest predictor for augmented plaque burden and inflammation (low ESS at baseline: AUC = 0.84, P < 0.001; low ESS and inflammation by molecular MRI at baseline: AUC = 0.89, P < 0.001). CONCLUSION Low ESS predicts progression of plaque burden and inflammation as assessed by non-invasive USPIO-enhanced MRI. Combined non-invasive assessment of ESS and imaging of inflammation may serve to predict plaque with high-risk features.
Collapse
Affiliation(s)
| | - Yiannis S Chatzizisis
- Cardiovascular Division, University of Nebraska Medical Center, Omaha, Nebraska, USA .,First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.,Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Wolf
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Anna Missiou
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Antonios P Antoniadis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.,Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dimitrios Mitsouras
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sönke Bartling
- Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Zeynep Arica
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Stuber
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Biomedical Imaging, University Hospital Lausanne, Lausanne, Switzerland
| | - Frank J Rybicki
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Max Nunninger
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Christian Erbel
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Peter Libby
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - George D Giannoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
47
|
Coolen BF, Poot DH, Liem MI, Smits LP, Gao S, Kotek G, Klein S, Nederveen AJ. Three‐dimensional quantitative T
1
and T
2
mapping of the carotid artery: Sequence design and in vivo feasibility. Magn Reson Med 2016; 75:1008-17. [DOI: 10.1002/mrm.25634] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Bram F. Coolen
- Department of RadiologyAcademic Medical CenterAmsterdam the Netherlands
| | - Dirk H.J. Poot
- Biomedical Imaging Group Rotterdam, Depts. of Radiology and Medical InformaticsErasmus Medical CenterRotterdam the Netherlands
- Quantitative Imaging Group, Department of Imaging PhysicsDelft University of TechnologyDelft The Netherlands
| | - Madieke I. Liem
- Department of NeurologyAcademic Medical CenterAmsterdam the Netherlands
| | - Loek P. Smits
- Department of Vascular MedicineAcademic Medical CenterAmsterdam the Netherlands
| | - Shan Gao
- Department of Radiology, Division of Image ProcessingLeiden University Medical CenterLeiden The Netherlands
| | - Gyula Kotek
- Department of RadiologyErasmus Medical CenterRotterdam the Netherlands
| | - Stefan Klein
- Biomedical Imaging Group Rotterdam, Depts. of Radiology and Medical InformaticsErasmus Medical CenterRotterdam the Netherlands
| | - Aart J. Nederveen
- Department of RadiologyAcademic Medical CenterAmsterdam the Netherlands
| |
Collapse
|
48
|
Lopez Gonzalez M, Foo S, Holmes W, Stewart W, Muir K, Condon B, Welch G, Forbes K. Atherosclerotic Carotid Plaque Composition: A 3T and 7T MRI-Histology Correlation Study. J Neuroimaging 2016; 26:406-13. [PMID: 26919134 DOI: 10.1111/jon.12332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- M.R. Lopez Gonzalez
- Department of Clinical Physics and Bioengineering; Glasgow Royal Infirmary; Glasgow UK
| | - S.Y. Foo
- ST1, West of Scotland Radiology Training Scheme, NHS; Glasgow UK
| | - W.M. Holmes
- Glasgow Experimental MRI Centre; Institute of Neuroscience and Psychology, University of Glasgow; UK
| | - W. Stewart
- Department of Neuropathology, Laboratory Medicine Building; Queen Elizabeth University Hospital; Glasgow UK
| | - K.W. Muir
- Centre for Stroke and Brain Imaging Research, Institute of Neuroscience and Psychology; University of Glasgow; UK
| | - B. Condon
- Institute of Neurological Sciences; Queen Elizabeth University Hospital; UK
| | - G. Welch
- Vascular Surgery; Queen Elizabeth University Hospital; Glasgow UK
| | - K.P. Forbes
- Institute of Neurological Sciences; Queen Elizabeth University Hospital; UK
| |
Collapse
|
49
|
Goel S, Miller A, Agarwal C, Zakin E, Acholonu M, Gidwani U, Sharma A, Kulbak G, Shani J, Chen O. Imaging Modalities to Identity Inflammation in an Atherosclerotic Plaque. Radiol Res Pract 2015; 2015:410967. [PMID: 26798515 PMCID: PMC4699110 DOI: 10.1155/2015/410967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/19/2015] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is a chronic, progressive, multifocal arterial wall disease caused by local and systemic inflammation responsible for major cardiovascular complications such as myocardial infarction and stroke. With the recent understanding that vulnerable plaque erosion and rupture, with subsequent thrombosis, rather than luminal stenosis, is the underlying cause of acute ischemic events, there has been a shift of focus to understand the mechanisms that make an atherosclerotic plaque unstable or vulnerable to rupture. The presence of inflammation in the atherosclerotic plaque has been considered as one of the initial events which convert a stable plaque into an unstable and vulnerable plaque. This paper systemically reviews the noninvasive and invasive imaging modalities that are currently available to detect this inflammatory process, at least in the intermediate stages, and discusses the ongoing studies that will help us to better understand and identify it at the molecular level.
Collapse
Affiliation(s)
- Sunny Goel
- Department of Medicine, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Avraham Miller
- Department of Medicine, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Chirag Agarwal
- Department of Medicine, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Elina Zakin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Acholonu
- Department of Medicine, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Umesh Gidwani
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abhishek Sharma
- Division of Cardiovascular Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA
| | - Guy Kulbak
- Department of Cardiology, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Jacob Shani
- Department of Cardiology, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - On Chen
- Department of Cardiology, Maimonides Medical Center, Brooklyn, NY 11219, USA
| |
Collapse
|
50
|
Gene silencing of TACE enhances plaque stability and improves vascular remodeling in a rabbit model of atherosclerosis. Sci Rep 2015; 5:17939. [PMID: 26655882 PMCID: PMC4677302 DOI: 10.1038/srep17939] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022] Open
Abstract
We aimed to test the hypothesis that gene silencing of tumor necrosis factor alpha converting enzyme (TACE) may attenuate lesion inflammation and positive vascular remodeling and enhance plaque stability in a rabbit model of atherosclerosis. Lentivirus-mediated TACE shRNA was injected into the abdominal aortic plaques of rabbits which effectively down-regulated TACE expression and activities from week 8 to week 16. TACE gene silencing reduced remodeling index and plaque burden, and diminished the content of macrophages and lipids while increased that of smooth muscle cells and collagen in the aortic plaques. In addition, TACE gene silencing attenuated the local expression of P65, iNOS, ICAM-1, VEGF and Flt-1 and activities of MMP9 and MMP2 while increased the local expression of TGF-β1 together with reduced number of neovessels in the aorta. TACE shRNA treatment resulted in down-regulated expression of TACE in macrophages and blunted ERK-P38 phosphorylation and tube formation of co-cultured mouse vascular smooth muscle cells or human umbilical vein endothelial cells. In conclusion, gene silencing of TACE enhanced plaque stability and improved vascular positive remodeling. The mechanisms may involve attenuated local inflammation, neovascularization and MMP activation, as well as enhanced collagen production probably via down-regulated ERK-NF-κB and up-regulated TGF-β1 signaling pathways.
Collapse
|